JP4466293B2 - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP4466293B2
JP4466293B2 JP2004257041A JP2004257041A JP4466293B2 JP 4466293 B2 JP4466293 B2 JP 4466293B2 JP 2004257041 A JP2004257041 A JP 2004257041A JP 2004257041 A JP2004257041 A JP 2004257041A JP 4466293 B2 JP4466293 B2 JP 4466293B2
Authority
JP
Japan
Prior art keywords
single crystal
melt
gas
crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004257041A
Other languages
Japanese (ja)
Other versions
JP2006069861A (en
Inventor
将斉 矢代
一人 亀井
一彦 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004257041A priority Critical patent/JP4466293B2/en
Priority to PCT/JP2005/015844 priority patent/WO2006025420A1/en
Priority to EP05781299.2A priority patent/EP1806437B1/en
Publication of JP2006069861A publication Critical patent/JP2006069861A/en
Priority to US11/712,841 priority patent/US7635413B2/en
Application granted granted Critical
Publication of JP4466293B2 publication Critical patent/JP4466293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、特に光デバイスや電子デバイスの材料として好適な炭化珪素の良質なバルク単結晶の製造方法に関し、特に液相成長法による安定な製造が可能な方法に関する。   The present invention relates to a method for producing a high-quality bulk single crystal of silicon carbide particularly suitable as a material for optical devices and electronic devices, and more particularly to a method capable of stable production by a liquid phase growth method.

炭化珪素 (SiC) は、シリコン (Si) に比べて、バンドギャップが約3倍、絶縁破壊電圧が約10倍、電子飽和速度が約2倍、熱伝導率が約3倍大きいという、Siより有利な特徴を有している。SiCは熱的及び化学的に安定な半導体材料であり、これらの特徴を生かして、近年では、Siデバイスの物理的な限界を打破するパワーデバイスや高温で動作する耐環境デバイスなどへのSiCの応用が期待されている。   Silicon carbide (SiC) is about 3 times larger than silicon (Si), with a band gap of about 3 times, a breakdown voltage of about 10 times, an electron saturation speed of about 2 times, and a thermal conductivity of about 3 times. It has advantageous features. SiC is a semiconductor material that is thermally and chemically stable. In recent years, SiC has been used for power devices that break the physical limitations of Si devices and environmental devices that operate at high temperatures. Application is expected.

一方、光デバイス研究においては短波長化を目指した窒化ガリウム (GaN) 系の材料開発がなされているが、SiCはGaNとの格子不整合が格段に小さいために、GaNエピタキシャル成長用の基板材料としても注目されている。   On the other hand, gallium nitride (GaN) -based materials have been developed for optical device research with the aim of shortening the wavelength, but SiC has a remarkably small lattice mismatch with GaN, so it is a substrate material for GaN epitaxial growth. Is also attracting attention.

以上のデバイスまたは基板材料に利用するには、大型で良質なSiCのバルク単結晶の製造が必要である。
しかし、SiCは結晶多形 (ポリタイプ) を呈する物質としても有名である。結晶多形とは、化学量論的には同じ組成でありながら、原子の積層様式がC軸方向にのみ異なる多くの結晶構造を取りうる現象である。代表的なポリタイプとしては、6H型 (6分子を1周期とする六方晶系)、4H型 (4分子を1周期とする六方晶系)、3C型 (3分子を1周期とする立方晶系)などがある。ある一定の温度においても2種類以上の結晶多形が発生することがあるが、結晶多形の混在はデバイスや基板材料として利用する上からは好ましくない。
In order to use the above device or substrate material, it is necessary to produce a large, high-quality SiC bulk single crystal.
However, SiC is also famous as a substance exhibiting a crystalline polymorph (polytype). The crystal polymorphism is a phenomenon that can take many crystal structures in which the stacking mode of atoms differs only in the C-axis direction while having the same stoichiometric composition. Typical polytypes are 6H type (hexagonal system with 6 molecules as one period), 4H type (hexagonal system with 4 molecules as one period), and 3C type (cubic crystals with 3 molecules as one period). System). Two or more types of crystal polymorphs may occur even at a certain temperature, but mixing of crystal polymorphs is not preferable from the viewpoint of use as a device or substrate material.

従来、SiC単結晶成長の成長方法としては、気相成長法、アチソン法及び溶液成長法が知られている。
気相成長法には昇華法と化学気相成長 (CVD) 法とがある。昇華法は、炭化珪素粉末を原料とし、これを2000℃以上の高温下で昇華させ、SiとCからなる蒸気が原料より低温に設定された種結晶基板上に過飽和になって再結晶化することを利用した方法である。CVD法では、SiC製造原料としてシランガスと炭化水素系のガスを用い,加熱したSiなどの基板上で化学反応によりSiC単結晶をエピタキシャル成長させる。
Conventionally, as a growth method for SiC single crystal growth, a vapor phase growth method, an atchison method, and a solution growth method are known.
Vapor deposition methods include sublimation and chemical vapor deposition (CVD). In the sublimation method, silicon carbide powder is used as a raw material, which is sublimated at a high temperature of 2000 ° C. or higher, and the vapor composed of Si and C is supersaturated on the seed crystal substrate set at a lower temperature than the raw material and recrystallized. It is a method that uses that. In the CVD method, a silane gas and a hydrocarbon-based gas are used as SiC production raw materials, and a SiC single crystal is epitaxially grown on a heated substrate such as Si by a chemical reaction.

アチソン法は無水ケイ酸と炭素を2000℃以上の高温に加熱して人造研磨剤を工業生産する方法であり、単結晶は副産物として生成する。
溶液成長法は、通常黒鉛るつぼを用い、この中でSi或いはSiと金属とを融解させ、生成した融液に黒鉛るつぼから炭素を溶解させて、融液をSiC溶液の状態にし、この融液に温度勾配を設けて、低温部に設置した種結晶基板上に、融液中に溶解しているSiCを晶出、成長させる方法である。基板周辺ではSiC溶液が過冷却状態になり、SiCが過飽和となることによって、基板上にSiC結晶が析出する。金属は、炭素の溶解濃度を増大させる目的で、場合により添加される。
The Atchison method is a method for industrial production of artificial abrasives by heating silicic anhydride and carbon to a high temperature of 2000 ° C. or more, and single crystals are produced as by-products.
The solution growth method usually uses a graphite crucible, in which Si or Si and a metal are melted, carbon is dissolved from the graphite crucible in the produced melt, and the melt is made into an SiC solution. In this method, SiC dissolved in the melt is crystallized and grown on a seed crystal substrate placed in a low temperature portion by providing a temperature gradient. In the vicinity of the substrate, the SiC solution is supercooled, and SiC is supersaturated, so that SiC crystals are deposited on the substrate. A metal is optionally added for the purpose of increasing the dissolved concentration of carbon.

上記方法のうち、昇華法で成長させた単結晶ではマイクロパイプ欠陥と呼ばれる中空貫通欠陥や積層欠陥など格子欠陥が生成することが知られている。昇華法では、昇華時にSiCの化学量論組成のガスが存在せず、Si, Si2C, SiC2 及び成長用に用いられる黒鉛治具からの気化Cとなって気化する。昇華法で多数の格子欠陥が生じるのは、これらガス分圧を化学量論的に制御することが極めて困難であるうえ、複雑な反応が関与することに起因する。さらに、昇華法は結晶多形が生じやすい欠点を有している。従来、SiCバルク単結晶の多くは昇華法により作製されているものの、数mm角のデバイスを歩留まり良く製造することは困難であった。 Among the above methods, it is known that a single crystal grown by a sublimation method generates lattice defects such as hollow through defects and stacking faults called micropipe defects. In the sublimation method, no gas having a stoichiometric composition of SiC exists during sublimation, and vaporizes as Si, Si 2 C, SiC 2 and vaporized C from a graphite jig used for growth. A large number of lattice defects are generated in the sublimation method because it is very difficult to control the partial pressure of these gases stoichiometrically and complicated reactions are involved. Furthermore, the sublimation method has a drawback that crystal polymorphism tends to occur. Conventionally, many SiC bulk single crystals have been manufactured by a sublimation method, but it has been difficult to manufacture devices with a size of several mm square with high yield.

CVD法では、ガスで原料を供給するため、原料供給量が少なく、生成するSiC単結晶は薄膜に限られ、基板を作製するためのバルク単結晶を製造することは困難である。
アチソン法では、原料中の不純物が多く、高純度化が不可能であるうえ、大型の単結晶を得ることができない。
In the CVD method, since the raw material is supplied by gas, the raw material supply amount is small, and the generated SiC single crystal is limited to a thin film, and it is difficult to manufacture a bulk single crystal for manufacturing a substrate.
In the Atchison method, there are many impurities in the raw material, and high purity cannot be achieved, and a large single crystal cannot be obtained.

これに対し、溶液成長法では、熱的平衡状態での結晶成長であるために、格子欠陥が非常に少なく、結晶多形が生じることもなく、結晶性が非常に良好な単結晶が得られる。しかし、Si融液への炭素の溶解濃度が低いため、SiC結晶の成長速度は非常に遅い。黒鉛るつぼ内でSiのみを融解した場合、融液温度が1650℃の時の成長速度は5〜12μm/hrと言われている。この値は昇華法に比べると約2桁小さい。溶液成長法では、Si融液温度を2000℃以上にまで上げて融液に溶解しうる炭素濃度を増大させることが原理的には期待できるが、常圧下ではSi融液の蒸発が激しく、実用的ではなくなる。Material Science Engineering B61-62 (1999) 29-39 には、超高圧によりSi融液の蒸発を抑制しつつ溶液内の炭素濃度を上げることが示されているが、装置が大がかりになるため、工業生産上からは問題がある。   On the other hand, since the solution growth method is crystal growth in a thermal equilibrium state, a single crystal having very good crystallinity can be obtained without generating crystal polymorphism with very few lattice defects. . However, since the dissolution concentration of carbon in the Si melt is low, the growth rate of the SiC crystal is very slow. When only Si is melted in the graphite crucible, the growth rate when the melt temperature is 1650 ° C. is said to be 5 to 12 μm / hr. This value is about two orders of magnitude smaller than the sublimation method. The solution growth method can be expected in principle to increase the concentration of carbon that can be dissolved in the melt by raising the temperature of the Si melt to 2000 ° C. or higher. However, under normal pressure, the evaporation of the Si melt is intense and practical. It ’s not right. Material Science Engineering B61-62 (1999) 29-39 shows that the carbon concentration in the solution can be increased while suppressing the evaporation of the Si melt by ultra-high pressure. There is a problem in production.

そのため、SiC結晶の成長速度を増大させるために、融液に遷移金属元素を添加することが提案された。
例えば、特開2000-264790号公報には、少なくとも1種の遷移金属元素とSiとCとを含む原料を加熱溶融して融液とし、この融液を冷却することにより、炭化珪素単結晶を析出成長させることが開示されている。添加元素により成長温度が異なるが、1750〜2150℃で平均成長速度が200〜800μm/hrになると説明されている。雰囲気ガスとしてはArが例示されている。
Therefore, it has been proposed to add a transition metal element to the melt in order to increase the growth rate of the SiC crystal.
For example, in Japanese Patent Laid-Open No. 2000-264790, a raw material containing at least one transition metal element and Si and C is heated and melted to form a melt, and the melt is cooled to obtain a silicon carbide single crystal. Precipitation growth is disclosed. Although the growth temperature differs depending on the additive element, it is explained that the average growth rate is 200 to 800 μm / hr at 1750 to 2150 ° C. Ar is exemplified as the atmospheric gas.

特開2004-2173号公報には、溶液成長法によりSiとCとM (M:TiとMnの一方)を含む3元系の融液から高品質な炭化珪素バルク結晶を製造する方法が開示されている。実施例では雰囲気ガスとしてArを使用している。   Japanese Patent Laid-Open No. 2004-2173 discloses a method for producing a high-quality silicon carbide bulk crystal from a ternary melt containing Si, C, and M (M: one of Ti and Mn) by a solution growth method. Has been. In the embodiment, Ar is used as the atmospheric gas.

しかし、これらの公報に記載された方法を含め、一般に溶液成長法では、融液内に気泡が発生しやすく、これが結晶内に取り込まれることがあり、液相成長で炭化珪素単結晶を生産する際の障害となっていた。   However, in general, in the solution growth method including the methods described in these publications, bubbles are likely to be generated in the melt, and this may be taken into the crystal, and a silicon carbide single crystal is produced by liquid phase growth. It was an obstacle.

Material Science Engineering B61-62 (1999) 29-39Material Science Engineering B61-62 (1999) 29-39 特開2000-264790号公報JP 2000-264790 A 特開2004-2173号公報JP 2004-2173 A

本発明は、溶液成長法によって、結晶多形や結晶欠陥の増加を招くことなく、かつ気泡の閉じ込めの無い良質なバルクSiC単結晶を、特に2000℃以下の操業的に有利な温度で、実用的な成長速度で安定して製造できる方法を提供する。   The present invention provides a high-quality bulk SiC single crystal that does not cause increase in crystal polymorphism and crystal defects and does not contain bubbles by using a solution growth method, particularly at an operationally advantageous temperature of 2000 ° C. or less. Provided is a method capable of stably producing at a reasonable growth rate.

本発明は、溶液成長法、即ち、Si、C及びTiを含む、SiCが溶解している融液中に炭化珪素の種結晶基板を浸漬し、少なくとも種結晶基板周辺における溶液過冷却により(それにより炭化珪素を過飽和状態とすることによって)種結晶基板上に炭化珪素単結晶を成長させる方法に関し、単結晶成長時の雰囲気ガス、単結晶成長温度での粘度ηが η≦750μP (μP:マイクロポアズ) を満たすとともに、ヘリウムまたはヘリウム主体の混合ガスからなりCの供給源となるガスを含有しない非酸化性ガスとし、その雰囲気で結晶成長温度を1660℃以上として無気泡化された単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法である。 The present invention is a solution growth method, that is, by immersing a silicon carbide seed crystal substrate in a melt containing SiC , including Si, C and Ti , and at least by cooling the solution around the seed crystal substrate. by a method for growing a silicon carbide single crystal silicon carbide in the) seed crystal substrate to supersaturated, the atmospheric gas at the time of single crystal growth, eta viscosity at single crystal growth temperature η ≦ 750μP (μP: A non-oxidizing gas that does not contain helium or a mixed gas mainly composed of helium and does not contain a gas serving as a supply source of C, and is made bubble-free by setting the crystal growth temperature to 1660 ° C. or higher in that atmosphere. This is a method for producing a silicon carbide single crystal characterized by growing silicon.

本発明者らは、溶液成長法における気泡発生の低減・解消のために結晶成長時の雰囲気ガス条件、温度条件について検討した。その結果、融液種の組成に関係なく、融液の結晶成長温度における雰囲気ガスの粘度と気泡発生量との間に相関性があり、単結晶成長温度下における雰囲気ガスの粘度ηをη≦750μPとすることによって、溶液成長法において結晶内に取り込まれる気泡発生を完全に抑止できることが判明した。   The present inventors examined the atmospheric gas conditions and temperature conditions during crystal growth in order to reduce and eliminate bubble generation in the solution growth method. As a result, regardless of the composition of the melt species, there is a correlation between the viscosity of the atmosphere gas at the crystal growth temperature of the melt and the amount of bubbles generated, and the viscosity η of the atmosphere gas at the single crystal growth temperature is η ≦ It has been found that by using 750 μP, the generation of bubbles taken into the crystal in the solution growth method can be completely suppressed.

「少なくとも種結晶基板周辺における溶液過冷却」は、(1) 融液を冷却するか、又は(2) 融液内に温度勾配を設けることにより達成することができる。以下では、(1)の方法を「冷却法」、(2)の方法を「温度勾配法」と言う。過冷却の温度、即ち、SiC単結晶の成長温度は、融液内にSiCの多結晶が析出するほどには低くならないように設定する。   “Solution supercooling at least around the seed crystal substrate” can be achieved by (1) cooling the melt or (2) providing a temperature gradient in the melt. Hereinafter, the method (1) is referred to as a “cooling method”, and the method (2) is referred to as a “temperature gradient method”. The supercooling temperature, that is, the growth temperature of the SiC single crystal is set so as not to be so low that SiC polycrystals are deposited in the melt.

融液中のCは、融液を収容する黒鉛るつぼから供給してもよく、或いは原料として炭化物を溶解するか、メタンなどの炭素を含有するガスを吹き込むなどの方法で添加することも可能である。   C in the melt may be supplied from a graphite crucible containing the melt, or may be added by a method such as dissolving a carbide as a raw material or blowing a gas containing carbon such as methane. is there.

溶液成長法によるSiC単結晶成長時の雰囲気ガスの粘度は、高すぎると融液内で発生した気泡が種結晶基板表面のSiC結晶成長界面に留まりやすくなり、結晶成長の進行とともにSiC単結晶中に閉じ込められてしまうため、SiC単結晶の品質を落とす結果となる。そのため、雰囲気ガスの粘度ηはη≦750μPとする。   When the viscosity of the atmospheric gas during the growth of the SiC single crystal by the solution growth method is too high, bubbles generated in the melt tend to stay at the SiC crystal growth interface on the surface of the seed crystal substrate, and in the SiC single crystal as the crystal growth proceeds. As a result, the quality of the SiC single crystal is deteriorated. Therefore, the viscosity η of the atmospheric gas is η ≦ 750 μP.

雰囲気ガスは、成長するSiC炭化珪素の酸化を防止するために非酸化性ガスとし、1種または2種以上のガスから構成することがきる。非酸化性ガスとしては、He、Ne、Arなどの不活性ガス、窒素、水素などが挙げられる。 The atmospheric gas is a non-oxidizing gas in order to prevent oxidation of the growing SiC silicon carbide, and can be composed of one or more gases. Examples of the non-oxidizing gas include inert gases such as He, Ne, and Ar, nitrogen, hydrogen, and the like .

雰囲気ガスの粘度ηは、ガス種,ガス圧及び温度の組合せで変わる。従って、単結晶成長温度での粘度ηが750μP以下となるように非酸化性ガスの組成と圧力を決める。例えば、Arのように分子量の大きなガスは比較的粘度が高いので、Ar単独では本発明で規定する粘度条件を満たすことは困難である。   The viscosity η of the atmospheric gas varies depending on the combination of the gas type, gas pressure, and temperature. Therefore, the composition and pressure of the non-oxidizing gas are determined so that the viscosity η at the single crystal growth temperature is 750 μP or less. For example, since a gas having a large molecular weight such as Ar has a relatively high viscosity, it is difficult for Ar alone to satisfy the viscosity condition defined in the present invention.

雰囲気ガスの粘度ηは、低ければ低いほど気泡抑制に有利であるが、最もガス粘度が低い水素ガスの場合で、粘度は250μP (1500℃) から300μP (2000℃)である。但し、融液温度が高いことと、水素ガスには爆発の危険性があることを考慮すると、ヘリウムのような希ガスの方が工業的には使用しやすい。実施例にも示すように、ヘリウムまたはヘリウム主体の混合ガスでも、十分にSiC単結晶の無気泡化という目的を達成することができる。   The lower the viscosity η of the atmospheric gas is, the more advantageous for suppressing bubbles, but in the case of hydrogen gas having the lowest gas viscosity, the viscosity is 250 μP (1500 ° C.) to 300 μP (2000 ° C.). However, considering the high melt temperature and the danger of explosion in hydrogen gas, a rare gas such as helium is easier to use industrially. As shown in the examples, even with helium or a mixed gas mainly composed of helium, the object of making the SiC single crystal bubble-free can be sufficiently achieved.

溶液成長法によるSiC単結晶成長時の雰囲気ガス圧力は、負圧 (減圧) であると融液の蒸発が激しいので、大気圧又は加圧条件とすることが好ましい。一方、圧力が高すぎると、装置が大がかりになるので工業生産上は問題がある。従って、より好ましい雰囲気ガス圧力は、約0.1〜1 MPaの範囲である。   The atmospheric gas pressure during the growth of the SiC single crystal by the solution growth method is preferably an atmospheric pressure or a pressurizing condition since the evaporation of the melt is intense if it is a negative pressure (reduced pressure). On the other hand, if the pressure is too high, the apparatus becomes large, which causes a problem in industrial production. Therefore, a more preferable atmospheric gas pressure is in the range of about 0.1 to 1 MPa.

融液は、SiとC、又はSiとCと遷移金属M(Mは、Ti、Fe、Mn、及びCoから選んだ1種または2種以上)からなり、Si又はSiとMとを含む融液中にSiCが溶解している、SiCの溶液である。SiC単結晶の析出に悪影響がなければ、他の元素も含有しうる。金属Mは、Cの融解濃度を増大させるために添加することができる。融液組成は、融液の炭素溶解度が高く、かつ初晶としてSiCが析出する範囲が望ましい。例えば、MがTiであるSi−Ti−Cの3元系融液では、Ti添加量は約25%程度までとすることが好ましい。添加金属MがTi以外の金属又はTiと他の金属との混合物である場合も、初晶がSiCになるように金属添加量を決定すればよい。融液が遷移金属Mを含有する方が、2000℃以下の温度での結晶成長速度が大きくなるので好ましい。   The melt is composed of Si and C, or Si and C and a transition metal M (M is one or more selected from Ti, Fe, Mn, and Co), and includes a melt containing Si or Si and M. This is a SiC solution in which SiC is dissolved in the liquid. If there is no adverse effect on the precipitation of the SiC single crystal, other elements can also be contained. Metal M can be added to increase the melting concentration of C. The melt composition desirably has a high carbon solubility in the melt and a range in which SiC is precipitated as primary crystals. For example, in a Si—Ti—C ternary melt in which M is Ti, the amount of Ti added is preferably up to about 25%. Even when the additive metal M is a metal other than Ti or a mixture of Ti and another metal, the metal addition amount may be determined so that the primary crystal becomes SiC. It is preferable that the melt contains the transition metal M because the crystal growth rate at a temperature of 2000 ° C. or less is increased.

前述したように、Cは、黒鉛るつぼから融液に溶解させることによって融液中に含有させることができる。こうすると、多結晶の析出核となる炭素の未溶解の炭素が残る心配がないので、良質な単結晶が容易に得られるが、炭素の溶解に時間がかかる。一方、融解原料がCを含有するか、或いはメタンガスの吹込みによりCを供給すると、より短時間でCを融液中に溶解させることができる。Cの供給源としてメタン等のガスの吹込みを利用した場合、このガスも雰囲気ガスを構成する可能性があるが、吹込み終了後に他の非酸化性ガスで雰囲気ガスを置換すれば、結晶成長時の雰囲気ガスはCの供給に利用したガスを含有しないようにすることができる。従って、C供給用の吹込みガスの粘度は特に問わない。   As described above, C can be contained in the melt by dissolving it in the melt from a graphite crucible. In this case, since there is no concern that undissolved carbon that serves as polycrystalline nuclei remains, a high-quality single crystal can be easily obtained, but it takes time to dissolve the carbon. On the other hand, if the melting raw material contains C or C is supplied by blowing methane gas, C can be dissolved in the melt in a shorter time. When gas blowing such as methane is used as a supply source of C, this gas may also constitute an atmospheric gas, but if the atmospheric gas is replaced with another non-oxidizing gas after the blowing is finished, the crystal The atmosphere gas at the time of growth can be made not to contain the gas used for supply of C. Therefore, the viscosity of the blowing gas for supplying C is not particularly limited.

溶液成長法によるSiC単結晶成長時の種結晶基板周辺の過冷却の温度 (本発明では、この温度を単結晶成長温度または結晶成長温度という) は、融液組成や金属Mを添加した場合にはその金属元素種に応じて決めればよい。低すぎると、融液が固化し、或いは成長速度が遅くなる。一方、高すぎると、融液の蒸発が激しくなるので工業生産的には問題がある。結晶成長温度は、用いる融液組成における液相線温度以上で、2000℃以下とすることが好ましい。なお、この結晶成長温度は、結晶成長が冷却法の場合は、冷却により結晶成長が起こり始めた後の融液温度である。   The supercooling temperature around the seed crystal substrate during the growth of the SiC single crystal by the solution growth method (in the present invention, this temperature is referred to as the single crystal growth temperature or the crystal growth temperature) is determined when the melt composition or the metal M is added. May be determined according to the metal element type. If it is too low, the melt will solidify or the growth rate will be slow. On the other hand, if it is too high, the evaporation of the melt becomes intense, which is problematic for industrial production. The crystal growth temperature is preferably not lower than the liquidus temperature in the melt composition to be used and not higher than 2000 ° C. In addition, this crystal growth temperature is the melt temperature after crystal growth starts to occur by cooling when the crystal growth is a cooling method.

本発明に従って雰囲気ガスの粘度を制御することにより、結晶内に気泡が閉じ込められるのを防止して、結晶の無気泡化が可能となり、良質なバルクSiC単結晶を安定して製造することが可能となる。   By controlling the viscosity of the atmospheric gas according to the present invention, it is possible to prevent bubbles from being trapped in the crystal, to make the crystal free of bubbles, and to stably produce a high-quality bulk SiC single crystal. It becomes.

本発明のSiC単結晶の製造方法の実施に利用できる結晶成長装置の1例を図1に示す。図1に示した装置は、温度勾配法による結晶成長に適している。
図示の装置は、原料融液1を収容した、回転可能な黒鉛るつぼ2を備える。融液1には、黒鉛るつぼ2の回転方向とは逆方向に回転可能な種結晶保持治具に取り付けられた種結晶基板3が浸漬されている。黒鉛るつぼ2は断熱材4で包囲され、この断熱材の周囲には高周波誘導加熱用の加熱コイル5が配置されている。そして、以上の要素の全体が水冷チャンバー6に収容されている。水冷チャンバー6は、ガス導入口7とガス排出口8とを備え、結晶成長の雰囲気ガスの組成および圧力を制御することができる。黒鉛るつぼ2の側部背面は二色高温計のような高温計9により直接測温される。高温計9は上下に複数個設置されていて、上下の異なる位置での融液温度を測定することができる。
FIG. 1 shows an example of a crystal growth apparatus that can be used to carry out the SiC single crystal manufacturing method of the present invention. The apparatus shown in FIG. 1 is suitable for crystal growth by a temperature gradient method.
The illustrated apparatus includes a rotatable graphite crucible 2 containing a raw material melt 1. In the melt 1, a seed crystal substrate 3 attached to a seed crystal holding jig capable of rotating in the direction opposite to the rotation direction of the graphite crucible 2 is immersed. The graphite crucible 2 is surrounded by a heat insulating material 4, and a heating coil 5 for high frequency induction heating is arranged around the heat insulating material. The whole of the above elements is accommodated in the water cooling chamber 6. The water-cooled chamber 6 includes a gas inlet 7 and a gas outlet 8, and can control the composition and pressure of the atmosphere gas for crystal growth. The side back of the graphite crucible 2 is directly measured by a pyrometer 9 such as a two-color pyrometer. A plurality of pyrometers 9 are installed on the top and bottom, and the melt temperature at different positions on the top and bottom can be measured.

加熱コイル5による高周波誘導加熱は、黒鉛るつぼの背面温度の測定値をもとに制御される。黒鉛るつぼと加熱コイルとの相対的な位置により、黒鉛るつぼには上下方向には温度勾配が形成されており、コイル巻き間隔、巻き数を制御することで温度勾配の変動が可能である。大きな温度勾配を得る場合には、黒鉛るつぼの低温部を水冷治具により強制的に冷却することが有効である。一般に、黒鉛るつぼの上部が低温部になるように温度勾配を設けると、種結晶基板の引き上げにより単結晶を成長させることができ、有利である。   The high frequency induction heating by the heating coil 5 is controlled based on the measured value of the back surface temperature of the graphite crucible. Due to the relative positions of the graphite crucible and the heating coil, a temperature gradient is formed in the vertical direction of the graphite crucible, and the temperature gradient can be changed by controlling the coil winding interval and the number of turns. In order to obtain a large temperature gradient, it is effective to forcibly cool the low temperature portion of the graphite crucible with a water cooling jig. In general, it is advantageous to provide a temperature gradient so that the upper portion of the graphite crucible becomes a low temperature portion, whereby a single crystal can be grown by pulling up the seed crystal substrate.

以下に、本発明の実施例を示す。但し、これらの実施例は本発明の例示を目的とし、本発明を制限する意図はない。本発明の範囲(均等範囲を含む)内において各種の変更が可能であることは言うまでもない。   Examples of the present invention are shown below. However, these examples are intended to illustrate the present invention and are not intended to limit the present invention. It goes without saying that various modifications are possible within the scope of the present invention (including the equivalent range).

以下の参考例、実施例および比較例では、図1に示したのと同様の装置を用いて、温度勾配法によりバルクSiC単結晶の成長実験を行った。実験では、非酸化性の雰囲気ガス組成、雰囲気ガス圧力、溶液成長温度を変動因子とした。温度勾配は、黒鉛るつぼの上部が低温部になるように形成した。この低温部と高温部との温度差は40〜100℃の範囲であった。低温部に浸漬される種結晶基板近傍の温度は、成長実験とは別に、予め融液内に熱電対を挿入して成長実験と同じ条件で加熱を行った融液の温度測定を行うことにより求めた。結晶成長装置内の雰囲気ガスは、ガス導入口とガス排出口を利用して調整した。 In the following Reference Examples, Examples, and Comparative Examples, bulk SiC single crystal growth experiments were conducted by the temperature gradient method using the same apparatus as shown in FIG. In the experiment, the non-oxidizing atmosphere gas composition, the atmosphere gas pressure, and the solution growth temperature were used as variables. The temperature gradient was formed so that the upper part of the graphite crucible became a low temperature part. The temperature difference between the low temperature part and the high temperature part was in the range of 40-100 ° C. The temperature in the vicinity of the seed crystal substrate immersed in the low temperature part is determined by measuring the temperature of the melt that has been heated under the same conditions as the growth experiment by inserting a thermocouple in advance in the melt separately from the growth experiment. Asked. The atmosphere gas in the crystal growth apparatus was adjusted using the gas inlet and the gas outlet.

実験では、高純度黒鉛るつぼにSi又はSiと所定の添加金属元素とを仕込み、融液内に所定の温度勾配を形成するように加熱して原料を融解させ、その加熱状態を5時間保持して、黒鉛るつぼからCを溶解させた。その後、黒鉛製の種結晶保持治具に保持したSiC種結晶基板 (10 mm×10 mm、6H−SiC (0001) on axis) を融液の低温部 (融液上部) に浸漬した。種結晶基板の浸漬後、所定の時間が経過したところで、種結晶保持治具を上昇させて、種結晶基板を融液から引き上げた。加熱中、融液を収容した黒鉛るつぼと種結晶基板を保持する保持治具は互いに逆方向に回転させた。   In the experiment, Si or Si and a predetermined additive metal element were charged into a high-purity graphite crucible, and the raw material was melted by heating so as to form a predetermined temperature gradient in the melt, and the heating state was maintained for 5 hours. Then, C was dissolved from the graphite crucible. Thereafter, a SiC seed crystal substrate (10 mm × 10 mm, 6H—SiC (0001) on axis) held in a graphite seed crystal holding jig was immersed in the low temperature part (upper part of the melt) of the melt. When a predetermined time passed after the immersion of the seed crystal substrate, the seed crystal holding jig was raised and the seed crystal substrate was pulled up from the melt. During the heating, the graphite crucible containing the melt and the holding jig for holding the seed crystal substrate were rotated in opposite directions.

その後、黒鉛るつぼを室温まで徐冷し、その上にSiC単結晶が成長している種結晶基板を保持治具から回収した。種結晶基板は、フッ硝酸にて洗浄を行い、付着している融液の凝固物を除去した。種結晶上に新たに液相成長したSiC単結晶の断面と表面を光学顕微鏡で観察し、結晶内に閉じ込められた気泡の状況を調べた。この単結晶は透明であるため、焦点を変えて結晶内部の気泡の発生状況を観察することにより、気泡の有無を確実に識別できた。判定は、無気泡であるものを◎、観察視野10 mm×10 mmの領域に一つでも気泡が見つかれば×とした。   Thereafter, the graphite crucible was gradually cooled to room temperature, and the seed crystal substrate on which the SiC single crystal was grown was collected from the holding jig. The seed crystal substrate was washed with hydrofluoric acid to remove the adhering melt coagulum. The cross section and surface of a SiC single crystal newly grown on the seed crystal were observed with an optical microscope, and the state of bubbles confined in the crystal was examined. Since this single crystal is transparent, the presence or absence of bubbles could be reliably identified by changing the focus and observing the generation of bubbles inside the crystal. Judgment was made when the bubble-free one was marked with ◎, and when even one bubble was found in the observation field area of 10 mm × 10 mm, it was marked with ×.

雰囲気ガスの粘度ηは、毛管に同組成のガスを流した際の入側と出側のガス圧の差からガス粘度を算出する、毛細型粘度測定法で求めておいた値を用いた。   As the viscosity η of the atmospheric gas, the value obtained by the capillary viscosity measurement method for calculating the gas viscosity from the difference in gas pressure between the inlet side and the outlet side when a gas having the same composition was flowed through the capillary was used.

参考例1
黒鉛るつぼ内にはSiを充填し、He雰囲気、大気圧下で結晶成長温度(低温部の温度)が1630℃になるように加熱し、Siを融解させた。黒鉛るつぼの内壁からCが飽和濃度まで溶解するように、上記加熱を5時間保持した。その後、保持治具に保持された種結晶基板を黒鉛るつぼの低温部の融液中に浸漬し、20時間の浸漬時間が経過した後、保持治具を上昇させて基板を融液から引き上げた。次いで、炉内温度を室温まで冷却し、種晶基板を回収し、気泡の有無を判定した。
( Reference Example 1 )
The graphite crucible was filled with Si and heated to a crystal growth temperature (temperature of the low temperature part) of 1630 ° C. in a He atmosphere and atmospheric pressure to melt Si. The above heating was maintained for 5 hours so that C was dissolved to the saturation concentration from the inner wall of the graphite crucible. Thereafter, the seed crystal substrate held by the holding jig was immersed in the melt in the low temperature portion of the graphite crucible, and after the immersion time of 20 hours had elapsed, the holding jig was raised and the substrate was pulled up from the melt. . Next, the furnace temperature was cooled to room temperature, the seed crystal substrate was recovered, and the presence or absence of bubbles was determined.

実施例1
黒鉛るつぼ内にSi0.77Ti0.23なる原料を充填し、結晶成長温度を1675℃とした以外は参考例1と同様にしてSiC単結晶を製造した。
( Example 1 )
A SiC single crystal was produced in the same manner as in Reference Example 1 except that a raw material of Si 0.77 Ti 0.23 was filled in a graphite crucible and the crystal growth temperature was 1675 ° C.

実施例2
雰囲気ガス種をHe(90%)とN2(10%)の混合ガスに変更し、結晶成長温度を1660℃とした以外は実施例1と同様にしてSiC単結晶を製造した。
( Example 2 )
A SiC single crystal was produced in the same manner as in Example 1 except that the atmospheric gas species was changed to a mixed gas of He (90%) and N 2 (10%) and the crystal growth temperature was 1660 ° C.

実施例3
ガス圧力を0.9 MPaに変更し、結晶成長温度を1660℃とした以外は実施例1と同様にしてSiC単結晶を製造した。
( Example 3 )
A SiC single crystal was produced in the same manner as in Example 1 except that the gas pressure was changed to 0.9 MPa and the crystal growth temperature was 1660 ° C.

実施例4
結晶成長温度を1950℃に変更した以外は実施例1と同様にしてSiC単結晶を製造した。
( Example 4 )
A SiC single crystal was produced in the same manner as in Example 1 except that the crystal growth temperature was changed to 1950 ° C.

(比較例1)
雰囲気ガス種をHeからArに変更し、結晶成長温度を1650℃とした以外は実施例1と同様にしてSiC単結晶を製造した。
(Comparative Example 1)
A SiC single crystal was produced in the same manner as in Example 1 except that the atmospheric gas species was changed from He to Ar and the crystal growth temperature was changed to 1650 ° C.

(比較例2)
雰囲気ガス種をHeからArに変更し、結晶成長温度を1650℃とした以外は実施例2と同様にしてSiC単結晶を製造した。
(Comparative Example 2)
A SiC single crystal was produced in the same manner as in Example 2 except that the atmospheric gas species was changed from He to Ar and the crystal growth temperature was changed to 1650 ° C.

(比較例3)
雰囲気ガス種をHe(80%)とAr(20%)の混合ガスに変更し、結晶成長温度を1670℃とした以外は実施例2と同様にしてSiC単結晶を製造した。
(Comparative Example 3)
A SiC single crystal was produced in the same manner as in Example 2 except that the atmospheric gas species was changed to a mixed gas of He (80%) and Ar (20%) and the crystal growth temperature was 1670 ° C.

以上の参考例、実施例及び比較例で得られたバルクSiC単結晶の気泡の有無の判定結果を結晶成長の各種条件と一緒に次の表1に示す。また、参考例1並びに比較例1で得られた基板上のSiC単結晶の断面および表面の光学顕微鏡写真を、それぞれ図2(a)及び(b)並びに図3(a)及び(b)に示す。これらの図からわかるように、気泡の有無は、断面及び表面のいずれの顕微鏡写真からも確実に判定できる。 Table 1 below shows the determination results of the presence or absence of bubbles in the bulk SiC single crystal obtained in the above Reference Examples, Examples, and Comparative Examples together with various crystal growth conditions. In addition, cross-sectional and optical micrographs of the SiC single crystals on the substrates obtained in Reference Example 1 and Comparative Example 1 are shown in FIGS. 2 (a) and (b) and FIGS. 3 (a) and (b), respectively. Show. As can be seen from these figures, the presence or absence of bubbles can be reliably determined from both micrographs of the cross section and the surface.

参考例1、実施例1〜及び比較例1〜3の結果からわかるように、用いる融液種、ガス種、ガス圧力に関係なく、本発明に従ってガス粘度ηを制御することによって、結晶内に閉じ込められる気泡を解消して、単結晶の無気泡化が可能となる。これはガス粘度が低いと、融液内で発生した気泡がSiC結晶成長界面に留まりにくくなったためと考えられる。 As can be seen from the results of Reference Example 1, Examples 1 to 4 and Comparative Examples 1 to 3, by controlling the gas viscosity η according to the present invention regardless of the melt type, gas type and gas pressure used, It is possible to eliminate bubbles trapped in the single crystal and eliminate the bubbles of the single crystal. This is presumably because when the gas viscosity is low, bubbles generated in the melt are less likely to remain at the SiC crystal growth interface.

実施例3の結果から、加圧条件下でも結晶内に閉じ込められる気泡の無気泡化が可能である。これはガス粘度が大気圧 (0.1 MPa)と1 MPa程度の加圧下ではほとんど差異がないためと考えられる。加圧条件下でも気泡の無気泡化は可能であるが、加圧することで装置が大がかりになり、工業的生産には不利になる。 From the results of Example 3 , it is possible to eliminate the bubbles confined in the crystal even under pressurized conditions. This is presumably because there is almost no difference between the atmospheric pressure (0.1 MPa) and the pressure of about 1 MPa. Although it is possible to eliminate bubbles even under pressurized conditions, pressurization increases the size of the apparatus, which is disadvantageous for industrial production.

実施例4の結果から、結晶成長温度が高くても結晶内に閉じ込められる気泡の無気泡化が可能であり、SiC結晶成長の高速化が期待できる。
参考例1、実施例1〜及び比較例1〜3において製造されたSiC単結晶は、いずれも基板と同じ6H-SiC単結晶であった。成長温度は2000℃以下であり、成長炉の劣化が少ないので設備上の問題が少なく、また融液の蒸発などの問題がほとんど生じない比較的低温で、結晶内に閉じ込められる気泡の無気泡化が可能であった。
From the results of Example 4 , it is possible to eliminate bubbles contained in the crystal even when the crystal growth temperature is high, and an increase in the speed of SiC crystal growth can be expected.
The SiC single crystals produced in Reference Example 1, Examples 1 to 4 and Comparative Examples 1 to 3 were all the same 6H—SiC single crystals as the substrate. The growth temperature is 2000 ° C or less, and there is little deterioration of the growth furnace, so there are few problems in equipment, and there is almost no problem such as evaporation of the melt. Was possible.

溶液成長法に利用できる結晶成長装置の一例を示す説明図である。It is explanatory drawing which shows an example of the crystal growth apparatus which can be utilized for the solution growth method. 図2(a)及び(b)は、それぞれ参考例1で生成したSiC単結晶の断面及び表面を示す光学顕微鏡写真である。2 (a) and 2 (b) are optical micrographs showing the cross section and surface of the SiC single crystal produced in Reference Example 1 , respectively. 図3(a)及び(b)は、それぞれ比較例1で生成したSiC単結晶の断面及び表面を示す光学顕微鏡写真である。3 (a) and 3 (b) are optical micrographs showing the cross section and surface of the SiC single crystal produced in Comparative Example 1, respectively.

符号の説明Explanation of symbols

1:融液、2:黒鉛るつぼ、3:種結晶基板、4:断熱材、5:加熱コイル、6:水冷チャンバー、7:ガス導入口、8:ガス排出口、9:高温計 1: melt, 2: graphite crucible, 3: seed crystal substrate, 4: heat insulating material, 5: heating coil, 6: water cooling chamber, 7: gas inlet, 8: gas outlet, 9: pyrometer

Claims (3)

Si、C及びTiを含む、SiCが溶解した融液中に炭化珪素の種結晶基板を浸漬し、少なくとも種結晶基板周辺における溶液過冷却により種結晶基板上に炭化珪素単結晶を成長させる方法であって、単結晶成長時の雰囲気ガス、単結晶成長温度での粘度ηが η≦750μP (μP:マイクロポアズ) を満たすとともに、ヘリウムまたはヘリウム主体の混合ガスからなりCの供給源となるガスを含有しない非酸化性ガスとし、その雰囲気で結晶成長温度を1660℃以上として無気泡化された単結晶を成長させることを特徴とする、炭化珪素単結晶の製造方法。 A method in which a silicon carbide seed crystal substrate is immersed in a melt containing SiC , including Si, C, and Ti, and a silicon carbide single crystal is grown on the seed crystal substrate by solution supercooling at least around the seed crystal substrate. In addition, the atmosphere gas during single crystal growth is a gas that is a helium or helium-based mixed gas and has a viscosity η at a single crystal growth temperature satisfying η ≦ 750 μP (μP: micropoise) and serving as a C supply source A method for producing a silicon carbide single crystal comprising growing a non-bubbled single crystal in a non-oxidizing gas containing no oxygen and having a crystal growth temperature of 1660 ° C. or higher in the atmosphere . 雰囲気ガスの圧力が大気圧又は加圧条件に設定されている、請求項1記載の炭化珪素単結晶の製造方法。   The method for producing a silicon carbide single crystal according to claim 1, wherein the pressure of the atmospheric gas is set to atmospheric pressure or a pressurizing condition. 結晶成長温度が2000℃以下かつ前記融液の液相線温度以上である、請求項1又は2記載の炭化珪素単結晶の製造方法。   The method for producing a silicon carbide single crystal according to claim 1 or 2, wherein the crystal growth temperature is 2000 ° C or lower and the liquidus temperature of the melt or higher.
JP2004257041A 2004-09-03 2004-09-03 Method for producing silicon carbide single crystal Active JP4466293B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004257041A JP4466293B2 (en) 2004-09-03 2004-09-03 Method for producing silicon carbide single crystal
PCT/JP2005/015844 WO2006025420A1 (en) 2004-09-03 2005-08-31 Method for preparing silicon carbide single crystal
EP05781299.2A EP1806437B1 (en) 2004-09-03 2005-08-31 Method for preparing silicon carbide single crystal
US11/712,841 US7635413B2 (en) 2004-09-03 2007-03-01 Method for preparing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257041A JP4466293B2 (en) 2004-09-03 2004-09-03 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2006069861A JP2006069861A (en) 2006-03-16
JP4466293B2 true JP4466293B2 (en) 2010-05-26

Family

ID=36150855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257041A Active JP4466293B2 (en) 2004-09-03 2004-09-03 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4466293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143555A (en) * 2004-11-24 2006-06-08 Sumitomo Metal Ind Ltd Method for manufacturing silicon carbide single crystal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780209B2 (en) * 2009-03-12 2011-09-28 トヨタ自動車株式会社 Method for producing SiC single crystal
JP5234184B2 (en) * 2009-07-17 2013-07-10 トヨタ自動車株式会社 Method for producing SiC single crystal
JP5850489B2 (en) * 2011-09-08 2016-02-03 国立研究開発法人産業技術総合研究所 Method for producing SiC single crystal
JP5850490B2 (en) * 2011-09-08 2016-02-03 国立研究開発法人産業技術総合研究所 Method for producing SiC single crystal
JP5746362B2 (en) 2011-10-31 2015-07-08 トヨタ自動車株式会社 Method for producing SiC single crystal
JP2016141571A (en) * 2015-01-29 2016-08-08 京セラ株式会社 Method for producing crystal
US11427926B2 (en) 2016-09-29 2022-08-30 Lg Chem, Ltd. Silicon-based molten composition and method for manufacturing silicon carbide single crystal using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143555A (en) * 2004-11-24 2006-06-08 Sumitomo Metal Ind Ltd Method for manufacturing silicon carbide single crystal

Also Published As

Publication number Publication date
JP2006069861A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP5483216B2 (en) SiC single crystal and method for producing the same
JP5304793B2 (en) Method for producing silicon carbide single crystal
JP4561000B2 (en) Method for producing silicon carbide (SiC) single crystal
US7520930B2 (en) Silicon carbide single crystal and a method for its production
US8287644B2 (en) Method for growing silicon carbide single crystal
JP4277926B1 (en) Growth method of silicon carbide single crystal
JP5218348B2 (en) Method for producing silicon carbide single crystal
JP2000264790A (en) Production of silicon carbide single crystal
JP4736401B2 (en) Method for producing silicon carbide single crystal
JP2009091222A (en) PRODUCTION METHOD FOR SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL WAFER AND SiC SEMICONDUCTOR DEVICE
JP2007261844A (en) Manufacturing method of silicon carbide single crystal
JP2006321681A (en) Method for producing silicon carbide single crystal
JP4645499B2 (en) Method for producing silicon carbide single crystal
US8702864B2 (en) Method for growing silicon carbide single crystal
JP4475091B2 (en) Method for producing silicon carbide single crystal
JP4934958B2 (en) Method for producing silicon carbide single crystal
TW201923169A (en) Method for producing silicon carbide single crystal
JP4466293B2 (en) Method for producing silicon carbide single crystal
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
WO2003087440A1 (en) Silicon carbide single crystal and method for preparation thereof
JP2006306638A (en) Production method for aln single crystal
JP4707148B2 (en) Silicon carbide single crystal substrate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350