JP2006321269A - Heat source distribution system for vehicle - Google Patents

Heat source distribution system for vehicle Download PDF

Info

Publication number
JP2006321269A
JP2006321269A JP2005143888A JP2005143888A JP2006321269A JP 2006321269 A JP2006321269 A JP 2006321269A JP 2005143888 A JP2005143888 A JP 2005143888A JP 2005143888 A JP2005143888 A JP 2005143888A JP 2006321269 A JP2006321269 A JP 2006321269A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
liquid refrigerant
cooling
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143888A
Other languages
Japanese (ja)
Inventor
Masaaki Tokuda
正章 徳田
Satoshi Ogiwara
智 荻原
Hiroki Nagayama
啓樹 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005143888A priority Critical patent/JP2006321269A/en
Publication of JP2006321269A publication Critical patent/JP2006321269A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat source distribution system for a vehicle capable of improving comfortableness in a compartment, and saving energy. <P>SOLUTION: This heat source distribution system for a vehicle comprises an air-conditioner 11, a heat distribution device 125, a pump 124 circulating liquid refrigerant, and a air-warming unit 121. A heating heat exchanger 332 circulating cooling water in a heavy current cooling device 33 and arranged on the upstream side of the liquid refrigerant, and a cooling heat exchanger 307 circulating refrigerant of the air-conditioner 11 and arranged on the downstream side of the heating heat exchanger 332 are provided in the warming unit 121. The heating heat exchanger 223 transmits heats from the cooling water to the liquid refrigerant, and the cooling heat exchanger 307 transmits heats from the liquid refrigerant to an air-conditioning refrigerant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両用熱源分配システムに関する。   The present invention relates to a vehicle heat source distribution system.

電気自動車に搭載されている駆動用バッテリが急速充電により発生するとき、車室内冷房システムを利用して駆動用バッテリを冷却する装置や(例えば、特許文献1参照)、燃焼装置等の熱源の熱を利用してバッテリやエンジンを加温して、冬期におけるエンジンの低温始動性を向上させる装置が知られている(例えば、特許文献2参照)。   When a drive battery mounted on an electric vehicle is generated by rapid charging, the heat of a heat source such as a device that cools the drive battery using a vehicle interior cooling system (see, for example, Patent Document 1), a combustion device, etc. There is known an apparatus for improving the low temperature startability of an engine in winter by heating a battery or an engine by using (see, for example, Patent Document 2).

特開2002−352866号公報JP 2002-352866 A 特開2001−234840号公報JP 2001-234840 A

駆動用バッテリを冷却する強電系の冷却装置は、急速充電必要時に、強電系を空調装置
の冷媒により冷却するという構成になっているだけで、車両全体として排出された熱や冷
却効果を有効に利用していなかった。
The high-power system cooling device that cools the drive battery is configured to cool the high-power system with the refrigerant of the air conditioner when quick charging is required, and the heat and cooling effect that is exhausted as a whole vehicle is made effective. I didn't use it.

本発明による車両用熱源分配システムは、加熱源と冷却源とを備えた車両用空調装置と、空調装置とは独立して液体冷媒を用いて乗員への温度調整を行う温調装置とを有して、空調装置と温調装置とに加熱源の熱と冷却源とを分配する車両用熱源分配システムに適用される。そして、温調装置は、加熱源の熱を排出する排出手段と冷却源に熱を吸収するための吸熱手段とを備えるとともに、さらに、液体冷媒を用いて、排出手段から排出された熱を吸熱手段へと移送する熱分配手段を備えることを特徴とする。   A vehicle heat source distribution system according to the present invention includes a vehicle air conditioner including a heating source and a cooling source, and a temperature control device that adjusts the temperature of a passenger using a liquid refrigerant independently of the air conditioner. Thus, the present invention is applied to a vehicle heat source distribution system that distributes heat and a cooling source of a heating source to an air conditioner and a temperature control device. The temperature control device includes a discharge unit that discharges heat from the heating source and a heat absorption unit that absorbs heat from the cooling source, and further absorbs heat discharged from the discharge unit using a liquid refrigerant. It is characterized by comprising heat distribution means for transferring to the means.

本発明によれば、排出手段および吸熱手段と熱交換する液体冷媒を用いて、排出手段から排出された熱を吸熱手段へと移送することにより、加熱源から排出される熱や冷却源の吸熱作用を有効に利用することができる。   According to the present invention, by using the liquid refrigerant that exchanges heat with the discharge means and the heat absorption means, the heat discharged from the discharge means is transferred to the heat absorption means, so that the heat discharged from the heating source and the heat absorption of the cooling source are transferred. The action can be used effectively.

以下、図を参照して本発明を実施するための最良の形態について説明する。図1は本発明による車両用熱源分配システムの一実施の形態を説明する図であり、ハイブリッド自動車に適用した場合の概略構成を示すブロック図である。本実施の形態の車両用熱源分配システムは、温度調整された空調風を車室内に供給して空調を行う空調装置11と、エンジン102の冷却を行うエンジン冷却装置32と、駆動用バッテリ,インバータ,モータジェネレータ,コンバータ等(いずれも不図示)を含む強電系101の冷却を行う強電系冷却装置33と、液体冷媒を用いて車室内の暖房および冷房を行う温調装置12とを備えている。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of a vehicle heat source distribution system according to the present invention, and is a block diagram showing a schematic configuration when applied to a hybrid vehicle. The vehicle heat source distribution system according to the present embodiment includes an air conditioner 11 that performs air conditioning by supplying conditioned air to the vehicle interior, an engine cooling device 32 that cools the engine 102, a drive battery, and an inverter. , A high-power system cooling device 33 that cools the high-power system 101 including a motor generator, a converter, and the like (all not shown), and a temperature control device 12 that heats and cools the vehicle interior using liquid refrigerant. .

(空調装置11の説明)
空調装置11は、圧縮機300,凝縮器301,空調ユニット111,ブロア114,減圧器302および蒸発器303を備えている。圧縮機300,凝縮器301,減圧器302および空調ユニット111の空調ケース311内に設けられた蒸発器303は、冷媒循環路110を介して直列接続されている。また、冷媒循環路110には分岐路110aが形成されており、この分岐路110aには蒸発器303と並列接続関係にある冷却用熱交換器307が設けられている。後述するように、この冷却用熱交換器307は、温調装置12の温調ユニット121内に設けられている。
(Description of air conditioner 11)
The air conditioner 11 includes a compressor 300, a condenser 301, an air conditioning unit 111, a blower 114, a decompressor 302 and an evaporator 303. The compressor 300, the condenser 301, the decompressor 302, and the evaporator 303 provided in the air conditioning case 311 of the air conditioning unit 111 are connected in series via the refrigerant circulation path 110. Further, a branch passage 110a is formed in the refrigerant circulation passage 110, and a cooling heat exchanger 307 that is connected in parallel with the evaporator 303 is provided in the branch passage 110a. As will be described later, the cooling heat exchanger 307 is provided in the temperature adjustment unit 121 of the temperature adjustment device 12.

冷媒循環路110と分岐路110aとの分岐部分には、冷媒の流れを切り替えるための切替バルブ304,305が設けられている。切替バルブ304,305には電磁弁等が用いられる。圧縮機300は空調ユニット111の蒸発器303から戻った低温・低圧の冷媒を、吸入・圧縮・吐出するものであり、走行用モータであるモータジェネレータとは別に設けられた電動モータで駆動されたり、エンジン102によりベルト駆動されたりする。圧縮機300から吐出された高温・高圧の冷媒は、凝縮器301において外気と熱交換することにより冷却・凝縮される。   Switching valves 304 and 305 for switching the refrigerant flow are provided at a branch portion between the refrigerant circulation path 110 and the branch path 110a. As the switching valves 304 and 305, electromagnetic valves or the like are used. The compressor 300 sucks, compresses and discharges the low-temperature and low-pressure refrigerant returned from the evaporator 303 of the air conditioning unit 111, and is driven by an electric motor provided separately from the motor generator which is a traveling motor. The belt is driven by the engine 102. The high-temperature and high-pressure refrigerant discharged from the compressor 300 is cooled and condensed by exchanging heat with the outside air in the condenser 301.

減圧器302は温度式膨張弁であって、蒸発器303の冷媒出口側の冷媒温度が所定値となるように弁開度が制御される。なお、冷却用熱交換器307が設けられた分岐路110aにも、同様の減圧器306が設けられている。蒸発器303では、冷媒循環路110から流入した冷媒と、ブロア114によって車室内又は車外から空調ケース311内に取り込まれた空気との間で熱交換が行われる。すなわち、冷媒が蒸発することにより、蒸発器303を通過する空気が冷却される。蒸発器303から流出された冷媒は、冷媒循環路110を介して圧縮機300へと戻る。   The decompressor 302 is a temperature type expansion valve, and the valve opening degree is controlled so that the refrigerant temperature on the refrigerant outlet side of the evaporator 303 becomes a predetermined value. A similar decompressor 306 is also provided in the branch path 110a in which the cooling heat exchanger 307 is provided. In the evaporator 303, heat exchange is performed between the refrigerant flowing in from the refrigerant circulation path 110 and the air taken into the air conditioning case 311 from the vehicle interior or the outside by the blower 114. That is, as the refrigerant evaporates, the air passing through the evaporator 303 is cooled. The refrigerant that has flowed out of the evaporator 303 returns to the compressor 300 via the refrigerant circulation path 110.

空調ケース311内の蒸発器303の下流側には、エンジン冷却装置32の冷却水が循環するヒータコア324が設けられている。ヒータコア324は、蒸発器303を通過した冷風を加熱する。図示していないが、空調ケース311内にはヒータコア324を通過する風量とヒータコア324をバイパスさせる風量とを調整して、車室内に吹き出す空調風の温度を調整するエアミックスドアと、ブロア114に導入される空気を車室内空気とするか外気とするかを切り換える内外気切り替えドアと、車室内に吹き出す空気の吹き出し方向を変えるモードドアとが設けられている。   A heater core 324 through which the cooling water of the engine cooling device 32 circulates is provided on the downstream side of the evaporator 303 in the air conditioning case 311. The heater core 324 heats the cold air that has passed through the evaporator 303. Although not shown, an air mix door for adjusting the temperature of the air-conditioning air blown into the passenger compartment by adjusting the air volume passing through the heater core 324 and the air volume bypassing the heater core 324 in the air-conditioning case 311, and the blower 114 There are provided an inside / outside air switching door for switching whether the air to be introduced is inside or outside the vehicle, and a mode door for changing the blowing direction of the air blown into the vehicle interior.

空調ケース311の下流側には、車室内の各所に空調風を分配するための空調ダクト116が設けられている。空調ダクト116は、車室内のベント吹出し口に連通するベントダクト、フット吹出し口に連通するフットダクト、およびデフロスタ吹出し口に連通するデフダクトで構成されている。上述したモードドアによって、各ダクトへの空調風の分配を変えることができる。   On the downstream side of the air-conditioning case 311, an air-conditioning duct 116 is provided for distributing the conditioned air to various places in the passenger compartment. The air conditioning duct 116 includes a vent duct that communicates with a vent outlet in the vehicle interior, a foot duct that communicates with the foot outlet, and a differential duct that communicates with the defroster outlet. The distribution of the conditioned air to each duct can be changed by the mode door described above.

(エンジン冷却装置32の説明)
320はエンジン冷却装置32の冷却水が循環する冷却水循環路であり、冷却水は電動もしくはエンジン駆動のポンプ321により循環される。エンジン102よりも下流の冷却水循環路320中には、冷却水と外気との熱交換を行わせて冷却水を冷却するためのラジエタ323が設けられている。冷却水循環路320には、ラジエタ323と並列にバイパス通路326が設けられており、バイパス通路326の分岐点にはサーモスタットもしくは電磁弁等で構成される切替バルブ325が設けられている。エンジン102で温められた冷却水は、冷却水循環路320を介して空調装置11内に設けられたヒータコア324を循環する。
(Description of engine cooling device 32)
Reference numeral 320 denotes a cooling water circulation path through which the cooling water of the engine cooling device 32 circulates, and the cooling water is circulated by an electric or engine-driven pump 321. A radiator 323 is provided in the cooling water circulation path 320 downstream of the engine 102 to cool the cooling water by exchanging heat between the cooling water and the outside air. The coolant circulation path 320 is provided with a bypass passage 326 in parallel with the radiator 323, and a switching valve 325 including a thermostat or an electromagnetic valve is provided at a branch point of the bypass passage 326. The cooling water heated by the engine 102 circulates through the heater core 324 provided in the air conditioner 11 via the cooling water circulation path 320.

冷却水循環路320のヒータコア324とポンプ321との間には加熱用熱交換器322が設けられている。この加熱用熱交換器322は、温調装置12に設けられた温調ユニット121内に配設されている。加熱用熱交換器322に冷却水を供給する冷却水循環路320と加熱用熱交換器322から冷却水を排出する冷却水循環路320との間にはバイパス通路328が設けられており、冷却水循環路320とバイパス通路328との分岐点にはサーモスタットもしくは電磁弁等で構成される切替バルブ327が設けられている。   A heating heat exchanger 322 is provided between the heater core 324 and the pump 321 in the cooling water circulation path 320. The heating heat exchanger 322 is disposed in a temperature control unit 121 provided in the temperature control device 12. A bypass passage 328 is provided between the cooling water circulation path 320 for supplying cooling water to the heating heat exchanger 322 and the cooling water circulation path 320 for discharging cooling water from the heating heat exchanger 322, and the cooling water circulation path. A switching valve 327 composed of a thermostat or an electromagnetic valve is provided at a branch point between 320 and the bypass passage 328.

(強電系冷却装置33の説明)
強電系101の冷却水が循環する冷却水循環路330には、冷却水を循環させる電動のポンプ331が設けられている。333は冷却水を外気によって冷却するサブラジエタであり、冷却水循環路330にはサブラジエタ333を迂回するバイパス通路335が設けられている。冷却水循環路330とバイパス通路335との分岐点にはサーモスタットもしくは電磁弁等で構成される切替バルブ334が設けられている。
(Description of the strong electric system cooling device 33)
An electric pump 331 that circulates the cooling water is provided in the cooling water circulation path 330 through which the cooling water of the high-power system 101 circulates. Reference numeral 333 denotes a sub-radiator that cools the cooling water using outside air. The cooling water circulation path 330 is provided with a bypass passage 335 that bypasses the sub-radiator 333. A switching valve 334 composed of a thermostat or an electromagnetic valve is provided at a branch point between the cooling water circulation path 330 and the bypass path 335.

また、冷却水循環路330には加熱用熱交換器332が設けられており、加熱用熱交換器332に冷却水を供給する冷却水循環路330と加熱用熱交換器332から冷却水を排出する冷却水循環路330との間にはバイパス通路337が形成されている。冷却水循環路330とバイパス通路337との分岐点にはサーモスタットもしくは電磁弁等で構成される切替バルブ336が設けられている。加熱用熱交換器332は、温調装置12に設けられた温調ユニット121内に配設されている。   The cooling water circulation path 330 is provided with a heating heat exchanger 332, and cooling water is discharged from the cooling water circulation path 330 that supplies cooling water to the heating heat exchanger 332 and the heating heat exchanger 332. A bypass passage 337 is formed between the water circulation passage 330 and the water circulation passage 330. A switching valve 336 composed of a thermostat or an electromagnetic valve is provided at a branch point between the cooling water circulation path 330 and the bypass path 337. The heating heat exchanger 332 is disposed in a temperature control unit 121 provided in the temperature control device 12.

(温調装置12の説明)
温調装置12は、上述したように液体冷媒により車室内の暖房および冷房を行う装置であり、冷媒循環路120には熱交換装置としての温調ユニット121,液体冷媒を循環するポンプ124および車室内の乗員に対して接触、輻射により熱を与えたり吸熱したりする熱分配装置125が設けられている。熱分配装置125は車室内のシート,トリム,インパネ,床等に内蔵されるように設置される。ポンプ124は図示しない電動モータにより駆動され、乗員の要求に応じて液体冷媒の循環量を連続的に変化させることができる。液体冷媒には、水、冷却水、熱容量の大きなスラリー流体等が用いられる。
(Description of temperature control device 12)
The temperature control device 12 is a device that heats and cools the vehicle interior with liquid refrigerant as described above. The coolant circulation path 120 includes a temperature control unit 121 as a heat exchange device, a pump 124 that circulates liquid refrigerant, and a vehicle. A heat distribution device 125 is provided that applies heat to or absorbs heat from an occupant in the room by contact and radiation. The heat distribution device 125 is installed so as to be built in a seat, a trim, an instrument panel, a floor or the like in the vehicle interior. The pump 124 is driven by an electric motor (not shown) and can continuously change the circulation amount of the liquid refrigerant according to the demand of the passenger. As the liquid refrigerant, water, cooling water, slurry fluid having a large heat capacity, or the like is used.

熱分配装置125を複数設ける場合には、図1のように並列に接続されていることが好ましい。なぜならば、冷媒循環路120に設けられた切替バルブ342を制御することにより、各熱分配装置125を個別に機能させることができ、乗員の操作または車載の自動制御装置に応じて、必要な熱分配手段125に液体媒体を流すことができる。矢印f1は液体冷媒の流れの方向を示しており、温調ユニット121内には、流れの上流側から順に加熱用熱交換器322,加熱用熱交換器332,冷却用熱交換器307が設けられている。   When a plurality of heat distribution devices 125 are provided, they are preferably connected in parallel as shown in FIG. This is because each heat distribution device 125 can be made to function individually by controlling the switching valve 342 provided in the refrigerant circulation path 120, and the necessary heat can be determined according to the operation of the occupant or the in-vehicle automatic control device. A liquid medium can flow through the distribution means 125. An arrow f1 indicates the flow direction of the liquid refrigerant. In the temperature control unit 121, a heating heat exchanger 322, a heating heat exchanger 332, and a cooling heat exchanger 307 are provided in order from the upstream side of the flow. It has been.

図2は温調ユニット121の拡大図である。矢印f1は上述したように液体冷媒の流れの方向を示しており、矢印f2,f3,f4はそれぞれ加熱用熱交換器322,加熱用熱交換器332,冷却用熱交換器307を流れる冷媒の流れの方向を示している。温調ユニット121内に流入した温調装置12用の液体冷媒は、加熱用熱交換器322,加熱用熱交換器332,冷却用熱交換器307の順に熱交換を行い、温調ユニット121から排出される。   FIG. 2 is an enlarged view of the temperature control unit 121. The arrow f1 indicates the flow direction of the liquid refrigerant as described above, and the arrows f2, f3, and f4 indicate the refrigerant flowing through the heating heat exchanger 322, the heating heat exchanger 332, and the cooling heat exchanger 307, respectively. Indicates the direction of flow. The liquid refrigerant for the temperature control device 12 that has flowed into the temperature control unit 121 performs heat exchange in the order of the heat exchanger 322 for heating, the heat exchanger 332 for heating, and the heat exchanger 307 for cooling. Discharged.

図3,4は熱分配装置125を詳細に示す図であり、図3は熱分配装置125の斜視図、図4は図3のE−E断面図である。熱分配装置125は、液体冷媒が一時的に停留する停留部位601と、停留部位601内の液体冷媒とシートや床との間の熱伝達の向上を図るための導熱板600とを備えている。停留部位601はタンクを構成しており、そのタンクの上壁面が導熱板60を構成している。液体冷媒は停留部位601に設けられた流入ポート603から流入し、排出ポート604から排出される。図示していないが、停留部位601には断熱材が巻かれている。   3 and 4 are diagrams showing the heat distribution device 125 in detail, FIG. 3 is a perspective view of the heat distribution device 125, and FIG. 4 is a cross-sectional view taken along line EE of FIG. The heat distribution device 125 includes a stopping part 601 where the liquid refrigerant temporarily stops, and a heat conducting plate 600 for improving heat transfer between the liquid refrigerant in the stopping part 601 and the sheet or floor. . The stationary part 601 constitutes a tank, and the upper wall surface of the tank constitutes the heat conducting plate 60. The liquid refrigerant flows in from an inflow port 603 provided in the stopping part 601 and is discharged from an exhaust port 604. Although not shown, a heat insulating material is wound around the stopping portion 601.

図3に示した熱分配装置125はシートの下部に配設される場合の構成を示したものであり、タンク上面に導熱板600が設けられているが、例えば、床用に設ける場合には、停留部位601の下面に導熱板600を設ける。導熱板600の下面には液体冷媒中に浸かるように伝熱フィン602が形成されており、液体冷媒と導熱板600との間の熱伝達が効率よく行われるような構造となっている。また、図4に示すように、液体冷媒が伝熱フィン602の間を効果的に流れるように、停留部位601の内部には仕切り板605が設けられている。   The heat distribution device 125 shown in FIG. 3 shows a configuration in the case where it is disposed at the lower part of the sheet, and a heat conducting plate 600 is provided on the upper surface of the tank. The heat conducting plate 600 is provided on the lower surface of the stop portion 601. Heat transfer fins 602 are formed on the lower surface of the heat conducting plate 600 so as to be immersed in the liquid refrigerant, so that heat transfer between the liquid refrigerant and the heat conducting plate 600 is performed efficiently. Further, as shown in FIG. 4, a partition plate 605 is provided inside the stationary part 601 so that the liquid refrigerant effectively flows between the heat transfer fins 602.

導熱板600を設けることにより、熱分配装置125の温度を均一化して乗員に熱を伝えることができる。また、このような導熱板600を乗員の周囲に配置することにより、液体冷媒の流路(配管)をまんべんなく配置する場合に比べて重量を低減することができるとともに、スペース効率が良く、構造も簡単にすることができる。   By providing the heat conducting plate 600, the temperature of the heat distribution device 125 can be made uniform and heat can be transmitted to the passenger. Further, by arranging such a heat conducting plate 600 around the occupant, the weight can be reduced as compared with the case where the flow paths (pipes) of the liquid refrigerant are evenly arranged, and the space efficiency is good and the structure is also improved. Can be simple.

(動作説明)
次に、車両用熱源分配システムの動作を、図5,6のフローチャートに基づいて説明する。ステップS10では、温調装置12の初期化を行う。初期化とは、冷却用熱交換器307に冷媒が流れない状態にし、加熱用熱交換器332,322に冷却水が流れない状態にすることである。具体的には、蒸発器303側の切替バルブ304を開くとともに、冷却用熱交換器307側の切替バルブ305を閉じる。また、バイパス通路337,328の分岐に設置された切替バルブ337,327を切り替えて、冷却水がそれぞれバイパスされた状態となるようにする。
(Description of operation)
Next, operation | movement of the heat source distribution system for vehicles is demonstrated based on the flowchart of FIG. In step S10, the temperature control device 12 is initialized. The initialization means that the refrigerant does not flow through the cooling heat exchanger 307 and the cooling water does not flow through the heating heat exchangers 332 and 322. Specifically, the switching valve 304 on the evaporator 303 side is opened, and the switching valve 305 on the cooling heat exchanger 307 side is closed. In addition, the switching valves 337 and 327 installed at the branches of the bypass passages 337 and 328 are switched so that the cooling water is bypassed.

すなわち、温調装置12,空調装置11,エンジン冷却装置32および強電系冷却装置33が孤立した状態となるようにする。この状態では、空調装置11,エンジン冷却装置32および強電系冷却装置33は、従来の装置と同様にそれぞれ独立した系となっている。   That is, the temperature control device 12, the air conditioning device 11, the engine cooling device 32, and the high electric system cooling device 33 are in an isolated state. In this state, the air conditioner 11, the engine cooling device 32, and the high voltage system cooling device 33 are independent systems as in the conventional device.

ステップS11では、温調装置12を動作させる要求があるか否かを判定する。例えば、温調装置12に関する操作スイッチを車室内に設けて、その操作スイッチの状態によって判定する。また、空調装置11の状態から自動判定させるようにしても良い。ステップS11で要求があったと判定されるとステップS12へ進み、要求が無いと判定されると温調装置12に関する処理を終了する。   In step S11, it is determined whether there is a request for operating the temperature control device 12. For example, an operation switch related to the temperature control device 12 is provided in the vehicle interior, and the determination is made based on the state of the operation switch. Moreover, you may make it determine automatically from the state of the air conditioner 11. FIG. When it is determined in step S11 that there is a request, the process proceeds to step S12, and when it is determined that there is no request, the process related to the temperature control device 12 is ended.

ステップS12では、温調装置12を冷房に設定するか、暖房に設定するかを判定する。この判定は、例えば、温調装置12の冷暖房スイッチ若しくは温度設定スイッチを車室内に設けて、これらのスイッチの状態から判定しても良いし、または、空調装置11の状態(冷房状態または暖房状態)から自動で判定するようにしても良い。ステップS12で冷房と判定されるとステップS13へ進み、暖房と判定されると図6のステップS20へと進む。   In step S12, it is determined whether the temperature control device 12 is set to cooling or heating. This determination may be made, for example, by determining the air conditioning switch or temperature setting switch of the temperature control device 12 in the vehicle interior and determining the state of these switches, or the state of the air conditioner 11 (cooling state or heating state) ) May be automatically determined. If it determines with air_conditioning | cooling in step S12, it will progress to step S13, and if it determines with heating, it will progress to step S20 of FIG.

ステップS13では、温調装置12に設けられた液体冷媒循環用のポンプ124をオン状態とする。ステップS14では、温調ユニット121内の冷却用熱交換器307に空調装置11の冷媒を循環させるとともに、加熱用熱交換器322に強電系冷却装置33の冷却水を循環させるようにする。具体的には、蒸発器303の上流側に設置されたバルブ304を閉じるとともに、冷却用熱交換器307の上流側に設けられたバルブ305を開いて冷却用熱交換器307に冷媒が流入するようにする。さらに、切替バルブ336を切り替えて、バイパスしていた冷却水を加熱用熱交換器322に循環させる。   In step S13, the liquid refrigerant circulating pump 124 provided in the temperature control device 12 is turned on. In step S <b> 14, the refrigerant of the air conditioner 11 is circulated through the cooling heat exchanger 307 in the temperature control unit 121, and the cooling water of the high-power system cooling device 33 is circulated through the heating heat exchanger 322. Specifically, the valve 304 installed on the upstream side of the evaporator 303 is closed, and the valve 305 provided on the upstream side of the cooling heat exchanger 307 is opened to allow the refrigerant to flow into the cooling heat exchanger 307. Like that. Further, the switching valve 336 is switched to circulate the bypassed cooling water to the heating heat exchanger 322.

図7(a)は、この時の温調装置12の状態を説明する図である。なお、エンジン冷却装置32に関する加熱用熱交換器322については、ステップS10の初期化により冷却水はバイパス通路328によりバイパスされて加熱用熱交換器322に流れ込まず、熱交換動作を行わないので、図7(a)では図示を省略した。   Fig.7 (a) is a figure explaining the state of the temperature control apparatus 12 at this time. As for the heat exchanger 322 for heating related to the engine cooling device 32, the cooling water is bypassed by the bypass passage 328 by the initialization of step S10 and does not flow into the heat exchanger 322 for heating, and the heat exchange operation is not performed. The illustration is omitted in FIG.

ステップS12で冷房と判定されるのは、車室内温度が上昇した場合(例えば、夏期)である。液体冷媒は、冷却用熱交換器307において空調用冷媒と熱交換して10〜20℃程度に冷却されるとする。この液体冷媒は、冷媒循環路120を循環して熱分配装置125において乗員等からの熱を吸収し、夏期の場合には温度が20〜30℃程度に上昇する。20〜30℃程度に温度上昇した液体冷媒は、再び温調ユニット121に戻り、加熱用熱交換器332内を流れている強電系の冷却水と熱交換し温度がさらに上昇する。   In step S12, it is determined that the cooling is performed when the temperature in the passenger compartment rises (for example, in summer). It is assumed that the liquid refrigerant is cooled to about 10 to 20 ° C. by exchanging heat with the air conditioning refrigerant in the cooling heat exchanger 307. This liquid refrigerant circulates through the refrigerant circulation path 120 and absorbs heat from the passengers or the like in the heat distribution device 125, and the temperature rises to about 20 to 30 ° C. in the summer. The liquid refrigerant whose temperature has increased to about 20 to 30 ° C. returns to the temperature control unit 121 again, exchanges heat with the strong electric cooling water flowing in the heat exchanger 332 for heating, and the temperature further increases.

ここで、強電系の冷却水の温度を60℃程度であるとすると、液体冷媒温度は40〜50℃程度まで上昇する。温度が40〜50℃程度となった液体冷媒は、加熱用熱交換器332の下流に配置された冷却用熱交換器307を通過した時に冷却され、温度が10〜20℃程度となる。冷却された液体冷媒は再び熱分配装置125に流入し、シートや床等を冷却することになる。   Here, if the temperature of the high-power cooling water is about 60 ° C., the liquid refrigerant temperature rises to about 40-50 ° C. The liquid refrigerant having a temperature of about 40 to 50 ° C. is cooled when it passes through the cooling heat exchanger 307 disposed downstream of the heating heat exchanger 332, and the temperature becomes about 10 to 20 ° C. The cooled liquid refrigerant flows into the heat distribution device 125 again, and cools the sheet, the floor, and the like.

ステップS14でバルブ304が閉じられると、蒸発器303に冷媒が流れ込まないため空調風の吹き出し温度は上昇し、所定温度以上では車室内の快適性が損なわれる。そこで、ステップS15では、吹き出し口に設けられた温度センサS1で検出される空調風の吹き出し温度が設定温度T0以上かどうかを判定し、T0以上と判定されたならばステップS16へと進む。ここで、閾値となる所定温度T0は、乗員の温熱感等にもよるが、日本国内であれば、例えば、ベント吹き出し温度で15〜20℃に設定される。   When the valve 304 is closed in step S14, the refrigerant does not flow into the evaporator 303, so that the temperature of the air-conditioning wind rises, and the comfort in the passenger compartment is impaired at a predetermined temperature or higher. Therefore, in step S15, it is determined whether or not the temperature of the conditioned air detected by the temperature sensor S1 provided at the outlet is equal to or higher than the set temperature T0. Here, the predetermined temperature T0 serving as a threshold value is set to 15 to 20 ° C., for example, as the vent blowing temperature in Japan, although it depends on the thermal sensation of the passenger.

ステップS15で吹き出し温度がT0以上と判定されると、ステップS16で蒸発器303の上流側に設置された切替バルブ304を開くとともに、冷却用熱交換器307の上流側に設けられた切替バルブ305を閉じて蒸発器303に冷媒を流し、空調風の吹き出し温度を低下させる。しかしながら、吹き出し温度が低下しすぎると車室内の快適性が低下するだけでなく、蒸発器303の凍結により圧縮機300の故障が発生するため、そのような問題が発生しないように空調ユニット111の吹き出し温度が所定温度T1よりも低くならないようにステップS17の処理を行う。ステップS17では空調ユニット111の吹き出し温度が所定温度T1より低いか否かを判定し、T1より低いと判定されたならばステップS18へ進む。   If it is determined in step S15 that the blowing temperature is equal to or higher than T0, the switching valve 304 installed on the upstream side of the evaporator 303 is opened in step S16, and the switching valve 305 provided on the upstream side of the cooling heat exchanger 307 is opened. Is closed and a refrigerant is passed through the evaporator 303 to lower the temperature of the air-conditioning air blown. However, if the blowing temperature is too low, not only the comfort in the passenger compartment is lowered, but also the compressor 300 is broken due to the freezing of the evaporator 303, so that such a problem does not occur in the air conditioning unit 111. The process of step S17 is performed so that the blowing temperature does not become lower than the predetermined temperature T1. In step S17, it is determined whether or not the blowing temperature of the air conditioning unit 111 is lower than a predetermined temperature T1, and if it is determined that the temperature is lower than T1, the process proceeds to step S18.

ここで、所定温度T1としては、圧縮機300の保護のために温度センサS2で検出される蒸発器303の空気出口温度で3℃程度であるが、上記温度T0との差が大きすぎると吹き出し温度変動により乗員が不快感を感じやすくなるので、T0とT1の差はあまり大きくない方が望ましい。   Here, the predetermined temperature T1 is about 3 ° C. at the air outlet temperature of the evaporator 303 detected by the temperature sensor S2 for protection of the compressor 300, but if the difference from the temperature T0 is too large, the blowout will occur. It is desirable that the difference between T0 and T1 is not so great because the passengers are likely to feel uncomfortable due to temperature fluctuations.

ステップS18では、温調装置12への動作要求が継続しているか否かを判定し、要求があると判定されるとステップS14へ戻って冷却用熱交換器307および加熱用熱交換器322をオン状態にする。一方、ステップS18で要求が無いと判定されると、ステップS19へ進んで温調装置用ポンプ124を停止し、一連の処理を終了する。   In step S18, it is determined whether or not the operation request to the temperature control device 12 is continued. If it is determined that there is a request, the process returns to step S14 and the cooling heat exchanger 307 and the heating heat exchanger 322 are turned on. Turn on. On the other hand, if it is determined in step S18 that there is no request, the process proceeds to step S19, the temperature control device pump 124 is stopped, and the series of processing ends.

次に、ステップS12で暖房と判定されて、図6のステップS20に進んだ場合につい
て説明する。なお、暖房と判定される状態においては、空調装置11の圧縮機300は停
止されている。ステップS20では、冷媒を介して熱が冷却用熱交換器307から蒸発器
303へと伝達されるようにするため、切替バルブ304,305を開状態にする。続くステップS21では、強電系冷却装置33の冷却水の温度が所定温度T2以上かどうかを判定する。
Next, the case where it is determined that the heating is performed in step S12 and the process proceeds to step S20 in FIG. 6 will be described. In the state where it is determined that heating is performed, the compressor 300 of the air conditioner 11 is stopped. In step S20, the switching valves 304 and 305 are opened to transfer heat from the cooling heat exchanger 307 to the evaporator 303 via the refrigerant. In subsequent step S21, it is determined whether or not the temperature of the cooling water of the high-power system cooling device 33 is equal to or higher than a predetermined temperature T2.

なお、図1では、冷却水の温度を検出する温度センサの図示を省略した。また、熱分配装置125の温度は外気温や運転停止してから再乗車までの時間等によって異なるが、熱分配装置125により暖房が行われる必要があるので、所定温度T2は少なくとも熱分配装置125の温度以上に設定する必要がある。そのため、検出用のセンサを熱分配装置125に設けても良い。   In FIG. 1, a temperature sensor for detecting the temperature of the cooling water is not shown. Further, although the temperature of the heat distribution device 125 varies depending on the outside air temperature, the time from when the operation is stopped to when the vehicle is restarted, etc., since the heat distribution device 125 needs to perform heating, the predetermined temperature T2 is at least the heat distribution device 125. It is necessary to set it above the temperature. Therefore, a sensor for detection may be provided in the heat distribution device 125.

ステップS21でT2以上と判定されるとステップS22へ進み、T2よりも低いと判定されるとステップS24へと進む。T2以上と判定されてステップS22に進んだ場合、ステップS22において温調装置12のポンプ124をオンとする。さらにステップS23に進んで、バイパス通路337の分岐に設けられた切替バルブ336を切り替えてバイパス状態を停止し、強電系冷却装置33の冷却水を加熱用熱交換器332に流入させて加熱用熱交換器332をオン状態にする。   If it is determined in step S21 that T2 is greater than or equal to T2, the process proceeds to step S22. If it is determined that T2 is lower than T2, the process proceeds to step S24. When it is determined that it is equal to or greater than T2 and the process proceeds to step S22, the pump 124 of the temperature control device 12 is turned on in step S22. Further, the process proceeds to step S23, the switching valve 336 provided at the branch of the bypass passage 337 is switched to stop the bypass state, and the cooling water of the strong electric system cooling device 33 is caused to flow into the heating heat exchanger 332 to heat the heating. The exchanger 332 is turned on.

図7(b)は、ステップS23の処理が終了した時点における温調装置12の状態を示す図である。冷却用熱交換器307は冷媒が循環しないオフ状態となっており、加熱用熱交換器332はステップS22の処理によりオン状態となっている。また、エンジン冷却装置32に関する加熱用熱交換器322については、ステップS10の初期化により冷却水はバイパス通路328によりバイパスされて加熱用熱交換器322に流れ込まず、熱交換動作を行わない。そのため、加熱用熱交換器322の図示を省略した。   FIG. 7B is a diagram illustrating a state of the temperature adjustment device 12 at the time when the process of step S23 is completed. The cooling heat exchanger 307 is in an off state in which the refrigerant does not circulate, and the heating heat exchanger 332 is in an on state by the process of step S22. As for the heat exchanger 322 for heating related to the engine cooling device 32, the cooling water is bypassed by the bypass passage 328 by the initialization of step S10 and does not flow into the heat exchanger 322 for heating, and the heat exchanging operation is not performed. Therefore, the illustration of the heat exchanger 322 for heating is omitted.

強電系冷却装置33の加熱用熱交換器332には60℃程度の冷却水が循環しており、温調装置12の液体冷媒がその加熱用熱交換器332を通過すると、40〜50℃程度の液体冷媒となる。40〜50℃の液体冷媒は加熱用熱交換器332の下流に設けられた冷却用熱交換器307と熱交換する。なお、空調装置11の圧縮機300はオフ状態となっているので、冷却用熱交換器307の冷却能力はオン状態に比べて低下している。そのため、冷却用熱交換器307で熱交換した液体冷媒の温度は30〜40℃程度となる。30〜40℃の液体冷媒は温調ユニット121から冷媒循環路120を介して熱分配装置125に流入し、熱分配装置125で熱交換し、再び温調ユニット121に戻ってくる。   Cooling water of about 60 ° C. is circulated in the heating heat exchanger 332 of the high-power system cooling device 33, and when the liquid refrigerant of the temperature control device 12 passes through the heating heat exchanger 332, about 40 to 50 ° C. It becomes a liquid refrigerant. The liquid refrigerant at 40 to 50 ° C. exchanges heat with the cooling heat exchanger 307 provided downstream of the heating heat exchanger 332. Since the compressor 300 of the air conditioner 11 is in the off state, the cooling capacity of the cooling heat exchanger 307 is lower than that in the on state. Therefore, the temperature of the liquid refrigerant heat exchanged by the cooling heat exchanger 307 is about 30 to 40 ° C. The liquid refrigerant at 30 to 40 ° C. flows from the temperature control unit 121 into the heat distribution device 125 via the refrigerant circulation path 120, exchanges heat with the heat distribution device 125, and returns to the temperature control unit 121 again.

冷却用熱交換器307において液体冷媒から空調装置11の冷媒へと移動した熱は、空調ユニット111に設けられた熱交換器303から排出される。すなわち、強電系で発生した熱を、温調ユニット121を介することにより空調装置11の補助暖房として利用することができる。   The heat transferred from the liquid refrigerant to the refrigerant of the air conditioner 11 in the cooling heat exchanger 307 is discharged from the heat exchanger 303 provided in the air conditioning unit 111. That is, the heat generated in the strong electric system can be used as auxiliary heating for the air conditioner 11 through the temperature control unit 121.

図6に戻って、ステップS24では、エンジン冷却装置32の冷却水温度が所定温度T3以上か否かを判定する。なお、熱分配手段125の温度は外気温や運転停止してから再乗車までの時間等によって異なるが、熱分配手段125により暖房が行われる必要があるので、所定温度T3は上述した所定温度T2と同様に少なくとも熱分配手段125の温度以上に設定する必要がある。ステップS24においてT3以上と判定されるとステップS25に進み、T3よりも低いと判定されるとステップS28へ進む。   Returning to FIG. 6, in step S24, it is determined whether or not the coolant temperature of the engine cooling device 32 is equal to or higher than a predetermined temperature T3. Although the temperature of the heat distribution means 125 varies depending on the outside air temperature, the time from when the operation is stopped until the re-boarding, etc., since the heat distribution means 125 needs to perform heating, the predetermined temperature T3 is the predetermined temperature T2 described above. Similarly to the above, it is necessary to set at least the temperature of the heat distribution means 125. If it is determined in step S24 that it is equal to or greater than T3, the process proceeds to step S25, and if it is determined that it is lower than T3, the process proceeds to step S28.

ステップS24でT3以上と判定されてステップS25に進んだ場合には、ステップS
25で温調装置12用のポンプ124をオンとした後に、ステップS26において加熱用
熱交換器322をオン状態とする。すなわち、エンジン冷却装置32のバイパス通路32
8の分岐点に設けられた切替バルブ328を切り替えて、加熱用熱交換器322に冷却水を循環させる。これにより、液体冷媒が加熱用熱交換器322を通過した際にエンジン冷却水によって暖められる。
If it is determined in step S24 that T3 is equal to or greater than step S25, the process proceeds to step S25.
After the pump 124 for the temperature control device 12 is turned on at 25, the heating heat exchanger 322 is turned on in step S26. That is, the bypass passage 32 of the engine cooling device 32.
The switching valve 328 provided at the eighth branch point is switched to circulate the cooling water in the heating heat exchanger 322. Thereby, when the liquid refrigerant passes through the heat exchanger 322 for heating, it is warmed by the engine cooling water.

なお、ステップS22の処理が実行されて、ポンプ124が既にオンとなっている場合には、ステップS25で再度オン指令を出す必要はない。また、ポンプ124を常時稼働させておく代わりに、必要なときに作動させることにより無駄な動力の消費を防止するようにしても良い。   In addition, when the process of step S22 is performed and the pump 124 is already turned on, it is not necessary to issue an ON command again in step S25. Further, instead of always operating the pump 124, wasteful power consumption may be prevented by operating it when necessary.

一方、ステップS24からステップS28に進んだ場合には、ステップS28において
エンジン暖機が要求されているか否かを判定する。寒冷時にエンジンを始動する際にエンジン暖機を行う必要がある場合には、例えば、乗員からエンジン暖機の指令があった場合や、エンジン温度を検出して自動的に暖機指令が発せられた場合には、エンジン冷却水の温度がT3より低くてもステップS25へと進む。この場合、エンジン冷却水の温度はT3よりも低いので、30〜40℃の液体冷媒から加熱用熱交換器322へと熱が移動してエンジン冷却水が暖められるため、その冷却水が循環することによりエンジン102が暖機される。
On the other hand, when the process proceeds from step S24 to step S28, it is determined in step S28 whether engine warm-up is requested. When it is necessary to warm up the engine when starting the engine in cold weather, for example, when there is a command for warming up the engine from the occupant, or when the engine temperature is detected, the warm-up command is issued automatically. If the engine coolant temperature is lower than T3, the process proceeds to step S25. In this case, since the temperature of the engine cooling water is lower than T3, the heat is transferred from the liquid refrigerant at 30 to 40 ° C. to the heating heat exchanger 322 to warm the engine cooling water, so that the cooling water circulates. As a result, the engine 102 is warmed up.

一方、暖機指令が無いと判定されたならば、ステップS25,S26をスキップしてステップS27へと進む。ステップS27では、温調装置12への動作要求が継続しているか否かを判定し、要求があると判定されるとステップS21へ進み、要求が無いと判定されるとステップS29へ進む。ステップS29では、加熱用熱交換器322,332をオフ状態とするとともに、バルブ305を閉じて冷却用熱交換器307をオフ状態にする。次いで、ステップS30において温調装置用ポンプ124を停止し、一連の処理を終了する。   On the other hand, if it is determined that there is no warm-up command, steps S25 and S26 are skipped and the process proceeds to step S27. In step S27, it is determined whether or not an operation request to the temperature control device 12 is continued. If it is determined that there is a request, the process proceeds to step S21, and if it is determined that there is no request, the process proceeds to step S29. In step S29, the heat exchangers 322 and 332 for heating are turned off, and the valve 305 is closed and the heat exchanger 307 for cooling is turned off. Next, in step S30, the temperature control device pump 124 is stopped, and the series of processes is terminated.

上述したように、本実施の形態の車両用熱源分配システムでは、車室に設けられた熱分
配装置125を有する温調装置12を設けたことにより以下のような効果を奏することができる。ここでは、図8に示す車両用熱源分配システムの概念図を用いて説明する。空調装置11による冷房・暖房は従来の通り行われる。本発明では、さらに、冷房時には熱源である強電系の熱を、図8の矢印Cで示すように温調ユニット121を介して冷却源である空調用冷媒へと移送するようにしている。その結果、強電系の冷却に関しては、空調用冷媒による冷却が行われるため、冷却源(空調用冷媒)をより効率的に利用することができ、サブラジエータ333での熱排出量を低減することができる。
As described above, in the vehicle heat source distribution system according to the present embodiment, the following effects can be obtained by providing the temperature control device 12 including the heat distribution device 125 provided in the passenger compartment. Here, it demonstrates using the conceptual diagram of the heat source distribution system for vehicles shown in FIG. Cooling and heating by the air conditioner 11 are performed as usual. Further, in the present invention, during the cooling, the strong electric system heat, which is a heat source, is transferred to the air-conditioning refrigerant, which is a cooling source, via the temperature control unit 121 as indicated by an arrow C in FIG. As a result, with regard to the cooling of the strong electric system, the cooling source (air conditioning refrigerant) can be used more efficiently because cooling is performed by the air conditioning refrigerant, and the amount of heat discharged from the sub radiator 333 can be reduced. Can do.

一方、冬期等における暖房時には、強電系101の熱を、温調ユニット121の加熱用熱交換器332および冷却用熱交換器307を介して空調用冷媒へ移送し、さらに、空調ユニット111の蒸発器303から空調風へと放出するようにしている。その結果、強電系の熱が車室内の暖房に利用され、強電系冷却装置33のサブラジエータ333から無駄に排出される熱を低減することができる。また、強電系101の熱をエンジン102の暖機に利用することにより、エンジン暖機をより速く行うことができるとともに、燃費の悪化を抑えることができる。なお、熱源としては、エンジン102、強電系101に加えて排ガス103等がある。   On the other hand, during heating in winter or the like, the heat of the strong electric system 101 is transferred to the air conditioning refrigerant through the heating heat exchanger 332 and the cooling heat exchanger 307 of the temperature control unit 121, and further, the evaporation of the air conditioning unit 111 is performed. The air is discharged from the vessel 303 into the conditioned air. As a result, the heat of the strong electric system is used for heating the passenger compartment, and the heat exhausted from the sub radiator 333 of the strong electric system cooling device 33 can be reduced. Further, by using the heat of the strong electric system 101 for warming up the engine 102, the engine can be warmed up more quickly and the deterioration of fuel consumption can be suppressed. Note that the heat source includes the exhaust gas 103 in addition to the engine 102 and the strong electric system 101.

さらに、温調ユニット121で冷却または暖められた液体冷媒を車室内の熱分配装置1
25に循環させることにより、上述した省力化に加えて次のような効果も得ることができる。すなわち、図9に示すように、空調装置11の空調風による熱伝達(対流201)に加えて、熱分配装置125が設けられたシート127からの接触熱203や、トリムや床からの輻射202が加わることにより、乗員200に対しより快適な車室内空間を作り出すことができる。
Further, the liquid refrigerant cooled or warmed by the temperature control unit 121 is transferred to the heat distribution device 1 in the passenger compartment.
In addition to the labor saving described above, the following effects can be obtained. That is, as shown in FIG. 9, in addition to the heat transfer (convection 201) by the conditioned air of the air conditioner 11, the contact heat 203 from the sheet 127 provided with the heat distribution device 125 and the radiation 202 from the trim or floor. As a result, a more comfortable vehicle interior space for the occupant 200 can be created.

なお、温調ユニット121を上述したように機能させるためには、温調ユニット121内において、強電系101の冷却水が循環する加熱用熱交換器332,322を空調装置11の冷媒が循環する冷却用熱交換器307よりも上流側に配置することが重要である。そのような配置とすることにより、温調装置12の冷媒循環路を循環する液体冷媒は、循環途中で加熱・冷却を何度も繰り返すことなく徐々に温度を上げていくため、熱を無駄にすることがない。   In order to make the temperature control unit 121 function as described above, the refrigerant of the air conditioner 11 circulates in the heat exchangers 332 and 322 for heating in which the cooling water of the high voltage system 101 circulates in the temperature control unit 121. It is important that the cooling heat exchanger 307 is disposed on the upstream side. By adopting such an arrangement, the liquid refrigerant circulating in the refrigerant circulation path of the temperature control device 12 gradually increases in temperature without repeating heating and cooling many times during the circulation, so that heat is wasted. There is nothing to do.

一方、図10に示すように冷却用熱交換器307と加熱用熱交換器332と逆に配置し
た場合、本実施の形態のような効果を奏することができない。図10(a)は夏期(冷房)の場合を示したものである。温調ユニット121内に流れ込んだ液体冷媒は、上流側に設けられた冷却用熱交換器307によって10〜20℃程度まで冷却された後、下流側の加熱用熱交換器332で加熱されて30〜40℃程度の温度となり、熱分配装置125における温度も30〜40℃程度と図7(a)の場合に比べて高めの温度となる。
On the other hand, when the cooling heat exchanger 307 and the heating heat exchanger 332 are arranged opposite to each other as shown in FIG. 10, the effect as in the present embodiment cannot be achieved. FIG. 10A shows the case of summer (cooling). The liquid refrigerant flowing into the temperature control unit 121 is cooled to about 10 to 20 ° C. by the cooling heat exchanger 307 provided on the upstream side, and then heated by the heating heat exchanger 332 on the downstream side. The temperature in the heat distribution device 125 is about 30 to 40 ° C., which is higher than that in the case of FIG.

そのため、乗員に対して快適空間を形成することができない。この配置において液体冷媒の温度を下げようとした場合、冷却用熱交換器307での熱交換量を大きくするか、加熱用熱交換器332での熱交換量を小さくする必要があるが、前者の場合には消費動力が大きくなり、後者の場合には強電系101の冷却不足を招くという欠点がある。   Therefore, a comfortable space cannot be formed for the passenger. In this arrangement, when the temperature of the liquid refrigerant is to be lowered, it is necessary to increase the heat exchange amount in the cooling heat exchanger 307 or to reduce the heat exchange amount in the heating heat exchanger 332. In this case, the power consumption increases, and in the latter case, there is a drawback that the high-power system 101 is insufficiently cooled.

また、図10(b)は暖房の場合を示したものである。熱分配装置125における液体
冷媒の温度は図7(b)の場合と同様に30〜40℃程度であるとする。この場合、圧縮機300が停止状態にあるので、熱分配装置125から温調ユニット121に戻ってきた液体冷媒が冷却用熱交換器307と熱交換すると、液体冷媒の温度は20〜30℃程度にしかならない。その液体冷媒は加熱用熱交換器332で加熱されて30〜40℃程度の温度とされる。
FIG. 10 (b) shows the case of heating. It is assumed that the temperature of the liquid refrigerant in the heat distribution device 125 is about 30 to 40 ° C. as in the case of FIG. In this case, since the compressor 300 is in a stopped state, when the liquid refrigerant returned from the heat distribution device 125 to the temperature control unit 121 exchanges heat with the cooling heat exchanger 307, the temperature of the liquid refrigerant is about 20 to 30 ° C. It can only be. The liquid refrigerant is heated by the heat exchanger 332 for heating to a temperature of about 30 to 40 ° C.

この場合、熱分配装置125での液体冷媒の温度を30〜40℃程度に保つためには、加熱用熱交換器332での熱交換量を図7(b)の場合に比べて小さくする必要がある上に、上流側に配置された冷却用熱交換器307での熱交換量が小さくなる。そのため、本実施の形態に比べて、効率が低下する。   In this case, in order to keep the temperature of the liquid refrigerant in the heat distributor 125 at about 30 to 40 ° C., it is necessary to reduce the heat exchange amount in the heat exchanger 332 for heating as compared with the case of FIG. In addition, the amount of heat exchange in the cooling heat exchanger 307 disposed on the upstream side is reduced. Therefore, the efficiency is reduced as compared with the present embodiment.

図11は、車両に設けられた4つのシートの表面を20℃に保ち、それぞれのシートで
200Wの熱を奪うという条件で、本実施の形態と、ペルチェ素子等の電子冷却と、従来の送風冷却(空調風冷却)とのそれぞれの場合のオルタネータおよびコンプレッサで消費される動力を比較したものである。送風冷却に比べて本実施の形態ではトータルの動力を約40%削減することができる。また、電子冷却の場合の動力は、本実施の形態の場合の動力に比べて遙かに大きくなる。
FIG. 11 shows the present embodiment, the electronic cooling of the Peltier device, etc., and the conventional air blowing, on the condition that the surfaces of the four seats provided in the vehicle are kept at 20 ° C. and each seat takes 200 W of heat. The power consumed by the alternator and the compressor in each case of cooling (air-conditioning wind cooling) is compared. Compared with the air cooling, the present embodiment can reduce the total power by about 40%. In addition, the power in the case of electronic cooling is much larger than that in the present embodiment.

上述した図7の説明では、加熱用熱交換器322をオフ状態にして、冷却用熱交換器307と加熱用熱交換器332との関係を説明したが、加熱用熱交換器332をオフし加熱用熱交換器322をオン状態とすることにより、冷却用熱交換器307と加熱用熱交換器322との間にも同様の関係が成立する。また、ハイブリッド自動車を例に説明したが、エンジンのみの自動車や、エンジンバッテリと電動モータとで駆動する電気自動車や、燃料電池と電動モータで駆動する燃料電池車にも同様に本発明を適用することができる。   In the description of FIG. 7 described above, the heating heat exchanger 322 is turned off and the relationship between the cooling heat exchanger 307 and the heating heat exchanger 332 has been described. However, the heating heat exchanger 332 is turned off. By turning on the heat exchanger 322 for heating, a similar relationship is established between the heat exchanger 307 for cooling and the heat exchanger 322 for heating. Although the hybrid vehicle has been described as an example, the present invention is similarly applied to an engine-only vehicle, an electric vehicle driven by an engine battery and an electric motor, and a fuel cell vehicle driven by a fuel cell and an electric motor. be able to.

以上説明した実施の形態と特許請求の範囲の要素との対応において、強電系101およ
びエンジン102は加熱源を、空調装置11の冷媒は冷却源を、ポンプ124は循環手段を、熱分配装置125は第1の熱交換器を、加熱用熱交換器322,332は第2の熱交換器を、冷却用熱交換器は第3の熱交換器を、冷媒停留部は停留部位601をそれぞれ構成する。なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。
In the correspondence between the embodiment described above and the elements of the claims, the strong electric system 101 and the engine 102 are heating sources, the refrigerant of the air conditioner 11 is a cooling source, the pump 124 is a circulation means, and the heat distribution device 125. Is the first heat exchanger, the heating heat exchangers 322 and 332 are the second heat exchanger, the cooling heat exchanger is the third heat exchanger, and the refrigerant stopping part is the stopping part 601. To do. The above description is merely an example, and when interpreting the invention, there is no limitation or restriction on the correspondence between the items described in the above embodiment and the items described in the claims.

本発明による車両用熱源分配システムの一実施の形態を説明するブロック図である。It is a block diagram explaining one embodiment of a heat source distribution system for vehicles by the present invention. 温調ユニット121の拡大図である。3 is an enlarged view of a temperature control unit 121. FIG. 熱分配装置125の斜視図である。It is a perspective view of the heat distribution apparatus 125. FIG. 図3のE−E断面図である。It is EE sectional drawing of FIG. 車両用熱源分配システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the heat source distribution system for vehicles. 図5に続く処理を示すフローチャートである。It is a flowchart which shows the process following FIG. 温調装置12を説明する図であり、(a)は冷房時を、(b)は暖房時をそれぞれ示す。It is a figure explaining the temperature control apparatus 12, (a) shows the time of cooling, (b) shows the time of heating, respectively. 車両用熱源分配システムの概念図である。It is a conceptual diagram of the heat source distribution system for vehicles. 車室内の熱の流れを示す図である。It is a figure which shows the flow of the heat in a vehicle interior. 比較例として冷却用熱交換器307と加熱用熱交換器332の配置を逆にした場合を示す図であり、(a)は冷房時を、(b)は暖房時をそれぞれ示す。It is a figure which shows the case where arrangement | positioning of the heat exchanger 307 for cooling and the heat exchanger 332 for heating is reversed as a comparative example, (a) shows the time of cooling, (b) shows the time of heating, respectively. 本実施の形態と、ペルチェ素子等の電子冷却と、従来の送風冷却とにおける消費動力の比較例を示す図である。It is a figure which shows the comparative example of the power consumption in this Embodiment, electronic cooling, such as a Peltier device, and the conventional ventilation cooling.

符号の説明Explanation of symbols

11 空調装置
12 温調装置
32 エンジン冷却装置
33 強電系冷却装置
101 強電系
102 エンジン
110,120 冷媒循環路
111 空調ユニット
121 温調ユニット
124,321,331 ポンプ
125 熱分配装置
303 蒸発器
307 冷却用熱交換器
322,332 加熱用熱交換器
324 ヒータコア
600 導熱板
601 停留部位
DESCRIPTION OF SYMBOLS 11 Air conditioning apparatus 12 Temperature control apparatus 32 Engine cooling apparatus 33 High electric system cooling apparatus 101 High electric system 102 Engine 110,120 Refrigerant circulation path 111 Air conditioning unit 121 Temperature control unit 124,321,331 Pump 125 Heat distribution apparatus 303 Evaporator 307 For cooling Heat exchanger 322, 332 Heat exchanger for heating 324 Heater core 600 Heat conduction plate 601 Stopping part

Claims (4)

加熱源と冷却源とを備えた車両用空調装置と、前記空調装置とは独立して液体冷媒を用
いて乗員への温度調整を行う温調装置とを有して、前記空調装置と前記温調装置とに前記
加熱源の熱と前記冷却源とを分配する車両用熱源分配システムであって、
前記温調装置は、
前記加熱源の熱を排出する排出手段と、
前記冷却源に熱を吸収するための吸熱手段と、
前記液体冷媒を用いて、前記排出手段から排出された熱を前記吸熱手段へと移送する熱分配手段とを備えたことを特徴とする車両用熱源分配システム。
A vehicle air conditioner including a heating source and a cooling source; and a temperature control device that adjusts the temperature of a passenger using a liquid refrigerant independently of the air conditioner, the air conditioner and the temperature A vehicle heat source distribution system that distributes the heat of the heating source and the cooling source to a controller,
The temperature controller is
Discharging means for discharging heat of the heating source;
Endothermic means for absorbing heat into the cooling source;
A heat source distribution system for vehicles, comprising: heat distribution means for transferring heat discharged from the discharge means to the heat absorption means using the liquid refrigerant.
請求項1に記載の車両用熱源分配システムにおいて、
前記熱分配手段は、車室内において輻射および伝熱により吸排熱を行う第1の熱交換器と、前記第1の熱交換器に前記液体冷媒を循環させる循環手段とを備え、
前記排出手段は、前記加熱源の熱を移送するための熱媒体が循環する第2の熱交換器であって、前記液体冷媒の循環経路上に設けられて前記熱媒体から前記液体冷媒へと熱を伝達し、
前記吸熱手段は、前記冷却源を利用して空調風を車室内に供給する前記空調装置の空調用冷媒が循環する第3の熱交換器であって、前記液体冷媒の循環経路上の前記第2の熱交換器の下流側に配設されて前記液体冷媒から前記空調用冷媒へと熱を伝達することを特徴とする車両用熱源分配システム。
The vehicle heat source distribution system according to claim 1,
The heat distribution means includes a first heat exchanger that absorbs and exhausts heat by radiation and heat transfer in a passenger compartment, and a circulation means that circulates the liquid refrigerant in the first heat exchanger.
The discharge means is a second heat exchanger in which a heat medium for transferring heat of the heating source circulates, and is provided on a circulation path of the liquid refrigerant from the heat medium to the liquid refrigerant. Transfer heat,
The heat absorption means is a third heat exchanger in which the air-conditioning refrigerant of the air-conditioning apparatus that supplies the conditioned air to the vehicle interior using the cooling source circulates, and the first heat exchanger on the circulation path of the liquid refrigerant. A heat source distribution system for vehicles, wherein the vehicle heat source distribution system is disposed downstream of the heat exchanger 2 and transfers heat from the liquid refrigerant to the air conditioning refrigerant.
請求項2に記載の車両用熱源分配システムにおいて、
前記第1の熱交換器は、前記液体冷媒の循環経路上に設けられて前記液体冷媒が一時的に停留する冷媒停留部であることを特徴とする車両用熱源分配システム。
The vehicle heat source distribution system according to claim 2,
The vehicle heat source distribution system, wherein the first heat exchanger is a refrigerant stopping section that is provided on a circulation path of the liquid refrigerant and temporarily stops the liquid refrigerant.
請求項3に記載の車両用熱源分配システムにおいて、
前記第1の熱交換器は、前記液体冷媒と熱接触して前記液体冷媒と車室内との熱伝達を行う導熱板を有することを特徴とする車両用熱源分配システム。
In the vehicle heat source distribution system according to claim 3,
The vehicle heat source distribution system, wherein the first heat exchanger includes a heat conducting plate that is in thermal contact with the liquid refrigerant and performs heat transfer between the liquid refrigerant and a vehicle interior.
JP2005143888A 2005-05-17 2005-05-17 Heat source distribution system for vehicle Pending JP2006321269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143888A JP2006321269A (en) 2005-05-17 2005-05-17 Heat source distribution system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143888A JP2006321269A (en) 2005-05-17 2005-05-17 Heat source distribution system for vehicle

Publications (1)

Publication Number Publication Date
JP2006321269A true JP2006321269A (en) 2006-11-30

Family

ID=37541265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143888A Pending JP2006321269A (en) 2005-05-17 2005-05-17 Heat source distribution system for vehicle

Country Status (1)

Country Link
JP (1) JP2006321269A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240777A (en) * 2010-05-17 2011-12-01 Denso Corp Cooler
JP2012011932A (en) * 2010-07-02 2012-01-19 Panasonic Corp Liquid circulating system for vehicle
WO2012144151A1 (en) * 2011-04-18 2012-10-26 株式会社デンソー Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
JP2012218673A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Heat exchange apparatus
WO2013114874A1 (en) * 2012-02-02 2013-08-08 株式会社デンソー Vehicle thermal management system
JP2017512711A (en) * 2014-03-21 2017-05-25 アリース エコ アーク(ケイマン) シーオー.エルティーディー. Electric vehicle temperature control system
US9694651B2 (en) 2002-04-29 2017-07-04 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and off operation
CN108128118A (en) * 2017-12-25 2018-06-08 上海加冷松芝汽车空调股份有限公司 A kind of electric vehicle thermal control system
CN110254340A (en) * 2018-03-12 2019-09-20 原子能秘书部 For transporting the portable refrigeration system based on liquid nitrogen of refrigerated goods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694651B2 (en) 2002-04-29 2017-07-04 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and off operation
JP2011240777A (en) * 2010-05-17 2011-12-01 Denso Corp Cooler
JP2012011932A (en) * 2010-07-02 2012-01-19 Panasonic Corp Liquid circulating system for vehicle
JP2012218673A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Heat exchange apparatus
CN103492204B (en) * 2011-04-18 2015-09-30 株式会社电装 Vehicle temperature control convenience and vehicle-mounted hot systems
CN103492204A (en) * 2011-04-18 2014-01-01 株式会社电装 Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
JP2012232730A (en) * 2011-04-18 2012-11-29 Denso Corp Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
WO2012144151A1 (en) * 2011-04-18 2012-10-26 株式会社デンソー Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
US9796241B2 (en) 2011-04-18 2017-10-24 Denso Corporation Vehicle temperature control apparatus and in-vehicle thermal system
WO2013114874A1 (en) * 2012-02-02 2013-08-08 株式会社デンソー Vehicle thermal management system
JP2013230805A (en) * 2012-02-02 2013-11-14 Denso Corp Vehicle thermal management system
US9643469B2 (en) 2012-02-02 2017-05-09 Denso Corporation Vehicle thermal management system
JP2017512711A (en) * 2014-03-21 2017-05-25 アリース エコ アーク(ケイマン) シーオー.エルティーディー. Electric vehicle temperature control system
CN108128118A (en) * 2017-12-25 2018-06-08 上海加冷松芝汽车空调股份有限公司 A kind of electric vehicle thermal control system
CN108128118B (en) * 2017-12-25 2023-07-14 上海加冷松芝汽车空调股份有限公司 Electric automobile thermal control system
CN110254340A (en) * 2018-03-12 2019-09-20 原子能秘书部 For transporting the portable refrigeration system based on liquid nitrogen of refrigerated goods

Similar Documents

Publication Publication Date Title
JP6916600B2 (en) Vehicle battery cooling system
US10589596B2 (en) Thermal management for an electric or hybrid vehicle and a method for air-conditioning the interior of such a motor vehicle
US7287581B2 (en) Full function vehicle HVAC/PTC thermal system
KR101225660B1 (en) An auxiliary cooling and heating device for automobile using thermo element module and its controlling method thereof
US9555686B2 (en) Temperature control systems with thermoelectric devices
US9447994B2 (en) Temperature control systems with thermoelectric devices
JP5860361B2 (en) Thermal management system for electric vehicles
JP2006321269A (en) Heat source distribution system for vehicle
KR101956362B1 (en) Efficient transfer of heat to passenger cabin
KR102573227B1 (en) Heat management system of vehicle
US20130192272A1 (en) Temperature control systems with thermoelectric devices
JP2002352867A (en) Battery temperature controller for electric vehicle
EP2682291B1 (en) Vehicle air-conditioning apparatus
JP2010064651A (en) Temperature conditioning control device of motor driving system for vehicle
JP2009291008A (en) Heat management system of electric drive vehicle
JP2019031109A (en) Air conditioner for vehicle
JP2011143911A (en) Vehicular air-conditioning unit and vehicular air-conditioning system
JP2012081932A (en) Driving-battery temperature adjustment system
US11760154B2 (en) In-vehicle temperature adjustment system
WO2020184146A1 (en) Vehicle air conditioner
KR101836514B1 (en) Air conditioner apparatus for vehicle
JP2001304633A (en) Heat storage air conditioner
CN215850636U (en) Heat exchange system for vehicle
WO2023243367A1 (en) Vehicle air-conditioning device
WO2022270594A1 (en) Vehicular air conditioning device