WO2022270594A1 - Vehicular air conditioning device - Google Patents

Vehicular air conditioning device Download PDF

Info

Publication number
WO2022270594A1
WO2022270594A1 PCT/JP2022/025153 JP2022025153W WO2022270594A1 WO 2022270594 A1 WO2022270594 A1 WO 2022270594A1 JP 2022025153 W JP2022025153 W JP 2022025153W WO 2022270594 A1 WO2022270594 A1 WO 2022270594A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air
vehicle
heat exchanger
flow path
Prior art date
Application number
PCT/JP2022/025153
Other languages
French (fr)
Japanese (ja)
Inventor
宏太 寺内
尭之 松村
徹也 石関
真一 増田
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2022270594A1 publication Critical patent/WO2022270594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a vehicle air conditioner that is applied to a vehicle, and more particularly to a vehicle air conditioner that adjusts the temperature of batteries, motors, etc. and uses their waste heat for air conditioning.
  • a reserve tank for storing liquid is connected to a first circulation path for circulating liquid to a motor and an inverter, and a second circulation path for circulating liquid to a battery.
  • cooling path or the second circulation path cooling of the motor or temperature adjustment of the battery is performed.
  • the liquid is pressure-fed from the reserve tank to the radiator in the first circulation path, and the liquid cooled by the radiator is circulated through the motor and the inverter for heat exchange, thereby cooling the motor and the inverter. Is going.
  • the temperature of the battery is adjusted by circulating the liquid from the reserve tank to the second circulation path and exchanging heat between the liquid and the battery. At this time, if the temperature of the liquid pumped from the reserve tank is warmed by the waste heat of the motor and inverter and is higher than the temperature of the battery, the battery is warmed up, and if the temperature of the liquid is lower than the temperature of the battery. cools the battery.
  • the present invention has been made in view of such circumstances, and enables efficient heat utilization by utilizing waste heat from in-vehicle equipment, particularly in-vehicle equipment in drive systems including batteries, motors, inverters, and the like. and so on.
  • One form of the present invention comprises an indoor air conditioning unit comprising an endothermic heat exchanger and a heat radiating heat exchanger provided downstream of the endothermic heat exchanger, wherein the heat radiating heat exchanger is , a heat exchanger for heat dissipation that dissipates a heat medium that recovers waste heat from on-vehicle equipment, and the indoor air conditioning unit includes a heat dissipation air flow path for discharging the wind that has passed through the heat exchanger for heat dissipation to the outside of the vehicle.
  • a vehicle air conditioner comprising:
  • the present invention it is possible to efficiently utilize heat by utilizing the waste heat of in-vehicle equipment, especially drive system in-vehicle equipment including batteries, motors, inverters, and the like.
  • FIG. 1 is a block diagram showing a schematic configuration of an air conditioning ECU that controls a vehicle air conditioner according to an embodiment of the present invention
  • FIG. 4 is a diagram showing the state of the indoor air conditioning unit during heating operation of the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a state of an indoor air conditioning unit when naturally cooling an object to be temperature controlled in the vehicle air conditioner according to the embodiment of the present invention;
  • FIG. 4 is a diagram showing the state of the indoor air conditioning unit when the vehicle air conditioner according to the embodiment of the present invention performs the cooling operation while naturally cooling the object to be temperature controlled.
  • FIG. 4 is a diagram showing a state of an indoor air conditioning unit when forcibly cooling an object to be temperature controlled in the vehicle air conditioner according to the embodiment of the present invention;
  • FIG. 4 is a diagram showing a state of an indoor air conditioning unit when performing cooling operation while forcibly cooling an object to be temperature controlled in the vehicle air conditioner according to the embodiment of the present invention.
  • 1 is a diagram showing a schematic configuration showing an example in which a refrigerant circulates in a heater core in an indoor air conditioning unit of a vehicle air conditioner according to an embodiment of the present invention;
  • FIG. It is a figure which shows schematic structure of the indoor air-conditioning unit of the vehicle air conditioner which concerns on the modification of embodiment of this invention.
  • refrigerant refers to a circulating medium in a refrigerant circuit that undergoes state changes in a heat pump (compression, condensation, expansion, evaporation), and the term “heat medium” refers to heat exchange without such state changes. It is a medium (including water, etc.) that absorbs and radiates heat by
  • a vehicle air conditioner according to an embodiment of the present invention is applied to a vehicle such as an electric vehicle (EV) that is not equipped with an engine (internal combustion engine) or a so-called hybrid vehicle that shares an engine and an electric motor for driving. be able to.
  • a vehicle such as an electric vehicle (EV) that is not equipped with an engine (internal combustion engine) or a so-called hybrid vehicle that shares an engine and an electric motor for driving.
  • a vehicle is equipped with a battery (for example, a lithium battery), and converts DC power charged in the battery from an external power source into AC power by an inverter and supplies the power to a motor unit including a motor for running. to drive the motor and run.
  • the vehicle air conditioner 1 is also driven by electric power supplied from the battery.
  • a vehicle air conditioner 1 includes a refrigerant circuit R and an indoor air conditioning unit 10 that forms a flow passage for air that exchanges heat with the refrigerant circulating in the refrigerant circuit R.
  • the refrigerant circuit R is a circuit that compresses, condenses, expands, and evaporates the circulating refrigerant, and includes a compressor that compresses the refrigerant, and a refrigerant circulation flow that condenses, expands, and evaporates the refrigerant discharged from the compressor and returns it to the compressor. has a road.
  • the vehicle air conditioner 1 performs a heat pump operation using the refrigerant circuit R, and supplies air that has been heat-exchanged with the refrigerant by the indoor air conditioning unit 10 to air the vehicle interior (heating, cooling, dehumidification, and dehumidification). frost).
  • the indoor air-conditioning unit 10 includes an air flow passage 20 for blowing the wind (air) taken in from inside and outside the vehicle into the vehicle interior, a cooler core 30 as an endothermic heat exchanger provided on the upstream side of the air flow passage 20, and a blower.
  • a heater core 40 as a heat radiating heat exchanger provided on the downstream side of the air flow path 20 and a heat radiating air flow path 50 for discharging the air that has passed through the heater core 40 to the outside of the vehicle are provided.
  • the air flow path 20 is provided with an intake port 25 including an outside air intake port and an internal air intake port, and an intake switching damper 26 provided at the intake port 25 .
  • the intake switching damper 26 appropriately switches between inside air (inside air circulation), which is the air inside the vehicle, and outside air (outside air introduction), which is the air outside the vehicle, and introduces the air into the airflow passage 20 from the suction port 25 .
  • An indoor blower (blower fan) 27 for blowing the introduced inside air or outside air to the cooler core 30 or the heater core 40 disposed downstream of the airflow passage 20 is provided downstream of the suction switching damper 26. It is
  • the airflow path 20 includes a first airflow path 21 that passes the air taken into the airflow path 20 through the heater core 40 and circulates it inside and outside the vehicle, and a first airflow path 21 that circulates the air into and out of the vehicle through the heater core 40, and supplies the air into the vehicle interior without passing through the heater core 40. It includes a second air flow path 22 for air flow.
  • An air mix damper 28 is provided in the air flow path 20 downstream of the cooler core 30 and upstream of the heater core 40 .
  • the air mix damper 28 controls the degree of opening of the air mix damper 28 so that the air (inside air or outside air) in the air flow path 20 after passing through the cooler core 30 is transferred to the first air flow path 21 or the second air flow path 22. Switching is performed so as to circulate in either direction, or the proportion of ventilation in the first air flow path 21 and the second air flow path 22 is adjusted.
  • the first air flow path 21 is provided with an external outlet 23 for blowing out the air that has flowed through the first air flow path 21 to the downstream side of the heater core 40 .
  • the external blowout port 23 is provided with a blowout damper 24 that opens and closes the external blowout port 23 .
  • the blow-out damper 24 By opening the blow-out damper 24, the air flow path 50 for heat dissipation is formed.
  • the air that has passed through the heater core 40 can be blown into the passenger compartment.
  • an outside air introduction port 63 is provided on the air flow passage upstream side of the heater core 40 (in the present embodiment, the air flow passage upstream side of the heater core 40 of the first air flow passage 21),
  • An outside air introduction passage 60 is provided for introducing outside air via an outside air introduction port 63 .
  • Outside air introduced from the outside air intake port 61 and the outside air intake port 61 is passed through the outside air introduction channel 60 and supplied to the first ventilation channel 21 upstream of the outside air introduction channel 60 .
  • An outside air introduction fan 62 is provided for this purpose.
  • the air flow path downstream side of the outside air introduction flow path 60 is connected to the outside air introduction port 63 located on the air flow path upstream side of the heater core 40 in the first air flow path 21 .
  • the outside air introduction port 63 is provided with an outside air introduction damper 64 that switches whether to introduce outside air or not.
  • the outside air introduction passage 60 supplies the air taken in from the outside air suction port 61 to the first blowing passage 21 through the outside air introduction port 63 by the outside air introduction fan 62 when the outside air introduction damper 64 is open. That is, the outside air introduction channel 60 feeds the outside air to the first airflow channel 21 without passing through the cooler core 30 .
  • the outside air introduction flow path 60 is externally attached to the indoor air conditioning unit.
  • the cooler core 30 constitutes a part of the refrigerant circuit R, and is a heat exchanger that exchanges heat between the refrigerant flowing from the refrigerant circuit R and the wind (air) passing through the air flow path 20 .
  • the refrigerant that circulates in the refrigerant circuit R and flows into the cooler core 30 is heat-exchanged (heat is absorbed by the refrigerant) with the air that is taken into the airflow passage 20 from the outside of the vehicle compartment. cools the air supplied to the interior of the vehicle.
  • the heater core 40 constitutes a part of a device temperature adjustment circuit (heat medium circuit) 80, which will be described later, and heats the heat medium circulating in the device temperature adjustment circuit 80 and the air passing through the heater core 40. It is a heat exchanger that recovers waste heat from in-vehicle equipment. The heat medium and the air exchange heat in the heater core 40, and the heat medium after the heat exchange is returned to the device temperature adjustment circuit 80 to adjust the temperature of the temperature control object 82 of the device temperature adjustment circuit 80, The air heated by absorbing heat from the heat medium is sent inside and outside the vehicle.
  • the device temperature adjustment circuit 80 directly or indirectly circulates a heat medium through a temperature control target 82 (in-vehicle device) such as a battery, an inverter, a motor, a power control unit, etc. to adjust the temperature of the temperature control target 82 .
  • the device temperature adjustment circuit 80 includes a heat medium flow path 81 passing through the heater core 40 , a temperature control object 82 (a motor in the example shown) provided in the heat medium flow path 81 , and a heat medium in the heat medium flow path 81 . and a circulation pump 83 for circulating the
  • the device temperature adjustment circuit 80 is configured such that the heat medium passing through the temperature control object 82 passes through the heater core 40, and the air passing through the heater core 40 and the heat medium passing through the temperature control object 82 exchange heat.
  • the heat medium used in the device temperature adjustment circuit 80 for example, water, refrigerant such as HFO-1234yf, liquid such as coolant, and gas such as air can be employed.
  • the heat medium circulating in the device temperature adjustment circuit 80 directly circulates inside the temperature control object 82 to adjust the temperature of the temperature control object.
  • the heat medium is circulated through a temperature control target heat exchanger provided in the temperature control target 82, and the temperature control target 82 is heated through the temperature control target heat exchanger. can be configured to adjust the temperature of the
  • FIG. 2 shows a schematic configuration of an air conditioning ECU 100 as a control device for the vehicle air conditioner 1.
  • the air-conditioning ECU 100 is communicatively connected to a vehicle controller 90, which controls the entire vehicle including running, via an in-vehicle network such as CAN (Controller Area Network) or LIN (Local Interconnect Network), and transmits and receives information.
  • a microcomputer as an example of a computer having a processor can be applied to both the air conditioning ECU 100 and the vehicle controller 90 .
  • the following sensors and detectors are connected to the air conditioning ECU 100, and the outputs of these sensors and detectors are input.
  • FIG. 2 and the following description the description and description of sensors and detectors that are not directly related to this embodiment are omitted.
  • the air conditioning ECU 100 includes an outside air temperature sensor 71 that detects the outside air temperature Tam of the vehicle, an HVAC intake temperature sensor 72 that detects the temperature of the air sucked into the air flow path 20 from the air intake 25, and an air temperature sensor 72 that detects the temperature of the air in the vehicle interior.
  • An inside air temperature sensor 73 that detects the temperature Tin
  • an air outlet temperature sensor 74 that detects the temperature of the air blown into the passenger compartment from the passenger compartment air outlet 29, a heater core temperature sensor 75 that detects the temperature TCI of the heater core 40, a cooler A cooler core temperature sensor 76 that detects the temperature Te of the core 30, a cooler core pressure sensor 77 that detects the refrigerant pressure of the cooler core 30, and a heat medium temperature sensor 78 that detects the temperature Tw of the heat medium circulating in the device temperature adjustment circuit 80.
  • an air conditioning operation unit 79 for setting the set temperature and switching the air conditioning operation.
  • the suction switching damper 26, the blower fan 27, the air mix damper 28, the blowout damper 24, the external air introduction damper 64, and the circulation pump 83 are connected to the output of the air conditioning ECU 100.
  • the air-conditioning ECU 100 controls these based on the output of each sensor, the setting input by the air-conditioning operation unit 78 , and the information from the vehicle controller 90 .
  • the air conditioning ECU 100 in this embodiment selects an air flow path by controlling the blowout damper 24, the outside air introduction damper 64, and the air mix damper 28 to adjust the degree of opening and opening/closing.
  • the heat medium circulating in the device temperature adjustment circuit 80 adjusts the temperature of the temperature-controlled object, and the waste heat of the temperature-controlled object 82 is used for air conditioning (heating) in the passenger compartment.
  • FIG. 3 shows the state of the indoor air conditioning unit 10 during the heating operation of the vehicle air conditioner 1 .
  • the air-conditioning ECU 100 controls the air mix damper 28 to close the second air flow path 22 and block the inflow of air from the air flow path 20 to the second air flow path 22 .
  • the air that is supplied from the suction port 25 by the blower fan 27 and taken into the airflow path 20 passes through the cooler core 30 and is supplied to the first airflow path 21 and the second airflow path 22 . not delivered to
  • the air conditioning ECU 100 controls the outside air introduction damper 64 to close the outside air introduction port 63 to block the introduction of the outside air from the outside air introduction passage 60 to the first air blow passage 21, and the blowout damper 24 blows the air to the outside.
  • the outlet 23 is controlled to be closed to cut off the blowing of air from the external blower outlet 23 to the outside of the vehicle.
  • the heat medium that has absorbed the heat of the temperature control object 82 circulates through the heat medium flow path 81, passes through the heater core 40, and exchanges heat with the air passing through the first airflow flow path 21 in the heater core 40. do.
  • the air that has been heated by absorbing heat from the heat medium in the heater core 40 is supplied into the passenger compartment through the passenger compartment outlet 29 and used for heating the passenger compartment.
  • the air supplied from the suction port 25 by the blower fan 27 passes through the cooler core 30 without exchanging heat with the refrigerant.
  • the heater core 40 heat is exchanged between the heat medium that circulates through the device temperature adjustment circuit 80 and absorbs the waste heat of the temperature control object 82, and the air that passes through the first blowing flow path, so that the heat medium is returned to the device temperature control circuit 80 .
  • the temperature control object 82 can be cooled by the air passing through the first air flow path, and the air heated by the temperature control object 82 can be supplied into the passenger compartment for heating. can.
  • FIG. 4 shows the state of the indoor air conditioning unit 10 when the temperature control object 82 is naturally cooled in the vehicle air conditioner 1 .
  • the air-conditioning ECU 100 controls the air mix damper 28 to close the second air flow path 22 and block the inflow of air from the air flow path 20 to the second air flow path 22 .
  • the air conditioning ECU 100 controls the outside air introduction damper 64 to be in an open state, blocks the inflow of air from the air flow path 20 to the first air flow path 21, and controls the first air flow from the outside air introduction flow path 60. Outside air is introduced into the passage 21 .
  • the air-conditioning ECU 100 also controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50, and blows out the air that has passed through the heater core 40 from the external blow-out port 23 to the outside of the vehicle. At this time, the air-conditioning ECU 100 does not operate the blower fan 27 , and the inside air or the outside air is not taken into the air flow path 20 from the suction port 25 .
  • the heater core 40 exchanges heat between the outside air taken into the first air flow path 21 through the outside air introduction path 60 and the heat medium that has absorbed the heat of the temperature control object 82 .
  • the air that has absorbed heat from the heat medium in the heater core 40 is blown out of the vehicle through the external outlet 23 . That is, the heat medium that circulates through the device temperature adjustment circuit 80 and absorbs the waste heat of the temperature control object 82 is cooled by the outside air passing through the heater core 40, and is returned to the heat medium flow path 81 again. It flows into the temperature control object 82 . Thereby, the temperature control object 82 is naturally cooled. That is, the heater core 40 can function as a radiator.
  • the object 82 to be temperature controlled is naturally cooled using the first air flow path 21 while the second air flow path 22 can be prevented from introducing waste heat from the temperature control object 82 into the vehicle interior.
  • FIG. 5 shows the state of the indoor air conditioning unit 10 when performing cooling operation while naturally cooling the temperature control object 82 in the vehicle air conditioner 1.
  • the air-conditioning ECU 100 controls the air mix damper 28 to allow air to flow into the second air flow path 22 and block the inflow of air from the air flow path 20 to the first air flow path 21 .
  • the air conditioning ECU 100 controls the outside air introduction damper 64 to be in an open state to introduce outside air from the outside air introduction passage 60 into the first blowing passage 21 .
  • the air-conditioning ECU 100 also controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50 and causes the air that has passed through the heater core 40 to flow out of the vehicle through the external blow-out port 23 .
  • the heater core 40 exchanges heat between the outside air taken into the first air flow path 21 through the outside air introduction path 60 and the heat medium that has absorbed the heat of the temperature control object 82 .
  • the air that has absorbed heat from the heat medium in the heater core 40 is blown out of the vehicle through the external outlet 23 . That is, the heat medium that circulates through the device temperature adjustment circuit 80 and absorbs the waste heat of the temperature control target 82 dissipates the heat of the temperature control target 82 to the outside air, is cooled, and is returned to the heat medium flow path 81 again. and flows into the temperature control object 82 .
  • the temperature control object 82 is naturally cooled. That is, the heater core 40 can function as a radiator.
  • the air-conditioning ECU 100 operates the blower fan 27 to take the inside air or the outside air taken in from the suction port 25 into the air flow path 20 and exchange heat with the refrigerant in the refrigerant circuit R flowing into the cooler core 30. .
  • the air cooled by the heat exchange in the cooler core 30 flows from the air flow path 20 into the second air flow path 22, blows out from the vehicle interior outlet 29, and is used for cooling the vehicle interior.
  • the object 82 to be temperature controlled is naturally cooled using the first air flow path 21 while the second air flow path 22 can be used to introduce the air cooled by the cooler core 30 and use it for cooling the vehicle interior.
  • FIG. 6 shows the state of the indoor air conditioning unit 10 when forcibly cooling the temperature control object 82 in the vehicle air conditioner 1 .
  • the air-conditioning ECU 100 controls the air mix damper 28 to close the second air flow path 22 and block the inflow of air from the air flow path 20 to the second air flow path 22 .
  • the air that is supplied from the suction port 25 by the blower fan 27 and taken into the airflow path 20 passes through the cooler core 30 and is supplied to the first airflow path 21 and the second airflow path 22 . not delivered to
  • the air conditioning ECU 100 controls the outside air introduction damper 64 to close the outside air introduction port 63 to block the introduction of outside air from the outside air introduction passage 60 to the first blowing passage 21 .
  • the air-conditioning ECU 100 controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50, and causes the air that has passed through the heater core 40 to flow out of the vehicle through the external blow-out port 23.
  • the air conditioning ECU 100 operates the blower fan 27 to take the inside air or the outside air taken in from the suction port 25 into the cooler core 30 and exchange heat with the refrigerant in the refrigerant circuit R flowing into the cooler core 30 .
  • the air cooled by heat exchange in the cooler core 30 flows from the air flow path 20 into the first air flow path 21 and exchanges heat with the heat medium circulating in the device temperature adjustment circuit 80 in the heater core 40 .
  • the heat medium circulating in the device temperature adjustment circuit 80 is cooled by the cooler core 30 and cooled by the air passing through the first air flow path 21, and is returned to the heat medium flow path 81 again to cool the temperature control object 82. flow into Thereby, the temperature control object 82 is forcibly cooled.
  • the air whose temperature has risen by absorbing heat from the heat medium is blown out of the vehicle from the external outlet 23 .
  • FIG. 7 shows the state of the indoor air conditioning unit 10 in the vehicle air conditioner 1 when performing cooling operation while forcibly cooling the temperature controlled object 82.
  • the air-conditioning ECU 100 controls the air mix damper 28 so that the air from the air flow path 20 flows into both the first air flow path 21 and the second air flow path 22 .
  • the air-conditioning ECU 100 sets the degree of opening of the air mix damper 28 so that the ratio of ventilation to the first air flow passage 21 and the second air flow passage 22 is determined according to the required cooling temperature or the temperature of the temperature control object 82. It is determined appropriately so that it becomes a ratio.
  • the air supplied from the suction port 25 by the blower fan 27 and taken into the air flow path 20 passes through the cooler core 30 and flows through the first air flow path 21 and the second air flow path according to the opening of the air mix damper 28. It is fed into the air flow path 22 .
  • the air conditioning ECU 100 controls the outside air introduction damper 64 to close the outside air introduction port 63 to block the introduction of outside air from the outside air introduction passage 60 to the first blowing passage 21 .
  • the air-conditioning ECU 100 controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50, and causes the air that has passed through the heater core 40 to flow out of the vehicle through the external blow-out port 23.
  • the air conditioning ECU 100 operates the blower fan 27 to take the inside air or the outside air taken in from the suction port 25 into the cooler core 30 and exchange heat with the refrigerant in the refrigerant circuit R flowing into the cooler core 30 .
  • the air cooled by heat exchange in the cooler core 30 flows from the air flow path 20 into the first air flow path 21 and the second air flow path 22 at a rate corresponding to the opening degree of the air mix damper 28 .
  • the cooled air that has flowed into the first air flow path 21 exchanges heat with the heat medium that circulates in the device temperature adjustment circuit 80 in the heater core 40 . That is, the heat medium circulating in the device temperature adjustment circuit 80 is cooled by the cooler core 30 and cooled by the air passing through the first air flow path 21, and is returned to the heat medium flow path 81 again to cool the temperature control object 82. flow into Thereby, the temperature control object 82 is forcibly cooled. The air whose temperature has risen by absorbing heat from the heat medium is blown out of the vehicle from the external outlet 23 . On the other hand, the cooled air that has flowed into the second air flow path 22 is blown out from the passenger compartment outlet 29 and used for cooling the passenger compartment.
  • the air cooled by the cooler core 30 is circulated through the first airflow passage 21, thereby improving the temperature of the device temperature adjustment circuit 80. It can be used for forced cooling of the temperature control object 82 by exchanging heat with a heat medium.
  • a second air flow path 22 separate from the first air flow path 21 and selecting whether or not to circulate the air cooled by the cooler core 30 through the second air flow path 22, It is possible to select whether or not to carry out the cooling operation.
  • the heater core (radiation heat exchanger) 40 is configured to perform heat exchange between the heat medium circulating through the temperature control object 82 and the air passing through the heat radiation flow passage. .
  • a refrigerant-heat medium heat exchanger 88 may be provided, and the refrigerant circulating through the refrigerant-heat medium heat exchanger 88 may be configured to radiate heat in the heater core 40 .
  • the refrigerant-heat medium heat exchanger 88 heat is exchanged between the heat medium that has recovered the waste heat from the temperature control object 82 and the refrigerant that passes through the refrigerant-heat medium heat exchanger 88. That is, the refrigerant passing through the refrigerant-heat medium heat exchanger 88 circulates through the heat medium circuit 80 and absorbs heat from the heat medium that has recovered the waste heat of the temperature control object 82 . Then, the refrigerant that has circulated through the refrigerant-heat medium heat exchanger 88 is passed through the heater core 40 , and heat is released from the refrigerant in the heater core 40 .
  • a heat medium-heat medium heat exchanger can be provided instead of the refrigerant-heat medium heat exchanger 88. In this case, heat is exchanged between the heat medium circulating in a heat medium circuit different from the other heat medium circuit 80 and the heat medium in the heat medium circuit 80, that is, between the heat mediums. of waste heat is recovered.
  • thermoelectric heat exchanger includes a refrigerant. Any heat exchanger can be used as long as it has an endothermic effect on various heat mediums. Any type or name is acceptable.
  • FIG. 9 shows a schematic configuration of an indoor air conditioning unit 11 of a vehicle air conditioner according to a modification of the above-described embodiment.
  • the indoor air conditioning unit 11 according to the modification is provided with an outside air introduction channel 60 on the upstream side of the first air flow channel 21 and the second air flow channel 22 .
  • the outside air introduction channel 60 takes in the inside air or the outside air from the suction port 25 and communicates with the first airflow channel 21 without passing through the cooler core 30 . That is, in the indoor air-conditioning unit 11 , the air can bypass the cooler core 30 and be blown to the first air flow path 21 .
  • the outside air introduction damper 64 is opened, the air mix damper 28 opens the first airflow passage 21, and the suction switching damper 26 is controlled to introduce the outside air from the suction port 25. Outside air can be blown into the first air flow path 21 . Further, by opening the blow-out damper 24, the air flow path 50 for heat dissipation is formed, and the outside air that has passed through the heater core 40 is blown out of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To enable efficient heat usage by using waste heat of in-vehicle equipment, and in particular in-vehicle equipment of a driving system including a battery, a motor, an inverter, and so forth. The present invention provides a vehicular air conditioning device that includes a cabin air conditioning unit having a heat-absorbing heat exchanger 30, and a heat-dissipating heat exchanger 40 that is provided on a downstream side of the heat-absorbing heat exchanger on a blowing flow passage. The heat-dissipating heat exchanger is a heat exchanger that performs heat dissipation of a heat medium that has recovered waste heat from the in-vehicle equipment. The cabin air conditioning unit includes a heat-dissipating blowing flow passage 50 that discharges wind that has passed through the heat-dissipating heat exchanger to outside of the vehicle.

Description

車両用空調装置vehicle air conditioner
 本発明は、車両に適用される車両用空調装置であって、特に、バッテリやモータ等の温度を調整すると共にこれらの廃熱を空調等に利用する車両用空調装置に関する。 The present invention relates to a vehicle air conditioner that is applied to a vehicle, and more particularly to a vehicle air conditioner that adjusts the temperature of batteries, motors, etc. and uses their waste heat for air conditioning.
 近年、バッテリから供給される電力によって駆動するモータを走行用の動力源として用いるハイブリッド自動車や電気自動車等の車両が普及している。このような車両では、バッテリやモータの冷却又は暖機を行う温度調整システムが備えられている(例えば、特許文献1)。 In recent years, vehicles such as hybrid vehicles and electric vehicles that use a motor driven by electric power supplied from a battery as a power source for running have become widespread. Such vehicles are equipped with a temperature control system that cools or warms up the battery and motor (for example, Patent Document 1).
 特許文献1に開示された温度調整システムでは、液体を溜めるリザーブタンクに、モータ及びインバータに液体を循環させる第1循環路と、バッテリに液体を循環させる第2循環路とが接続され、第1循環路又は第2循環路を切り替えることで、モータの冷却又はバッテリの温度調整を行う。つまり、モータやインバータの冷却時は、リザーブタンクから液体を第1循環路のラジエータに圧送し、ラジエータで冷却された液体をモータ及びインバータに循環させて熱交換させることでモータ及びインバータの冷却を行っている。また、バッテリの温度調整時は、リザーブタンクから第2循環路に液体を循環させ、液体とバッテリとの間で熱交換を行わせることで、バッテリの温度調整を行っている。この時、リザーブタンクから圧送された液体の温度がモータ及びインバータの廃熱で温められてバッテリの温度より高くなっている場合にはバッテリが暖機され、液体の温度がバッテリの温度より低い場合にはバッテリが冷却される。 In the temperature control system disclosed in Patent Document 1, a reserve tank for storing liquid is connected to a first circulation path for circulating liquid to a motor and an inverter, and a second circulation path for circulating liquid to a battery. By switching the circulation path or the second circulation path, cooling of the motor or temperature adjustment of the battery is performed. In other words, when cooling the motor and the inverter, the liquid is pressure-fed from the reserve tank to the radiator in the first circulation path, and the liquid cooled by the radiator is circulated through the motor and the inverter for heat exchange, thereby cooling the motor and the inverter. Is going. Further, when adjusting the temperature of the battery, the temperature of the battery is adjusted by circulating the liquid from the reserve tank to the second circulation path and exchanging heat between the liquid and the battery. At this time, if the temperature of the liquid pumped from the reserve tank is warmed by the waste heat of the motor and inverter and is higher than the temperature of the battery, the battery is warmed up, and if the temperature of the liquid is lower than the temperature of the battery. cools the battery.
特開2014-58241号公報JP 2014-58241 A
 上述のように、特許文献1の温度調整システムでは、モータやインバータでの廃熱の一部がバッテリの温度調整に用いられているものの、大部分は廃棄されている。一方で、車室内の暖房には別途エネルギーを要することになる。すなわち、このような車両に適用される車両用空調装置や車両全体として、効率的な熱利用が行われているとは言い難いという問題がある。 As described above, in the temperature control system of Patent Document 1, although part of the waste heat from the motor and inverter is used to control the temperature of the battery, most of it is discarded. On the other hand, additional energy is required to heat the vehicle interior. That is, there is a problem that it is difficult to say that efficient heat utilization is being performed in a vehicle air conditioner applied to such a vehicle or in the vehicle as a whole.
 本発明は、このような事情に鑑みてなされたものであり、車載機器、特に、バッテリ、モータ及びインバータ等を含む駆動系の車載機器の廃熱を利用することで効率的な熱利用を可能とすること、などを課題としている。 The present invention has been made in view of such circumstances, and enables efficient heat utilization by utilizing waste heat from in-vehicle equipment, particularly in-vehicle equipment in drive systems including batteries, motors, inverters, and the like. and so on.
 本発明の一形態は、吸熱用熱交換器と、該吸熱用熱交換器の送風流路下流側に設けられる放熱用熱交換器を具備する室内空調ユニットを備え、前記放熱用熱交換器は、車載機器から廃熱を回収した熱媒体を放熱させる放熱用の熱交換器であり、前記室内空調ユニットは、前記放熱用熱交換器を通過した風を車外に放出する放熱用送風流路を備える車両用空調装置を提供する。 One form of the present invention comprises an indoor air conditioning unit comprising an endothermic heat exchanger and a heat radiating heat exchanger provided downstream of the endothermic heat exchanger, wherein the heat radiating heat exchanger is , a heat exchanger for heat dissipation that dissipates a heat medium that recovers waste heat from on-vehicle equipment, and the indoor air conditioning unit includes a heat dissipation air flow path for discharging the wind that has passed through the heat exchanger for heat dissipation to the outside of the vehicle. A vehicle air conditioner comprising:
 本発明によれば、車載機器、特に、バッテリ、モータ及びインバータ等を含む駆動系の車載機器の廃熱を利用することで効率的な熱利用を可能とすることができる。 According to the present invention, it is possible to efficiently utilize heat by utilizing the waste heat of in-vehicle equipment, especially drive system in-vehicle equipment including batteries, motors, inverters, and the like.
本発明の実施形態に係る車両用空調装置の室内空調ユニットの概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the indoor air-conditioning unit of the vehicle air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る車両用空調装置を制御する空調ECUの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an air conditioning ECU that controls a vehicle air conditioner according to an embodiment of the present invention; FIG. 本発明の実施形態に係る車両用空調装置の暖房運転時の室内空調ユニットの状態を示す図である。FIG. 4 is a diagram showing the state of the indoor air conditioning unit during heating operation of the vehicle air conditioner according to the embodiment of the present invention. 本発明の実施形態に係る車両用空調装置において温調対象物を自然冷却する場合の室内空調ユニットの状態を示す図である。FIG. 4 is a diagram showing a state of an indoor air conditioning unit when naturally cooling an object to be temperature controlled in the vehicle air conditioner according to the embodiment of the present invention; 本発明の実施形態に係る車両用空調装置において温調対象物を自然冷却しながら、冷房運転を行う場合の室内空調ユニットの状態を示す図である。FIG. 4 is a diagram showing the state of the indoor air conditioning unit when the vehicle air conditioner according to the embodiment of the present invention performs the cooling operation while naturally cooling the object to be temperature controlled. 本発明の実施形態に係る車両用空調装置において温調対象物を強制冷却する場合の室内空調ユニットの状態を示す図である。FIG. 4 is a diagram showing a state of an indoor air conditioning unit when forcibly cooling an object to be temperature controlled in the vehicle air conditioner according to the embodiment of the present invention; 本発明の実施形態に係る車両用空調装置において温調対象物を強制冷却しつつ、冷房運転を行う場合の室内空調ユニットの状態を示す図である。FIG. 4 is a diagram showing a state of an indoor air conditioning unit when performing cooling operation while forcibly cooling an object to be temperature controlled in the vehicle air conditioner according to the embodiment of the present invention. 本発明の実施形態に係る車両用空調装置の室内空調ユニットにおいてヒーターコアに冷媒が循環する例を示す概略構成を示す図である。1 is a diagram showing a schematic configuration showing an example in which a refrigerant circulates in a heater core in an indoor air conditioning unit of a vehicle air conditioner according to an embodiment of the present invention; FIG. 本発明の実施形態の変形例に係る車両用空調装置の室内空調ユニットの概略構成を示す図である。It is a figure which shows schematic structure of the indoor air-conditioning unit of the vehicle air conditioner which concerns on the modification of embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一の符号は同一の機能の部位を示しており、各図における重複説明は適宜省略する。なお、本明細書において、冷媒とは、ヒートポンプ(圧縮・凝縮・膨張・蒸発)における状態変化を伴う冷媒回路の循環媒体であり、熱媒体とは、このような状態変化を伴わないで熱交換によって吸放熱を行う媒体(水などを含む)である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals denote portions having the same functions, and duplication of description in each drawing will be omitted as appropriate. In this specification, the term “refrigerant” refers to a circulating medium in a refrigerant circuit that undergoes state changes in a heat pump (compression, condensation, expansion, evaporation), and the term “heat medium” refers to heat exchange without such state changes. It is a medium (including water, etc.) that absorbs and radiates heat by
 本発明の実施形態に係る車両用空調装置は、例えば、エンジン(内燃機関)が搭載されていない電気自動車(EV)やエンジンと走行用の電動モータを供用する所謂ハイブリッド自動車などの車両に適用することができる。このような車両は、バッテリ(例えば、リチウム電池)が搭載され、外部電源からバッテリに充電された直流の電力をインバータにより交流の電力に変換して走行用のモータを含むモータユニットに供給することでモータを駆動し走行する。車両用空調装置1も、バッテリから供給される電力によって駆動する。 A vehicle air conditioner according to an embodiment of the present invention is applied to a vehicle such as an electric vehicle (EV) that is not equipped with an engine (internal combustion engine) or a so-called hybrid vehicle that shares an engine and an electric motor for driving. be able to. Such a vehicle is equipped with a battery (for example, a lithium battery), and converts DC power charged in the battery from an external power source into AC power by an inverter and supplies the power to a motor unit including a motor for running. to drive the motor and run. The vehicle air conditioner 1 is also driven by electric power supplied from the battery.
 本実施形態に係る車両用空調装置1は、冷媒回路Rと、冷媒回路Rを循環する冷媒と熱交換を行う送風空気の流通路を形成する室内空調ユニット10を備えている。
 冷媒回路Rは、循環する冷媒を圧縮、凝縮、膨張、蒸発させる回路であり、冷媒を圧縮する圧縮機と、圧縮機から出た冷媒を凝縮、膨張、蒸発させて圧縮機に戻す冷媒循環流路を備えている。車両用空調装置1では、冷媒回路Rを用いたヒートポンプ運転を行い、室内空調ユニット10によって冷媒と熱交換した送風を車室内に供給することにより車室内の空調(暖房、冷房、除湿、及び除霜)を行う。
A vehicle air conditioner 1 according to this embodiment includes a refrigerant circuit R and an indoor air conditioning unit 10 that forms a flow passage for air that exchanges heat with the refrigerant circulating in the refrigerant circuit R.
The refrigerant circuit R is a circuit that compresses, condenses, expands, and evaporates the circulating refrigerant, and includes a compressor that compresses the refrigerant, and a refrigerant circulation flow that condenses, expands, and evaporates the refrigerant discharged from the compressor and returns it to the compressor. has a road. The vehicle air conditioner 1 performs a heat pump operation using the refrigerant circuit R, and supplies air that has been heat-exchanged with the refrigerant by the indoor air conditioning unit 10 to air the vehicle interior (heating, cooling, dehumidification, and dehumidification). frost).
 室内空調ユニット10は、車内外から取り込んだ風(空気)を車室内に送風する送風流路20と、送風流路20の上流側に設けられる吸熱用熱交換器としてのクーラーコア30と、送風流路20の下流側に設けられる放熱用熱交換器としてのヒーターコア40と、ヒーターコア40を通過した風を車外に放出する放熱用送風流路50を備えている。 The indoor air-conditioning unit 10 includes an air flow passage 20 for blowing the wind (air) taken in from inside and outside the vehicle into the vehicle interior, a cooler core 30 as an endothermic heat exchanger provided on the upstream side of the air flow passage 20, and a blower. A heater core 40 as a heat radiating heat exchanger provided on the downstream side of the air flow path 20 and a heat radiating air flow path 50 for discharging the air that has passed through the heater core 40 to the outside of the vehicle are provided.
 送風流路20には、外気吸込口と内気吸込口を含む吸込口25と、吸込口25に設けられた吸込切換ダンパ26とが設けられている。吸込切換ダンパ26は、車内の空気である内気(内気循環)と、車外の空気である外気(外気導入)とを適宜切り換えて吸込口25から送風流路20内に導入する。吸込切換ダンパ26の送風流路下流側には、導入した内気や外気を送風流路20の下流に配備されたクーラーコア30やヒーターコア40に送風するための室内送風機(ブロワファン)27が設けられている。 The air flow path 20 is provided with an intake port 25 including an outside air intake port and an internal air intake port, and an intake switching damper 26 provided at the intake port 25 . The intake switching damper 26 appropriately switches between inside air (inside air circulation), which is the air inside the vehicle, and outside air (outside air introduction), which is the air outside the vehicle, and introduces the air into the airflow passage 20 from the suction port 25 . An indoor blower (blower fan) 27 for blowing the introduced inside air or outside air to the cooler core 30 or the heater core 40 disposed downstream of the airflow passage 20 is provided downstream of the suction switching damper 26. It is
 送風流路20は、送風流路20内に取り込まれた風を、ヒーターコア40を通過させて車内外に流通させる第1送風流路21と、ヒーターコア40を通過させずに車室内に供給する第2送風流路22とを含んでいる。 The airflow path 20 includes a first airflow path 21 that passes the air taken into the airflow path 20 through the heater core 40 and circulates it inside and outside the vehicle, and a first airflow path 21 that circulates the air into and out of the vehicle through the heater core 40, and supplies the air into the vehicle interior without passing through the heater core 40. It includes a second air flow path 22 for air flow.
 送風流路20におけるクーラーコア30の送風流路下流側、かつ、ヒーターコア40の送風流路上流側には、エアミックスダンパ28が設けられている。エアミックスダンパ28は、その開度を制御することにより、クーラーコア30を通過した後の送風流路20内の空気(内気又は外気)を第1送風流路21又は第2送風流路22の何れかに流通させるように切り替え、又は、第1送風流路21及び第2送風流路22に通風させる割合を調整する。 An air mix damper 28 is provided in the air flow path 20 downstream of the cooler core 30 and upstream of the heater core 40 . The air mix damper 28 controls the degree of opening of the air mix damper 28 so that the air (inside air or outside air) in the air flow path 20 after passing through the cooler core 30 is transferred to the first air flow path 21 or the second air flow path 22. Switching is performed so as to circulate in either direction, or the proportion of ventilation in the first air flow path 21 and the second air flow path 22 is adjusted.
 第1送風流路21には、ヒーターコア40の送風流路下流側に第1送風流路21を流通してきた空気を外部に吹出す外部吹出口23が設けられている。外部吹出口23には、外部吹出口23を開閉する吹出ダンパ24が設けられている。吹出ダンパ24を開閉することで、空気を外部吹出口23から車外に吹き出す、又は、車室内吹出口29から車室内へ吹き出すよう選択的に制御することができる。つまり、吹出ダンパ24を開放することで、放熱用送風流路50が形成される。一方、吹出ダンパ24を閉止することでヒーターコア40を通過した風を車室内に送風することができる。 The first air flow path 21 is provided with an external outlet 23 for blowing out the air that has flowed through the first air flow path 21 to the downstream side of the heater core 40 . The external blowout port 23 is provided with a blowout damper 24 that opens and closes the external blowout port 23 . By opening and closing the blowout damper 24, it is possible to selectively control the air to be blown out of the vehicle from the external blowout port 23 or into the vehicle interior from the vehicle interior blowout port 29. - 特許庁In other words, by opening the blow-out damper 24, the air flow path 50 for heat dissipation is formed. On the other hand, by closing the blow-out damper 24, the air that has passed through the heater core 40 can be blown into the passenger compartment.
 送風流路20において、ヒーターコア40の送風流路上流側(本実施形態においては、第1送風流路21のヒーターコア40の送風流路上流側)には、外気導入口63が設けられ、外気導入口63を介して、外気を導入する外気導入流路60が設けられている。外気導入流路60の送風流路上流側には、外気吸込口61と外気吸込口61から導入した外気を、外気導入流路60内を通過させて第1送風流路21内まで送給するための外気導入ファン62が設けられている。 In the air flow passage 20, an outside air introduction port 63 is provided on the air flow passage upstream side of the heater core 40 (in the present embodiment, the air flow passage upstream side of the heater core 40 of the first air flow passage 21), An outside air introduction passage 60 is provided for introducing outside air via an outside air introduction port 63 . Outside air introduced from the outside air intake port 61 and the outside air intake port 61 is passed through the outside air introduction channel 60 and supplied to the first ventilation channel 21 upstream of the outside air introduction channel 60 . An outside air introduction fan 62 is provided for this purpose.
 外気導入流路60の送風流路下流側が第1送風流路21におけるヒーターコア40の送風流路上流側に位置する外気導入口63と接続されている。外気導入口63には、外気導入をする又はしないを切り替える外気導入ダンパ64が設けられている。外気導入流路60は、外気導入ダンパ64が開いた状態において、外気吸込口61から取り込んだ空気を外気導入ファン62により外気導入口63を介して第1送風流路21に送給する。つまり、外気導入流路60は、クーラーコア30を通過させずに外気を第1送風流路21に送給する。このように、本実施形態においては、外気導入流路60は、室内空調ユニットに外付けされている。 The air flow path downstream side of the outside air introduction flow path 60 is connected to the outside air introduction port 63 located on the air flow path upstream side of the heater core 40 in the first air flow path 21 . The outside air introduction port 63 is provided with an outside air introduction damper 64 that switches whether to introduce outside air or not. The outside air introduction passage 60 supplies the air taken in from the outside air suction port 61 to the first blowing passage 21 through the outside air introduction port 63 by the outside air introduction fan 62 when the outside air introduction damper 64 is open. That is, the outside air introduction channel 60 feeds the outside air to the first airflow channel 21 without passing through the cooler core 30 . Thus, in this embodiment, the outside air introduction flow path 60 is externally attached to the indoor air conditioning unit.
 クーラーコア30は、冷媒回路Rの一部を構成し、冷媒回路Rから流入する冷媒と送風流路20を通過する風(空気)とを熱交換させる熱交換器である。クーラーコア30では、冷房時や除湿時において、冷媒回路Rを循環してクーラーコア30に流入した冷媒と車室内外から送風流路20に取り込んだ空気とを熱交換(冷媒に吸熱)させることで車内に供給する空気を冷却している。 The cooler core 30 constitutes a part of the refrigerant circuit R, and is a heat exchanger that exchanges heat between the refrigerant flowing from the refrigerant circuit R and the wind (air) passing through the air flow path 20 . In the cooler core 30, during cooling or dehumidification, the refrigerant that circulates in the refrigerant circuit R and flows into the cooler core 30 is heat-exchanged (heat is absorbed by the refrigerant) with the air that is taken into the airflow passage 20 from the outside of the vehicle compartment. cools the air supplied to the interior of the vehicle.
 ヒーターコア40は、本実施形態において、後述する機器温度調整回路(熱媒体回路)80の一部を構成し、機器温度調整回路80を循環する熱媒体とヒーターコア40を通過する風とを熱交換させて、車載機器の廃熱回収を行う熱交換器である。ヒーターコア40において熱媒体と空気とが熱交換し、熱交換後の熱媒体を再び機器温度調整回路80に還流させることで機器温度調整回路80の温調対象物82の温度を調整すると共に、熱媒体から吸熱して加熱された風を車内外に送風する。 In this embodiment, the heater core 40 constitutes a part of a device temperature adjustment circuit (heat medium circuit) 80, which will be described later, and heats the heat medium circulating in the device temperature adjustment circuit 80 and the air passing through the heater core 40. It is a heat exchanger that recovers waste heat from in-vehicle equipment. The heat medium and the air exchange heat in the heater core 40, and the heat medium after the heat exchange is returned to the device temperature adjustment circuit 80 to adjust the temperature of the temperature control object 82 of the device temperature adjustment circuit 80, The air heated by absorbing heat from the heat medium is sent inside and outside the vehicle.
 機器温度調整回路80は、バッテリ、インバータ、モータ、パワーコントロールユニットなどの温調対象物82(車載機器)に直接又は間接的に熱媒体を循環させ、温調対象物82の温度を調整する。機器温度調整回路80は、ヒーターコア40を経由する熱媒体流路81と、熱媒体流路81に設けられる温調対象物82(図の例ではモータ)と、熱媒体流路81に熱媒体を循環させる循環ポンプ83とを備えている。 The device temperature adjustment circuit 80 directly or indirectly circulates a heat medium through a temperature control target 82 (in-vehicle device) such as a battery, an inverter, a motor, a power control unit, etc. to adjust the temperature of the temperature control target 82 . The device temperature adjustment circuit 80 includes a heat medium flow path 81 passing through the heater core 40 , a temperature control object 82 (a motor in the example shown) provided in the heat medium flow path 81 , and a heat medium in the heat medium flow path 81 . and a circulation pump 83 for circulating the
 機器温度調整回路80は、温調対象物82を経由した熱媒体がヒーターコア40を経由し、ヒーターコア40を通過する空気と温調対象物82を経由した熱媒体とが熱交換を行うように構成されている。機器温度調整回路80で使用される熱媒体としては、例えば、水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。 The device temperature adjustment circuit 80 is configured such that the heat medium passing through the temperature control object 82 passes through the heater core 40, and the air passing through the heater core 40 and the heat medium passing through the temperature control object 82 exchange heat. is configured to As the heat medium used in the device temperature adjustment circuit 80, for example, water, refrigerant such as HFO-1234yf, liquid such as coolant, and gas such as air can be employed.
 なお、上記した機器温度調整回路80では、機器温度調整回路80を循環する熱媒体が、温調対象物82の内部を直接循環して温調対象物の温度調整している。機器温度調整回路80では、例えば、温調対象物82に設けられた温調対象物用熱交換器に熱媒体を循環させて、温調対象物用熱交換器を介して温調対象物82の温度調整を行う構成とすることもできる。 In addition, in the device temperature adjustment circuit 80 described above, the heat medium circulating in the device temperature adjustment circuit 80 directly circulates inside the temperature control object 82 to adjust the temperature of the temperature control object. In the device temperature adjustment circuit 80, for example, the heat medium is circulated through a temperature control target heat exchanger provided in the temperature control target 82, and the temperature control target 82 is heated through the temperature control target heat exchanger. can be configured to adjust the temperature of the
 図2に、車両用空調装置1の制御装置としての空調ECU100の概略構成を示す。空調ECU100は、走行を含む車両全般の制御を司る車両コントローラ90とCAN(Controller Area Network)やLIN(Local Interconnect Network)等の車載ネットワークにより相互に通信可能に接続され、情報の送受信を行う。空調ECU100及び車両コントローラ90には何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータを適用することができる。 FIG. 2 shows a schematic configuration of an air conditioning ECU 100 as a control device for the vehicle air conditioner 1. As shown in FIG. The air-conditioning ECU 100 is communicatively connected to a vehicle controller 90, which controls the entire vehicle including running, via an in-vehicle network such as CAN (Controller Area Network) or LIN (Local Interconnect Network), and transmits and receives information. A microcomputer as an example of a computer having a processor can be applied to both the air conditioning ECU 100 and the vehicle controller 90 .
 空調ECU100には、以下の各センサや検出器が接続され、これらの各センサや検出器等の出力が入力される。なお、図2及び以下の説明では、本実施形態に直接関係のないセンサや検出器については記載及び説明を省略している。 The following sensors and detectors are connected to the air conditioning ECU 100, and the outputs of these sensors and detectors are input. In FIG. 2 and the following description, the description and description of sensors and detectors that are not directly related to this embodiment are omitted.
 具体的には、空調ECU100には、車両の外気温度Tamを検出する外気温度センサ71、吸込口25から送風流路20に吸い込まれる空気の温度を検出するHVAC吸込温度センサ72、車室内の空気の温度Tinを検出する内気温度センサ73、車室内吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ74、ヒーターコア40の温度TCIを検出するヒーターコア温度センサ75、クーラーコア30の温度Teを検出するクーラーコア温度センサ76、クーラーコア30の冷媒圧力を検出するクーラーコア圧力センサ77、機器温度調整回路80を循環する熱媒体の温度Twを検出する熱媒体温度センサ78、及び、設定温度や空調運転の切り換えを設定するための空調操作部79が接続されている。 Specifically, the air conditioning ECU 100 includes an outside air temperature sensor 71 that detects the outside air temperature Tam of the vehicle, an HVAC intake temperature sensor 72 that detects the temperature of the air sucked into the air flow path 20 from the air intake 25, and an air temperature sensor 72 that detects the temperature of the air in the vehicle interior. An inside air temperature sensor 73 that detects the temperature Tin, an air outlet temperature sensor 74 that detects the temperature of the air blown into the passenger compartment from the passenger compartment air outlet 29, a heater core temperature sensor 75 that detects the temperature TCI of the heater core 40, a cooler A cooler core temperature sensor 76 that detects the temperature Te of the core 30, a cooler core pressure sensor 77 that detects the refrigerant pressure of the cooler core 30, and a heat medium temperature sensor 78 that detects the temperature Tw of the heat medium circulating in the device temperature adjustment circuit 80. , and an air conditioning operation unit 79 for setting the set temperature and switching the air conditioning operation.
 一方、空調ECU100の出力には、吸込切換ダンパ26、ブロワファン27、エアミックスダンパ28、吹出ダンパ24、外気導入ダンパ64及び、循環ポンプ83が接続されている。空調ECU100は各センサの出力と空調操作部78にて入力された設定、車両コントローラ90からの情報に基づいてこれらを制御する。 On the other hand, the suction switching damper 26, the blower fan 27, the air mix damper 28, the blowout damper 24, the external air introduction damper 64, and the circulation pump 83 are connected to the output of the air conditioning ECU 100. The air-conditioning ECU 100 controls these based on the output of each sensor, the setting input by the air-conditioning operation unit 78 , and the information from the vehicle controller 90 .
 以下、このように構成された車両用空調装置1の室内空調ユニットの動作について説明する。本実施形態における空調ECU100は、吹出ダンパ24、外気導入ダンパ64、及びエアミックスダンパ28を制御して開度や開閉を調節することで空気の流通路を選択する。これにより、機器温度調整回路80を循環する熱媒体により温調体調物の温度を調整すると共に、温調対象物82の廃熱を車室内の空調(暖房)に用いる。 The operation of the indoor air conditioning unit of the vehicle air conditioner 1 configured in this manner will be described below. The air conditioning ECU 100 in this embodiment selects an air flow path by controlling the blowout damper 24, the outside air introduction damper 64, and the air mix damper 28 to adjust the degree of opening and opening/closing. As a result, the heat medium circulating in the device temperature adjustment circuit 80 adjusts the temperature of the temperature-controlled object, and the waste heat of the temperature-controlled object 82 is used for air conditioning (heating) in the passenger compartment.
(1)暖房運転時
 図3は、車両用空調装置1の暖房運転時の室内空調ユニット10の状態を示している。空調ECU100は、エアミックスダンパ28を制御して第2送風流路22を閉鎖して、送風流路20から第2送風流路22への空気の流入を遮断する。これにより、吸込口25からブロワファン27により送給されて送風流路20に取り込まれた空気は、クーラーコア30を通過して第1送風流路21に送給され、第2送風流路22には送給されない。
(1) During Heating Operation FIG. 3 shows the state of the indoor air conditioning unit 10 during the heating operation of the vehicle air conditioner 1 . The air-conditioning ECU 100 controls the air mix damper 28 to close the second air flow path 22 and block the inflow of air from the air flow path 20 to the second air flow path 22 . As a result, the air that is supplied from the suction port 25 by the blower fan 27 and taken into the airflow path 20 passes through the cooler core 30 and is supplied to the first airflow path 21 and the second airflow path 22 . not delivered to
 また、空調ECU100は、外気導入ダンパ64によって外気導入口63を閉じるよう制御して外気導入流路60から第1送風流路21への外気の導入を遮断し、かつ、吹出ダンパ24によって外部吹出口23を閉じるように制御して外部吹出口23から車外への空気の吹出を遮断する。 In addition, the air conditioning ECU 100 controls the outside air introduction damper 64 to close the outside air introduction port 63 to block the introduction of the outside air from the outside air introduction passage 60 to the first air blow passage 21, and the blowout damper 24 blows the air to the outside. The outlet 23 is controlled to be closed to cut off the blowing of air from the external blower outlet 23 to the outside of the vehicle.
 これにより、温調対象物82の熱を吸熱した熱媒体が、熱媒体流路81を循環してヒーターコア40を経由し、ヒーターコア40において第1送風流路21を通過する空気と熱交換する。ヒーターコア40において熱媒体から吸熱して暖められた空気は、車室内吹出口29より車室内へ供給され、車室内の暖房に利用される。なお、暖房運転時において、吸込口25からブロワファン27により送給された空気は、クーラーコア30において冷媒と熱交換することなく通過する。 As a result, the heat medium that has absorbed the heat of the temperature control object 82 circulates through the heat medium flow path 81, passes through the heater core 40, and exchanges heat with the air passing through the first airflow flow path 21 in the heater core 40. do. The air that has been heated by absorbing heat from the heat medium in the heater core 40 is supplied into the passenger compartment through the passenger compartment outlet 29 and used for heating the passenger compartment. During heating operation, the air supplied from the suction port 25 by the blower fan 27 passes through the cooler core 30 without exchanging heat with the refrigerant.
 このように、ヒーターコア40において、機器温度調整回路80を循環して温調対象物82の廃熱を吸熱した熱媒体と、第1送風流路を通過する空気とを熱交換させ、熱媒体を機器温度調整回路80に還流させる。これにより、第1送風流路を通過する空気によって温調対象物82を冷却することができると共に、温調対象物82によって暖められた空気を車室内に供給することで暖房に利用することができる。 In this way, in the heater core 40, heat is exchanged between the heat medium that circulates through the device temperature adjustment circuit 80 and absorbs the waste heat of the temperature control object 82, and the air that passes through the first blowing flow path, so that the heat medium is returned to the device temperature control circuit 80 . As a result, the temperature control object 82 can be cooled by the air passing through the first air flow path, and the air heated by the temperature control object 82 can be supplied into the passenger compartment for heating. can.
(2)温調対象物の自然冷却
 図4は、車両用空調装置1において、温調対象物82を自然冷却する場合の室内空調ユニット10の状態を示している。図4において、空調ECU100は、エアミックスダンパ28を制御して第2送風流路22を閉鎖し、送風流路20から第2送風流路22への空気の流入を遮断する。
(2) Natural Cooling of Temperature Control Object FIG. 4 shows the state of the indoor air conditioning unit 10 when the temperature control object 82 is naturally cooled in the vehicle air conditioner 1 . In FIG. 4 , the air-conditioning ECU 100 controls the air mix damper 28 to close the second air flow path 22 and block the inflow of air from the air flow path 20 to the second air flow path 22 .
 空調ECU100は、外気導入ダンパ64を開状態となるように制御して、送風流路20から第1送風流路21への空気の流入を遮断すると共に、外気導入流路60から第1送風流路21へ外気を導入させる。また、空調ECU100は、吹出ダンパ24によって外部吹出口23を開放するように制御して放熱用送風流路50を形成し、ヒーターコア40を通過した風を外部吹出口23から車外へ吹き出す。このとき、空調ECU100は、ブロワファン27を作動させず、内気又は外気は、吸込口25から送風流路20に取り込まれない。 The air conditioning ECU 100 controls the outside air introduction damper 64 to be in an open state, blocks the inflow of air from the air flow path 20 to the first air flow path 21, and controls the first air flow from the outside air introduction flow path 60. Outside air is introduced into the passage 21 . The air-conditioning ECU 100 also controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50, and blows out the air that has passed through the heater core 40 from the external blow-out port 23 to the outside of the vehicle. At this time, the air-conditioning ECU 100 does not operate the blower fan 27 , and the inside air or the outside air is not taken into the air flow path 20 from the suction port 25 .
 これにより、外気導入流路60を介して第1送風流路21に取り込んだ外気と、温調対象物82の熱を吸熱した熱媒体とが、ヒーターコア40において熱交換する。ヒーターコア40において熱媒体から吸熱した空気は、外部吹出口23より車外へ吹き出す。すなわち、機器温度調整回路80を循環して温調対象物82の廃熱を吸熱した熱媒体は、ヒーターコア40を通過する外気に放熱して冷却され、再び熱媒体流路81に還流して温調対象物82に流入する。これにより、温調対象物82が自然冷却される。つまり、ヒーターコア40がラジエータとして機能させることができる。 As a result, the heater core 40 exchanges heat between the outside air taken into the first air flow path 21 through the outside air introduction path 60 and the heat medium that has absorbed the heat of the temperature control object 82 . The air that has absorbed heat from the heat medium in the heater core 40 is blown out of the vehicle through the external outlet 23 . That is, the heat medium that circulates through the device temperature adjustment circuit 80 and absorbs the waste heat of the temperature control object 82 is cooled by the outside air passing through the heater core 40, and is returned to the heat medium flow path 81 again. It flows into the temperature control object 82 . Thereby, the temperature control object 82 is naturally cooled. That is, the heater core 40 can function as a radiator.
 このように、第1送風流路21及び第2送風流路22を設けたことにより、第1送風流路21を利用して温調対象物82を自然冷却させながら、第2送風流路22を遮断することで、温調対象物82の廃熱を車室内に導入しないようにすることができる。 By providing the first air flow path 21 and the second air flow path 22 in this manner, the object 82 to be temperature controlled is naturally cooled using the first air flow path 21 while the second air flow path 22 can be prevented from introducing waste heat from the temperature control object 82 into the vehicle interior.
(3)温調対象物の自然冷却及び冷房運転
 図5は、車両用空調装置1において、温調対象物82を自然冷却しながら、冷房運転を行う場合の室内空調ユニット10の状態を示している。図5において、空調ECU100は、エアミックスダンパ28を制御して、第2送風流路22に空気を流入させ、送風流路20から第1送風流路21への空気の流入を遮断する。
(3) Natural Cooling of Temperature Control Object and Cooling Operation FIG. 5 shows the state of the indoor air conditioning unit 10 when performing cooling operation while naturally cooling the temperature control object 82 in the vehicle air conditioner 1. there is In FIG. 5, the air-conditioning ECU 100 controls the air mix damper 28 to allow air to flow into the second air flow path 22 and block the inflow of air from the air flow path 20 to the first air flow path 21 .
 空調ECU100は、外気導入ダンパ64を開状態となるように制御して、外気導入流路60から第1送風流路21へ外気を導入させる。また、空調ECU100は、吹出ダンパ24によって外部吹出口23を開放するように制御して放熱用送風流路50を形成し、ヒーターコア40を通過した風を外部吹出口23から車外へ流出させる。 The air conditioning ECU 100 controls the outside air introduction damper 64 to be in an open state to introduce outside air from the outside air introduction passage 60 into the first blowing passage 21 . The air-conditioning ECU 100 also controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50 and causes the air that has passed through the heater core 40 to flow out of the vehicle through the external blow-out port 23 .
 これにより、外気導入流路60を介して第1送風流路21に取り込んだ外気と、温調対象物82の熱を吸熱した熱媒体とが、ヒーターコア40において熱交換する。ヒーターコア40において熱媒体から吸熱した空気は、外部吹出口23より車外へ吹き出す。すなわち、機器温度調整回路80を循環して温調対象物82の廃熱を吸熱した熱媒体は、温調対象物82の熱を外気に放熱して冷却され、再び熱媒体流路81に還流して温調対象物82に流入する。これにより、温調対象物82が自然冷却される。つまり、ヒーターコア40がラジエータとして機能させることができる。 As a result, the heater core 40 exchanges heat between the outside air taken into the first air flow path 21 through the outside air introduction path 60 and the heat medium that has absorbed the heat of the temperature control object 82 . The air that has absorbed heat from the heat medium in the heater core 40 is blown out of the vehicle through the external outlet 23 . That is, the heat medium that circulates through the device temperature adjustment circuit 80 and absorbs the waste heat of the temperature control target 82 dissipates the heat of the temperature control target 82 to the outside air, is cooled, and is returned to the heat medium flow path 81 again. and flows into the temperature control object 82 . Thereby, the temperature control object 82 is naturally cooled. That is, the heater core 40 can function as a radiator.
 一方、空調ECU100は、ブロワファン27を作動させ、内気又は外気は、吸込口25から取り込んだ内気又は外気を送風流路20に取り込み、クーラーコア30に流入する冷媒回路Rの冷媒と熱交換させる。クーラーコア30での熱交換により冷却された空気は、送風流路20から第2送風流路22に流入し、車室内吹出口29から吹き出して車室内の冷房に利用される。 On the other hand, the air-conditioning ECU 100 operates the blower fan 27 to take the inside air or the outside air taken in from the suction port 25 into the air flow path 20 and exchange heat with the refrigerant in the refrigerant circuit R flowing into the cooler core 30. . The air cooled by the heat exchange in the cooler core 30 flows from the air flow path 20 into the second air flow path 22, blows out from the vehicle interior outlet 29, and is used for cooling the vehicle interior.
 このように、第1送風流路21及び第2送風流路22を設けたことにより、第1送風流路21を利用して温調対象物82を自然冷却させながら、第2送風流路22を利用してクーラーコア30によって冷却された空気を導入して車室内の冷房に利用することができる。つまり、 By providing the first air flow path 21 and the second air flow path 22 in this manner, the object 82 to be temperature controlled is naturally cooled using the first air flow path 21 while the second air flow path 22 can be used to introduce the air cooled by the cooler core 30 and use it for cooling the vehicle interior. in short,
(4)温調対象物の強制冷却
 図6は、車両用空調装置1において、温調対象物82を強制冷却する場合の室内空調ユニット10の状態を示している。図6において、空調ECU100は、エアミックスダンパ28を制御して第2送風流路22を閉鎖し、送風流路20から第2送風流路22への空気の流入を遮断する。これにより、吸込口25からブロワファン27により送給されて送風流路20に取り込まれた空気は、クーラーコア30を通過して第1送風流路21に送給され、第2送風流路22には送給されない。
(4) Forced Cooling of Temperature Control Object FIG. 6 shows the state of the indoor air conditioning unit 10 when forcibly cooling the temperature control object 82 in the vehicle air conditioner 1 . In FIG. 6 , the air-conditioning ECU 100 controls the air mix damper 28 to close the second air flow path 22 and block the inflow of air from the air flow path 20 to the second air flow path 22 . As a result, the air that is supplied from the suction port 25 by the blower fan 27 and taken into the airflow path 20 passes through the cooler core 30 and is supplied to the first airflow path 21 and the second airflow path 22 . not delivered to
 また、空調ECU100は、外気導入ダンパ64によって外気導入口63を閉じるよう制御して外気導入流路60から第1送風流路21への外気の導入を遮断する。空調ECU100は、吹出ダンパ24によって外部吹出口23を開放するように制御して放熱用送風流路50を形成し、ヒーターコア40を通過した風を外部吹出口23から車外へ流出させる。 In addition, the air conditioning ECU 100 controls the outside air introduction damper 64 to close the outside air introduction port 63 to block the introduction of outside air from the outside air introduction passage 60 to the first blowing passage 21 . The air-conditioning ECU 100 controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50, and causes the air that has passed through the heater core 40 to flow out of the vehicle through the external blow-out port 23.
 空調ECU100は、ブロワファン27を作動させ、吸込口25から取り込んだ内気又は外気をクーラーコア30に取り込み、クーラーコア30に流入する冷媒回路Rの冷媒と熱交換させる。クーラーコア30での熱交換により冷却された空気は、送風流路20から第1送風流路21に流入し、ヒーターコア40において機器温度調整回路80を循環する熱媒体と熱交換する。 The air conditioning ECU 100 operates the blower fan 27 to take the inside air or the outside air taken in from the suction port 25 into the cooler core 30 and exchange heat with the refrigerant in the refrigerant circuit R flowing into the cooler core 30 . The air cooled by heat exchange in the cooler core 30 flows from the air flow path 20 into the first air flow path 21 and exchanges heat with the heat medium circulating in the device temperature adjustment circuit 80 in the heater core 40 .
 すなわち、機器温度調整回路80を循環する熱媒体は、クーラーコア30で冷却されて第1送風流路21を通過する空気によって冷却され、再び熱媒体流路81に還流して温調対象物82に流入する。これにより、温調対象物82が強制冷却される。熱媒体から吸熱して温度が上昇した空気は、外部吹出口23から車外へ吹き出される。 That is, the heat medium circulating in the device temperature adjustment circuit 80 is cooled by the cooler core 30 and cooled by the air passing through the first air flow path 21, and is returned to the heat medium flow path 81 again to cool the temperature control object 82. flow into Thereby, the temperature control object 82 is forcibly cooled. The air whose temperature has risen by absorbing heat from the heat medium is blown out of the vehicle from the external outlet 23 .
(5)温調対象物の強制冷却及び冷房運転
 図7は、車両用空調装置1において、温調対象物82を強制冷却しつつ、冷房運転を行う場合の室内空調ユニット10の状態を示している。図7において、空調ECU100は、エアミックスダンパ28を制御して、第1送風流路21及び第2送風流路22のいずれにも、送風流路20からの空気が流入する開度とする。
(5) Forced cooling of temperature controlled object and cooling operation FIG. 7 shows the state of the indoor air conditioning unit 10 in the vehicle air conditioner 1 when performing cooling operation while forcibly cooling the temperature controlled object 82. there is In FIG. 7, the air-conditioning ECU 100 controls the air mix damper 28 so that the air from the air flow path 20 flows into both the first air flow path 21 and the second air flow path 22 .
 なお、空調ECU100は、エアミックスダンパ28の開度を、第1送風流路21及び第2送風流路22に通風させる割合が、冷房の要求温度又は温調対象物82の温度等に応じた割合となるように適宜定める。吸込口25からブロワファン27により送給されて送風流路20に取り込まれた空気は、クーラーコア30を通過し、エアミックスダンパ28の開度に応じて第1送風流路21及び第2送風流路22に送給される。 The air-conditioning ECU 100 sets the degree of opening of the air mix damper 28 so that the ratio of ventilation to the first air flow passage 21 and the second air flow passage 22 is determined according to the required cooling temperature or the temperature of the temperature control object 82. It is determined appropriately so that it becomes a ratio. The air supplied from the suction port 25 by the blower fan 27 and taken into the air flow path 20 passes through the cooler core 30 and flows through the first air flow path 21 and the second air flow path according to the opening of the air mix damper 28. It is fed into the air flow path 22 .
 また、空調ECU100は、外気導入ダンパ64によって外気導入口63を閉じるよう制御して外気導入流路60から第1送風流路21への外気の導入を遮断する。空調ECU100は、吹出ダンパ24によって外部吹出口23を開放するように制御して放熱用送風流路50を形成し、ヒーターコア40を通過した風を外部吹出口23から車外へ流出させる。 In addition, the air conditioning ECU 100 controls the outside air introduction damper 64 to close the outside air introduction port 63 to block the introduction of outside air from the outside air introduction passage 60 to the first blowing passage 21 . The air-conditioning ECU 100 controls the blow-out damper 24 to open the external blow-out port 23 to form the heat-dissipating air flow path 50, and causes the air that has passed through the heater core 40 to flow out of the vehicle through the external blow-out port 23.
 空調ECU100は、ブロワファン27を作動させ、吸込口25から取り込んだ内気又は外気をクーラーコア30に取り込み、クーラーコア30に流入する冷媒回路Rの冷媒と熱交換させる。クーラーコア30での熱交換により冷却された空気は、送風流路20から第1送風流路21及び第2送風流路22にエアミックスダンパ28の開度に応じた割合で流入する。 The air conditioning ECU 100 operates the blower fan 27 to take the inside air or the outside air taken in from the suction port 25 into the cooler core 30 and exchange heat with the refrigerant in the refrigerant circuit R flowing into the cooler core 30 . The air cooled by heat exchange in the cooler core 30 flows from the air flow path 20 into the first air flow path 21 and the second air flow path 22 at a rate corresponding to the opening degree of the air mix damper 28 .
 第1送風流路21に流入した冷却後の空気は、ヒーターコア40において機器温度調整回路80を循環する熱媒体と熱交換する。すなわち、機器温度調整回路80を循環する熱媒体は、クーラーコア30で冷却されて第1送風流路21を通過する空気によって冷却され、再び熱媒体流路81に還流して温調対象物82に流入する。これにより、温調対象物82が強制冷却される。熱媒体から吸熱して温度が上昇した空気は、外部吹出口23から車外へ吹き出される。
 一方、第2送風流路22に流入した冷却後の空気は、車室内吹出口29から吹き出して車室内の冷房に利用される。
The cooled air that has flowed into the first air flow path 21 exchanges heat with the heat medium that circulates in the device temperature adjustment circuit 80 in the heater core 40 . That is, the heat medium circulating in the device temperature adjustment circuit 80 is cooled by the cooler core 30 and cooled by the air passing through the first air flow path 21, and is returned to the heat medium flow path 81 again to cool the temperature control object 82. flow into Thereby, the temperature control object 82 is forcibly cooled. The air whose temperature has risen by absorbing heat from the heat medium is blown out of the vehicle from the external outlet 23 .
On the other hand, the cooled air that has flowed into the second air flow path 22 is blown out from the passenger compartment outlet 29 and used for cooling the passenger compartment.
 このように、第1送風流路21設けて放熱用送風流路を形成することにより、クーラーコア30によって冷却された空気を、第1送風流路21に流通させることで機器温度調整回路80の熱媒体と熱交換させて温調対象物82の強制冷却に利用することができる。一方で、第1送風流路21とは別の第2送風流路22を設け、クーラーコア30によって冷却された空気を第2送風流路22に流通させるか否かを選択することで、同時に冷房運転を実施するかしないかを選択することができる。 In this way, by providing the first airflow passage 21 to form the airflow passage for heat dissipation, the air cooled by the cooler core 30 is circulated through the first airflow passage 21, thereby improving the temperature of the device temperature adjustment circuit 80. It can be used for forced cooling of the temperature control object 82 by exchanging heat with a heat medium. On the other hand, by providing a second air flow path 22 separate from the first air flow path 21 and selecting whether or not to circulate the air cooled by the cooler core 30 through the second air flow path 22, It is possible to select whether or not to carry out the cooling operation.
 上記した実施形態において、ヒーターコア(放熱用熱交換器)40では温調対象物82を循環した熱媒体と放熱用送風流路を通過する空気との間で熱交換を行わせる構成について説明した。この他にも、例えば、図8に示すように、冷媒回路Rを循環する冷媒と、熱媒体回路80を循環して温調対象物82から廃熱を回収した熱媒体とを熱交換させるための冷媒-熱媒体熱交換器88を設け、冷媒-熱媒体熱交換器88を循環した冷媒をヒーターコア40において放熱させるように構成することができる。 In the above-described embodiment, the heater core (radiation heat exchanger) 40 is configured to perform heat exchange between the heat medium circulating through the temperature control object 82 and the air passing through the heat radiation flow passage. . In addition, for example, as shown in FIG. 8, for exchanging heat between the refrigerant circulating in the refrigerant circuit R and the heat medium that circulates in the heat medium circuit 80 and collects waste heat from the temperature control object 82, A refrigerant-heat medium heat exchanger 88 may be provided, and the refrigerant circulating through the refrigerant-heat medium heat exchanger 88 may be configured to radiate heat in the heater core 40 .
 この場合、冷媒-熱媒体熱交換器88において、温調対象物82から廃熱を回収した熱媒体と冷媒-熱媒体熱交換器88を通過する冷媒とを熱交換させる。つまり、冷媒-熱媒体熱交換器88を通過する冷媒が、熱媒体回路80を循環して温調対象物82の廃熱を回収した熱媒体から吸熱する。そして、ヒーターコア40に冷媒-熱媒体熱交換器88を循環した冷媒を通過させ、ヒーターコア40において冷媒を放熱させる。 In this case, in the refrigerant-heat medium heat exchanger 88, heat is exchanged between the heat medium that has recovered the waste heat from the temperature control object 82 and the refrigerant that passes through the refrigerant-heat medium heat exchanger 88. That is, the refrigerant passing through the refrigerant-heat medium heat exchanger 88 circulates through the heat medium circuit 80 and absorbs heat from the heat medium that has recovered the waste heat of the temperature control object 82 . Then, the refrigerant that has circulated through the refrigerant-heat medium heat exchanger 88 is passed through the heater core 40 , and heat is released from the refrigerant in the heater core 40 .
 なお、この他、冷媒-熱媒体熱交換器88に代えて、熱媒体-熱媒体熱交換器を設けることもできる。この場合、他の熱媒体回路80とは別の熱媒体回路を循環する熱媒体と熱媒体回路80の熱媒体との間で、つまり、熱媒体同士で熱交換をさせ、温調対象物82の廃熱を回収する。 In addition, instead of the refrigerant-heat medium heat exchanger 88, a heat medium-heat medium heat exchanger can be provided. In this case, heat is exchanged between the heat medium circulating in a heat medium circuit different from the other heat medium circuit 80 and the heat medium in the heat medium circuit 80, that is, between the heat mediums. of waste heat is recovered.
 また、上記した実施形態では、吸熱用熱交換器の一例としてクーラーコアを、放熱用熱交換器の一例としてヒーターコアを適用した例について説明したが、「吸熱用熱交換器」は冷媒を含む各種熱媒体に対して吸熱作用を有する熱交換器であればよく、同様に、「放熱用熱交換器」は冷媒を含む各種熱媒体に対して放熱作用を有する熱交換器であればよく、種類や名称は問わない。 Further, in the above-described embodiment, an example in which a cooler core is applied as an example of a heat-absorbing heat exchanger and a heater core is applied as an example of a heat-radiating heat exchanger has been described, but the "heat-absorbing heat exchanger" includes a refrigerant. Any heat exchanger can be used as long as it has an endothermic effect on various heat mediums. Any type or name is acceptable.
〔変形例〕
 図9に、上述した実施形態の変形例に係る車両用空調装置の室内空調ユニット11の概略構成を示す。
 変形例に係る室内空調ユニット11は、第1送風流路21及び第2送風流路22の上流側に、外気導入流路60が設けられている。外気導入流路60は、吸込口25から内気又は外気を取り込み、クーラーコア30を通過せずに第1送風流路21と連通するようになっている。すなわち、室内空調ユニット11内で、クーラーコア30を迂回して第1送風流路21に送風することができる。
[Modification]
FIG. 9 shows a schematic configuration of an indoor air conditioning unit 11 of a vehicle air conditioner according to a modification of the above-described embodiment.
The indoor air conditioning unit 11 according to the modification is provided with an outside air introduction channel 60 on the upstream side of the first air flow channel 21 and the second air flow channel 22 . The outside air introduction channel 60 takes in the inside air or the outside air from the suction port 25 and communicates with the first airflow channel 21 without passing through the cooler core 30 . That is, in the indoor air-conditioning unit 11 , the air can bypass the cooler core 30 and be blown to the first air flow path 21 .
 この場合において、外気導入ダンパ64を開いた状態とし、かつエアミックスダンパ28によって第1送風流路21を開放し、吸込切換ダンパ26を制御して吸込口25から外気を導入することで、第1送風流路21に外気を送風することができる。また、吹出ダンパ24を開放することで放熱用送風流路50を形成して、ヒーターコア40を通過した外気を車外へ吹き出させる。 In this case, the outside air introduction damper 64 is opened, the air mix damper 28 opens the first airflow passage 21, and the suction switching damper 26 is controlled to introduce the outside air from the suction port 25. Outside air can be blown into the first air flow path 21 . Further, by opening the blow-out damper 24, the air flow path 50 for heat dissipation is formed, and the outside air that has passed through the heater core 40 is blown out of the vehicle.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and design changes and the like are possible without departing from the gist of the present invention. Even if there is, it is included in the present invention.
 1:車両用空調装置、10:室内空調ユニット、11:室内空調ユニット、20:送風流路:、23:外部吹出口、24:吹出ダンパ、25:吸込口、26:吸込切換ダンパ、27:室内送風機(ブロワファン)、27:ブロワファン、28:エアミックスダンパ、29:車室内吹出口、30:クーラーコア、40:ヒーターコア、50:放熱用送風流路、60:外気導入流路、61:外気吸込口、62:外気導入ファン、63:外気導入口、64:外気導入ダンパ、71:外気温度センサ、72:HVAC吸込温度センサ、73:内気温度センサ、74:吹出温度センサ、75:ヒーターコア温度センサ、76:クーラーコア温度センサ、77:クーラーコア圧力センサ、78:熱媒体温度センサ、78:空調操作部、79:空調操作部、80:機器温度調整回路、81:熱媒体流路、82:温調対象物、83:循環ポンプ、88:冷媒-熱媒体熱交換器、90:車両コントローラ、100:空調ECU
 
 
1: vehicle air conditioner, 10: indoor air conditioning unit, 11: indoor air conditioning unit, 20: air flow path, 23: external outlet, 24: outlet damper, 25: inlet, 26: intake switching damper, 27: Indoor blower (blower fan), 27: Blower fan, 28: Air mix damper, 29: Vehicle interior outlet, 30: Cooler core, 40: Heater core, 50: Blower flow path for heat dissipation, 60: Outside air introduction flow path, 61: outside air intake, 62: outside air intake fan, 63: outside air intake, 64: outside air intake damper, 71: outside air temperature sensor, 72: HVAC intake temperature sensor, 73: inside air temperature sensor, 74: outlet temperature sensor, 75 : heater core temperature sensor 76: cooler core temperature sensor 77: cooler core pressure sensor 78: heat medium temperature sensor 78: air conditioning operation unit 79: air conditioning operation unit 80: equipment temperature adjustment circuit 81: heat medium Flow path, 82: temperature control object, 83: circulation pump, 88: refrigerant-heat medium heat exchanger, 90: vehicle controller, 100: air conditioning ECU

Claims (8)

  1.  吸熱用熱交換器と、該吸熱用熱交換器の送風流路下流側に設けられる放熱用熱交換器を具備する室内空調ユニットを備え、
     前記放熱用熱交換器は、車載機器から廃熱を回収した熱媒体を放熱させる放熱用の熱交換器であり、
     前記室内空調ユニットは、前記放熱用熱交換器を通過した風を車外に放出する放熱用送風流路を備える
     ことを特徴とする車両用空調装置。
    An indoor air conditioning unit comprising an endothermic heat exchanger and a heat radiating heat exchanger provided downstream of the endothermic heat exchanger,
    The heat exchanger for heat dissipation is a heat exchanger for heat dissipation that dissipates a heat medium that recovers waste heat from an on-vehicle device,
    A vehicle air conditioner, wherein the indoor air-conditioning unit includes a heat-dissipating air flow passage for discharging air that has passed through the heat-dissipating heat exchanger to the outside of the vehicle.
  2.  前記放熱用送風流路は、前記放熱用熱交換器の送風流路下流側に設けたダンパを開放することによって形成され、
     前記ダンパを閉止することで前記放熱用熱交換器を通過する風を車室内に送ることを特徴とする請求項1記載の車両用空調装置。
    The heat radiation air flow path is formed by opening a damper provided on the downstream side of the air flow path of the heat radiation heat exchanger,
    2. A vehicle air-conditioning system according to claim 1, wherein said damper is closed so that the wind passing through said heat-dissipating heat exchanger is sent into the vehicle interior.
  3.  前記放熱用送風流路は、前記放熱用熱交換器の送風流路上流側にて外気を導入する外気導入流路を備える請求項1又は2記載の車両用空調装置。 3. The vehicle air conditioner according to claim 1 or 2, wherein the heat-dissipating air flow path includes an outside air introduction flow path for introducing outside air on the upstream side of the heat-radiating heat exchanger.
  4.  前記外気導入流路は、前記室内空調ユニットに外付けされることを特徴とする請求項3記載の車両用空調装置。 The vehicle air conditioner according to claim 3, wherein the outside air introduction passage is externally attached to the indoor air conditioning unit.
  5.  前記外気導入流路は、前記室内空調ユニット内で前記吸熱用熱交換器を迂回する流路が設けられる請求項3記載の車両用空調装置。 The vehicle air conditioner according to claim 3, wherein the outside air introduction channel is provided with a channel that bypasses the endothermic heat exchanger in the indoor air conditioning unit.
  6.  前記吸熱用熱交換器を通過した冷風を前記放熱用熱交換器に送ることを特徴とする請求項1又は2記載の車両用空調装置。 3. The vehicle air conditioner according to claim 1 or 2, characterized in that the cool air that has passed through the heat-absorbing heat exchanger is sent to the heat-radiating heat exchanger.
  7.  前記放熱用熱交換器は、車載機器の廃熱回収を行う熱媒体回路の放熱用の熱交換器である請求項1から請求項6の何れか1項記載の車両用空調装置。 The vehicle air conditioner according to any one of claims 1 to 6, wherein the heat radiating heat exchanger is a heat radiating heat exchanger for a heat medium circuit that recovers waste heat from an in-vehicle device.
  8.  空調用の冷媒回路を循環する冷媒と前記車載機器から廃熱を回収した熱媒体とを熱交換させるための冷媒-熱媒体熱交換器を備え、
     前記放熱用熱交換器は、前記冷媒-熱媒体熱交換器を循環した前記冷媒を放熱させる放熱用の熱交換器である請求項1から請求項6の何れか1項記載の車両用空調装置。
     
     
     
    A refrigerant-heat medium heat exchanger for exchanging heat between a refrigerant circulating in a refrigerant circuit for air conditioning and a heat medium that recovers waste heat from the vehicle-mounted device,
    The vehicle air conditioner according to any one of claims 1 to 6, wherein the heat dissipating heat exchanger is a heat dissipating heat exchanger for dissipating heat from the refrigerant circulating through the refrigerant-heat medium heat exchanger. .


PCT/JP2022/025153 2021-06-24 2022-06-23 Vehicular air conditioning device WO2022270594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105092A JP2023003802A (en) 2021-06-24 2021-06-24 Vehicular air conditioner
JP2021-105092 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270594A1 true WO2022270594A1 (en) 2022-12-29

Family

ID=84544351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025153 WO2022270594A1 (en) 2021-06-24 2022-06-23 Vehicular air conditioning device

Country Status (2)

Country Link
JP (1) JP2023003802A (en)
WO (1) WO2022270594A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589028U (en) * 1992-05-08 1993-12-03 株式会社ゼクセル Drive force transmission mechanism for inside / outside air switching door
JP2005088775A (en) * 2003-09-18 2005-04-07 Fuji Heavy Ind Ltd Air-conditioner for vehicle
JP2015189422A (en) * 2014-03-28 2015-11-02 株式会社デンソー Vehicular cooling device
JP2021046071A (en) * 2019-09-18 2021-03-25 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589028U (en) * 1992-05-08 1993-12-03 株式会社ゼクセル Drive force transmission mechanism for inside / outside air switching door
JP2005088775A (en) * 2003-09-18 2005-04-07 Fuji Heavy Ind Ltd Air-conditioner for vehicle
JP2015189422A (en) * 2014-03-28 2015-11-02 株式会社デンソー Vehicular cooling device
JP2021046071A (en) * 2019-09-18 2021-03-25 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Also Published As

Publication number Publication date
JP2023003802A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
CN109291763B (en) Heat pump air conditioning system, control method thereof and automobile
JP6997558B2 (en) Vehicle air conditioner
JP5860361B2 (en) Thermal management system for electric vehicles
CN111615464B (en) Air conditioner for vehicle
JP7316872B2 (en) TEMPERATURE ADJUSTMENT FOR VEHICLE HEAT DEVICE AND VEHICLE AIR CONDITIONER INCLUDING THE SAME
KR101225660B1 (en) An auxiliary cooling and heating device for automobile using thermo element module and its controlling method thereof
JP2020026196A (en) Vehicular air-conditioning system
JP2020026197A (en) Vehicular air-conditioning system
JP2002352867A (en) Battery temperature controller for electric vehicle
JP2002354608A (en) Battery cooling device for electric automobile
JP7372794B2 (en) Vehicle air conditioner
JP2009291008A (en) Heat management system of electric drive vehicle
JP4650108B2 (en) High-power cooling system for vehicles
CN113015638A (en) Air conditioner for vehicle
WO2020184146A1 (en) Vehicle air conditioner
JP2009035153A (en) Vehicular air conditioner
WO2022270594A1 (en) Vehicular air conditioning device
WO2023090084A1 (en) Vehicular air conditioner
KR20220037794A (en) Air conditioner device for electric motor vehicle and air conditioner system for electric motor vehicle using the same
WO2023286349A1 (en) Vehicular heat management system
WO2023286347A1 (en) Vehicular heat management system
WO2023286348A1 (en) Heat management system for vehicle
WO2023248714A1 (en) Vehicle air-conditioning device
WO2024116459A1 (en) Heat management system for vehicle
WO2024009577A1 (en) System for adjusting temperature of battery, and vehicular system for managing heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE