JP2006310071A - Solid electrolyte and lithium polymer battery using the same - Google Patents

Solid electrolyte and lithium polymer battery using the same Download PDF

Info

Publication number
JP2006310071A
JP2006310071A JP2005130868A JP2005130868A JP2006310071A JP 2006310071 A JP2006310071 A JP 2006310071A JP 2005130868 A JP2005130868 A JP 2005130868A JP 2005130868 A JP2005130868 A JP 2005130868A JP 2006310071 A JP2006310071 A JP 2006310071A
Authority
JP
Japan
Prior art keywords
meth
solid electrolyte
acrylate
ion conductive
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005130868A
Other languages
Japanese (ja)
Inventor
Seiji Maeda
誠二 前田
Wataru Nishikata
弥 西方
Takaichiro Saito
鷹逸郎 齋藤
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2005130868A priority Critical patent/JP2006310071A/en
Publication of JP2006310071A publication Critical patent/JP2006310071A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte excellent in battery property (conductivity, charging/discharging property or the like), and a lithium polymer battery using the same. <P>SOLUTION: The solid electrolyte is made of cured film obtained from a lithium ion conductive composition [1] containing curing oligomer (A), electrolyte salt (B), ionic liquid (C). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池性能(導電性、充放電特性等)に優れた固体電解質及びそれを用いたリチウムポリマー電池に関するものである。   The present invention relates to a solid electrolyte excellent in battery performance (conductivity, charge / discharge characteristics, etc.) and a lithium polymer battery using the solid electrolyte.

近年、ノート型パソコン、携帯電話、PDAなどの携帯端末の普及は著しく、かかる携帯端末は、より快適な携帯性を求め、小型化、薄型化、軽量化、高性能化が急速に進んでいる。そして、かかる携帯端末の電源には、二次電池として、リチウム二次電池が多用されており、電池に対しても同様に、小型化、薄型化、軽量化、高性能化の要求が強まっている。   In recent years, portable terminals such as notebook personal computers, mobile phones, and PDAs have become widespread, and such portable terminals have been rapidly reduced in size, thickness, weight, and performance in search of more comfortable portability. . In addition, lithium secondary batteries are frequently used as the secondary battery for the power source of such portable terminals. Similarly, the demand for smaller, thinner, lighter, higher performance is also increasing for batteries. Yes.

このような要望の中、薄型、高エネルギー密度電池として電解質に高分子固体電解質を用いたシート型二次電池の開発が進められており、高分子固体電解質を用いた二次電池は、液漏がないため信頼性が高く、形状自在で、大面積で、大変薄い形状にできる等、今までの円筒型、角形電池にはない特徴を数多く持っている。
従来、電解質に用いられている樹脂として、アルキレンオキサイド基を有したポリエーテル共重合体などが知られていた(例えば、特許文献1参照。)。又、ウレタン(メタ)アクリレート系化合物と特定構造の重合性モノマーを含有してなる架橋型高分子のマトリクス成分と電解質塩からなる高分子固体電解質も提案されている(例えば、特許文献2参照。)。
特開平9−324114号公報 特開2002−216845号公報
Under these demands, sheet-type secondary batteries using a solid polymer electrolyte as a thin, high energy density battery are being developed. Secondary batteries using a solid polymer electrolyte are liquid leakage. Therefore, it has many features not found in conventional cylindrical and prismatic batteries, such as high reliability, freedom of shape, large area, and extremely thin shape.
Conventionally, as a resin used for an electrolyte, a polyether copolymer having an alkylene oxide group has been known (see, for example, Patent Document 1). In addition, a solid polymer electrolyte comprising a matrix component of a crosslinked polymer containing a urethane (meth) acrylate compound and a polymerizable monomer having a specific structure and an electrolyte salt has been proposed (see, for example, Patent Document 2). ).
JP-A-9-324114 JP 2002-216845 A

しかしながら、上記特許文献1の開示技術では、一旦有機溶媒に溶解して製膜し、乾燥してフィルムを作製した上で、電解質膜として負極に貼り合わせる必要があり、この際、フィルムを薄膜化するとフィルム強度が不十分なものであった。また、かかる電解質樹脂を負極、特にリチウム箔に塗工する場合には、該樹脂が溶剤系であるために、溶剤が負極のリチウムと反応してダメージを与え電池性能を低下させる問題があり、溶剤を用いる塗工法での薄膜化には限界があった。更に、溶剤を有する固体電解質の製造原料を複合正極に直接塗布すると、複合正極が部分的に溶解、膨潤して電極性能が低下する恐れがあった。
また、上記特許文献2の開示技術は、電解質に溶剤を使用しない方法として有用であり、電池性能も良好であるが、近時の高度な要求性能に対して更なる向上が求められている。
そこで、本発明ではこのような背景下において、電解質に溶剤を使用することなく形成し、電池性能(導電性、充放電特性等)に優れた固体電解質及びそれを用いたリチウムポリマー電池を提供することを目的とする。
However, in the technique disclosed in Patent Document 1, it is necessary to form a film by dissolving it in an organic solvent, drying it, and then bonding it to the negative electrode as an electrolyte film. As a result, the film strength was insufficient. In addition, when the electrolyte resin is applied to a negative electrode, particularly a lithium foil, since the resin is solvent-based, there is a problem that the solvent reacts with lithium of the negative electrode to cause damage and reduce battery performance. There was a limit to thinning with a coating method using a solvent. Furthermore, when the solid electrolyte manufacturing raw material having a solvent is directly applied to the composite positive electrode, the composite positive electrode is partially dissolved and swollen, which may deteriorate the electrode performance.
The disclosed technique of Patent Document 2 is useful as a method that does not use a solvent for the electrolyte, and has good battery performance. However, further improvement is required for recent high demanded performance.
Therefore, in the present invention, a solid electrolyte excellent in battery performance (conductivity, charge / discharge characteristics, etc.) and a lithium polymer battery using the same formed without using a solvent in the electrolyte is provided under such a background. For the purpose.

しかるに、本発明者等はかかる事情に鑑み鋭意研究を重ねた結果、硬化性オリゴマー(A)、電解質塩(B)及びイオン性液体(C)を含むリチウムイオン導電性組成物[I]から得られる硬化被膜からなる固体電解質が上記目的に合致することを見出し、本発明を完成した。
また、本発明では、本発明により得られる固体電解質を正極と負極との間に狭持してなるリチウムポリマー電池も提供するものである
However, as a result of intensive studies in view of such circumstances, the present inventors obtained from a lithium ion conductive composition [I] containing a curable oligomer (A), an electrolyte salt (B) and an ionic liquid (C). The present invention was completed by finding that a solid electrolyte composed of a cured coating obtained meets the above-mentioned purpose.
The present invention also provides a lithium polymer battery in which the solid electrolyte obtained by the present invention is sandwiched between a positive electrode and a negative electrode.

本発明の固体電解質は、硬化性オリゴマー(A)、電解質塩(B)及びイオン性液体(C)、更に好ましくはエチレン性不飽和モノマー(D)や、無機フィラー(E)、電解液(F)を含むリチウムイオン導電性組成物[I]から得られる硬化被膜からなるため、液漏れ等を起こすことなく、イオン伝導度が高く、充放電特性(充放電の繰り返しによる劣化がない)に優れた効果を有し、特に、二次電池、とりわけリチウムポリマー二次電池として非常に有用である。   The solid electrolyte of the present invention comprises a curable oligomer (A), an electrolyte salt (B) and an ionic liquid (C), more preferably an ethylenically unsaturated monomer (D), an inorganic filler (E), an electrolytic solution (F ) Containing lithium ion conductive composition [I], it has a high ionic conductivity and no charge / discharge characteristics (no deterioration due to repeated charge / discharge) without causing liquid leakage. In particular, it is very useful as a secondary battery, particularly as a lithium polymer secondary battery.

本発明は、リチウムイオン導電性組成物[I]から得られる硬化被膜からなる固体電解質であり、かかるリチウムイオン導電性組成物[I]は、硬化性オリゴマー(A)、電解質塩(B)及びイオン性液体(C)を含有してなる組成物であり、好ましくは更にエチレン性不飽和モノマー(D)や無機フィラー(E)も含有してなり、必要に応じて更に電解液(F)も含有してなる組成物である。   The present invention is a solid electrolyte comprising a cured film obtained from a lithium ion conductive composition [I], and the lithium ion conductive composition [I] includes a curable oligomer (A), an electrolyte salt (B), and It is a composition comprising an ionic liquid (C), preferably further comprising an ethylenically unsaturated monomer (D) and an inorganic filler (E), and if necessary, an electrolyte solution (F). It is the composition formed.

かかる硬化性オリゴマー(A)としては、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレートなども挙げられるが、薄膜化、導電性、リチウム金属との安定性、耐電圧3.5V以上、より好ましくは4V以上が求められることなどの観点から、分子末端がいずれも(メタ)アクリロイル基であるウレタン(メタ)アクリレート系化合物(A1)及び/又は分子末端の少なくとも1つが(メタ)アクリロイル基でかつ残りが炭化水素であるポリイソシアネート系誘導体(A2)であることが好ましい。   Examples of the curable oligomer (A) include epoxy (meth) acrylate, polyester (meth) acrylate, etc., but thinning, conductivity, stability with lithium metal, withstand voltage of 3.5 V or more, more preferably From the standpoint that 4V or more is required, etc., the urethane (meth) acrylate compound (A1) and / or at least one of the molecular terminals is a (meth) acryloyl group and the remaining molecular terminals are all (meth) acryloyl groups. Is preferably a polyisocyanate derivative (A2) which is a hydrocarbon.

上記ウレタン(メタ)アクリレート系化合物(A1)は、ポリオール、ポリイソシアネート、ヒドロキシ(メタ)アクリレートを反応させてなるもので、分子末端がいずれも(メタ)アクリロイル基であるものであればよいが、その中でも特に、下記一般式(1)で示される化合物であることが導電率の点で好ましい。   The urethane (meth) acrylate compound (A1) is obtained by reacting polyol, polyisocyanate, and hydroxy (meth) acrylate, and any molecular terminal may be a (meth) acryloyl group. Among them, the compound represented by the following general formula (1) is particularly preferable from the viewpoint of conductivity.

Figure 2006310071
ここで、R1はポリオールのウレタン結合残基、R2はポリイソシアネートのウレタン結合残基、R3はヒドロキシ(メタ)アクリレートのウレタン結合残基であり、nは1以上の整数である。
Figure 2006310071
Here, R 1 is a urethane bond residue of polyol, R 2 is a urethane bond residue of polyisocyanate, R 3 is a urethane bond residue of hydroxy (meth) acrylate, and n is an integer of 1 or more.

ウレタン(メタ)アクリレート系化合物(A1)を構成するポリオールとしては、特に限定されることなく、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、水素添加ビスフェノールA、ポリカプロラクトン、トリメチロールエタン、トリメチロールプロパン、ポリトリメチロールプロパン、ペンタエリスリトール、ポリペンタエリスリトール、ソルビトール、マンニトール、グリセリン、ポリグリセリン等の多価アルコールや、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリテトラメチレングリコール等の他、エチレンオキサイド、プロピレンオキサイド、テトラメチレンオキサイド、エチレンオキサイド/プロピレンオキサイドのランダム又はブロック共重合体、エチレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体、プロピレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体、エチレンオキサイド/プロピレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体から選ばれる少なくとも1種の構造を有するポリエーテルポリオール、該多価アルコール又はポリエーテルポリオールと無水マレイン酸、マレイン酸、フマール酸、無水イタコン酸、イタコン酸、アジピン酸、イソフタル酸等の多塩基酸との縮合物であるポリエステルポリオール、カプロラクトン変性ポリテトラメチレンポリオール等のカプロラクトン変性ポリオール、ポリオレフィン系ポリオール、水添ポリブタジエンポリオール等のポリブタジエン系ポリオール等が挙げられる。   As a polyol which comprises a urethane (meth) acrylate type compound (A1), it does not specifically limit, For example, ethylene glycol, propylene glycol, butylene glycol, 1, 4- butanediol, 1, 6-hexanediol, neo Polyhydric alcohols such as pentyl glycol, cyclohexanedimethanol, hydrogenated bisphenol A, polycaprolactone, trimethylol ethane, trimethylol propane, polytrimethylol propane, pentaerythritol, polypentaerythritol, sorbitol, mannitol, glycerin, polyglycerin, Diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polybutyl Besides ethylene glycol, polytetramethylene glycol, etc., ethylene oxide, propylene oxide, tetramethylene oxide, ethylene oxide / propylene oxide random or block copolymer, ethylene oxide / tetramethylene oxide random or block copolymer, propylene oxide Polyol / polyether polyol having at least one structure selected from random / block copolymer of ethylene / tetramethylene oxide, random or block copolymer of ethylene oxide / propylene oxide / tetramethylene oxide Of polybasic acids such as maleic anhydride, maleic acid, fumaric acid, itaconic anhydride, itaconic acid, adipic acid and isophthalic acid Some polyester polyol, caprolactone-modified polyols such as caprolactone-modified polytetramethylene polyol, polyolefin polyol, polybutadiene polyol, such as hydrogenated polybutadiene polyols, and the like.

中でも特に、分子量が200〜6000、好ましくは500〜5000、更に好ましくは800〜4000で、かつ、エチレンオキサイド、プロピレンオキサイド、テトラメチレンオキサイド、エチレンオキサイド/プロピレンオキサイドのランダム又はブロック共重合体、エチレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体、プロピレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体、エチレンオキサイド/プロピレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体から選ばれる少なくとも1種の構造を有するポリエーテルポリオールであることが好ましい。ポリオールの分子量が200未満であれば形成した膜の強度が著しく低下することとなり、6000を越えると導電性に悪影響を与えることとなり好ましくない。
又、ウレタン(メタ)アクリレート系化合物(A1)が、一般式(1)で示される化合物である場合は、ポリオールとして上記ポリオールの中でもジオールのものが選択される。
Among them, the molecular weight is 200 to 6000, preferably 500 to 5000, more preferably 800 to 4000, and ethylene oxide, propylene oxide, tetramethylene oxide, ethylene oxide / propylene oxide random or block copolymer, ethylene oxide. / Tetramethylene oxide random or block copolymer, propylene oxide / tetramethylene oxide random or block copolymer, ethylene oxide / propylene oxide / tetramethylene oxide random or block copolymer It is preferable that it is polyether polyol which has. If the molecular weight of the polyol is less than 200, the strength of the formed film is remarkably lowered, and if it exceeds 6000, the conductivity is adversely affected.
When the urethane (meth) acrylate compound (A1) is a compound represented by the general formula (1), a diol is selected as the polyol.

ウレタン(メタ)アクリレート系化合物(A1)を構成するポリイソシアネートとしては、特に限定されることなく、例えば芳香族系、脂肪族系、環式脂肪族系、脂環式系等のポリイソシアネートが挙げられ、中でもトリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添化ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン等のポリイソシアネート、或いはこれらポリイソシアネートの三量体化合物、2−イソシアナートエチルカプロネート−2,6−ジイソシアネート、これらポリイソシアネートとポリオールの反応生成物等が挙げられるが、取り扱い、導電性の観点からイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、2−イソシアナートエチルカプロネート−2,6−ジイソシアネート等が特に好ましい。
又、ウレタン(メタ)アクリレート系化合物(A1)が、一般式(1)で示される化合物である場合は、ポリイソシアネートとして上記ポリイソシアネートの中でもジイソシアネートのものが選択される。
The polyisocyanate constituting the urethane (meth) acrylate compound (A1) is not particularly limited, and examples thereof include aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates. Among them, tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, tetramethylxylylene diisocyanate Polyisocyanates such as isocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane And polyisocyanate trimer compounds, 2-isocyanatoethyl capronate-2,6-diisocyanate, reaction products of these polyisocyanates and polyols, etc. Particularly preferred are diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, 2-isocyanatoethyl capronate-2,6-diisocyanate.
When the urethane (meth) acrylate compound (A1) is a compound represented by the general formula (1), a diisocyanate is selected as the polyisocyanate from among the polyisocyanates.

更に、ウレタン(メタ)アクリレート系化合物(A1)を構成するヒドロキシ(メタ)アクリレートとしては、特に限定されることなく、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチルアクリロイルホスフェート、4−ブチルヒドロキシ(メタ)アクリレート、2−(メタ)アクリロイロキシエチル−2−ヒドロキシプロピルフタレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カプロラクトン変性2−ヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ヒドロキシ(メタ)アクリレート、プロピレン変性ヒドロキシ(メタ)アクリレート、エチレンオキサイド−プロピレンオキサイド変性ヒドロキシ(メタ)アクリレート、エチレンオキサイド−テトラメチレンオキサイド変性ヒドロキシ(メタ)アクリレート、プロピレンオキサイド−テトラメチレンオキサイド変性ヒドロキシ(メタ)アクリレート等が挙げられ、中でも2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、エチレンオキサイド変性ヒドロキシ(メタ)アクリレートが好適に用いられる。   Furthermore, the hydroxy (meth) acrylate constituting the urethane (meth) acrylate compound (A1) is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethylacryloyl phosphate, 4-butylhydroxy (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3- (meth) Acryloyloxypropyl (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, ethylene oxide Hydroxy (meth) acrylate, propylene modified hydroxy (meth) acrylate, ethylene oxide-propylene oxide modified hydroxy (meth) acrylate, ethylene oxide-tetramethylene oxide modified hydroxy (meth) acrylate, propylene oxide-tetramethylene oxide modified hydroxy (meta ) Acrylate, etc., among which 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and ethylene oxide-modified hydroxy (meth) acrylate are preferably used.

上記分子末端がいずれも(メタ)アクリロイル基であるウレタン(メタ)アクリレート系化合物(A1)の製造方法については、ポリオール、ポリイソシアネート、ヒドロキシ(メタ)アクリレートを反応させる方法であれば特に限定されず、公知の方法が採用される。例えば、(i)ポリオール、ポリイソシアネート、ヒドロキシ(メタ)アクリレートの3成分を一括に混合して反応させる方法、(ii)ポリオールとポリイソシアネートを反応させて、1分子当たり1個以上のイソシアネート基を含有するウレタンイソシアネート中間体を形成した後に該中間体とヒドロキシ(メタ)アクリレートを反応させる方法、(iii)ポリイソシアネートとヒドロキシ(メタ)アクリレートを反応させて1分子当たり1個以上のイソシアネート基を含有するウレタン(メタ)アクリレート中間体を形成した後に該中間体とポリオールを反応させる方法等が挙げられる。   About the manufacturing method of the urethane (meth) acrylate type compound (A1) in which all the molecular ends are (meth) acryloyl groups, there is no particular limitation as long as it is a method of reacting polyol, polyisocyanate, and hydroxy (meth) acrylate. A known method is employed. For example, (i) a method in which three components of polyol, polyisocyanate, and hydroxy (meth) acrylate are mixed and reacted together, and (ii) a polyol and polyisocyanate are reacted to form one or more isocyanate groups per molecule. A method of reacting the intermediate with hydroxy (meth) acrylate after forming the urethane isocyanate intermediate to be contained; (iii) containing one or more isocyanate groups per molecule by reacting polyisocyanate with hydroxy (meth) acrylate And a method of reacting the intermediate with a polyol after the urethane (meth) acrylate intermediate is formed.

上記反応においては、反応を促進する目的でジブチルスズジラウレート等のような金属触媒や、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のようなアミン系触媒等を用いることも好ましい。   In the above reaction, it is also preferable to use a metal catalyst such as dibutyltin dilaurate or an amine catalyst such as 1,8-diazabicyclo [5.4.0] undecene-7 for the purpose of promoting the reaction.

本発明で用いられるポリイソシアネート系誘導体(A2)は、ポリイソシアネート、ヒドロキシ(メタ)アクリレート、下記一般式(3)で示されるポリアルキレン誘導体を反応させてなるもので、分子末端の少なくとも1つが(メタ)アクリロイル基でかつ残りが炭化水素基であるものであればよいが、その中でも特に、下記一般式(2)で示される化合物であることが導電率の点で好ましい。   The polyisocyanate derivative (A2) used in the present invention is obtained by reacting polyisocyanate, hydroxy (meth) acrylate, and a polyalkylene derivative represented by the following general formula (3), and at least one of the molecular terminals is ( Any compound may be used as long as it is a (meth) acryloyl group and the remainder is a hydrocarbon group. Among them, a compound represented by the following general formula (2) is particularly preferable from the viewpoint of conductivity.

Figure 2006310071
ここで、R4はポリイソシアネートのウレタン結合残基、R5はヒドロキシ(メタ)アクリレートのウレタン結合残基、R6は下記一般式(3)で示されるポリアルキレン誘導体のウレタン結合残基であり、a、bは1以上の整数である。
Figure 2006310071
Here, R 4 is a urethane bond residue of polyisocyanate, R 5 is a urethane bond residue of hydroxy (meth) acrylate, and R 6 is a urethane bond residue of a polyalkylene derivative represented by the following general formula (3). , A and b are integers of 1 or more.

Figure 2006310071
ここで、Yはアルキレン基、Zは炭化水素基であり、pは1以上の整数である。
Figure 2006310071
Here, Y is an alkylene group, Z is a hydrocarbon group, and p is an integer of 1 or more.

ポリイソシアネート系誘導体(A2)を構成するポリイソシアネートとしては、特に限定されることなく、例えば上記と同様の芳香族系、脂肪族系、環式脂肪族系、脂環式系等のポリイソシアネートが挙げられるが、その中でも上記一般式(2)で示される化合物である場合には、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添化ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン等のポリイソシアネートの三量体化合物、或いはこれらポリイソシアネートと上記ポリオールとの反応生成物(末端イソシアネート基を3個以上有する末端イソシアネート基含有化合物)、2−イソシアナートエチルカプロネート−2,6−ジイソシアネート等が挙げられる。その中でも特に取り扱い性や粘度の観点からヘキサメチレンジイソシアネートの三量体化合物、2−イソシアナートエチルカプロネート−2,6ジイソシアネート等が好ましい。   The polyisocyanate constituting the polyisocyanate derivative (A2) is not particularly limited, and examples thereof include the same aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates as described above. Among them, in the case of the compound represented by the above general formula (2), tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, hydrogenated xylylene diene Isocyanate, xylylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, tetramethylxylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1, -Trimer compounds of polyisocyanates such as bis (isocyanatomethyl) cyclohexane, or reaction products of these polyisocyanates and the above polyols (terminal isocyanate group-containing compounds having 3 or more terminal isocyanate groups), 2-isocyanates Examples include ethyl capronate-2,6-diisocyanate. Among these, hexamethylene diisocyanate trimer compound, 2-isocyanatoethyl capronate-2,6 diisocyanate and the like are particularly preferable from the viewpoints of handleability and viscosity.

ポリイソシアネート系誘導体(A2)を構成するヒドロキシ(メタ)アクリレートとしては、特に限定されることなく、上記のヒドロキシ(メタ)アクリレートと同様のものが挙げられる。   It does not specifically limit as hydroxy (meth) acrylate which comprises a polyisocyanate type derivative (A2), The thing similar to said hydroxy (meth) acrylate is mentioned.

ポリイソシアネート系誘導体(A2)を構成する上記一般式(3)で示されるポリアルキレン誘導体としては、特に限定されず、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリテトラメチレングリコール等の他、エチレンオキサイド、プロピレンオキサイド、テトラメチレンオキサイド、エチレンオキサイド/プロピレンオキサイドのランダム又はブロック共重合体、エチレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体、プロピレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体、エチレンオキサイド/プロピレンオキサイド/テトラメチレンオキサイドのランダム又はブロック共重合体から選ばれる少なくとも1種の構造を有するポリエーテルポリオール等の片方の水酸基が炭化水素基で置換された化合物が挙げられる。かかる炭化水素基としては、アルキル基(メチル基、エチル基、プロピル基、ブチル基、等)、脂環式アルキル基(シクロヘキシル基、イソボルニル基、等)、芳香族基(フェニル基、等)等が挙げられるが、特にはアルキル基が好ましい。   The polyalkylene derivative represented by the general formula (3) constituting the polyisocyanate derivative (A2) is not particularly limited, and examples thereof include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, and polypropylene. Glycol, polybutylene glycol, polytetramethylene glycol, etc., ethylene oxide, propylene oxide, tetramethylene oxide, ethylene oxide / propylene oxide random or block copolymer, ethylene oxide / tetramethylene oxide random or block copolymer , Random or block copolymer of propylene oxide / tetramethylene oxide, ethylene oxide / propylene oxide / Compound one of the hydroxyl group, such as polyether polyol is substituted with a hydrocarbon group having at least one structure selected from the random or block copolymers of tiger methylene oxide. Such hydrocarbon groups include alkyl groups (methyl group, ethyl group, propyl group, butyl group, etc.), alicyclic alkyl groups (cyclohexyl group, isobornyl group, etc.), aromatic groups (phenyl group, etc.), etc. Among them, an alkyl group is particularly preferable.

本発明において、分子末端がいずれも(メタ)アクリロイル基であるウレタン(メタ)アクリレート系化合物(A1)と分子末端の少なくとも1つが(メタ)アクリロイル基でかつ残りが炭化水素基であるポリイソシアネート系誘導体(A2)を併用するとき、導電率や膜強度の点で好ましく、かかる併用に際しては、ウレタン(メタ)アクリレート系化合物(A1)/ポリイソシアネート系誘導体(A2)が90/10〜40/60、更には90/10〜50/50、特には90/10〜70/30であることが好ましい。   In the present invention, a urethane (meth) acrylate compound (A1) whose molecular terminals are all (meth) acryloyl groups, and a polyisocyanate type whose at least one molecular terminal is a (meth) acryloyl group and the remainder is a hydrocarbon group When the derivative (A2) is used in combination, it is preferable in terms of electrical conductivity and film strength. In such combination, the urethane (meth) acrylate compound (A1) / polyisocyanate derivative (A2) is 90/10 to 40/60. Furthermore, 90/10 to 50/50, particularly 90/10 to 70/30 are preferable.

本発明で用いられる電解質塩(B)としては、通常の電解質として用いられるものであれば特に制限はないが、例えば、LiBR4(Rはフェニル基又はアルキル基)、LiPF6、LiSbF6、LiAsF6、LiBF4、LiCIO4、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiC69SO3、LiC817SO3、LiAlCl4、リチウムテトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート等の単独あるいは混合物等が挙げられる。中でも、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiC69SO3、LiC8l7SO3等のスルホン酸系アニオン又はイミド塩系の電解質が好適に用いられる。 The electrolyte salt (B) used in the present invention is not particularly limited as long as it is used as a normal electrolyte. For example, LiBR 4 (R is a phenyl group or an alkyl group), LiPF 6 , LiSbF 6 , LiAsF 6 , LiBF 4 , LiCIO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 6 F 9 SO 3 , LiC 8 F 17 SO 3 , LiAlCl 4 , lithium tetrakis Examples include [3,5-bis (trifluoromethyl) phenyl] borate alone or as a mixture. Among them, sulfonic acid type anions or imide salt type electrolytes such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 6 F 9 SO 3 , LiC 8 F l7 SO 3, etc. Are preferably used.

本発明で用いられるイオン性液体(C)としては、特に限定されないが、中でも電気化学的還元耐性の点で、下記一般式(4)で示されるイミダゾリウム系化合物であることが好ましい。   The ionic liquid (C) used in the present invention is not particularly limited, but an imidazolium compound represented by the following general formula (4) is particularly preferable from the viewpoint of electrochemical reduction resistance.

Figure 2006310071
(式中R1及びR3は、置換基を有していても良い炭素数1〜20の炭化水素基を示し、R2、R4及びR5は、それぞれ水酸基、アミノ基、ニトロ基、シアノ基、カルボキシル基、エーテル基、もしくはアルデヒド基を有していてもよい炭素数1〜10の炭化水素基又は水素原子を示し、Xは塩素、臭素、ヨウ素、BF4 -、BF325 -、PF6 -,NO3 -、CF3CO2 -、CF3SO3 -、(CF3SO22-、(CF3SO23-、(C25SO22-、AlCl4 -、Al2Cl7 -のいずれかを示す。)
Figure 2006310071
(Wherein R 1 and R 3 represent an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 4 and R 5 are a hydroxyl group, an amino group, a nitro group, A C1-C10 hydrocarbon group or hydrogen atom which may have a cyano group, a carboxyl group, an ether group, or an aldehyde group, and X represents chlorine, bromine, iodine, BF 4 , BF 3 C 2 F 5 , PF 6 , NO 3 , CF 3 CO 2 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , (C 2 F 5 SO 2 ) 2 N , AlCl 4 , or Al 2 Cl 7 is indicated.)

上記一般式(4)で示されるイミダゾリウム系化合物の具体例としては、例えば、1−イソプロピル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−エチル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−ブチル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−ヘキシル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−オクチル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩等が挙げられ、中でも導電率、耐還元性の点で1−イソプロピル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩が最も好ましい。 Specific examples of the imidazolium compound represented by the general formula (4) include, for example, 1-isopropyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-ethyl-2,3-dimethylimidazolium bistri Fluoromethanesulfonyl salt, 1-butyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-hexyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-octyl-2,3-dimethylimidazolium Examples thereof include bistrifluoromethanesulfonyl salt. Among them, 1-isopropyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt is most preferable from the viewpoint of conductivity and reduction resistance.

本発明で用いられるエチレン性不飽和モノマー(D)としては、特に限定されないが、一般式(5)で示される重合性モノマーであることが好ましい。

Figure 2006310071
〔ここで、R1は水素又はメチル基、R2は水素、炭素数1〜18の直鎖又は分岐のアルキル基、k、l、mはいずれも整数であり、k+l+m≧1である。尚、一般式中、括弧内はブロック共重合体又はランダム共重合体のいずれでもよい。〕
炭素数1〜18の直鎖又は分岐のアルキル基としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、t−ブチル、ペンチル、ヘキシル、オクチル、ノニル、デシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル等が例示される。 Although it does not specifically limit as ethylenically unsaturated monomer (D) used by this invention, It is preferable that it is a polymerizable monomer shown by General formula (5).
Figure 2006310071
[Wherein R 1 is hydrogen or a methyl group, R 2 is hydrogen, a linear or branched alkyl group having 1 to 18 carbon atoms, k, l, and m are all integers, and k + 1 + m ≧ 1. In the general formula, the parenthesis may be a block copolymer or a random copolymer. ]
Examples of the linear or branched alkyl group having 1 to 18 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, octyl, nonyl, decyl, Examples include undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl and the like.

又、上記一般式(5)で示される重合性モノマーの他にも、2−ビニルピロリドン、アクリロイルモルフォリン、2−ヒドロキシブチルビニルエーテル、エチルエチレングリコールモノ(メタ)アクリレート、プロピルエチレングリコールモノ(メタ)アクリレート、フェニルエチレングリコールモノ(メタ)アクリレート等の単官能モノマー、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート等の2官能モノマー、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の3官能以上のモノマー等が挙げられるが、一般式(5)の重合性モノマーが特に好ましい。   In addition to the polymerizable monomer represented by the general formula (5), 2-vinylpyrrolidone, acryloylmorpholine, 2-hydroxybutyl vinyl ether, ethylethylene glycol mono (meth) acrylate, propylethylene glycol mono (meth) Monofunctional monomers such as acrylate, phenylethylene glycol mono (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol Di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate , Ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) Bifunctional such as acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate Monomers, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol (Meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) Trifunctional or higher functional monomers such as acrylate are exemplified, and the polymerizable monomer of the general formula (5) is particularly preferable.

一般式(5)で示される重合性モノマーの具体例としては、ポリエチレングリコールモノ(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール−ポリプロピレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコール−ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。中でも、一般式(4)において、R1が水素又はメチル基、R2がメチル基で、kが3、9又は12、lが0、mが0のメトキシポリエチレングリコールモノ(メタ)アクリレートが導電率の観点から特に好ましい。 Specific examples of the polymerizable monomer represented by the general formula (5) include polyethylene glycol mono (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and polypropylene glycol mono (meth) acrylate. , Polyethylene glycol-polypropylene glycol mono (meth) acrylate, poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate, poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate , Ethoxy polyethylene glycol mono (meth) acrylate, octoxy polyethylene glycol-polypropylene glycol mono (meth) acrylate Lauroxypolyethylene glycol mono (meth) acrylate, stearoxy polyethylene glycol mono (meth) acrylate. Among them, in general formula (4), methoxypolyethylene glycol mono (meth) acrylate in which R 1 is hydrogen or a methyl group, R 2 is a methyl group, k is 3, 9 or 12, 1 is 0, and m is 0 is conductive. Particularly preferable from the viewpoint of rate.

本発明では無機フィラー(E)を含有することが機械的強度の点で好ましく、かかる無機フィラー(E)としては、 酸化ケイ素、アルミナ、酸化チタン、ジルコニア、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ−LiAlO2、LiTiO3等が挙げられるが、中でも、酸化ケイ素、好ましくは疎水性を有する酸化ケイ素、親水性を有する酸化ケイ素、特に好ましくは親水性を有する酸化ケイ素が挙げられる。
疎水性を有する酸化ケイ素としては、例えば、シリコンオイル、ヘキサアルキルジシラザン、アルキルシランから選ばれるケイ素化合物により表面処理された酸化ケイ素であればよく、1種又2種併用して用いることができる。
In the present invention, it is preferable to contain an inorganic filler (E) in terms of mechanical strength. Examples of the inorganic filler (E) include silicon oxide, alumina, titanium oxide, zirconia, barium titanate, calcium titanate, and titanic acid. Lead, γ-LiAlO 2 , LiTiO 3 and the like can be mentioned, among which silicon oxide, preferably silicon oxide having hydrophobicity, silicon oxide having hydrophilicity, particularly preferably silicon oxide having hydrophilicity.
As the silicon oxide having hydrophobicity, for example, silicon oxide surface-treated with a silicon compound selected from silicon oil, hexaalkyldisilazane, and alkylsilane may be used, and one kind or two kinds may be used in combination. .

シリコンオイルの具体例としては、ジメチルシリコンオイル、フェニルメチルシリコンオイル等、ヘキサアルキルジシラザンの具体例としては、ヘキサメチルジシラザン、ヘキサエチルジシラザン等、アルキルシランの具体例としては、ブチルシラン、ヘキシルシラン、オクチルシラン等が挙げられ、シリコンオイルにより表面処理された酸化ケイ素の具体例としては、例えば、日本アエロジル社製の「RY50」、「NY50」、「RY200S」、「R202」、「RY200」、「RY300」等が挙げられ、ヘキサアルキルジシラザンにより表面処理された酸化ケイ素の具体例としては、例えば、日本アエロジル社製の「RY50」、「NAX50」、「NX90」、「RX200」、「RX300」、「R812」、「R812S」等が挙げられ、アルキルシランにより表面処理された酸化ケイ素の具体例としては、例えば、日本アエロジル社製の「R805」等が挙げられる。   Specific examples of silicone oil include dimethyl silicone oil, phenylmethyl silicone oil, etc. Specific examples of hexaalkyldisilazane include hexamethyldisilazane, hexaethyldisilazane, etc. Specific examples of alkylsilane include butylsilane, hexyl Specific examples of silicon oxide surface-treated with silicon oil include silane, octylsilane and the like. For example, “RY50”, “NY50”, “RY200S”, “R202”, “RY200” manufactured by Nippon Aerosil Co., Ltd. Specific examples of silicon oxide surface-treated with hexaalkyldisilazane include, for example, “RY50”, “NAX50”, “NX90”, “RX200”, “RX200” manufactured by Nippon Aerosil Co., Ltd. RX300 "," R812 "," R812S Etc., and specific examples of the silicon oxide surface-treated with an alkylsilane, for example, Nippon Aerosil Co., Ltd. "R805", and the like.

また、親水性を有する酸化ケイ素とは、四塩化ケイ素を原料とし、酸素/水素の火炎中で加水分解して得られるものであり、酸化ケイ素の粒子の表面には、シラノール基(≡SiOH)が存在しているものである。具体例としては、日本アエロジル社製の「アエロジル300」、「アエロジル200」、「アエロジル100」、「アエロジル50」等が挙げられる。
本発明において、かかる無機フィラー(E)は微粒子であることが好ましく、かかる粒径は、1μm以下であることが機械的強度向上の点で好ましい。より好ましい粒径は7〜500nmであり、特には7〜40nmである。
Hydrophilic silicon oxide is obtained by hydrolyzing silicon tetrachloride as a raw material in an oxygen / hydrogen flame. Silanol groups (≡SiOH) are present on the surface of silicon oxide particles. Is something that exists. Specific examples include “Aerosil 300”, “Aerosil 200”, “Aerosil 100”, “Aerosil 50” manufactured by Nippon Aerosil Co., Ltd., and the like.
In the present invention, the inorganic filler (E) is preferably fine particles, and the particle size is preferably 1 μm or less from the viewpoint of improving mechanical strength. A more preferable particle size is 7 to 500 nm, particularly 7 to 40 nm.

本発明では更に、導電率向上のために、電解液(F)を用いることでき、かかる電解液(F)としては、例えば、カーボネート溶媒(プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート)、アミド溶媒(N−メチホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−エチルアセトアミド、N−メチルピロジリノン)、ラクトン溶媒(γ−ブチルラクトン、γ−バレロラクトン、δ−バレロラクトン、3−メチル−1、3オキサゾリジン−2−オン等)、アルコール溶媒(エチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、1、2ブタンジオール、1、3ブタンジオール、1,4ブタンジオール、ジグリセリン、ポリオキシアルキレングリコールシクロヘキサンジオール、キシレングリコール等)、エーテル溶媒(メチラール、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1−エトキシ−2−メトキシエタン、アルコキシポリアルキレンエーテル等)、ニトリル溶媒(ベンゾニトリル、アセトニトリル、3−メトキシプロピオニトリル等)、燐酸類及び燐酸エステル溶媒(正燐酸、メタ燐酸、ピロ燐酸、ポリ燐酸、亜燐酸、トリメチルホスフェート等)、2−イミダゾリジノン類(1,3−ジメチル−2−イミダゾリジノン等)、ピロリドン類、スルホラン溶媒(スルホラン、テトラメチレンスルホラン)、フラン溶媒(テトラヒドロフラン、2−メチルテトラヒドロフラン、2,5−ジメトキシテトラヒドロフラン)、ジオキソラン、ジオキサン等が挙げられ、これらの単独あるいは2種以上の混合溶媒が使用できる。これらのうち好ましくはカーボネート類、エーテル類、フラン溶媒である。   In the present invention, an electrolytic solution (F) can be further used to improve conductivity. Examples of the electrolytic solution (F) include carbonate solvents (propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate). ), Amide solvents (N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N-methylacetamide, N-ethylacetamide, N-methylpyrrolidinone), lactone solvents (γ-butyllactone, γ- Valerolactone, δ-valerolactone, 3-methyl-1,3oxazolidine-2-one, etc.), alcohol solvent (ethylene glycol, propylene glycol, glycerin, methyl cellosolve, 1,2 butanediol, 1,3 butanediol, 1 , 4 butanezio , Diglycerin, polyoxyalkylene glycol cyclohexanediol, xylene glycol, etc.), ether solvent (methylal, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1-ethoxy-2-methoxyethane, alkoxy polyalkylene ether, etc. ), Nitrile solvents (benzonitrile, acetonitrile, 3-methoxypropionitrile, etc.), phosphoric acids and phosphoric ester solvents (regular phosphoric acid, metaphosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, trimethyl phosphate, etc.), 2-imidazolid Nons (1,3-dimethyl-2-imidazolidinone, etc.), pyrrolidones, sulfolane solvents (sulfolane, tetramethylene sulfolane), furan solvents (tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran) Dioxolane, dioxane, and the like, these alone or a mixed solvent can be used. Of these, carbonates, ethers and furan solvents are preferred.

かくして本発明では、硬化性オリゴマー(A)、電解質塩(B)及びイオン性液体(C)、好ましくは更にエチレン性不飽和モノマー(D)や無機フィラー(E)も含有してなり、必要に応じて更に電解液(F)も含有してなる組成物が得られるが、各成分の含有量は以下の通りである。   Thus, in the present invention, the curable oligomer (A), the electrolyte salt (B) and the ionic liquid (C), preferably further containing an ethylenically unsaturated monomer (D) and an inorganic filler (E) are necessary. Accordingly, a composition containing the electrolytic solution (F) is also obtained, and the content of each component is as follows.

電解質塩(B)に関しては、該リチウムイオン導電性組成物[I]中のリチウム原子とエーテル性の酸素原子のモル数の比が0.02〜0.2であることが好ましく、より好ましくは0.03〜0.1であり、上記範囲以外では導電性不良となり好ましくない。
イオン性液体(C)に関しては、硬化性オリゴマー(A)100重量部に対して、40〜900重量部、特には100〜900重量部、更には150〜900重量部であることが好ましく、40重量部未満では導電性が改善されず、900重量部を超えると膜の機械強度が著しく低下しとなり好ましくない。
エチレン性不飽和モノマー(D)に関しては、硬化性オリゴマー(A)100重量部に対して10〜100重量部、特には10〜70重量部、更には10〜30重量部であることが好ましく、10重量部未満では効果が認められず、100重量部を超えると強度不足となり好ましくない。
Regarding the electrolyte salt (B), the ratio of the number of moles of lithium atoms and etheric oxygen atoms in the lithium ion conductive composition [I] is preferably 0.02 to 0.2, more preferably. It is 0.03-0.1, and it becomes unfavorable for conductivity outside the above range.
The ionic liquid (C) is preferably 40 to 900 parts by weight, particularly 100 to 900 parts by weight, more preferably 150 to 900 parts by weight, with respect to 100 parts by weight of the curable oligomer (A). If the amount is less than parts by weight, the conductivity is not improved. If the amount exceeds 900 parts by weight, the mechanical strength of the film is significantly lowered, which is not preferable.
The ethylenically unsaturated monomer (D) is preferably 10 to 100 parts by weight, particularly 10 to 70 parts by weight, more preferably 10 to 30 parts by weight, based on 100 parts by weight of the curable oligomer (A). If the amount is less than 10 parts by weight, the effect is not recognized.

また、無期フィラー(E)の含有量については、硬化性オリゴマー(A)100重量部(エチレン性不飽和モノマー(D)を含有する場合は硬化性オリゴマー(A)とエチレン性不飽和モノマー(D)の合計100重量部)に対して、0.5〜100重量部、より好ましくは3〜50重量部、特に好ましくは10〜50量部、更には20〜50重量部が好ましい。かかる無機フィラー(E)が0.5重量部未満では機械的強度の向上効果及び耐熱性の点で劣り、100重量部を超えると逆に柔軟性不良となり好ましくない。   In addition, the content of the indefinite filler (E) is about 100 parts by weight of the curable oligomer (A) (when the ethylenically unsaturated monomer (D) is contained, the curable oligomer (A) and the ethylenically unsaturated monomer (D) ) To 100 to 100 parts by weight, more preferably 3 to 50 parts by weight, particularly preferably 10 to 50 parts by weight, and further preferably 20 to 50 parts by weight. If the inorganic filler (E) is less than 0.5 parts by weight, it is inferior in terms of improving the mechanical strength and heat resistance.

電解液(F)を使用する場合の好ましい組成は、特に限定されないが、硬化性オリゴマー(A)100重量部(エチレン性不飽和モノマー(D)を含有する場合は硬化性オリゴマー(A)とエチレン性不飽和モノマー(D)の合計100重量部)に対して、10〜100重量部、より好ましくは10〜70重量部、特に好ましくは10〜30重量部であり、10重量部未満では効果が認められず、100重量部を超えると強度不足となり好ましくない。   The preferable composition when using the electrolytic solution (F) is not particularly limited, but 100 parts by weight of the curable oligomer (A) (when the ethylenically unsaturated monomer (D) is contained, the curable oligomer (A) and ethylene are used. 10 to 100 parts by weight, more preferably 10 to 70 parts by weight, particularly preferably 10 to 30 parts by weight, and the effect is less than 10 parts by weight. If it exceeds 100 parts by weight, the strength is insufficient, which is not preferable.

かくして本発明では、上記で得られるリチウムイオン導電性組成物[I]を用いて、硬化被膜が形成され、固体電解質となるのである。   Thus, in the present invention, the lithium ion conductive composition [I] obtained above is used to form a cured film and become a solid electrolyte.

リチウムイオン導電性組成物[I]から得られる硬化被膜の厚みは5〜100μm程度が好ましく、より好ましくは10〜40μmである。硬化被膜の厚みが5μm未満では追従性不良となり、100μmを超えると導電性に影響があり好ましくない。   The thickness of the cured film obtained from the lithium ion conductive composition [I] is preferably about 5 to 100 μm, more preferably 10 to 40 μm. If the thickness of the cured film is less than 5 μm, the followability is poor, and if it exceeds 100 μm, the conductivity is affected, which is not preferable.

リチウムイオン導電性組成物[I]から得られるリチウムイオン導電性硬化被膜は、リチウム箔からなる負極上に「直接」形成されるのが好ましい。ここで、「直接」形成されるとは、リチウムイオン導電性組成物[I]が溶媒を含まないため、リチウム箔からなる負極上に直接塗布し、硬化させることにより形成されたものであることを意味する。このように、溶媒を含まないリチウムイオン導電性組成物[I]を用いて、リチウム箔からなる負極上に直接リチウムイオン導電性硬化被膜を形成することにより、被膜が薄くても十分な強度が得られ、結果として電池性能を向上させることができ、更に、リチウム金属表面の酸化を防止でき、取り扱いが容易となる利点もある。   The lithium ion conductive cured film obtained from the lithium ion conductive composition [I] is preferably formed “directly” on the negative electrode made of lithium foil. Here, “directly formed” means that since the lithium ion conductive composition [I] does not contain a solvent, it is formed by directly applying and curing on a negative electrode made of a lithium foil. Means. Thus, by using the lithium ion conductive composition [I] that does not contain a solvent, the lithium ion conductive cured film is directly formed on the negative electrode made of lithium foil, so that sufficient strength can be obtained even if the film is thin. As a result, the battery performance can be improved, and further, the oxidation of the lithium metal surface can be prevented, and the handling becomes easy.

ここで、本発明においては、リチウムポリマー電池の負極に使用されるリチウム箔の厚みは10〜500μmが好ましく、特には50〜200μmが好ましく、更には50〜150μmが好ましい。銅箔や鉄箔などの集電体上に固定したリチウム箔表面上にリチウムイオン導電性硬化被膜が適用される。   Here, in this invention, 10-500 micrometers is preferable, as for the thickness of the lithium foil used for the negative electrode of a lithium polymer battery, 50-200 micrometers is especially preferable, Furthermore, 50-150 micrometers is preferable. A lithium ion conductive cured coating is applied on the surface of a lithium foil fixed on a current collector such as copper foil or iron foil.

本発明によるリチウムイオン導電性硬化被膜の形成は、リチウム箔等の負極にリチウムイオン導電性組成物[I]をコーティングした後、活性光線照射又は/及び熱で重合し、硬化することにより達成される。本発明においては、取り扱いや生産効率の点で活性光線照射により重合し、硬化するほうが好ましい。
また、硬化を促進するために活性光線照射を行った後、加熱することも好ましい。
Formation of a lithium ion conductive cured film according to the present invention is achieved by coating a negative electrode such as a lithium foil with the lithium ion conductive composition [I], and then polymerizing and curing by irradiation with actinic rays or / and heat. The In the present invention, it is preferable to polymerize and cure by irradiation with actinic rays in view of handling and production efficiency.
Moreover, it is also preferable to heat after irradiating actinic rays to accelerate curing.

活性光線照射は通常、光、紫外線、電子線、X線等により行われるが、中でも紫外線が好ましく、紫外線照射に際しては、光源として、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノン灯、メタルハライドランプ、ケミカルランプ等が用いられる。照射量としては、特に限定されず適宜選択されるが、100〜1000mJ/cm2、好ましくは100〜700mJ/cm2の積算照射量で、照射を行うことが好ましい。
これらの活性光線照射により重合し、硬化させる場合は、光重合開始剤をリチウムイオン導電性組成物[I]の重合性成分〔硬化性オリゴマー(A)及びエチレン性不飽和単量体(D)〕100重量部に対して0.3重量部以上、特には0.5〜5重量部含有させることが好ましい。積算照射量や光重合開始剤が共に少ない場合はフィルムの強度が保てず、また多すぎてもそれ以上の効果は認められず好ましくない。
Actinic ray irradiation is usually performed by light, ultraviolet rays, electron beams, X-rays, etc. Among them, ultraviolet rays are preferable, and in the case of ultraviolet irradiation, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp are used as a light source. Chemical lamps and the like are used. The amount of irradiation is appropriately selected without particular limitation, 100~1000mJ / cm 2, preferably in integrated irradiation dose of 100~700mJ / cm 2, it is preferable to perform irradiation.
When polymerizing and curing by irradiation with these actinic rays, the photopolymerization initiator is a polymerizable component of the lithium ion conductive composition [I] [curable oligomer (A) and ethylenically unsaturated monomer (D). It is preferable to contain 0.3 part by weight or more, particularly 0.5 to 5 parts by weight with respect to 100 parts by weight. When both the integrated irradiation amount and the photopolymerization initiator are small, the strength of the film cannot be maintained, and when the amount is too large, no further effect is observed, which is not preferable.

該光重合開始剤としては、特に限定されず、公知の光重合開始剤を用いることができるが、例えば、ベンゾフェノン、P,P′−ビス(ジメチルアミノ)ベンゾフェノン、P,P′−ビス(ジエチルアミノ)ベンゾフェノン、P,P′−ビス(ジブチルアミノ)ベンゾフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn−ブチルエーテル、ベンゾインフェニルエーテル、ベンゾインイソブチルエーテル、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、ベンジルジフェニルジスルフィド、ベンジルジメチルケタール、ジベンジル、ジアセチル、アントラキノン、ナフトキノン、3,3'−ジメチル−4−メトキシベンゾフェノン、ジクロロアセトフェノン、2−クロロチオキサントン、2−メチルチオキサントン、2,4−ジエチルチオキサントン、2,2−ジエトキシアセトフェノン、2,2−ジクロロ−4−フェノキシアセトフェノン、フェニルグリオキシレート、α−ヒドロキシイソブチルフェノン、ジベンゾスパロン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチル−1−プロパノン、2−メチル−[4−(メチルチオ)フェニル]−2−モルフォリノ−1−プロパノン、トリブロモフェニルスルホン、トリブロモメチルフェニルスルホン、メチルベンゾイルホルメート、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2,2−ジメトキシ−1,2−ジフェニルメタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、更には2,4,6−[トリス(トリクロロメチル)]−1,3,5−トリアジン、2,4−[ビス(トリクロロメチル)]−6−(4'−メトキシフェニル)−1,3,5−トリアジン、2,4−[ビス(トリクロロメチル)]−6−(4'−メトキシナフチル)−1,3,5−トリアジン、2,4−[ビス(トリクロロメチル)]−6−(ピペロニル)−1,3,5−トリアジン、2,4−[ビス(トリクロロメチル)]−6−(4'−メトキシスチリル)−1,3,5−トリアジン等のトリアジン誘導体、アクリジン及び9−フェニルアクリジン等のアクリジン誘導体、2,2'−ビス(o−クロロフェニル)−4,5,4',5'−テトラフェニル−1,2'−ビイミダゾール、2,2'−ビス(o−クロロフェニル)−4,5,4',5'−テトラフェニル−1,1'−ビイミダゾール、2,2'−ビス(o−フルオロフェニル)−4,5,4',5'−テトラフェニル−1,1'−ビイミダゾール、2,2'−ビス(o−メトキシフェニル)−4,5,4',5'−テトラフェニル−1,1'−ビイミダゾール、2,2'−ビス(p−メトキシフェニル)−4,5,4',5'−テトラフェニル−1,1'−ビイミダゾール、2,4,2',4'−ビス[ビ(p−メトキシフェニル)]−5,5'−ジフェニル−1,1'−ビイミダゾール、2,2'−ビス(2,4−ジメトキシフェニル)−4,5,4',5'−ジフェニル−1,1'−ビイミダゾール、2,2'−ビス(p−メチルチオフェニル)−4,5,4',5'−ジフェニル−1,1'−ビイミダゾール、ビス(2,4,5−トリフェニル)−1,1'−ビイミダゾール等や特公昭45−37377号公報に開示される1,2'−、1,4'−、2,4'−で共有結合している互変異性体等のヘキサアリールビイミダゾール誘導体、トリフェニルフォスフィン、そのほかにも2−ベンゾイル−2−ジメチルアミノ−1−[4−モルフォリノフェニル]−ブタン等が挙げられ、特に取り扱いの面で2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2,2−ジメトキシ−1,2−ジフェニルメタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトンなどが特に好適である。   The photopolymerization initiator is not particularly limited, and a known photopolymerization initiator can be used, and examples thereof include benzophenone, P, P′-bis (dimethylamino) benzophenone, P, P′-bis (diethylamino). ) Benzophenone, P, P'-bis (dibutylamino) benzophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin phenyl ether, benzoin isobutyl ether, benzoylbenzoic acid, benzoylbenzoic acid methyl , Benzyldiphenyl disulfide, benzyldimethyl ketal, dibenzyl, diacetyl, anthraquinone, naphthoquinone, 3,3′-dimethyl-4-methoxybenzophenone, dichloroacetophenone, 2- Chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, 2,2-diethoxyacetophenone, 2,2-dichloro-4-phenoxyacetophenone, phenylglyoxylate, α-hydroxyisobutylphenone, dibenzoparone, 1- (4-Isopropylphenyl) -2-hydroxy-2-methyl-1-propanone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propanone, tribromophenylsulfone, tribromomethylphenylsulfone Methylbenzoylformate, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2-dimethoxy-1,2-diphenylmethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and Are 2, 4, -[Tris (trichloromethyl)]-1,3,5-triazine, 2,4- [bis (trichloromethyl)]-6- (4'-methoxyphenyl) -1,3,5-triazine, 2,4 -[Bis (trichloromethyl)]-6- (4'-methoxynaphthyl) -1,3,5-triazine, 2,4- [bis (trichloromethyl)]-6- (piperonyl) -1,3,5 A triazine, a triazine derivative such as 2,4- [bis (trichloromethyl)]-6- (4′-methoxystyryl) -1,3,5-triazine, an acridine derivative such as acridine and 9-phenylacridine, 2′-bis (o-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (o-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1, '-Biimidazole, 2,2'-bis (o-fluorophenyl) -4,5,4', 5'-tetraphenyl-1,1'-biimidazole, 2,2'-bis (o-methoxyphenyl) ) -4,5,4 ′, 5′-tetraphenyl-1,1′-biimidazole, 2,2′-bis (p-methoxyphenyl) -4,5,4 ′, 5′-tetraphenyl-1 , 1′-biimidazole, 2,4,2 ′, 4′-bis [bi (p-methoxyphenyl)]-5,5′-diphenyl-1,1′-biimidazole, 2,2′-bis ( 2,4-dimethoxyphenyl) -4,5,4 ′, 5′-diphenyl-1,1′-biimidazole, 2,2′-bis (p-methylthiophenyl) -4,5,4 ′, 5 ′ -Diphenyl-1,1'-biimidazole, bis (2,4,5-triphenyl) -1,1'-biimidazole, etc. Hexaarylbiimidazole derivatives such as tautomers covalently bonded at 1,2′-, 1,4′-, 2,4′-, disclosed in JP-A-45-37377, triphenylphosphine, and others Also includes 2-benzoyl-2-dimethylamino-1- [4-morpholinophenyl] -butane, and particularly 2-hydroxy-2-methyl-1-phenylpropan-1-one in view of handling. 2,2-dimethoxy-1,2-diphenylmethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone and the like are particularly suitable.

また、熱により重合し、硬化させる場合は、熱重合開始剤をリチウムイオン導電性組成物[I]の重合性成分〔硬化性オリゴマー(A)及びエチレン性不飽和単量体(D)〕100重量部に対して、0.1〜5重量部、特には0.3〜1重量部含有させることが好ましい。   Moreover, when making it superpose | polymerize and cure with a heat | fever, a thermal-polymerization initiator uses the polymeric component [curable oligomer (A) and ethylenically unsaturated monomer (D)] 100 of lithium ion conductive composition [I]. It is preferable to contain 0.1-5 weight part with respect to a weight part, especially 0.3-1 weight part.

かかる熱重合開始剤としては、特に限定されないが、例えばアゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、エチルメチルケトンペルオキシド、ビス−(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート等が挙げられる。
又、光及び熱を併用して重合し、硬化させる場合は、上記の光重合開始剤と上記熱重合開始剤を併用することが好ましい。
The thermal polymerization initiator is not particularly limited, and examples thereof include azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, ethyl methyl ketone peroxide, bis- (4-t-butylcyclohexyl) peroxydicarbonate, and diisopropyl. Examples include peroxydicarbonates such as peroxydicarbonate.
Moreover, when it superposes | polymerizes and hardens using light and a heat together, it is preferable to use said photoinitiator and said thermal polymerization initiator together.

更に、本発明では必要に応じて、増感剤、貯蔵安定剤等も併用される。増感剤としては、尿素、ニトリル化合物(N,N−ジ置換−P−アミノベンゾニトリル等)、燐化合物(トリ−n−ブチルホスフィン等)が好ましく、貯蔵安定剤としては、第4級アンモニウムクロライド、ベンゾチアゾール、ハイドロキノンが好ましい。   Furthermore, in the present invention, a sensitizer, a storage stabilizer and the like are used in combination as necessary. As the sensitizer, urea, a nitrile compound (N, N-disubstituted-P-aminobenzonitrile, etc.) and a phosphorus compound (tri-n-butylphosphine, etc.) are preferable. As the storage stabilizer, quaternary ammonium is used. Chloride, benzothiazole and hydroquinone are preferred.

かくして、リチウムイオン導電性の硬化被膜は、非常に薄いにもかかわらず非常に優れた機械的強度を有しており、導電性及び充放電特性などの電池性能に優れたリチウムイオン電池(一次電池、二次電池)を得るために好適に使用できる。特に二次電池に応用した場合には大きな効果を示す。
更に、本発明では、リチウムイオン導電性組成物[I]に無機フィラー(E)、特には親水性を有する酸化ケイ素の微粒子を配合する場合には、イオン導電性の低下を招かずに、固体電解質膜の機械的強度や、耐熱性を更に高めることができ、電極間のショートを抑制する働きもある。更には、高温域での機材特性に優れるため高温安定性にも優れた効果を発揮するものである。
Thus, the lithium ion conductive cured film has a very excellent mechanical strength despite being very thin, and is a lithium ion battery (primary battery) excellent in battery performance such as conductivity and charge / discharge characteristics. , A secondary battery). In particular, when applied to a secondary battery, a great effect is shown.
Furthermore, in the present invention, when the inorganic filler (E), particularly fine particles of silicon oxide having hydrophilicity, are blended with the lithium ion conductive composition [I], the solid state is not reduced without causing a decrease in ion conductivity. The mechanical strength and heat resistance of the electrolyte membrane can be further increased, and there is also a function of suppressing a short circuit between the electrodes. Furthermore, since it is excellent in equipment characteristics in a high temperature range, it exhibits an excellent effect in high temperature stability.

本発明の固体電解質は、基本的には正極、とりわけ複合正極と負極との間に狭持され、リチウムポリマー電池となるのであるが、必要に応じてポリマーの保持材としては、セパレータを用いてもよい。
セパレータとしては、電解質溶液のイオン移動に対して低抵抗であるものが用いられ、例えば、ポリプロピレン、ポリエチレン、ポリエステル、ポリテトラフルオロエチレン、ポリビニルアルコール、エチレン−酢酸ビニル系共重合体ケン化物等の1種以上の材質から選ばれる微多孔膜、不織布又は織布が挙げられ、短絡を完全に防止することができる。本発明の固体電解質そのものにセパレータとしての機能を持たせる場合はこれらは不要である。
The solid electrolyte of the present invention is basically sandwiched between a positive electrode, in particular, a composite positive electrode and a negative electrode, and becomes a lithium polymer battery. If necessary, a separator is used as a polymer holding material. Also good.
As the separator, one having low resistance to ion migration of the electrolyte solution is used. For example, 1 such as polypropylene, polyethylene, polyester, polytetrafluoroethylene, polyvinyl alcohol, ethylene-vinyl acetate copolymer saponified product, etc. A microporous film, a nonwoven fabric or a woven fabric selected from more than one kind of materials can be mentioned, and a short circuit can be completely prevented. When the solid electrolyte of the present invention itself has a function as a separator, these are unnecessary.

本発明において、「複合正極」とは、正極活物質に、ケッチェンブラック、アセチレンブラック等の導電助剤、ポリフッ化ビニリデンなどの結着剤及び、必要に応じてイオン導電性ポリマーからなる組成物を混合した正極材料を導電性金属板(アルミニウム箔など)に塗布したものである。
本発明のリチウムポリマー電池、とりわけ二次電池の正極活物質としては、無機系活物質、有機系活物質、これらの複合体が例示できるが、無機系活物質あるいは無機系活物質と有機系活物質の複合体が、特にエネルギー密度が大きくなる点から好ましい。
In the present invention, the “composite positive electrode” means a composition comprising a positive electrode active material, a conductive additive such as ketjen black and acetylene black, a binder such as polyvinylidene fluoride, and if necessary, an ion conductive polymer. A positive electrode material mixed with is applied to a conductive metal plate (aluminum foil or the like).
Examples of the positive electrode active material of the lithium polymer battery of the present invention, particularly of the secondary battery, include inorganic active materials, organic active materials, and composites thereof, but inorganic active materials or inorganic active materials and organic active materials can be exemplified. A composite of substances is particularly preferable from the viewpoint of increasing the energy density.

無機系活物質として、3V系ではLi0.3MnO2、Li4Mn512、V25等、4V系ではLiCoO2、LiMn24、LiNiO2等の金属酸化物、TiS2、MoS2、FeS等の金属硫化物、これらの化合物とリチウムの複合酸化物が挙げられる。有機系活物質としてはポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリパラフェニレン、等の導電性高分子、(炭素体)有機ジスルフィド化合物、カーボンジスルフィド、活性硫黄等の硫黄系正極材料等が用いられる。 As inorganic-based active material, Li 0.3 MnO 2 in a 3V, Li 4 Mn 5 O 12, V 2 O 5 , etc., LiCoO 2, LiMn 2 O 4 , LiNiO metal oxide such as 2 is 4V-based, TiS 2, MoS 2 and metal sulfides such as FeS, and complex oxides of these compounds and lithium. Examples of the organic active material include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene, (carbon) organic disulfide compounds, sulfur-based positive electrode materials such as carbon disulfide, and active sulfur.

イオン導電性ポリマーとしては、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールジエチルエーテルなどのポリエチレングリコールジアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリエチレングリコールなどのポリマーが挙げられる。   Examples of the ion conductive polymer include polymers such as polyethylene glycol dialkyl ether such as polyethylene glycol dimethyl ether and polyethylene glycol diethyl ether, polyethylene glycol monoalkyl ether, and polyethylene glycol.

一方、本発明のリチウムポリマー電池の負極活物質としては、リチウム金属や、アルミニウム、鉛、シリコン、マグネシウム等とリチウムとの合金、ポリピリジン、ポリアセチレン、ポリチオフェンあるいはこれらの誘導体のカチオンドープ可能な導電性高分子、リチウムを吸蔵可能なSnO2などの酸化物及びSn系合金等が挙げられるが、中でも本発明ではリチウム金属がエネルギー密度の点で最も好ましい。 On the other hand, the negative electrode active material of the lithium polymer battery of the present invention includes lithium metal, aluminum, lead, silicon, magnesium, etc. and lithium alloys, polypyridine, polyacetylene, polythiophene, or cation-doped conductive highly conductive materials thereof. Examples include molecules, oxides such as SnO 2 capable of occluding lithium, and Sn-based alloys. In the present invention, lithium metal is most preferable in terms of energy density.

本発明においては、上記の如く負極に上記のリチウムイオン導電性組成物[I]からなる硬化被膜を形成させることが好ましいが、上記正極、とりわけ複合正極に、上記のリチウムイオン導電性組成物[I]からなる硬化被膜を形成させることもできる。
かかる硬化被膜を形成させる場合には、イオン導電性ポリマーは必ずしも必要ではなく、適宜選択される。
In the present invention, it is preferable to form a cured film composed of the above lithium ion conductive composition [I] on the negative electrode as described above. However, the above lithium ion conductive composition [ A cured film of I] can also be formed.
In the case of forming such a cured film, the ion conductive polymer is not necessarily required and is appropriately selected.

具体的には、複合正極上に、上記のリチウムイオン導電性組成物[I]を塗工した後、硬化して、リチウムイオン導電性硬化被膜からなる固体電解質−正極接合体を形成し、該固体電解質−正極接合体とリチウム箔等からなる負極を接合することが好ましい。   Specifically, after applying the above lithium ion conductive composition [I] on the composite positive electrode, it is cured to form a solid electrolyte-positive electrode assembly comprising a lithium ion conductive cured film, It is preferable to join a solid electrolyte-positive electrode assembly and a negative electrode made of lithium foil or the like.

更に、本発明では、リチウム箔等からなる負極上に、リチウムイオン導電性組成物[I]から得られる硬化被膜を形成してなる固体電解質−負極接合体と、複合正極上に、リチウムイオン導電性組成物[I]から得られる硬化被膜を形成してなる固体電解質−正極接合体とを、固体電解質面同士が接するように接合することも好ましく、具体的には、正極材料を導電性金属板に塗布して複合正極を形成した後、複合正極上にリチウムイオン導電性組成物[I]を塗工し硬化して、リチウムイオン導電性硬化被膜からなる固体電解質−正極接合体を形成し、一方、リチウム箔等からなる負極上にリチウムイオン導電性組成物[I]を塗工し硬化して、リチウムイオン導電性硬化被膜からなる固体電解質−負極接合体を形成し、そして得られた固体電解質−負極接合体と得られた固体電解質−正極接合体とを固体電解質面同士が接するように接合することが好ましい。   Furthermore, in the present invention, a solid electrolyte-negative electrode assembly formed by forming a cured film obtained from the lithium ion conductive composition [I] on a negative electrode made of lithium foil or the like, and a lithium ion conductive material on the composite positive electrode. The solid electrolyte-positive electrode assembly formed by forming a cured film obtained from the conductive composition [I] is preferably bonded so that the solid electrolyte surfaces are in contact with each other. Specifically, the positive electrode material is made of a conductive metal. After coating the plate to form a composite positive electrode, the lithium ion conductive composition [I] is applied on the composite positive electrode and cured to form a solid electrolyte-positive electrode assembly comprising a lithium ion conductive cured film. On the other hand, the lithium ion conductive composition [I] was coated on a negative electrode made of lithium foil or the like and cured to form a solid electrolyte-negative electrode assembly made of a lithium ion conductive cured film, and obtained. Solid Electrolyte - anode assembly and the obtained solid electrolyte - it is preferable to join the cathode assembly in contact to each other the solid electrolyte surface.

本発明のリチウムポリマー電池、特にリチウムイオンポリマー二次電池の形態は、特に限定するものではないが、コイン、シート、円筒等、種々の形態の電池セルに封入することができる。   The form of the lithium polymer battery of the present invention, particularly the lithium ion polymer secondary battery, is not particularly limited, but can be enclosed in various forms of battery cells such as coins, sheets, and cylinders.

本発明のリチウムポリマー電池を製造するフローを図1に示す。
先ず、Li箔(負極)上にリチウムイオン導電性組成物[I]を塗工し、次に紫外線照射及び/又は加熱により被膜を硬化させる。次に、複合正極を該硬化被膜に貼合わせて、電池を得ることができる。但し、これに限定されるものではなく、上記の通り、複合正極にリチウムイオン導電性組成物[I]を塗工し、紫外線照射及び/又は加熱により被膜を硬化させ、次に負極を該硬化被膜に貼合わせる、或いは、負極及び複合正極のいずれにもそれぞれリチウムイオン導電性組成物[I]を塗工し、紫外線照射及び/又は加熱により被膜を硬化させ、次に負極上及び複合正極上の硬化被膜同士を貼合わせるなどして、電池を得ることもできる。
A flow for manufacturing the lithium polymer battery of the present invention is shown in FIG.
First, the lithium ion conductive composition [I] is applied on the Li foil (negative electrode), and then the film is cured by ultraviolet irradiation and / or heating. Next, a composite positive electrode can be bonded to the cured coating to obtain a battery. However, the present invention is not limited to this, and as described above, the lithium ion conductive composition [I] is applied to the composite positive electrode, the film is cured by ultraviolet irradiation and / or heating, and then the negative electrode is cured. The lithium ion conductive composition [I] is applied to each of the negative electrode and the composite positive electrode, and the film is cured by ultraviolet irradiation and / or heating, and then on the negative electrode and the composite positive electrode. A battery can also be obtained by, for example, bonding the cured films of each other.

また、本発明においてリチウムポリマー電池を製造する当たり、正極及び負極の製造をそれぞれ連続して行い、引き続いて両極の接合を連続して行うことができ、電極の製造から電池の製造まで一貫した連続製造方法とすることができる。
これにより、従来のバッチ式、例えば、ロール状に保管された複合正極、或いは負極を一旦ロール状から巻きだし所定の大きさにカットした上で、その上に電解質層となる所定サイズのフィルムを積層し両極を貼り合わせるといった方法に比べて、複合正極或いは負極の巻きだしから電解質の塗工、硬化、両極の接合と連続したライン上で行うことができ、複合正極や負極などの製造時におけるクラックの発生が無くなるなど、各工程での製造管理が容易になるのである。
固体電解質−負極接合体と複合正極との接合、固体電解質−正極接合体と負極との接合、或いは固体電解質−正極接合体と固体電解質−負極接合体との接合に当たっては、加熱圧着により行うことが好ましい。
In addition, in manufacturing the lithium polymer battery according to the present invention, the positive electrode and the negative electrode can be continuously manufactured, and then both electrodes can be continuously bonded. It can be set as a manufacturing method.
As a result, a conventional batch type, for example, a composite positive electrode stored in a roll shape, or a negative electrode is once unwound from a roll shape and cut into a predetermined size, and then a film of a predetermined size to be an electrolyte layer is formed thereon. Compared to the method of laminating and laminating both electrodes, it can be performed on a continuous line from the winding of the composite positive electrode or negative electrode to the application of the electrolyte, curing, and joining of both electrodes. Manufacturing management in each process becomes easy, for example, generation of cracks is eliminated.
When joining the solid electrolyte-negative electrode assembly and the composite positive electrode, joining the solid electrolyte-positive electrode assembly and the negative electrode, or joining the solid electrolyte-positive electrode assembly and the solid electrolyte-negative electrode assembly, it is performed by thermocompression bonding. Is preferred.

以下、実施例を挙げて本発明を具体的に説明する。
硬化性オリゴマー(A)として以下のものを用意した。
〔ウレタンアクリレート(A1−1)〕
撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガスを導入させた後、イソホロンジイソシアネート(デグサ・ヒュルス社製、「VESTANAT IPDI」)160部、エチレンオキサイド/プロピレンオキサイドブロックポリエーテルポリオール(旭電化工業社製、「CM−211」、重量平均分子量約2100)755部を仕込み、70℃に昇温後、2−ヒドロキシエチルアクリレート85部、ハイドロキノンモノメチルエーテル0.4部、及びジブチルチンジラウレート(東京ファインケミカル社製、「LIOI」)0.1部の混合液体を3時間かけて均一滴下し、反応を行った。滴下完了後、約5時間反応を続けた後、IR測定の結果によりイソシアネートの消失を確認し反応を終了し、ウレタンアクリレート(A1−1)を得た(固形分:99.8%、数平均分子量:4300)。
尚、上記の数平均分子量はGPC測定(ポリスチレン基準)により測定したものである。
Hereinafter, the present invention will be specifically described with reference to examples.
The following were prepared as the curable oligomer (A).
[Urethane acrylate (A1-1)]
After introducing dry air gas into a reaction vessel equipped with a stirrer, a thermometer, a cooling pipe and an air gas introduction pipe, 160 parts of isophorone diisocyanate (Degussa Huls, “VESTANAT IPDI”), ethylene oxide / propylene oxide 755 parts of block polyether polyol (Asahi Denka Kogyo Co., Ltd., “CM-211”, weight average molecular weight of about 2100) was charged and heated to 70 ° C., then 85 parts of 2-hydroxyethyl acrylate, 0.4 parts of hydroquinone monomethyl ether , And 0.1 part of a mixed liquid of dibutyltin dilaurate (manufactured by Tokyo Fine Chemical Co., “LIOI”) was uniformly dropped over 3 hours to carry out the reaction. After completion of the dropwise addition, the reaction was continued for about 5 hours, and then the disappearance of the isocyanate was confirmed by the result of IR measurement to complete the reaction to obtain urethane acrylate (A1-1) (solid content: 99.8%, number average) Molecular weight: 4300).
In addition, said number average molecular weight is measured by GPC measurement (polystyrene standard).

〔ウレタンアクリレート(A1−2)〕
撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガスを導入させた後、イソホロンジイソシアネート(デグサ・ヒュルス社製、「VESTANAT IPDI」)170部、エチレンオキサイド/プロピレンオキサイドランダムポリエーテルポリオール(旭電化工業社製、「PR−2008」、重量平均分子量約2000)741部を仕込み、70℃に昇温後、2−ヒドロキシエチルアクリレート89部、ハイドロキノンモノメチルエーテル0.4部、及びジブチルチンジラウレート(東京ファインケミカル社製、「LIOI」)0.1部の混合液体を3時間かけて均一滴下し、反応を行った。滴下完了後、約5時間反応を続けた後、IR測定の結果によりイソシアネートの消失を確認し反応を終了し、ウレタンアクリレート(A1−2)を得た(固形分:99.8%、数平均分子量:2700)。
[Urethane acrylate (A1-2)]
After introducing dry air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas inlet pipe, 170 parts of isophorone diisocyanate (Degussa Huls, “VESTANAT IPDI”), ethylene oxide / propylene oxide 741 parts of a random polyether polyol (Asahi Denka Kogyo Co., Ltd., “PR-2008”, weight average molecular weight of about 2000) was charged, heated to 70 ° C., 89 parts of 2-hydroxyethyl acrylate, 0.4 parts of hydroquinone monomethyl ether , And 0.1 part of a mixed liquid of dibutyltin dilaurate (manufactured by Tokyo Fine Chemical Co., “LIOI”) was uniformly dropped over 3 hours to carry out the reaction. After completion of the dropwise addition, the reaction was continued for about 5 hours, and then the disappearance of isocyanate was confirmed by the result of IR measurement to complete the reaction, and urethane acrylate (A1-2) was obtained (solid content: 99.8%, number average) Molecular weight: 2700).

〔ウレタンアクリレート(A1−3)〕
撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガスを導入させた後、イソホロンジイソシアネート(デグサ・ヒュルス社製、「VESTANAT IPDI」)97部、エチレンオキサイド/プロピレンオキサイドランダムポリエーテルポリオール(旭電化工業社製、「PR−3007」、重量平均分子量約3000)870部を仕込み、70℃に昇温後、2−ヒドロキシエチルアクリレート33部、ハイドロキノンモノメチルエーテル0.4部、及びジブチルチンジラウレート(東京ファインケミカル社製、「LIOI」)0.1部の混合液体を3時間かけて均一滴下し、反応を行った。滴下完了後、約5時間反応を続けた後、IR測定の結果によりイソシアネートの消失を確認し反応を終了し、ウレタンアクリレート(A1−3)を得た(固形分:99.8%、数平均分子量:7000)。
[Urethane acrylate (A1-3)]
After introducing dry air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, 97 parts of isophorone diisocyanate (Degussa Huls, “VESTANAT IPDI”), ethylene oxide / propylene oxide 870 parts of random polyether polyol (Asahi Denka Kogyo Co., Ltd., “PR-3007”, weight average molecular weight of about 3000) are charged, and after raising the temperature to 70 ° C., 33 parts of 2-hydroxyethyl acrylate, 0.4 parts of hydroquinone monomethyl ether , And 0.1 part of a mixed liquid of dibutyltin dilaurate (manufactured by Tokyo Fine Chemical Co., “LIOI”) was uniformly dropped over 3 hours to carry out the reaction. After completion of the dropwise addition, the reaction was continued for about 5 hours, and then the disappearance of the isocyanate was confirmed by the result of IR measurement to complete the reaction to obtain urethane acrylate (A1-3) (solid content: 99.8%, number average) Molecular weight: 7000).

〔ウレタンアクリレート(A1−4)〕
撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガスを導入させた後、ヘキサメチレンジイソシアネート(武田薬品工業社製、「タケネート700」)72部、エチレンオキサイド/プロピレンオキサイドランダムポリエーテルポリオール(旭電化工業社製、「PR−3007」、重量平均分子量約3000)850部を仕込み、70℃に昇温後、ポリエチレングリコールモノアクリレート(日本油脂社製、「AE−200」)78部、ハイドロキノンモノメチルエーテル0.4部、及びジブチルチンジラウレート(東京ファインケミカル社製、「LIOI」)0.1部の混合液体を3時間かけて均一滴下し、反応を行った。滴下完了後、約5時間反応を続けた後、IR測定の結果によりイソシアネートの消失を確認し反応を終了し、ウレタンアクリレート(A1−4)を得た(固形分:99.8%、数平均分子量:6800)。
[Urethane acrylate (A1-4)]
After introducing dry air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, 72 parts of hexamethylene diisocyanate (Takeda 700, Taketake 700), ethylene oxide / propylene 850 parts of an oxide random polyether polyol (Asahi Denka Kogyo Co., Ltd., “PR-3007”, weight average molecular weight of about 3000) was charged, heated to 70 ° C., and then polyethylene glycol monoacrylate (Nippon Yushi Co., Ltd., “AE-200”). “) 78 parts, hydroquinone monomethyl ether 0.4 part, and dibutyltin dilaurate (Tokyo Fine Chemical Co., Ltd.,“ LIOI ”) 0.1 part mixed liquid was uniformly dropped over 3 hours to carry out the reaction. After completion of the dropwise addition, the reaction was continued for about 5 hours, and then the disappearance of isocyanate was confirmed by the result of IR measurement, and the reaction was terminated to obtain urethane acrylate (A1-4) (solid content: 99.8%, number average) Molecular weight: 6800).

〔ポリイソシアネート誘導体(A2−1)〕
撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガスを導入させた後、ヘキサメチレンジイソシアネートの3量体(旭化成社製、「デュラネートTPA−100」)177部、ポリエチレングリコールモノメチルエーテル(日本油脂社製、「ユニオックスM−1000」、重量平均分子量約1000)634部を仕込み、70℃に昇温後、ポリエチレングリコールモノアクリレート(日本油脂社製、「AE−400」)189部、ハイドロキノンモノメチルエーテル0.4部、及びジブチルチンジラウレート(東京ファインケミカル社製、「LIOI」)0.1部の混合液体を3時間かけて均一滴下し、反応を行った。滴下完了後、約5時間反応を続けた後、IR測定の結果によりイソシアネートの消失を確認し反応を終了し、ポリイソシアネート誘導体(A2−1)を得た(固形分:99.8%、数平均分子量:4000)。
[Polyisocyanate derivative (A2-1)]
After introducing dry air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe, and air gas introduction pipe, 177 parts of hexamethylene diisocyanate trimer ("Duranate TPA-100" manufactured by Asahi Kasei Corporation), 634 parts of polyethylene glycol monomethyl ether (Nippon Yushi Co., Ltd., “Uniox M-1000”, weight average molecular weight of about 1000) was charged, heated to 70 ° C., and then polyethylene glycol monoacrylate (Nippon Yushi Co., “AE-400 ”) 189 parts, hydroquinone monomethyl ether 0.4 part, and dibutyltin dilaurate (Tokyo Fine Chemical Co., Ltd.,“ LIOI ”) 0.1 part mixed liquid was uniformly added dropwise over 3 hours to carry out the reaction. After completion of the dropwise addition, the reaction was continued for about 5 hours, and then the disappearance of the isocyanate was confirmed by the result of IR measurement, and the reaction was terminated to obtain a polyisocyanate derivative (A2-1) (solid content: 99.8%, several Average molecular weight: 4000).

イオン性液体(C)として以下のものを用意した。
・1−ブチル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル )イミド(C−1)
・1−イソプロピル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスル ホニル)イミド(C−2)
・ヘキサフルオロリン酸1−ブチル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)(C−3)
The following were prepared as the ionic liquid (C).
1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide (C-1)
1-Isopropyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide (C-2)
-1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) hexafluorophosphate (C-3)

エチレン性不飽和モノマー(D)として以下のものを用意した。
・メトキシポリエチレングリコールモノアクリレート(D−1)
・ポリエチレングリコールジアクリレート(D−2)
The following were prepared as the ethylenically unsaturated monomer (D).
・ Methoxypolyethylene glycol monoacrylate (D-1)
・ Polyethylene glycol diacrylate (D-2)

無機フィラー(E)として以下のものを用意した。
・親水性を有する酸化ケイ素(粒径7nm)(日本アエロジル社製、「アエロジル300」)(E−1)
・親水性を有する酸化ケイ素(粒径30nm)(日本アエロジル社製、「アエロジル50」)(E−2)
・疎水性を有する酸化ケイ素(粒径7nm)(日本アエロジル社製、「RX300」)(E−3)
電解液(F)として以下のものを用意した。
・エチレンカーボネート(F−1)
The following were prepared as the inorganic filler (E).
Hydrophilic silicon oxide (particle size: 7 nm) (manufactured by Nippon Aerosil Co., Ltd., “Aerosil 300”) (E-1)
Hydrophilic silicon oxide (particle size 30 nm) (manufactured by Nippon Aerosil Co., Ltd., “Aerosil 50”) (E-2)
Hydrophobic silicon oxide (particle size: 7 nm) (Nippon Aerosil Co., Ltd., “RX300”) (E-3)
The following was prepared as an electrolytic solution (F).
・ Ethylene carbonate (F-1)

実施例1
(1)固体電解質−負極接合体の作製
LiN(CF3SO22(B)(26部)をメトキシポリエチレングリコールモノアクリレート(D−1)(30部)、参考例1のウレタンアクリレート(A1−1)(70部)、イオン性液体としての1−ブチル−2,3ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(C−1)(200部)、光重合開始剤としての1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバ・スペシャルティ・ケミカルズ社製、「イルガキュア184」;3部)を添加一括混合し、リチウムイオン導電性組成物[I](光重合性溶液)を調製した。
次に、これを大気中にてワイヤーバーにて厚さ100μmのリチウム箔からなる負極上に塗布し、高圧水銀灯にて照射量500mJ/cm2で照射し、厚さ10μmの硬化被膜を形成し、固体電解質−負極接合体を作製した。
Example 1
(1) Production of Solid Electrolyte-Negative Electrode Assembly LiN (CF 3 SO 2 ) 2 (B) (26 parts) was replaced with methoxypolyethylene glycol monoacrylate (D-1) (30 parts), urethane acrylate of Reference Example 1 (A1 -1) (70 parts), 1-butyl-2,3 dimethylimidazolium bis (trifluoromethanesulfonyl) imide (C-1) (200 parts) as an ionic liquid, 1-hydroxy- as a photopolymerization initiator Cyclohexyl-phenyl-ketone (Ciba Specialty Chemicals, “Irgacure 184”; 3 parts) was added and mixed together to prepare a lithium ion conductive composition [I] (photopolymerizable solution).
Next, this is coated on a negative electrode made of a lithium foil having a thickness of 100 μm with a wire bar in the atmosphere, and irradiated with a high-pressure mercury lamp at an irradiation amount of 500 mJ / cm 2 to form a cured film having a thickness of 10 μm. A solid electrolyte-negative electrode assembly was prepared.

(2)正極の作製
Li0.33MnO2粉末1.0g、ケチェンブラック0.15gを十分に混合した。次に、エチレンオキシド(88mモル%)と2−(2−メトキシエトキシ)エチルグリシジルエーテル(12モル%)の共重合体0.10g、LiN(CF3SO220.033gをアセトニトリルに溶解させた。Li0.33MnO2及びケチェンブラック混合粉末に前記アセトニトリル溶液を加え、乳鉢でよく混合し、正極スラリーを得た。これを大気中にワイヤーバーを用いて厚さ20μmアルミニウム電解箔上に塗布し、100℃15分間乾燥させて膜厚30μmの複合正極を作製した。
得られた正極と固体電解質−負極接合体とを熱圧着により貼り合わせ、電池セルに封入して本発明のリチウムポリマー電池を作製した。
(2) Preparation of positive electrode 1.0 g of Li 0.33 MnO 2 powder and 0.15 g of Ketjen black were sufficiently mixed. Next, 0.10 g of a copolymer of ethylene oxide (88 mmol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (12 mol%) and 0.033 g of LiN (CF 3 SO 2 ) 2 were dissolved in acetonitrile. It was. The acetonitrile solution was added to the mixed powder of Li 0.33 MnO 2 and Ketjenblack and mixed well in a mortar to obtain a positive electrode slurry. This was applied in the air onto a 20 μm thick aluminum electrolytic foil using a wire bar and dried at 100 ° C. for 15 minutes to produce a composite positive electrode having a thickness of 30 μm.
The obtained positive electrode and the solid electrolyte-negative electrode assembly were bonded together by thermocompression bonding and sealed in a battery cell to produce a lithium polymer battery of the present invention.

得られたリチウムポリマー電池の充放電特性について下記の通り評価した。
充放電試験は、計測器センター製の充放電測定装置を用いて、0.2mA/cm2の電流で電圧2Vから3.5Vまで充電し、10分間の休止後、0.2mA/cm2の電流で電池電圧が2Vまで放電し、この充放電を繰り返した。この時の初期と100サイクル目の容量維持率(%)を測定し、充放電特性の評価とした。
更に、導電率について、英国ソーラートロン社製「1280Z」を用い、宝泉製「HSセル」を用いて、ACインピーダンス測定により算出した。
The charge / discharge characteristics of the obtained lithium polymer battery were evaluated as follows.
The charge / discharge test was performed by charging from a voltage of 2 mA to 3.5 V with a current of 0.2 mA / cm 2 using a charge / discharge measuring device manufactured by Keisoku Center, and after resting for 10 minutes, 0.2 mA / cm 2 The battery voltage was discharged to 2 V with current, and this charge / discharge was repeated. At this time, the capacity retention rate (%) at the initial stage and the 100th cycle was measured to evaluate the charge / discharge characteristics.
Further, the conductivity was calculated by AC impedance measurement using “1280Z” manufactured by Solartron, UK and “HS cell” manufactured by Hosen.

実施例2〜8
表1に示す如きに組成のリチウムイオン導電性組成物[I](光重合性溶液)に変更した以外は実施例1と同様に行い、リチウムポリマー電池を作製し、同様の評価を行った。
Examples 2-8
A lithium polymer battery was prepared and evaluated in the same manner as in Example 1 except that the composition was changed to lithium ion conductive composition [I] (photopolymerizable solution) as shown in Table 1.

実施例9
(1)固体電解質−正極接合体の作製
Li0.33MnO2粉末1.0g、ケチェンブラック0.15gを十分に混合した。次に、エチレンオキシド(88mモル%)と2−(2−メトキシエトキシ)エチルグリシジルエーテル(12モル%)の共重合体0.10g、LiN(CF3SO220.033gをアセトニトリルに溶解させた。Li0.33MnO2及びケチェンブラック混合粉末に前記アセトニトリル溶液を加え、乳鉢でよく混合し、正極スラリーを得た。これを大気中にワイヤーバーを用いて厚さ20μmアルミニウム電解箔上に塗布し、100℃、15分間乾燥させて膜厚30μmの複合正極を作製した。
次に、LiN(CF3SO22(B)(26部)、メトキシポリエチレングリコールモノアクリレート(D−1)(30部)、ウレタンアクリレート(A1−1)(70部)イオン性液体としての1−ブチル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(C−1)(200部)、光重合開始剤としての1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバ・スペシャルティ・ケミカルズ社製、「イルガキュア184」;3部)、親水性を有する酸化ケイ素(粒径30nm)(日本アエロジル社製、「アエロジル50」)(E−1)20部を添加混合し、リチウムイオン導電性組成物[I](光重合性溶液)を調製し、これを大気中にてワイヤーバーにて厚さ30μmの複合正極上に塗布し、高圧水銀灯にて照射量500mJ/cm2で照射し、厚さ10μmの硬化被膜を形成し、固体電解質−正極接合体を作製した。
得られた固体電解質−正極接合体とリチウム箔(負極)とを熱圧着により貼り合わせ、電池セルに封入して本発明のリチウムポリマー電池を作製した。
得られたリチウムポリマー電池について、上記と同様の評価を行った。
Example 9
(1) Production of solid electrolyte-positive electrode assembly 1.0 g of Li 0.33 MnO 2 powder and 0.15 g of Ketjen black were sufficiently mixed. Next, 0.10 g of a copolymer of ethylene oxide (88 mmol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (12 mol%) and 0.033 g of LiN (CF 3 SO 2 ) 2 were dissolved in acetonitrile. It was. The acetonitrile solution was added to the mixed powder of Li 0.33 MnO 2 and Ketjenblack and mixed well in a mortar to obtain a positive electrode slurry. This was applied in the air on a 20 μm thick aluminum electrolytic foil using a wire bar and dried at 100 ° C. for 15 minutes to produce a composite positive electrode having a thickness of 30 μm.
Next, LiN (CF 3 SO 2 ) 2 (B) (26 parts), methoxypolyethylene glycol monoacrylate (D-1) (30 parts), urethane acrylate (A1-1) (70 parts) as an ionic liquid 1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide (C-1) (200 parts), 1-hydroxy-cyclohexyl-phenyl-ketone (Ciba Specialty Chemicals) as a photopolymerization initiator "Irgacure 184"; 3 parts), hydrophilic silicon oxide (particle size 30 nm) (manufactured by Nippon Aerosil Co., Ltd., "Aerosil 50") (E-1) 20 parts are added and mixed, and lithium ion conductive composition Preparation [I] (photopolymerizable solution) was applied on a composite positive electrode having a thickness of 30 μm with a wire bar in the atmosphere. Irradiation with irradiation dose 500 mJ / cm 2 at a silver lamp, to form a cured coating having a thickness of 10 [mu] m, the solid electrolyte - to produce a positive electrode assembly.
The obtained solid electrolyte-positive electrode assembly and lithium foil (negative electrode) were bonded together by thermocompression bonding and sealed in a battery cell to produce a lithium polymer battery of the present invention.
The obtained lithium polymer battery was evaluated in the same manner as described above.

実施例10
(1)固体電解質−負極接合体の作製
LiN(CF3SO22(B)(5部)及びLiBF4(B)(10部)、を、メトキシポリエチレングリコールモノアクリレート(D−1)(37部)に溶解した後、該溶解液28.1部に、ウレタンアクリレート(A1−1)(80部)、イオン性液体としての1−ブチル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(C−1)(300部)、光重合開始剤としての1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバ・スペシャルティ・ケミカルズ社製、「イルガキュア184」;3部)、親水性を有する酸化ケイ素(粒径30nm)(日本アエロジル社製、「アエロジル50」)(E−1)10部を添加混合し、リチウムイオン導電性組成物[I](光重合性溶液)を調製し、これを大気中にてワイヤーバーにて厚さ100μmのリチウム箔からなる負極上に塗布し、高圧水銀灯にて照射量500mJ/cm2で照射し、厚さ10μmの硬化被膜を形成し、固体電解質−負極接合体を作製した。
Example 10
(1) Production of Solid Electrolyte-Negative Electrode Assembly LiN (CF 3 SO 2 ) 2 (B) (5 parts) and LiBF 4 (B) (10 parts) were converted into methoxypolyethylene glycol monoacrylate (D-1) ( 37 parts), urethane acrylate (A1-1) (80 parts), 1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) as an ionic liquid were added to 28.1 parts of the solution. ) Imido (C-1) (300 parts), 1-hydroxy-cyclohexyl-phenyl-ketone (Ciba Specialty Chemicals, "Irgacure 184"; 3 parts) as a photopolymerization initiator, hydrophilic oxidation Silicon (particle size 30 nm) (“Aerosil 50” manufactured by Nippon Aerosil Co., Ltd.) (E-1) 10 parts was added and mixed, and the lithium ion conductive composition [I] (Photopolymerizable solution) was prepared, applied to a negative electrode made of a lithium foil having a thickness of 100 μm with a wire bar in the atmosphere, and irradiated with a high-pressure mercury lamp at an irradiation amount of 500 mJ / cm 2 to obtain a thickness. A 10 μm cured film was formed to produce a solid electrolyte-negative electrode assembly.

(2)固体電解質−正極接合体の作製
Li0.33MnO2粉末1.0g、ケチェンブラック0.15gを十分に混合した。次に、エチレンオキシド(88mモル%)と2−(2−メトキシエトキシ)エチルグリシジルエーテル(12モル%)の共重合体0.10g、LiN(CF3SO220.033gをアセトニトリルに溶解させた。Li0.33MnO2及びケチェンブラック混合粉末に前記アセトニトリル溶液を加え、乳鉢でよく混合し、正極スラリーを得た。これを大気中にワイヤーバーを用いて厚さ20μmアルミニウム電解箔上に塗布し、100℃、15分間乾燥させて膜厚30μmの複合正極を作製した。
次に、LiN(CF3SO22(B)(26部))、メトキシポリエチレングリコールモノアクリレート(D−1)(30部)、ウレタンアクリレート(A1−1)(70部)、イオン性液体としての1−ブチル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(C−1)(200部)、光重合開始剤としての1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバ・スペシャルティ・ケミカルズ社製、「イルガキュア184」;3部)、親水性を有する酸化ケイ素(粒径30nm)(日本アエロジル社製、「アエロジル50」)(E−1)30部を添加混合し溶解して、リチウムイオン導電性組成物[I](光重合性溶液)を調製し、これを大気中にてワイヤーバーにて厚さ30μmの複合正極上に塗布し、高圧水銀灯にて照射量500mJ/cm2で照射し、厚さ10μmの硬化被膜を形成し、固体電解質−正極接合体を作製した。
得られた固体電解質−負極接合体と固体電解質−正極接合体とを熱圧着により貼り合わせ、電池セルに封入して本発明のリチウムポリマー電池を作製した。
得られたリチウムポリマー電池について、上記と同様の評価を行った。
(2) Production of solid electrolyte-positive electrode assembly 1.0 g of Li 0.33 MnO 2 powder and 0.15 g of Ketjen black were sufficiently mixed. Next, 0.10 g of a copolymer of ethylene oxide (88 mmol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (12 mol%) and 0.033 g of LiN (CF 3 SO 2 ) 2 were dissolved in acetonitrile. It was. The acetonitrile solution was added to the mixed powder of Li 0.33 MnO 2 and Ketjenblack and mixed well in a mortar to obtain a positive electrode slurry. This was applied in the air on a 20 μm thick aluminum electrolytic foil using a wire bar and dried at 100 ° C. for 15 minutes to produce a composite positive electrode having a thickness of 30 μm.
Next, LiN (CF 3 SO 2 ) 2 (B) (26 parts)), methoxypolyethylene glycol monoacrylate (D-1) (30 parts), urethane acrylate (A1-1) (70 parts), ionic liquid 1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide (C-1) (200 parts) as a photopolymerization initiator, 1-hydroxy-cyclohexyl-phenyl-ketone (Ciba Specialty) Chemicals, "Irgacure 184"; 3 parts), hydrophilic silicon oxide (particle size 30 nm) (Nippon Aerosil Co., Ltd., "Aerosil 50") (E-1) 30 parts are added, mixed and dissolved, Lithium ion conductive composition [I] (photopolymerizable solution) was prepared, and this was applied to a composite positive electrode having a thickness of 30 μm with a wire bar in the air. And cloth, irradiated at dose 500 mJ / cm 2 using a high-pressure mercury lamp, to form a cured coating having a thickness of 10 [mu] m, the solid electrolyte - to produce a positive electrode assembly.
The obtained solid electrolyte-negative electrode assembly and solid electrolyte-positive electrode assembly were bonded together by thermocompression bonding and sealed in a battery cell to produce a lithium polymer battery of the present invention.
The obtained lithium polymer battery was evaluated in the same manner as described above.

比較例1
実施例1において、イオン性液体(C)としての1−ブチル−2,3−ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドを配合しなかった以外は同様に行い、リチウムポリマー電池を作製し、同様の評価を行った。
実施例、比較例の評価結果を表1に示す。
Comparative Example 1
In Example 1, the same procedure was performed except that 1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide as the ionic liquid (C) was not blended to produce a lithium polymer battery. Was evaluated.
Table 1 shows the evaluation results of Examples and Comparative Examples.

Figure 2006310071
Figure 2006310071

本発明の固体電解質及びそれを用いたリチウムポリマー電池は、液漏れ等を起こすことなく、イオン伝導度が高く、充放電特性(充放電の繰り返しによる劣化がない)に優れた効果を有し、特に、二次電池、とりわけリチウムイオンポリマー二次電池として非常に有用である。   The solid electrolyte of the present invention and a lithium polymer battery using the same have high ion conductivity without causing liquid leakage and the like, and have excellent effects on charge / discharge characteristics (no deterioration due to repeated charge / discharge) In particular, it is very useful as a secondary battery, particularly as a lithium ion polymer secondary battery.

電池作成のフローを示す。The flow of battery creation is shown.

Claims (9)

硬化性オリゴマー(A)、電解質塩(B)及びイオン性液体(C)を含むリチウムイオン導電性組成物[I]から得られる硬化被膜からなることを特徴とする固体電解質。 A solid electrolyte comprising a cured film obtained from a lithium ion conductive composition [I] containing a curable oligomer (A), an electrolyte salt (B) and an ionic liquid (C). リチウムイオン導電性組成物[I]が、更にエチレン性不飽和単量体(D)を含有することを特徴とする請求項1記載の固体電解質。 The solid electrolyte according to claim 1, wherein the lithium ion conductive composition [I] further contains an ethylenically unsaturated monomer (D). リチウムイオン導電性組成物[I]が、更に無機フィラー(E)を含有することを特徴とする請求項1または2記載の固体電解質。 3. The solid electrolyte according to claim 1, wherein the lithium ion conductive composition [I] further contains an inorganic filler (E). 硬化性オリゴマー(A)が、分子末端がいずれも(メタ)アクリロイル基であるウレタン(メタ)アクリレート系化合物(A1)及び/又は分子末端の少なくとも1つが(メタ)アクリロイル基でかつ残りが炭化水素基であるポリイソシアネート系誘導体(A2)であることを特徴とする請求項1〜3いずれか記載の固体電解質。 The curable oligomer (A) is a urethane (meth) acrylate compound (A1) whose molecular terminals are all (meth) acryloyl groups and / or at least one of the molecular terminals is a (meth) acryloyl group and the remainder is a hydrocarbon. The solid electrolyte according to any one of claims 1 to 3, which is a polyisocyanate derivative (A2) which is a group. イオン性液体(C)が、2位にアルキル置換基を有するイミダゾリウム塩であることを特徴とする請求項1〜4いずれか記載の固体電解質。 The solid electrolyte according to any one of claims 1 to 4, wherein the ionic liquid (C) is an imidazolium salt having an alkyl substituent at the 2-position. 無機フィラー(E)が、親水性を有する酸化ケイ素であることを特徴とする請求項3〜5いずれか記載の固体電解質。 The solid electrolyte according to any one of claims 3 to 5, wherein the inorganic filler (E) is hydrophilic silicon oxide. リチウムイオン導電性組成物[I]が、更に電解液(F)を含有することを特徴とする請求項1〜6いずれか記載の固体電解質。 Lithium ion conductive composition [I] contains electrolyte solution (F) further, The solid electrolyte in any one of Claims 1-6 characterized by the above-mentioned. リチウムイオン導電性組成物[I]から得られる硬化被膜の厚みが5〜100μmであることを特徴とする請求項1〜7いずれか記載の固体電解質。 The solid electrolyte according to any one of claims 1 to 7, wherein the thickness of the cured film obtained from the lithium ion conductive composition [I] is 5 to 100 µm. 請求項1〜8いずれか記載の固体電解質を正極と負極との間に狭持してなることを特徴とするリチウムポリマー電池。


A lithium polymer battery comprising the solid electrolyte according to claim 1 sandwiched between a positive electrode and a negative electrode.


JP2005130868A 2005-04-28 2005-04-28 Solid electrolyte and lithium polymer battery using the same Pending JP2006310071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130868A JP2006310071A (en) 2005-04-28 2005-04-28 Solid electrolyte and lithium polymer battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130868A JP2006310071A (en) 2005-04-28 2005-04-28 Solid electrolyte and lithium polymer battery using the same

Publications (1)

Publication Number Publication Date
JP2006310071A true JP2006310071A (en) 2006-11-09

Family

ID=37476735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130868A Pending JP2006310071A (en) 2005-04-28 2005-04-28 Solid electrolyte and lithium polymer battery using the same

Country Status (1)

Country Link
JP (1) JP2006310071A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044546A1 (en) * 2006-10-06 2008-04-17 Kuraray Co., Ltd. Polymer solid electrolyte, electrochemical device, and actuator element
JP2008130229A (en) * 2006-11-16 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium secondary battery
JP2008146917A (en) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The All-solid lithium secondary battery
WO2009011368A1 (en) * 2007-07-19 2009-01-22 Gunze Limited Solid ion-conducting material, electrochemical device utilizing the solid ion-conducting material, and method for production of the electrochemical device
WO2010090253A1 (en) * 2009-02-09 2010-08-12 コニカミノルタホールディングス株式会社 Sheet-like illumination device
WO2010092897A1 (en) * 2009-02-16 2010-08-19 コニカミノルタホールディングス株式会社 Electrolyte composition, and secondary battery
JP2011081934A (en) * 2009-10-05 2011-04-21 Konica Minolta Holdings Inc Solid electrolyte and secondary battery
JP2011129400A (en) * 2009-12-18 2011-06-30 Konica Minolta Holdings Inc Secondary battery having ionic liquid and method of manufacturing the same
KR101502926B1 (en) * 2007-07-06 2015-03-17 삼성에스디아이 주식회사 Polymer electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
EP2675010A4 (en) * 2011-02-10 2017-06-28 Mitsubishi Chemical Corporation Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery using same
JP2017532742A (en) * 2014-10-02 2017-11-02 エルジー・ケム・リミテッド Gel polymer electrolyte and lithium secondary battery including the same
US9923238B2 (en) 2011-02-10 2018-03-20 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
CN109698384A (en) * 2019-01-04 2019-04-30 天臣新能源研究南京有限公司 A kind of preparation method of cylindrical mixing solid-liquid lithium ion battery
WO2019103058A1 (en) * 2017-11-21 2019-05-31 日東電工株式会社 Method for producing ionic liquid-containing structure, and ionic liquid-containing structure
JP2019522875A (en) * 2016-12-08 2019-08-15 エルジー・ケム・リミテッド ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR20220058074A (en) * 2020-10-30 2022-05-09 울산과학기술원 Additive for solid electrolyte, composition for solid electrolyte comprisng the same, and application thereof
US11967679B2 (en) 2018-11-06 2024-04-23 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265674A (en) * 1997-03-25 1998-10-06 Mitsubishi Chem Corp Polymer compound composite material and its production
JP2002216845A (en) * 2001-01-18 2002-08-02 Nippon Synthetic Chem Ind Co Ltd:The Solid polymer electrolyte, electrochemical element using the same, and secondary cell
JP2002343427A (en) * 2001-05-14 2002-11-29 Yuasa Corp Nonaqueous electrolyte lithium secondary battery
JP2003157719A (en) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd Cold melted-salt type solid electrolyte and totally solid electrochemical element
WO2003056652A1 (en) * 2001-12-27 2003-07-10 The Nippon Synthetic Chemical Industry Co., Ltd. Lithium polymer cell and manufacturing method thereof
JP2005071698A (en) * 2003-08-21 2005-03-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006077107A (en) * 2004-09-09 2006-03-23 Japan Carlit Co Ltd:The Gel state electrolyte and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265674A (en) * 1997-03-25 1998-10-06 Mitsubishi Chem Corp Polymer compound composite material and its production
JP2002216845A (en) * 2001-01-18 2002-08-02 Nippon Synthetic Chem Ind Co Ltd:The Solid polymer electrolyte, electrochemical element using the same, and secondary cell
JP2002343427A (en) * 2001-05-14 2002-11-29 Yuasa Corp Nonaqueous electrolyte lithium secondary battery
JP2003157719A (en) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd Cold melted-salt type solid electrolyte and totally solid electrochemical element
WO2003056652A1 (en) * 2001-12-27 2003-07-10 The Nippon Synthetic Chemical Industry Co., Ltd. Lithium polymer cell and manufacturing method thereof
JP2005071698A (en) * 2003-08-21 2005-03-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006077107A (en) * 2004-09-09 2006-03-23 Japan Carlit Co Ltd:The Gel state electrolyte and method for producing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044546A1 (en) * 2006-10-06 2008-04-17 Kuraray Co., Ltd. Polymer solid electrolyte, electrochemical device, and actuator element
JP5555407B2 (en) * 2006-10-06 2014-07-23 株式会社クラレ Polymer solid electrolyte, electrochemical device and actuator element
US8138246B2 (en) 2006-10-06 2012-03-20 Kuraray Co., Ltd. Polymer electrolyte, electrochemical device, and actuator element
JP2008130229A (en) * 2006-11-16 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium secondary battery
JP2008146917A (en) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The All-solid lithium secondary battery
KR101502926B1 (en) * 2007-07-06 2015-03-17 삼성에스디아이 주식회사 Polymer electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
WO2009011368A1 (en) * 2007-07-19 2009-01-22 Gunze Limited Solid ion-conducting material, electrochemical device utilizing the solid ion-conducting material, and method for production of the electrochemical device
JPWO2009011368A1 (en) * 2007-07-19 2010-09-24 グンゼ株式会社 Solid ion conductor, electrochemical device using the solid ion conductor, and method for producing the same
CN101730916B (en) * 2007-07-19 2012-03-28 郡是株式会社 Solid ion-conducting material, electrochemical device utilizing the solid ion-conducting material, and method for production of the electrochemical device
CN102590315A (en) * 2007-07-19 2012-07-18 郡是株式会社 Hydrogen gas sensor and method for producing same
WO2010090253A1 (en) * 2009-02-09 2010-08-12 コニカミノルタホールディングス株式会社 Sheet-like illumination device
JP5565318B2 (en) * 2009-02-09 2014-08-06 コニカミノルタ株式会社 Sheet illumination device
JPWO2010092897A1 (en) * 2009-02-16 2012-08-16 コニカミノルタホールディングス株式会社 Electrolyte composition and secondary battery
WO2010092897A1 (en) * 2009-02-16 2010-08-19 コニカミノルタホールディングス株式会社 Electrolyte composition, and secondary battery
JP2011081934A (en) * 2009-10-05 2011-04-21 Konica Minolta Holdings Inc Solid electrolyte and secondary battery
JP2011129400A (en) * 2009-12-18 2011-06-30 Konica Minolta Holdings Inc Secondary battery having ionic liquid and method of manufacturing the same
EP2675010A4 (en) * 2011-02-10 2017-06-28 Mitsubishi Chemical Corporation Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery using same
US9923238B2 (en) 2011-02-10 2018-03-20 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US11791499B2 (en) 2011-02-10 2023-10-17 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US11205802B2 (en) 2011-02-10 2021-12-21 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US10476106B2 (en) 2011-02-10 2019-11-12 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
JP2017532742A (en) * 2014-10-02 2017-11-02 エルジー・ケム・リミテッド Gel polymer electrolyte and lithium secondary battery including the same
US10476104B2 (en) 2014-10-02 2019-11-12 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same
US10553903B2 (en) 2016-12-08 2020-02-04 Lg Chem, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP2019522875A (en) * 2016-12-08 2019-08-15 エルジー・ケム・リミテッド ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP2019094493A (en) * 2017-11-21 2019-06-20 日東電工株式会社 Manufacturing method of ionic liquid-containing structure, and ionic liquid-containing structure
CN111094361A (en) * 2017-11-21 2020-05-01 日东电工株式会社 Method for producing structure containing ionic liquid, and structure containing ionic liquid
WO2019103058A1 (en) * 2017-11-21 2019-05-31 日東電工株式会社 Method for producing ionic liquid-containing structure, and ionic liquid-containing structure
CN111094361B (en) * 2017-11-21 2023-01-10 日东电工株式会社 Method for producing structure containing ionic liquid, and structure containing ionic liquid
US11967679B2 (en) 2018-11-06 2024-04-23 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
CN109698384A (en) * 2019-01-04 2019-04-30 天臣新能源研究南京有限公司 A kind of preparation method of cylindrical mixing solid-liquid lithium ion battery
KR20220058074A (en) * 2020-10-30 2022-05-09 울산과학기술원 Additive for solid electrolyte, composition for solid electrolyte comprisng the same, and application thereof
KR102531289B1 (en) 2020-10-30 2023-05-12 울산과학기술원 Additive for solid electrolyte, composition for solid electrolyte comprisng the same, and application thereof

Similar Documents

Publication Publication Date Title
JP2006310071A (en) Solid electrolyte and lithium polymer battery using the same
JP4418134B2 (en) Polymer gel electrolyte and lithium battery using the same
US20170301950A1 (en) Solid electrolyte composition, electrode sheet for battery using the same, all solid state secondary battery, and method for manufacturing electrode sheet for battery and all solid state secondary battery
US6316563B2 (en) Thermopolymerizable composition and use thereof
JP5088727B2 (en) Lithium secondary battery
JPWO2003056652A1 (en) Lithium polymer battery and manufacturing method thereof
JP2005044681A (en) Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
JP2002216845A (en) Solid polymer electrolyte, electrochemical element using the same, and secondary cell
JP4418139B2 (en) Polymer electrolyte and lithium secondary battery including the same
JP2008146917A (en) All-solid lithium secondary battery
WO2003028144A1 (en) Element using polymer gel electrolyte
JP2001035251A (en) High polymer solid electrolyte and electrochemical element using the same
JPH11288738A (en) Solid electrolytic battery and its manufacture
JP2007109591A (en) Lithium secondary battery
JP2009102608A (en) Acrylic polymer, method for synthesizing the same, polymerizable resin composition and gelatinous polymer electrolyte
JP2005158702A (en) Lithium polymer battery and its manufacturing method
JP2005158703A (en) Lithium polymer battery and its manufacturing method
JP3423832B2 (en) Ion conductive polymer solid electrolyte and electrochemical device using the solid electrolyte
JPH08167415A (en) Thin type high polymer solid electrolyte battery and its manufacture
JPH11147989A (en) Thermally polymerizable composition and its use
JP2001313074A (en) Gel-like ionic-conduction nature electrolyte, cell and electrochemical device using it
JP2001256826A (en) Polyelectrolytic element, polyelectrolytic element roll manufacturing method, and method of manufacturing polyelectrolytic element roll and battery
JP4858741B2 (en) Polymer electrolyte varnish, polymer electrolyte, composite electrode, polymer electrolyte element or electrochemical device using the same
JP2003197262A (en) Polyelectrolyte and battery using the same
JP3312619B2 (en) Thin secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913