JP2006306935A - Elastomer having fine unevenness - Google Patents

Elastomer having fine unevenness Download PDF

Info

Publication number
JP2006306935A
JP2006306935A JP2005128296A JP2005128296A JP2006306935A JP 2006306935 A JP2006306935 A JP 2006306935A JP 2005128296 A JP2005128296 A JP 2005128296A JP 2005128296 A JP2005128296 A JP 2005128296A JP 2006306935 A JP2006306935 A JP 2006306935A
Authority
JP
Japan
Prior art keywords
elastomer
rubber
region
friction
peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005128296A
Other languages
Japanese (ja)
Other versions
JP4611098B2 (en
Inventor
Takashi Matsuoka
敬 松岡
Hiroyuki Fujita
浩行 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2005128296A priority Critical patent/JP4611098B2/en
Publication of JP2006306935A publication Critical patent/JP2006306935A/en
Application granted granted Critical
Publication of JP4611098B2 publication Critical patent/JP4611098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elastomer such as a rubber, capable of obtaining a sure and effective low frictional effect. <P>SOLUTION: This elastomer has many fine unevenness on its surface. The fine unevenness has within 0.6-3.0 μm range surface roughness Ra of a converted waveform which is obtained by introducing a power spectrum for its wavelength obtained by performing a Fourier conversion of a cross sectional curve of the surface and performing a reverse Fourier conversion on 30-250 μm wavelength region among them. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面に微小凹凸を有するゴム等のエラストマーおよびその摩擦特性評価方法に関する。   The present invention relates to an elastomer such as rubber having fine irregularities on its surface and a method for evaluating frictional properties thereof.

タイヤ、工業用ベルト等の滑り止めを目的とするゴム製品では、ゴム自身が高い摩擦係数を有することが望まれる。その一方、近年では、Oリングやパッキンといった機械部品において(例えばズームカメラレンズ内に用いられるOリング)、ゴム本体で衝撃を吸収しつつ、表面は相手部材に対して滑動させたいという要望が増えつつある。このような低摩擦性ゴム製品に対する需要は、ズームカメラを始めとするOA機器に止まらず、摺動用機械部品として今後ますます拡大すると予想される。   In rubber products intended to prevent slipping such as tires and industrial belts, it is desirable that the rubber itself has a high coefficient of friction. On the other hand, in recent years, in mechanical parts such as O-rings and packings (for example, O-rings used in zoom camera lenses), there is an increasing demand for the surface to slide relative to the mating member while absorbing the impact with the rubber body. It's getting on. The demand for such low-friction rubber products is not limited to OA equipment such as zoom cameras, but is expected to increase further as sliding machine parts in the future.

従来から、ゴム表面に微細凹凸を形成すれば低摩擦化に有効であることが知られており、その一例として、下記特許文献1には、フッ素ゴム、シリカ粉末、ポリアミン系架橋剤を含有するフッ素ゴム組成物を加熱成形後、150℃〜300℃の熱気流中で二次架橋することにより、表面に皺状の微細凹凸構造を付与したフッ素ゴム成形体が開示されている。また、同文献の段落0002には、ゴム表面に微細凹凸構造を付与する方法として、表面に微細構造を付与した金型を用いて加熱成形する方法が開示されている。
特開2002−293950号公報
Conventionally, it is known that if fine irregularities are formed on the rubber surface, it is known to be effective for reducing friction, and as an example, Patent Document 1 below contains fluororubber, silica powder, and a polyamine-based crosslinking agent. A fluororubber molded product is disclosed in which a fluororubber composition is heat-molded and then subjected to secondary crosslinking in a hot air flow at 150 ° C. to 300 ° C., thereby providing a surface with a ridge-like fine concavo-convex structure. Also, paragraph 0002 of the same document discloses a method of heat molding using a mold having a fine structure on the surface as a method of giving a fine uneven structure to the rubber surface.
JP 2002-293950 A

しかしながら、上記特許文献は、架橋ゴムの表面粗さと摩擦係数との関係を示唆しているにすぎない。ゴムの低摩擦化は、摺動相手材に対する真実接触面積の減少が寄与するものと考えられるが、ゴム成形体の表面は、試料の初期形状、ゴム自身が本来有する微小凹凸、さらには粗面化した金型成形面に対応するうねり成分等が複合した複雑な形態を有するものであるから、単にゴム成形体の表面粗さを測定するだけでは、真実接触面積の程度を評価することは困難であり、ゴム製品の摩擦特性を管理する指標としては不適当と考えられる。   However, the above patent document merely suggests a relationship between the surface roughness of the crosslinked rubber and the friction coefficient. The reduction in the friction of rubber is thought to contribute to the reduction in the real contact area with the sliding material, but the surface of the rubber molded body is the initial shape of the sample, the minute irregularities inherent in the rubber itself, and the rough surface. It is difficult to evaluate the extent of the true contact area simply by measuring the surface roughness of the rubber molded body because it has a complex form in which swell components corresponding to the molded mold surface are combined. Therefore, it is considered inappropriate as an index for managing the friction characteristics of rubber products.

本発明は、以上の事情に鑑み、確実かつ有効な低摩擦効果を得ることができるゴム等のエラストマーを提供し、併せてゴム製品の摩擦特性を管理する上で最適な指標を提供することを目的とするものである。   In view of the above circumstances, the present invention provides an elastomer such as rubber that can obtain a reliable and effective low friction effect, and also provides an optimum index for managing the friction characteristics of rubber products. It is the purpose.

上記目的を達成するため、本発明にかかるエラストマーは、表面に多数の微小凹凸を有するエラストマーであって、表面の断面曲線をフーリエ変換して波長に対するパワースペクトルを導出し、このうち、30μm〜250μmの波長領域を逆フーリエ変換して得た変換波形の表面粗さRaが、0.6μm〜3.0μmの範囲内にあるものである。   In order to achieve the above object, the elastomer according to the present invention is an elastomer having a large number of minute irregularities on its surface, and a power spectrum with respect to the wavelength is derived by Fourier transforming the cross-sectional curve of the surface, of which 30 μm to 250 μm The surface roughness Ra of the converted waveform obtained by inverse Fourier transform of the wavelength region is in the range of 0.6 μm to 3.0 μm.

なお、ここでいうエラストマーは、ゴム状弾性体の意であり、天然ゴム、合成ゴムの他、いわゆる熱可塑性エラストマーもこれに含まれる。   The term “elastomer” as used herein means a rubber-like elastic body, and includes natural rubber and synthetic rubber as well as so-called thermoplastic elastomer.

この場合、導出したパワースペクトルのうち、7μm〜30μmの波長領域を逆フーリエ変換して得た変換波形の表面粗さRaが、0.2μm〜0.7μmの範囲内にあるものが好ましい。   In this case, the derived power spectrum preferably has a surface roughness Ra of a converted waveform obtained by performing inverse Fourier transform on a wavelength region of 7 μm to 30 μm within a range of 0.2 μm to 0.7 μm.

また、前記変換波形の平均凹凸間隔が、60μm〜150μmの範囲内にあるものが好ましい。   Moreover, it is preferable that the average uneven | corrugated space | interval of the said conversion waveform exists in the range of 60 micrometers-150 micrometers.

以上に述べたエラストマーは、例えば粗面化処理した型で成形することにより得ることができる。   The elastomer described above can be obtained, for example, by molding with a roughened mold.

以上に述べたエラストマーで形成された摺動用の機械部品は、対衝撃吸収性に富む一方、低摩擦であるという特徴を有する。   The sliding mechanical parts formed of the elastomer described above have a feature of being low in friction while being rich in shock absorption.

また、本発明は、表面に多数の微小凹凸を有するエラストマーの摩擦特性を評価するに際して、表面の断面曲線をフーリエ変換して波長に対するパワースペクトルを導出し、この波形のうち、30μm〜250μmの波長領域を逆フーリエ変換して得た変換波形の表面粗さRaの大きさで摩擦特性を評価するものである。   Further, in the present invention, when evaluating the friction characteristics of an elastomer having a large number of minute irregularities on the surface, the surface cross-sectional curve is Fourier transformed to derive a power spectrum with respect to the wavelength, and among these waveforms, a wavelength of 30 μm to 250 μm is derived. Friction characteristics are evaluated based on the surface roughness Ra of the converted waveform obtained by inverse Fourier transform of the region.

本発明によれば、低摩擦性を有するエラストマーが確実に得られる。   According to the present invention, an elastomer having low friction can be obtained with certainty.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明において、エラストマーとしてのゴム材の摩擦特性は、摩擦面の断面曲線を計測するステップ、断面曲線をフーリエ変換して波長に対するパワースペクトルを導出するステップ、パワースペクトルの一定の波長領域を逆フーリエ変換するステップを経て求めた波形の表面粗さRaで評価される。以下、各ステップについて詳細に説明する。   In the present invention, the friction characteristics of a rubber material as an elastomer include a step of measuring a cross-sectional curve of a friction surface, a step of deriving a power spectrum with respect to a wavelength by Fourier transforming the cross-sectional curve, and an inverse Fourier transform of a constant wavelength region of the power spectrum. It is evaluated by the surface roughness Ra of the waveform obtained through the converting step. Hereinafter, each step will be described in detail.

(1)ゴム材の製作
ゴム材は、例えばゴム成分に架橋剤、その他の各種添加剤を配合し、これを公知のゴム混練装置を用いて混練りした後、金型を用いて成形と同時に架橋させるという常法にて製作される。本実施形態では、ゴム材として、天然ゴムにカーボンブラック、その他の添加剤を配合し、これを温度150℃、圧力19.6MPaで10分間加硫を行って図1に示す半球状(半径6mm、高さ3mm)に金型成形したものを使用した。
(1) Production of rubber material For example, a rubber material is prepared by blending a rubber component with a crosslinking agent and other various additives, kneading them using a known rubber kneading apparatus, and simultaneously molding them using a mold. Manufactured in the usual way of crosslinking. In the present embodiment, carbon rubber and other additives are blended with natural rubber as a rubber material, and this is vulcanized for 10 minutes at a temperature of 150 ° C. and a pressure of 19.6 MPa, and the hemisphere (radius 6 mm) shown in FIG. , 3 mm in height) was used.

金型の材質は特に問わないが、例えばステンレス鋼が使用される。この金型の成型面は、ピーニング処理により予め粗面化させておく。ピーニング処理は、例えば材質:FHS♯150(鉄系)、サイズ:φ100μmの略球形の微粒子(ショット)を投射圧力0.2MPaで噴射することにより行われる。このピーニング処理により、金型の成型面では、図2に示すように微粒子の衝突によって成型面が削れ、あるいは塑性変形が生じる。次々に衝突する微粒子によりこの現象が繰り返されるため、成型面は次第に粗面化され、その表面には多数の微小凹凸がミクロンオーダーで形成される。   The material of the mold is not particularly limited. For example, stainless steel is used. The molding surface of this mold is roughened in advance by a peening process. The peening process is performed, for example, by injecting substantially spherical fine particles (shots) of material: FHS # 150 (iron-based) and size: φ100 μm at a projection pressure of 0.2 MPa. By this peening process, the molding surface of the mold is scraped or plastically deformed by the collision of fine particles as shown in FIG. Since this phenomenon is repeated by the fine particles that collide one after another, the molding surface is gradually roughened, and a large number of minute irregularities are formed on the surface in the order of microns.

(2)断面曲線の計測
この金型を用いて加硫を行うと、ゴム試料の表面に金型の成型面の形状が転写され、ゴム材の表面に、多数のミクロンオーダーの微小凹凸がランダムに形成される。図3(A)(B)は、上記ピーニング処理で粗面化した金型で成形したゴム材(以下、Peening材という:A図)の球面と、ピーニング処理を施していない平滑な金型で成形したゴム材(以下、Non-peening材という:B図)の球面とを、それぞれレーザ変位計(VK8500:株式会社キーエンス製)で計測した3次元形状の俯瞰図である。計測位置は、試料表面の中央付近とし、計測範囲は745.728μm×559.296μm、X−Y 方向のサンプリ
ング間隔0.72825μm、高さ分解能0.1μmとした。この計測結果からも、金型成形面のピーニング処理が、ゴム表面に微小凹凸を付与する手段として有効であることが理解できる。この微小凹凸は、個々の凹部や凸部が一定方向に連続するのではなく、規則性なくランダムに分布した形態をなし、この点で上記特許文献1に記載される皺状の微小凹凸とは異なる形態を有する。
(2) Measurement of the cross-section curve When vulcanization is performed using this mold, the shape of the molding surface of the mold is transferred to the surface of the rubber sample, and a large number of microscopic irregularities on the surface of the rubber material are random. Formed. 3A and 3B show a spherical surface of a rubber material (hereinafter referred to as “Peening material”: FIG. A) formed with a roughened mold by the above peening process and a smooth mold not subjected to the peening process. 3 is an overhead view of a three-dimensional shape obtained by measuring a spherical surface of a molded rubber material (hereinafter referred to as non-peening material: FIG. B) with a laser displacement meter (VK8500, manufactured by Keyence Corporation). The measurement position was near the center of the sample surface, the measurement range was 745.728 μm × 559.296 μm, the sampling interval in the X-Y direction was 0.72825 μm, and the height resolution was 0.1 μm. Also from this measurement result, it can be understood that the peening treatment of the molding surface is effective as a means for imparting minute irregularities to the rubber surface. The minute irregularities do not have individual concave portions and convex portions continuous in a certain direction, but form a randomly distributed form without regularity. In this respect, the saddle-shaped minute irregularities described in Patent Document 1 Have different forms.

図4に、図3に示す高さデータの濃淡化画像を基に算出したPeening材とNon-peening材の各断面曲線を示す。図中下段の太線がPeening材の断面曲線を、図中上段の細線がNon-peening材の断面曲線を表す。これら二つの断面曲線は、図3に示す3次元形状計測によって得た高さデータの濃淡化画像をX方向と平行に745.728μmのラインで等間隔に切断して得た16本の断面曲線のうちの一つである。図4から明らかなように、Non-peening材の断面曲線は、ゴム材の摩擦面の輪郭(本実施形態でいえば円弧状)の上に、ゴム表面に元々存在する微小凹凸が重なった形態をなし、Peening材では、これらに加えて、さらにピーニング処理によって形成された凹凸に対応する大きなうねりと、さらにその凹凸の上に存在する細かい凹凸とが重なった形態をなす。   FIG. 4 shows cross-sectional curves of the Peening material and the Non-peening material calculated based on the heightened image of the height data shown in FIG. The thick line at the bottom of the figure represents the cross-sectional curve of the Peening material, and the thin line at the top of the figure represents the cross-sectional curve of the non-peening material. These two cross-section curves are 16 cross-section curves obtained by cutting the grayscale image of the height data obtained by the three-dimensional shape measurement shown in FIG. 3 at a regular interval of 745.728 μm in parallel with the X direction. One of them. As is clear from FIG. 4, the cross-sectional curve of the non-peening material is a form in which the minute unevenness originally existing on the rubber surface overlaps the contour (arc shape in this embodiment) of the friction surface of the rubber material. In addition to these, in the Peening material, a large undulation corresponding to the unevenness formed by the peening process and a fine unevenness existing on the unevenness overlap each other.

(3)フーリエ変換
次に16個の断面曲線についてそれぞれフーリエ変換を行い、各断面曲線について各波長領域に対するパワースペクトルを求めた。
(3) Fourier transform Next, Fourier transform was performed for each of the 16 cross-sectional curves, and the power spectrum for each wavelength region was determined for each cross-sectional curve.

フーリエ変換後のパワースペクトルは、一般的に高周波数のところで激しく振動し、不安定であるので、安定したスペクトルを推定するために平滑化処理が行われる。平滑化処理としては、同一条件の下で得られた数回のスペクトルの平均値をとることによりノイズを除去する統計平均の他、これと併せて周波数平滑化を採用することもできる。周波数平滑化は、スペクトルウィンドウにより平滑化を行う手法であり、例えば前後4点のデータを用いた箱型ウィンドウを適用することにより、平滑化することができる。図5に、上記フーリエ変換で得た16個のパワースペクトルを統計平均のみで平滑化したものを示す。   Since the power spectrum after Fourier transform generally vibrates violently at a high frequency and is unstable, a smoothing process is performed to estimate a stable spectrum. As the smoothing process, frequency averaging may be employed in addition to a statistical average for removing noise by taking an average value of several times of spectra obtained under the same conditions. The frequency smoothing is a method of performing smoothing by a spectrum window, and can be smoothed by applying, for example, a box-type window using four points of data. FIG. 5 shows the 16 power spectra obtained by the Fourier transform smoothed by only the statistical average.

一般に表面形状のパワースペクトルP(λ)と波長λが、以下の(A)式のようなべき乗の関係にあるとき、その表面形状はフラクタル性を示す。そして、(B)式から、べき指数βに基づいてフラクタル次元を求めることができる。
P(λ)∝λβ …(A)
In general, when the power spectrum P (λ) of the surface shape and the wavelength λ are in a power relationship such as the following equation (A), the surface shape exhibits fractal properties. Then, the fractal dimension can be obtained from the formula (B) based on the power exponent β.
P (λ) ∝λ β (A)

D=2 0≦β<1
D=(5−β)/2 1≦β≦3
D=1 3<β …(B)
D = 2 0 ≦ β <1
D = (5-β) / 2 1 ≦ β ≦ 3
D = 1 3 <β (B)

図5に示すパワースペクトルでは、(A)式の関係が成立する傾きの異なる4つの領域が存在しており、各波長領域においてフラクタル性を示している。なお、これらの領域におけるフラクタル次元の算出は、そのフラクタル次元が成立する領域に、最小二乗法による直線の当てはめを行い、その傾きにより決定するが、その安定性の判断は主観によるものとした。この傾きから求めるフラクタル次元は、波長の形状の特徴を定量化したもので、傾きの異なる領域が複数あるということは、幾つかの形状の特徴を持つ波長が重なり合った階層構造にあることを意味する。   In the power spectrum shown in FIG. 5, there are four regions with different slopes in which the relationship of the formula (A) is established, and fractal property is shown in each wavelength region. The calculation of the fractal dimension in these regions is performed by applying a straight line by the least square method to the region where the fractal dimension is established and determining the inclination, but the determination of the stability is based on the subjectivity. The fractal dimension obtained from this slope is a quantification of the characteristics of the shape of the wavelength. The fact that there are multiple regions with different slopes means that there is a layered structure in which wavelengths with characteristics of several shapes overlap. To do.

以上の観点から検討したところ、図5のパワースペクトルでは、領域Aと領域Bの境界波長λ1は250μm、領域Bと領域Cの境界波長λ2は30μm、領域Cと領域Dの境界波長λ3は7μmとなった。   From the above viewpoint, in the power spectrum of FIG. 5, the boundary wavelength λ1 between the region A and the region B is 250 μm, the boundary wavelength λ2 between the region B and the region C is 30 μm, and the boundary wavelength λ3 between the region C and the region D is 7 μm. It became.

図5からも明らかなように、各領域を直線近似した場合、領域Bにおいて、明らかにピーニング処理ありの方がなしよりも傾きは小さい。これは、波長減少によるパワースペクトルの低下率が少ないこと、すなわちフラクタル次元が大きく、断面曲線がより複雑な形状を有していることを示している。   As is clear from FIG. 5, when each region is linearly approximated, in the region B, the slope is clearly smaller with and without the peening process. This indicates that the reduction rate of the power spectrum due to the wavelength decrease is small, that is, the fractal dimension is large and the cross-sectional curve has a more complicated shape.

(3)逆フーリエ変換
次に、図5に示す各波長領域のフーリエ変換データを逆フーリエ変換することにより、波形の分離を行った。この波形分離の結果を図6(A)〜(C)に示す。図6(A)は領域A、図6(B)は領域B、図6(C)は領域Cの各波長領域の成分に相当する波形(変換波形)である。各図において、細線で示す上段はNon-peening材の波形を、太線で示す下段はPeening材の波形を示す。なお、領域Dはほとんどノイズと考えられ、ピーニング処理の有無による波形の相違はほとんど現れなかったため、これに対応する逆フーリエ変換データの図示は省略している。
(3) Inverse Fourier Transform Next, waveform separation was performed by inverse Fourier transform of Fourier transform data in each wavelength region shown in FIG. The results of this waveform separation are shown in FIGS. 6A shows a waveform (conversion waveform) corresponding to a component in each wavelength region of region A, FIG. 6B shows region B, and FIG. In each figure, the upper part shown by a thin line shows the waveform of the Non-peening material, and the lower part shown by a thick line shows the waveform of the Peening material. Note that the region D is considered to be almost noise, and the difference in waveform due to the presence or absence of the peening process hardly appears, so the illustration of the corresponding inverse Fourier transform data is omitted.

図6(A)〜(C)のうち、同図(A)の両者の波形を比較すると、うねりの大きさ、形状はピーニング処理の有無を問わずほとんど同じである。従って、領域Aの波形は、ゴム材の試料形状(本実施形態では半球状)を表すものであると考えられる。   6A to 6C, when comparing the waveforms of both in FIG. 6A, the size and shape of the undulation are almost the same regardless of the presence or absence of the peening process. Therefore, the waveform of the region A is considered to represent the sample shape of the rubber material (in this embodiment, hemispherical).

一方、同図(B)においては、Non-peening材の波形はうねりが小さく、ほぼ平滑な形状であるのに対し、Peening材では、うねりが大きく複雑な形状となっている。このことから、領域Bはピーニング処理により粗面化された成型面の形状に対応するうねり形状を表していると考えられる。同図(C)に示す領域Cの波形は、領域Bのうねり形状の上に重なった粗さ形状を示すと考えられる。同図(B)(C)ではNon-peening材とPeening材の波形の相違が顕著になっており、このことからピーニング処理の有無は、領域Bおよび領域Cの双方(特に領域B)の波形に大きな影響を与えると考えられる。   On the other hand, in FIG. 5B, the waveform of the non-peening material has a small undulation and a substantially smooth shape, whereas the peening material has a large undulation and a complicated shape. From this, it is considered that the region B represents a waviness shape corresponding to the shape of the molding surface roughened by the peening process. The waveform of the region C shown in FIG. 6C is considered to indicate a roughness shape that is superimposed on the undulation shape of the region B. In FIGS. 2B and 2C, the difference in waveform between the non-peening material and the peening material is remarkable. Therefore, the presence / absence of peening is determined in both regions B and C (particularly region B). It is thought to have a big impact on

図5および図6に示す波形に対応するゴム材について摩擦試験を行い、摩擦係数の経時変化を測定したところ、図9に示す結果が得られた。なお、この摩擦試験において、試験機は、図10に示す高速低荷重往復滑り試験機(株式会社村山製作所製)を使用した。本試験機は、水平移動台に強化ガラスを固定し、そのガラスにゴム材の試験片を下方より押し付け、ガラス板を往復運動させる事によって、摩擦試験を行う。ゴム材の球面は、エアシリンダにより所定の加重でガラス板に押し付けられている。ゴム材とガラス板の間に発生する摩擦力はゴム試料固定部の下方に取り付けられたせん断力センサによって測定した。なお、運動方向の切り替わりに要する時間は0.1秒以内である。試験条件は滑り速度20m/s、往復幅(ストローク)200mm、荷重条件は2.94Nで、ドライ状態下で試験を行った。なお、図9は試験開始後30分経過時の時点における、ガラス板が一方向にのみ動いている状態での各試料の摩擦係数の経時変化を示す。   A friction test was performed on the rubber material corresponding to the waveform shown in FIGS. 5 and 6 and the change with time of the friction coefficient was measured. The result shown in FIG. 9 was obtained. In this friction test, a high-speed, low-load reciprocating slip tester (manufactured by Murayama Seisakusho Co., Ltd.) shown in FIG. 10 was used as a tester. This testing machine performs a friction test by fixing tempered glass to a horizontal moving table, pressing a test piece of rubber material against the glass from below, and reciprocating the glass plate. The spherical surface of the rubber material is pressed against the glass plate with a predetermined load by an air cylinder. The frictional force generated between the rubber material and the glass plate was measured by a shear force sensor attached below the rubber sample fixing part. The time required for switching the movement direction is within 0.1 seconds. The test conditions were a sliding speed of 20 m / s, a reciprocating width (stroke) of 200 mm, a load condition of 2.94 N, and the test was performed under dry conditions. In addition, FIG. 9 shows the time-dependent change of the friction coefficient of each sample in the state which the glass plate is moving only to one direction at the time of 30-minute progress after a test start.

図9の試験結果から、Non-peening材とPeening材どちらの試料も、移動方向の切り替わり直後に当たるt=0s〜t=1sの間に摩擦係数が急激に上昇し、t=1〜5sでは摩擦係数は徐々に上昇し始め、t=5s付近で摩擦係数はピークを迎え、その低下するといった傾向を示した。次に、Non-peening材とPeening材の摩擦係数を比較すると、t=0s付近では摩擦係数はどちらも約0.5で同程度の値を示している。しかし、t=0〜1sの間で、Non-peening材の摩擦係数がPeening材の摩擦係数よりも大きく上昇したため、Peening材の方がNon-peening材よりも摩擦係数は低くなっていることが理解できる。   From the test results shown in FIG. 9, in both the non-peening material and the peening material, the friction coefficient increases rapidly between t = 0 s to t = 1 s immediately after the change of the moving direction, and friction occurs at t = 1 to 5 s. The coefficient started to gradually increase, and the coefficient of friction reached a peak at around t = 5 s and showed a tendency to decrease. Next, when comparing the friction coefficients of the non-peening material and the peening material, both of the friction coefficients are about 0.5 and show similar values in the vicinity of t = 0 s. However, between t = 0 and 1 s, the friction coefficient of the non-peening material has increased more than the friction coefficient of the peening material, so that the peening material has a lower friction coefficient than the non-peening material. Understandable.

なお、図9に示す試験結果は、ゴム硬度(スプリング硬さ)Hs=70についてのものである。ゴム硬度を変えて同条件で試験を行ったところ、Hsが60以上であれば低摩擦化に顕著な効果が得られることが判明した。これは、ゴム硬度が低すぎると摩耗が進展するため、Non-peening材とPeening材の表面形状の特徴差が減少するためと考えられる。   The test results shown in FIG. 9 are for rubber hardness (spring hardness) Hs = 70. When the test was performed under the same conditions while changing the rubber hardness, it was found that if Hs was 60 or more, a remarkable effect was obtained in reducing friction. This is thought to be due to the fact that the wear progresses when the rubber hardness is too low, so that the characteristic difference between the surface shapes of the non-peening material and the peening material decreases.

以上のようにPeening材は、一定以上の硬度を有するゴム材の低摩擦化に有効であることが判明したが、上記波形考察から、領域Bが摩擦係数の低下に対する寄与度が一番大きく、領域Cがその次に摩擦係数の低下に寄与すると考えられる。従って、何らかの形で領域BおよびCの変換波形を表す特徴量を定めれば、これをもってゴム材の摩擦特性を評価することができると考えられる。   As described above, the Peening material was found to be effective in reducing the friction of a rubber material having a certain hardness or more, but from the above waveform consideration, the region B has the largest contribution to the reduction of the friction coefficient, It is considered that the region C then contributes to the reduction of the friction coefficient. Therefore, it is considered that the frictional characteristics of the rubber material can be evaluated using a characteristic amount that represents the converted waveform of the regions B and C in some form.

領域BおよびCの変換波形の波形特徴量を検討したところ、以下の結果が得られた。   When the waveform feature quantities of the converted waveforms in the regions B and C were examined, the following results were obtained.

(1)表面粗さ
図6(B)(C)に示す領域BおよびCの変換波形を断面曲線と仮定し、JISに規定の中心線平均粗さの定義に準拠して表面粗さRaを求めた。その結果、図6(B)に示す領域Bの波形では、Non-peening材でRa=0.44μm、Peening材でRa=0.85μmとなり、図6(C)に示す領域Cの波形では、Non-peening材でRa=0.12μm、Peening材でRa=0.36μmとなった。さらに検討を進めたところ、Peening材における領域BのRaが、0.6μm≦Ra≦3.0μmの範囲(好ましくは0.6μm≦Ra≦2.0μmの範囲)内であれば低摩擦化に顕著な効果が得られることが判明した。領域Cについても検討したところ、領域CのRaが、0.2μm≦Ra≦0.7μmの範囲内であれば、さらなる低摩擦化を達成できることが判明した。
(1) Surface roughness Assuming that the converted waveforms in regions B and C shown in FIGS. 6B and 6C are cross-sectional curves, the surface roughness Ra is defined in accordance with the definition of centerline average roughness specified in JIS. Asked. As a result, in the waveform of the region B shown in FIG. 6B, Ra = 0.44 μm for the non-peening material and Ra = 0.85 μm for the Peening material, and in the waveform of the region C shown in FIG. Ra = 0.12 μm for the non-peening material and Ra = 0.36 μm for the Peening material. As a result of further investigation, if the Ra of the region B in the Peening material is within the range of 0.6 μm ≦ Ra ≦ 3.0 μm (preferably the range of 0.6 μm ≦ Ra ≦ 2.0 μm), the friction is reduced. It turned out that a remarkable effect is acquired. When the region C was also examined, it was found that if the Ra of the region C is in the range of 0.2 μm ≦ Ra ≦ 0.7 μm, further lower friction can be achieved.

(2)平均凹凸間隔
次に図6(B)に示す領域BのPeening材およびNon-peening材の各変換波形について、平均凹凸間隔Lを求めた。ここで、平均凹凸間隔Lは、図7(A)(B)に示すように、断面曲線の1周期の長さの平均値をいう(図中の中心線は上記中心線平均粗さの中心線と同様に定義される)。例えば図7(A)に示すNon-peening材では、1周期の長さ(凹凸間隔)は、180μm〜220μmの範囲にあり、平均凹凸間隔Lは概ね200μmとなったが、図7(B)に示すPeening材では、凹凸間隔は、40μm〜140μmの範囲となり、平均凹凸間隔Lは概ね85μmとなった。このようにPeening材の平均凹凸間隔Lは、Non-peening材の平均凹凸間隔Lよりも小さくなる傾向にある。本発明者のさらなる検討によれば、低摩擦化の効果は、領域Bの平均凹凸間隔Lが60μm≦L≦150μmの範囲内(より好ましくは80μm≦L≦120μmの範囲)のゴム材で特に顕著に認められた。
(2) Average unevenness interval Next, the average unevenness interval L was calculated | required about each conversion waveform of the Peening material and Non-peening material of the area | region B shown to FIG. 6 (B). Here, as shown in FIGS. 7A and 7B, the average unevenness interval L means the average value of the length of one period of the cross-sectional curve (the center line in the figure is the center of the center line average roughness). Defined in the same way as lines). For example, in the non-peening material shown in FIG. 7A, the length of one cycle (irregularity interval) is in the range of 180 μm to 220 μm, and the average irregularity interval L is approximately 200 μm, but FIG. In the Peening material shown in FIG. 2, the unevenness interval was in the range of 40 μm to 140 μm, and the average unevenness interval L was approximately 85 μm. Thus, the average unevenness interval L of the Peening material tends to be smaller than the average unevenness interval L of the non-peening material. According to further studies by the present inventor, the effect of lowering the friction is particularly effective in rubber materials in which the average unevenness interval L in the region B is in the range of 60 μm ≦ L ≦ 150 μm (more preferably in the range of 80 μm ≦ L ≦ 120 μm) Remarkably recognized.

(3)波形の平均高さ
別の特徴量として、図6(B)(C)に示す領域B、Cに示す波形の平均高さHを算出した。この「平均高さH」として、本実施形態では、図8に示すように、波形の凸部の頂上および凹部の底と上記中心線との距離を求め、凸部の最大5個、凹部の最大5個の計10個について、その絶対値の和を5で除した値とした。その結果、図6(B)に示す領域Bの波形では、Non-peening材でH=1.4μm、Peening材でH=3.8μmとなり、図6(C)に示す領域Cの波形では、Non-peening材でH=0.6μm、Peening材でH=2.2μmとなった。この結果からも領域Bは領域Cに比べてより凹凸の大きい波形となることが理解できる。
(3) Average height of waveform As another feature amount, the average height H of the waveform shown in regions B and C shown in FIGS. 6B and 6C was calculated. As this “average height H”, in this embodiment, as shown in FIG. 8, the distance between the top of the corrugated convex portion and the bottom of the concave portion and the center line is obtained, and a maximum of five convex portions and the concave portion are obtained. The sum of the absolute values of a total of 10 at the maximum of 5 was divided by 5. As a result, in the waveform of the region B shown in FIG. 6B, H = 1.4 μm for the non-peening material and H = 3.8 μm for the Peening material, and in the waveform of the region C shown in FIG. H = 0.6 μm for the non-peening material and H = 2.2 μm for the Peening material. From this result, it can be understood that the region B has a waveform with larger irregularities than the region C.

以上のように、本発明によれば、ピーニング処理した金型で成型されたゴム材の表面形状のうち、特に摩擦特性との関係が深い領域を抽出し、当該領域について、低摩擦化に有効な波形を形状的に特定しているので、単にゴム材の表面粗さを測定するだけの場合に比べ、より確実にゴム材の低摩擦化を図ることができる。   As described above, according to the present invention, a region having a deep relationship with the friction characteristics is extracted from the surface shape of the rubber material molded with the peened die, and this region is effective for reducing friction. Since the specific waveform is specified in terms of shape, the friction of the rubber material can be more reliably reduced as compared with the case of simply measuring the surface roughness of the rubber material.

なお、本発明にかかるエラストマーは、上述のOリングやパッキンに限らず、相手材と摺動する摺動用機械部品として広く適用することができる。また、このエラストマーは、摺動面に水や油を介在させたウェットな状態でなくても(これらを介在させないドライな状態でも)、低摩擦化を達成できるというメリットを有する。ウェットな状態で使用する場合、エラストマーには耐水性や耐油性も必要となり、それだけ材料選択の余地が狭まるのであるが、ドライ状態でも低摩擦化を達成できる本発明品であれば、この種の配慮は不要となる。もちろん本発明品をウェット状態で使用することもでき、この場合、表面の微小凹凸が潤滑剤の貯留部となるので、単に潤滑剤を介在させる場合に比べ、低摩擦化により一層有効となる。   The elastomer according to the present invention is not limited to the O-ring and packing described above, and can be widely applied as a sliding machine part that slides with a mating member. Further, this elastomer has an advantage that low friction can be achieved even in a wet state in which water or oil is interposed on the sliding surface (even in a dry state in which these are not interposed). When used in a wet state, the elastomer also needs to have water resistance and oil resistance, and the room for material selection is narrowed accordingly, but this type of product can achieve low friction even in the dry state. No consideration is required. Of course, the product of the present invention can also be used in a wet state. In this case, since the minute unevenness on the surface serves as a reservoir for the lubricant, it is more effective by reducing the friction than when the lubricant is merely interposed.

ゴム試料を示す斜視図である。It is a perspective view which shows a rubber sample. ピーニング処理の際の金型表面を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the metallic mold surface in the case of peening processing. ゴム材表面の3次元形状の俯瞰図であり、(A)図はPeening材を、(B)図はNon-peening材を示す。It is a bird's-eye view of the three-dimensional shape of the rubber material surface, (A) figure shows Peening material, (B) figure shows Non-peening material. Non-peening材(上図)とPeening材(下図)の断面曲線を示す図である。It is a figure which shows the cross-sectional curve of Non-peening material (upper figure) and Peening material (lower figure). ゴム材の断面形状のパワースペクトル密度関数を示す図である。It is a figure which shows the power spectrum density function of the cross-sectional shape of a rubber material. 逆フーリエ変換後の波形を示す図で、(A)図は図5中のA領域、(B)図は同図中のB領域、(C)図は同図中のC領域を示す。It is a figure which shows the waveform after an inverse Fourier transform, (A) figure shows A area | region in FIG. 5, (B) figure shows B area | region in the figure, (C) figure shows C area | region in the figure. 逆フーリエ変換後のB領域波形における平均凹凸間隔Lを説明する図で、(A)図はNon-peening材を、(B)図はPeening材を示す。It is a figure explaining the average uneven | corrugated space | interval L in the B area | region waveform after an inverse Fourier transform, (A) A figure shows a Non-peening material, (B) A figure shows Peening material. 逆フーリエ変換後のB領域波形における平均高さを説明する図である。It is a figure explaining the average height in the B area | region waveform after an inverse Fourier transform. 摩擦試験結果を示す図である。It is a figure which shows a friction test result. 摩擦試験で使用した往復滑り試験機の構成を示す図である。It is a figure which shows the structure of the reciprocation sliding test machine used by the friction test.

Claims (6)

表面に多数の微小凹凸を有するエラストマーであって、
表面の断面曲線をフーリエ変換して波長に対するパワースペクトルを導出し、このうち、30μm〜250μmの波長領域を逆フーリエ変換して得た変換波形の表面粗さRaが、0.6μm〜3.0μmの範囲内にある微小凹凸を有するエラストマー。
An elastomer having a large number of minute irregularities on the surface,
The surface cross-sectional curve of the surface is Fourier transformed to derive a power spectrum with respect to the wavelength. Among these, the surface roughness Ra of the converted waveform obtained by inverse Fourier transforming the wavelength region of 30 μm to 250 μm is 0.6 μm to 3.0 μm. An elastomer having fine irregularities in the range of.
導出したパワースペクトルのうち、7μm〜30μmの波長領域を逆フーリエ変換して得た変換波形の表面粗さRaが、0.2μm〜0.7μmの範囲内にある請求項1記載の微小凹凸を有するエラストマー。   2. The micro unevenness according to claim 1, wherein the surface roughness Ra of the converted waveform obtained by performing inverse Fourier transform on the wavelength region of 7 μm to 30 μm in the derived power spectrum is in the range of 0.2 μm to 0.7 μm. Having an elastomer. 前記変換波形の平均凹凸間隔が、60μm〜150μmの範囲内にある請求項1記載の微小凹凸を有するエラストマー。   The elastomer having fine unevenness according to claim 1, wherein an average unevenness interval of the converted waveform is in a range of 60 μm to 150 μm. 粗面化した型で成形されている請求項1記載の微小凹凸を有するエラストマー。   The elastomer having fine irregularities according to claim 1, wherein the elastomer is molded with a roughened mold. 請求項1〜4何れか記載のエラストマーで形成された摺動用の機械部品。   A machine part for sliding formed of the elastomer according to claim 1. 表面に多数の微小凹凸を有するエラストマーの摩擦特性を評価する方法であって、
表面の断面曲線をフーリエ変換して波長に対するパワースペクトルを導出し、この波形のうち、30〜250μmの波長領域を逆フーリエ変換して得た変換波形の表面粗さRaの大きさで摩擦特性を評価することを特徴とする、微小凹凸を有するエラストマーの摩擦特性評価方法。
A method for evaluating the friction characteristics of an elastomer having a large number of minute irregularities on the surface,
The surface cross-sectional curve is Fourier transformed to derive a power spectrum with respect to the wavelength. Among these waveforms, the friction characteristic is determined by the surface roughness Ra of the converted waveform obtained by inverse Fourier transforming the wavelength region of 30 to 250 μm. A method for evaluating the friction characteristics of an elastomer having minute irregularities, characterized by evaluating.
JP2005128296A 2005-04-26 2005-04-26 Method for evaluating the frictional properties of elastomers with minute irregularities Expired - Fee Related JP4611098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128296A JP4611098B2 (en) 2005-04-26 2005-04-26 Method for evaluating the frictional properties of elastomers with minute irregularities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128296A JP4611098B2 (en) 2005-04-26 2005-04-26 Method for evaluating the frictional properties of elastomers with minute irregularities

Publications (2)

Publication Number Publication Date
JP2006306935A true JP2006306935A (en) 2006-11-09
JP4611098B2 JP4611098B2 (en) 2011-01-12

Family

ID=37474199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128296A Expired - Fee Related JP4611098B2 (en) 2005-04-26 2005-04-26 Method for evaluating the frictional properties of elastomers with minute irregularities

Country Status (1)

Country Link
JP (1) JP4611098B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097787A (en) * 2007-10-16 2009-05-07 Moriroku Technology Co Ltd Fin supporting structure of blow-out opening for air-conditioning
US20090286462A1 (en) * 2007-10-16 2009-11-19 Moriroku Technology Company, Ltd. Vent assembly with adjustable air guide vanes
JP2011069680A (en) * 2009-09-25 2011-04-07 Ngk Insulators Ltd Surface roughness measuring device and surface roughness measuring method
JP2012042210A (en) * 2011-11-28 2012-03-01 Moriroku Technology Co Ltd Manufacturing method for fin supporting member for air conditioning outlet and fin supporting member for air conditioning outlet manufactured by the method
JP2016049581A (en) * 2014-08-29 2016-04-11 株式会社ディスコ Wafer inspection method, grinding and polishing device
JP7086513B1 (en) * 2021-06-30 2022-06-20 三菱電機株式会社 Friction coefficient calculation device and friction coefficient calculation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310410A (en) * 1989-05-26 1990-12-26 Kobe Steel Ltd Instrument for optical measurement of surface roughness
JPH05320365A (en) * 1992-05-19 1993-12-03 Inax Corp Rubber part for contact use and its production
JPH05318621A (en) * 1992-05-20 1993-12-03 Bridgestone Corp Rubber product having superior on-ice friction performance
JPH09178470A (en) * 1995-12-22 1997-07-11 Akashi:Kk Surface roughness test evaluation method and device thereof
JP2004257906A (en) * 2003-02-26 2004-09-16 Kanegafuchi Chem Ind Co Ltd Method of measuring surface distortion of roller-shape molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310410A (en) * 1989-05-26 1990-12-26 Kobe Steel Ltd Instrument for optical measurement of surface roughness
JPH05320365A (en) * 1992-05-19 1993-12-03 Inax Corp Rubber part for contact use and its production
JPH05318621A (en) * 1992-05-20 1993-12-03 Bridgestone Corp Rubber product having superior on-ice friction performance
JPH09178470A (en) * 1995-12-22 1997-07-11 Akashi:Kk Surface roughness test evaluation method and device thereof
JP2004257906A (en) * 2003-02-26 2004-09-16 Kanegafuchi Chem Ind Co Ltd Method of measuring surface distortion of roller-shape molding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097787A (en) * 2007-10-16 2009-05-07 Moriroku Technology Co Ltd Fin supporting structure of blow-out opening for air-conditioning
US20090286462A1 (en) * 2007-10-16 2009-11-19 Moriroku Technology Company, Ltd. Vent assembly with adjustable air guide vanes
JP2011069680A (en) * 2009-09-25 2011-04-07 Ngk Insulators Ltd Surface roughness measuring device and surface roughness measuring method
JP2012042210A (en) * 2011-11-28 2012-03-01 Moriroku Technology Co Ltd Manufacturing method for fin supporting member for air conditioning outlet and fin supporting member for air conditioning outlet manufactured by the method
JP2016049581A (en) * 2014-08-29 2016-04-11 株式会社ディスコ Wafer inspection method, grinding and polishing device
JP7086513B1 (en) * 2021-06-30 2022-06-20 三菱電機株式会社 Friction coefficient calculation device and friction coefficient calculation method

Also Published As

Publication number Publication date
JP4611098B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4611098B2 (en) Method for evaluating the frictional properties of elastomers with minute irregularities
Podgornik et al. Surface topography effect on galling resistance of coated and uncoated tool steel
Pereira et al. The effect of the die radius profile accuracy on wear in sheet metal stamping
Parthasarathi et al. Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316 L (N) stainless steel at elevated temperatures
Olofinjana et al. Effect of laser surface texturing (LST) on tribochemical films dynamics and friction and wear performance
Pawlak et al. The effect of hexagonal boron nitride additive on the effectiveness of grease‐based lubrication of a steel surface
Menezes et al. The role of surface texture on friction and transfer layer formation during repeated sliding of Al–4Mg against steel
CN103459057A (en) Method and tool for bending titanium member
Menezes et al. Influence of roughness parameters and surface texture on friction during sliding of pure lead over 080 M40 steel
Prajapati et al. Experimental investigation on evolution of surface damage and topography parameters during rolling contact fatigue tests
Wang et al. Experimental study on the tribological performance of fractal-like textured surface under mixed lubrication conditions
Magaziner et al. Investigation into wear of Ti–6Al–4V under reciprocating sliding conditions
Mahkamov Tribology in sheet metal forming
Arinbjarnar et al. Application of calcium carbonate as green lubricant additive in sheet metal forming
Nakamura et al. Role of graphite in cast iron on tribological behavior in nano-scratch test
Busse Investigation, prediction and control of rubber friction and stick-slip: experiment, simulation, application
Warhadpande et al. Effects of fretting wear on rolling contact fatigue life of M50 bearing steel
Menezes et al. Role of surface texture and roughness parameters in friction and transfer layer formation under dry and lubricated sliding conditions
Pawlus et al. Wear analysis of discs and balls on a micro-scale
Riddar et al. Comparison of friction performance of four anodised aluminium surfaces for use in a clutch actuator
Lovell et al. A novel particulate-fluid lubrication for environmentally benign forming processes
Chi et al. Effect of Speed and Number of Sliding Cycles on the Film Formation Behavior of Fluorine-Based Grease
Gorbunov et al. Influence of roller treatment on the surface topography of cold-rolled sheet
Pang et al. The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid
Mofidi Tribology of elastomers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees