JP2004257906A - Method of measuring surface distortion of roller-shape molding - Google Patents

Method of measuring surface distortion of roller-shape molding Download PDF

Info

Publication number
JP2004257906A
JP2004257906A JP2003050162A JP2003050162A JP2004257906A JP 2004257906 A JP2004257906 A JP 2004257906A JP 2003050162 A JP2003050162 A JP 2003050162A JP 2003050162 A JP2003050162 A JP 2003050162A JP 2004257906 A JP2004257906 A JP 2004257906A
Authority
JP
Japan
Prior art keywords
roller
shaped molded
distortion
molded body
laser displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050162A
Other languages
Japanese (ja)
Inventor
Akio Matsutani
晃男 松谷
Keizo Asaoka
圭三 浅岡
Hidenari Tsunemi
常深  秀成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2003050162A priority Critical patent/JP2004257906A/en
Publication of JP2004257906A publication Critical patent/JP2004257906A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the direct measurement of the minute surface distortion of a roller shape molding is sometime difficult, and also the measurement of the surface distortion of the roller shape molding in an image record device after usage is sometime difficult. <P>SOLUTION: There is provided the method of measuring the surface distortion of the roller shape molding, which is characterised by being composed of a laser displacement measurement device, and a roller rotation mechanism. Further, there is provided the method of measurement of the surface distortion of the roller shape molding, in which the reflection type laser displacement measurement device having an elliptical shape laser spot is used for the laser displacement measurement device. Consequently, the measurement of the surface distortion of the roller shape molding can be performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はローラ状成形体表面の歪み測定方法に関する。さらに詳しくは、例えば電子写真方式を採用した画像記録装置内に組み込まれているローラ状成形体表面の歪み測定方法に関する。
【0002】
【従来の技術】
電子写真方式を採用した画像記録装置内に組み込まれているローラ状成形体において、該表面に接触した部材の影響で表面に歪みが発生することがある。通常、画像記録装置内に組み込まれた状態でローラ表面に接触する部材の押し込み量は、金属支持部材外周面上に形成された導電性弾性層の肉厚の10%以下とわずかであり、発生する歪みは極めて微小な歪みである。この為この様なローラ状成形体表面の微少な歪みを直接測定することは困難であり、各種ローラ状成形体表面の歪みを評価する方法が報告されている。
【0003】
しかし、例えばJIS K6301の方法では、ローラ状成形体表面に実際に発生する微少な歪みを検出することは難しいことが知られている。これは、JIS K6301が直円筒形の試験片の均等な歪みの測定であり、実際にローラ状成形体表面に発生する微小な歪みを測定することができないためである。また、JIS K6301の方法は弾性材料の圧縮永久歪みを測定しているが、圧縮の割合が試験片の25%と大きな変形を加えた後に残る永久歪みを測定しており、ローラ表面に接触する部材の押し込み量が金属支持部材外周面上に形成された導電性弾性層の肉厚の10%以下とわずかである場合の永久歪みを測定することはできない。
【0004】
更に、ローラ状成形体表面の歪みを直接測定する方法として、特許文献1に下記の方法が報告されている。
【0005】
ハードロールとソフトロールがある荷重のもとで圧接した場合、ニップ領域でソフトロール表面は弾性変形し、その表面に円周方向歪みεを生じる。この状態でロール対を回転させニップ領域を記録紙が通過すると、記録紙は歪みを生じたニップ領域で搬送される。このため歪みを生じた弾性体ロール1回転で送りだされる記録紙の長さは、実際にロール周長の長さより円周方向歪みε分だけ搬送量が大きくなる。上記方法で測定されるεを歪みとしている。
【0006】
上記方法は大きな歪みを測定することは可能であるが、微小な歪みを測定することは難しい。また、画像記録装置内に組み込まれたローラ状成形体を該装置内で使用後、ローラ状成形体表面に残る残留歪みを上記方法で測定することはできない。
【0007】
ローラ状成形体表面の歪み測定を行う方法として、触針等の接触式も知られている。しかし、電子写真方式を採用した電子写真装置内に取り付けられる、トナーへのストレスを軽減することを目的とした弾性ローラの表面を測定する場合、弾性ローラ表面を歪ませてしまう可能性があり、ローラ状成形体表面の歪みを正確に測定することは極めて困難である。
【0008】
【特許文献1】
特開平5−150679
【0009】
【発明が解決しようとする課題】
本発明は、かかる実状を鑑みてなされたものであり、例えば電子写真方式を採用した画像記録装置内にローラ状成形体を組み込んだ際等に生じる、ローラ状成形体表面の微少な歪みを測定する方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、ローラ回転機構部によりローラ状成形体を回転させると共に、レーザ変位測定機により該ローラ状成形体に対しレーザを照射するローラ状成形体表面の歪み測定方法により、ローラ状成形体表面の微少な歪みを算出可能となることを見出し、本発明をなすに至った。
【0011】
1つの実施態様では、ローラ状成形体が金属支持部材、該支持部材外周面上に形成された導電性弾性層、および、その外周上に形成された1層以上の表面層からなるローラ状成形体表面の歪み測定が可能である。
【0012】
1つの実施態様では、ローラ状成形体表面の表面粗さの大きさに関係なく被測定体として用いることが可能であるが、特にローラ状成形体表面の表面粗さRzが2μm〜10μmの範囲の微少な歪みであっても測定することのできるローラ状成形体表面の歪み測定方法を提供する。
【0013】
1つの実施態様では、レーザ変位測定機が反射型レーザ変位測定機であることが好ましい。
【0014】
1つの実施態様では、レーザ変位測定機のレーザスポットの形が楕円であり、長軸方向がローラ軸方向に平行であることが好ましい。
【0015】
【発明の実施の形態】
本発明は、ローラ回転機構部によりローラ状成形体を回転させると共に、レーザ変位測定機により該ローラ状成形体に対しレーザを照射するローラ状成形体表面の歪み測定方法である。
【0016】
図1は、本発明のローラ状成形体表面の歪み測定方法に用いる歪み測定装置の一例をを模式的に表した図である。
【0017】
本発明のローラ状成形体表面の歪み測定方法に用いる歪み測定装置は、レーザ変位測定機とローラ回転機構部とで構成されている。尚、ローラ状成形体の軸方向へのスキャンを可能とする目的で、別途、ローラ状成形体またはレーザ変位測定機をローラ状成形体の軸方向に移動させるローラ軸方向駆動部を設けても良い。
【0018】
レーザ変位測定機のレーザ照射部位1と反射光の受光部位1´をローラ状成形体の軸方向に対して垂直方向に取り付けた。レーザ変位測定機の測定原理として透過光を用いる場合(ここで“透過光を用いる場合”とは、レーザをローラー状成形体に照射した際の、ローラー状成形体の影の形の変動を、レーザ受光部で読みとる方式を言う)、レーザ照射部位1と反射光の受光部位1´はローラ状成形体を挟んで反対側に位置する。レーザ変位測定機の測定原理として反射光を用いる場合、レーザ照射部位1と反射光の受光部位1´はローラ状成形体を挟んで同じ側に位置する。
【0019】
ローラ状成形体を固定する方法としては特に制限されないが、ローラ状成形体の金属支持部材をローラ固定治具2で固定する等の方法を用いることができる。ローラ状成形体に金属支持部材がない場合は、別途金属支持部材を取り付けることでその代わりとなすことができる。ここで言う固定とは、ローラ状成形体の金属支持部材が上下左右には動かないが、回転可能な部品を金属支持部材に接触させることで金属支持部材を回転させることが可能な状態で保持することを意味する。ローラ状成形体の自重により、ローラ状成形体が測定精度に影響を与える程度に大きく動かないのであれば、回転軸を固定することは必ずしも必要とはしない。また、回転可能な部品としてはベアリングやカムフォロアを用いることが可能であるが、金属支持部材が測定精度に影響を与える程度に動かず、回転させることができるのであれば特に制限されるものではない。また、回転精度を上げる目的、固定しやすくする目的またはその他の目的として、ローラ状成形体の金属支持部材の回転冶具または固定冶具に接している部分に円筒状のキャップを施し、固定する金属支持体部分の径を大きくしても良い。
【0020】
ローラ状成形体はモータ3で回転させる。モータは連続的に回転させることが可能であるものであっても、ある角度ずつ回転させるものであっても良く、ローラ状成形体を回転させることができるものであれば、自動であっても手動であっても特に制限されるものではない。ただし、モータを用いてローラ状成形体を回転させる場合、モータ本体を起因とする振動や、ギア、シャフト、ベルト等のローラ状成形体を回転させるのに必要である部材を起因とする振動が発生することがある。このため、測定する歪みの大きさや必要とする測定精度にもよるが、レーザ変位測定機で測定した値に該振動成分が含まれてしまい、ローラ状成形体表面の歪みに影響を及ぼす場合があるため、特に制限されないが、通常一般に使用されている振動除去方法を用いても良い。
【0021】
例えばモータを起因とする振動を除去する方法としては、例えばモータを取り付ける台と被測定体であるローラ状成形体を固定している台、センサーを取り付ける台を独立させる、またはモータの回転軸にカップリング等を取り付け、ローラ状成形体に振動を伝わりにくくする、あるいは、モータの回転軸の先に取り付けている、ローラ状成形体を回転させるのに必要である部材の形状、材質を変える方法があるが、特に制限されるものではない。
【0022】
レーザ変位測定機に用いているレーザによっては、レーザ変位測定機と被測定体間の空気の流れに実測値が影響されることがある。測定する歪みの大きさや必要とする測定精度にもよるが、レーザ変位測定機と被測定体の間に空気が流れ込まないような措置を適時用いてもかまわない。
【0023】
ローラ状成形体表面の歪み測定は、ローラ状成形体を回転させながらレーザ変位測定機で得た測定値からローラ状成形体表面の歪みを算出するものである。
【0024】
例えば、グラフの横軸に測定した時間、縦軸には測定値をプロットしたグラフよりローラ状成形体表面の歪みを算出することは可能である。グラフの作成方法は特に制限されるものではなく、円形にプロットしても良く、また複数点測定し3次元にプロットすることでローラ状成形体表面の歪みをグラフまたは図形から算出しても良い。
【0025】
また、表面粗さをもつローラ状成形体表面の歪み測定を行った場合、ローラ状成形体表面の歪み測定方法により得られた測定値は、ローラ状成形体表面の表面粗さと残留歪みを含む値となる。したがって表面粗さを除去、もしくは残留歪みを算出できる程度に小さくする必要があることがある。測定値に含まれるローラ状成形体表面の表面粗さ成分を除去または小さくする方法としては、例えばフーリエ変換を用い、ある一定周期の波を除いたり、移動平均または単純平均で測定値のスムージング処理を行ったりする方法がある。測定値に含まれる表面粗さ成分を除去もしくは小さくする方法としては、特に上記方法に限るものではない。また測定値に含まれる表面粗さ成分を除去もしくは小さくすることは、測定する歪みの大きさや必要とする測定精度により必ずしも必要とはしない。
【0026】
本発明のローラ状成形体表面の歪み測定方法によれば、ローラ状成形体表面の歪みが大きな場合でも、微小な場合でも、またローラ状成形体表面の表面粗さが大きな場合でも、小さい場合でも、該歪みを測定することが可能となる。
【0027】
また、ローラ状成形体が金属支持部材、該支持部材外周面上に形成された導電性弾性層、および、その外周面上に形成された1層以上の表面層からなるものであってもローラ状成形体表面の歪み測定が可能である。
【0028】
本発明のローラ状成形体表面の歪み測定方法において、特にレーザ変位測定機が反射型レーザ変位測定機であることが好ましい。これは、測定しようとするローラ状成形体表面の微少な歪みのローラ円周方向長さが非常に小さい場合、ローラ状成形体の影の形の変動をレーザ受光部で読みとる透過型レーザ変位測定機では、その歪みを読み取ることが困難であるのに対し、反射型レーザ変位測定機ではこの様な場合にも歪みを測定することができるからである。
【0029】
反射型レーザ変位測定機の中でも、測定原理として三角測距方式またはオートフォーカス方式を採用している反射型レーザ変位測定機が特に好ましい。
【0030】
三角測距方式とは基本的に、レーザ発光部位1と反射光受光部1´を固定しておき、反射光受光部1´に入る反射光の入射角または、測定点における反射角によりレーザ変位測定機と測定点との距離を算出する方式である。また、オートフォーカス方式とは、基本的にレーザ照射光と反射光が同軸であり、センサー内臓のレンズを上下に動かし、受光部1´で検出する光量の最大値となるレンズの位置により、レーザ変位測定機を測定点との距離を算出する方法である。
【0031】
電子写真方式を採用した電子写真装置内に搭載されているローラ状成形体の表面に、適度の粗さを付与する場合があるが、表面に粗さを付与したローラ状成形体表面の歪み測定の場合、表面の粗さに歪みが埋もれてしまい歪み測定が特に困難である。特に、ローラ状成形体表面の表面粗さRzが2μm〜10μmの範囲にあるローラ状成形体が使用されているが、特にこの範囲の表面粗さの際に歪みの測定が困難である。
【0032】
ここで、表面粗さRzは十点平均粗さであり、JIS B0601:1982に順ずる測定方法を用い、SURFCORDER SE3500(小坂研究所社製)で測定した値である。
【0033】
この様な、表面に粗さを付与したローラ状成形体表面の歪み測定の場合、反射型レーザ変位測定機の回路に、反射光量が少ない場合レーザの点灯時間を長くすることができる回路を採用していることが好ましい。
【0034】
これは、ローラ状成形体表面の表面色、光沢、表面粗さ等により、被測定体表面に照射したレーザを吸収または乱反射等されることで、測定に必要な反射光を得ることができないことがある為である。これに対し、上記回路を採用しているレーザ変位測定機であれば、ローラ状成形体表面の状態に大きく依存することなく、容易に測定することができる可能性がある。
【0035】
本発明のローラ状成形体表面の歪み測定方法において、特にレーザ変位測定機のレーザスポットの形が楕円状であることが好ましい。以下この理由について説明する。
【0036】
レーザ変位測定機では、レーザスポット内でのローラ状成形体表面の変位の平均値を測定値として出力する。レーザスポットの形が楕円である場合、楕円の短軸方向よりも長軸方向の、ローラ状成形体表面の変位が平均化される。例えば、ローラ状成形体表面の表面粗さ成分において、短軸方向よりも長軸方向で表面粗さ成分を小さく測定することが可能となる。またローラ状成形体表面の表面粗さが小さい場合でも、ローラ状成形体表面の軸方向の特異的で微小な凹凸を平均化することが可能となる。即ち、測定したい表面歪みの配向方向が分かっている際には、レーザスポットの楕円長軸方向を調整することで、測定値への表面粗さの影響を低減することができる。
【0037】
画像記録装置内における、ローラ状成形体表面の歪みの発生はローラ状成形体に接触する部材による影響であることがあり、ローラ状成形体の軸方向に直線状の歪みが発生することが多い。
【0038】
上記ローラ状成形体表面の歪みを、楕円状のレーザスポットを用いているレーザ変位測定機で測定する場合、楕円状のレーザスポットの長軸方向をローラ状成形体の軸方向に平行にすることで、円状のレーザスポットを用いているレーザ変位測定機で測定するよりも、ローラ状成形体表面の表面粗さや特異的で微小な凹凸を小さくすることができ、ローラ状成形体の軸方向に発生するローラ状成形体表面の歪みを測定することが可能となる。
【0039】
測定したい歪みの形状またはローラ状成形体表面の形状により、レーザスポットの長軸方向または短軸方向を適時変えることで、ローラ状成形体表面の歪みを測定することが可能である。
【0040】
【実施例】
以下の実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例の結果は表1に示す。
【0041】
【表1】

Figure 2004257906
【0042】
(実施例1)
レーザ変位測定機LK−035(キーエンス社製)を用い、モータでローラ状成形体を1rpmで回転させながら、レーザ変位測定機から測定データを10msで取り込んだ。取り込んだ測定データを横軸に測定時間、縦軸に変位としてグラフを描いた。その後、ローラ状成形体表面の相対的な変位変化により歪みを測定した。その結果ローラ状成形体表面にトナー規制用ブレード由来の歪みを測定することができた。レーザ変位測定機LK−035は反射型レーザ変位測定機でレーザスポットが楕円状のものである。
【0043】
被測定体としてはキャノン製レーザプリンターLBP−2510用のカートリッジに搭載されている現像ローラを用いた。現像ローラの表面粗さRz=5.5であった。表1は異なるレーザ変位測定機を用いた測定結果である。
【0044】
(実施例2)
測定方法としては(実施例1)と全く同じ測定方法、同じ被測定体を用いて、下記レーザ変位測定機を用いて現像ローラ表面の歪み測定を実施した。レーザ変位測定機としては反射型レーザ変位測定機でレーザスポットが円状であるLK−030を用いた。
【0045】
(実施例3)
測定方法、被測定体としては(実施例1)と同じ測定方法、同じ被測定体を用いて、下記レーザ変位測定機を用いて現像ローラ表面の歪み測定を実施した。レーザ変位測定機としては、透過光型レーザ変位測定機LS−5040を用いた。
【0046】
【比較例】
実施例で用いた現像ローラ表面の歪みを、接触式の真円度・円筒形状測定機ラウンドテストRA−2000AS(Mitsutoyo社製)で測定したが、測定中に現像ローラの表面が歪んでしまい、トナー規制用ブレード由来の歪みを測定することができなかった。表1に実施例と並べて比較例の結果を示す。
【0047】
【発明の効果】
本発明により、ローラ状成形体表面の歪み測定において、レーザ変位測定機、ローラ軸方向駆動部、ローラ回転機構部とで構成されることでローラ状成形体表面の歪み測定が可能となった。
【図面の簡単な説明】
【図1】本発明のローラ状成形体表面の歪み測定方法に用いる歪み測定装置を模式的に表した図
【符号の説明】
1 レーザ変位測定機のレーザ照射部位
1’ レーザ変位測定機のレーザ受光部位
2 ローラ固定治具
3 モータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring distortion on the surface of a roller-shaped formed body. More specifically, for example, the present invention relates to a method for measuring the distortion of the surface of a roller-shaped molded body incorporated in an image recording apparatus employing an electrophotographic system.
[0002]
[Prior art]
In a roller-shaped molded body incorporated in an electrophotographic image recording apparatus, the surface may be distorted due to the effect of a member in contact with the surface. Normally, the amount of pushing of the member that comes into contact with the roller surface in a state of being incorporated in the image recording apparatus is as small as 10% or less of the thickness of the conductive elastic layer formed on the outer peripheral surface of the metal supporting member. The resulting distortion is a very small distortion. For this reason, it is difficult to directly measure such a minute distortion on the surface of the roller-shaped molded product, and various methods for evaluating the distortion on the surface of the roller-shaped molded product have been reported.
[0003]
However, for example, it is known that it is difficult to detect minute distortion actually occurring on the surface of the roller-shaped molded product by the method of JIS K6301. This is because JIS K6301 measures the uniform distortion of a test piece having a straight cylindrical shape, and it is impossible to actually measure a minute distortion generated on the surface of the roller-shaped molded body. Further, the method of JIS K6301 measures the compression set of the elastic material, but measures the permanent set remaining after applying a large deformation of 25% of the test piece, and makes contact with the roller surface. It is not possible to measure the permanent strain when the amount of pushing of the member is as small as 10% or less of the thickness of the conductive elastic layer formed on the outer peripheral surface of the metal supporting member.
[0004]
Further, as a method for directly measuring the distortion of the surface of a roller-shaped formed body, the following method is reported in Patent Document 1.
[0005]
When the hard roll and the soft roll are pressed against each other under a certain load, the surface of the soft roll is elastically deformed in the nip region, and a circumferential strain ε is generated on the surface. In this state, when the roll pair is rotated and the recording paper passes through the nip area, the recording paper is conveyed in the distorted nip area. For this reason, the length of the recording paper fed by one rotation of the distorted elastic roll is larger than the length of the roll circumference by the amount of distortion ε in the circumferential direction. Ε measured by the above method is defined as strain.
[0006]
The above method can measure a large strain, but it is difficult to measure a small strain. Further, after the roller-shaped molded body incorporated in the image recording apparatus is used in the apparatus, the residual strain remaining on the surface of the roller-shaped molded body cannot be measured by the above method.
[0007]
As a method for measuring the strain on the surface of the roller-shaped formed body, a contact type such as a stylus is also known. However, when measuring the surface of the elastic roller, which is mounted in an electrophotographic apparatus employing the electrophotographic method, for the purpose of reducing the stress on the toner, the elastic roller surface may be distorted, It is extremely difficult to accurately measure the distortion of the surface of the roller-shaped molded product.
[0008]
[Patent Document 1]
JP-A-5-150679
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and measures, for example, a minute distortion of the surface of a roller-shaped molded body that occurs when the roller-shaped molded body is incorporated in an image recording apparatus employing an electrophotographic method. It is to provide a way to do it.
[0010]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies to solve the above-described problems, and as a result, while rotating the roller-shaped molded body by the roller rotating mechanism section, irradiating the roller-shaped molded body with a laser by a laser displacement measuring device. The present inventors have found that it is possible to calculate a minute strain on the surface of the roller-shaped molded body by the method for measuring the strain on the surface of the molded body, and have accomplished the present invention.
[0011]
In one embodiment, the roller-shaped molding comprises a metal support member, a conductive elastic layer formed on the outer peripheral surface of the support member, and one or more surface layers formed on the outer periphery thereof. Measurement of body surface strain is possible.
[0012]
In one embodiment, it can be used as an object to be measured irrespective of the size of the surface roughness of the roller-shaped formed body, but in particular, the surface roughness Rz of the roller-shaped formed body is in the range of 2 μm to 10 μm. The present invention provides a method for measuring the distortion of the surface of a roller-shaped molded body, which can measure even a very small distortion.
[0013]
In one embodiment, the laser displacement measuring device is preferably a reflection type laser displacement measuring device.
[0014]
In one embodiment, it is preferable that the shape of the laser spot of the laser displacement measuring device is elliptical, and the major axis direction is parallel to the roller axis direction.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a method for measuring the distortion of the surface of a roller-shaped molded body, which comprises rotating a roller-shaped molded body by a roller rotating mechanism and irradiating a laser to the roller-shaped molded body by a laser displacement measuring device.
[0016]
FIG. 1 is a diagram schematically illustrating an example of a strain measuring apparatus used in the method for measuring the strain on the surface of a roller-shaped formed body according to the present invention.
[0017]
The distortion measuring device used in the method for measuring the distortion of the surface of the roller-shaped formed body according to the present invention includes a laser displacement measuring device and a roller rotating mechanism. Incidentally, for the purpose of enabling scanning of the roller-shaped molded body in the axial direction, a roller axial drive unit for moving the roller-shaped molded body or the laser displacement measuring device in the axial direction of the roller-shaped molded body may be separately provided. good.
[0018]
The laser irradiation part 1 and the reflected light receiving part 1 ′ of the laser displacement measuring machine were attached in a direction perpendicular to the axial direction of the roller-shaped formed body. When the transmitted light is used as the measurement principle of the laser displacement measuring device (here, “when the transmitted light is used”, the change in the shape of the shadow of the roller-shaped molding when the laser is irradiated on the roller-shaped molding is The laser irradiation part 1 and the reflected light receiving part 1 ′ are located on opposite sides of the roller-shaped molded body. When the reflected light is used as the measurement principle of the laser displacement measuring device, the laser irradiation part 1 and the light receiving part 1 ′ of the reflected light are located on the same side of the roller-shaped molded body.
[0019]
The method for fixing the roller-shaped molded body is not particularly limited, but a method such as fixing the metal support member of the roller-shaped molded body with the roller fixing jig 2 can be used. If the roller-shaped molded body does not have a metal support member, a separate metal support member can be used instead. The term “fixing” here means that the metal support member of the roller-shaped molded body does not move up, down, left and right, but is held in a state where the metal support member can be rotated by bringing a rotatable component into contact with the metal support member. Means to do. It is not always necessary to fix the rotating shaft if the roller-shaped formed body does not move largely enough to affect the measurement accuracy due to the weight of the roller-shaped formed body. Further, as the rotatable component, a bearing or a cam follower can be used, but there is no particular limitation as long as the metal supporting member does not move to an extent that affects measurement accuracy and can be rotated. . In addition, for the purpose of increasing rotation accuracy, facilitating fixation, or other purposes, a metal support is provided by fixing a cylindrical cap on a portion of the metal support member of the roller-shaped molded body that is in contact with the rotating jig or fixing jig. The diameter of the body part may be increased.
[0020]
The roller-shaped formed body is rotated by the motor 3. The motor may be one that can be continuously rotated, one that can be rotated by a certain angle, and any automatic one that can rotate the roller-shaped molded body. Even if it is manual, there is no particular limitation. However, when the roller-shaped molded body is rotated using a motor, vibrations caused by the motor body and vibrations caused by members necessary for rotating the roller-shaped molded body such as gears, shafts, and belts are generated. May occur. For this reason, depending on the magnitude of the strain to be measured and the required measurement accuracy, there is a case where the vibration component is included in the value measured by the laser displacement measuring device, which affects the distortion of the surface of the roller-shaped molded body. Although there is no particular limitation, a generally used vibration removing method may be used.
[0021]
For example, as a method of removing vibration caused by a motor, for example, a table for mounting a motor and a table for fixing a roller-shaped molded body as a measured object, a table for mounting a sensor independently, or a rotating shaft of the motor. A method of attaching a coupling or the like to make vibration less likely to be transmitted to the roller-shaped molded body, or changing the shape and material of the member attached to the end of the rotating shaft of the motor and necessary for rotating the roller-shaped molded body However, there is no particular limitation.
[0022]
Depending on the laser used in the laser displacement measuring device, the measured value may be affected by the flow of air between the laser displacement measuring device and the object to be measured. Depending on the magnitude of the strain to be measured and the required measurement accuracy, a measure for preventing air from flowing between the laser displacement measuring machine and the object to be measured may be used as appropriate.
[0023]
The measurement of the distortion of the surface of the roller-shaped molded body is to calculate the distortion of the surface of the roller-shaped molded body from the measured value obtained by a laser displacement measuring machine while rotating the roller-shaped molded body.
[0024]
For example, it is possible to calculate the distortion of the surface of the roller-shaped compact from a graph in which the measured time is plotted on the horizontal axis and the measured value is plotted on the vertical axis. The method for creating the graph is not particularly limited, and the graph may be plotted in a circular shape, or the distortion of the surface of the roller-shaped molded body may be calculated from a graph or a figure by measuring a plurality of points and plotting it three-dimensionally. .
[0025]
In addition, when the distortion measurement of the surface of the roller-shaped molded body having the surface roughness is performed, the measured value obtained by the distortion measurement method of the surface of the roller-shaped molded body includes the surface roughness and the residual distortion of the surface of the roller-shaped molded body. Value. Therefore, it may be necessary to remove the surface roughness or make it small enough to calculate the residual strain. As a method of removing or reducing the surface roughness component of the surface of the roller-shaped molded body included in the measured values, for example, using a Fourier transform, removing a certain periodic wave, smoothing the measured values by a moving average or a simple average There is a way to go. The method for removing or reducing the surface roughness component contained in the measured value is not particularly limited to the above method. Further, it is not always necessary to remove or reduce the surface roughness component included in the measured value, depending on the magnitude of the strain to be measured and the required measurement accuracy.
[0026]
According to the method for measuring the distortion of the surface of the roller-shaped molded product of the present invention, even if the distortion of the surface of the roller-shaped molded product is large, even if it is small, or if the surface roughness of the surface of the roller-shaped molded product is large or small, However, the distortion can be measured.
[0027]
Further, even if the roller-shaped formed body is composed of a metal support member, a conductive elastic layer formed on the outer peripheral surface of the support member, and one or more surface layers formed on the outer peripheral surface thereof, It is possible to measure the strain on the surface of the shaped body.
[0028]
In the method for measuring the distortion of the surface of the roller-shaped formed body of the present invention, it is particularly preferable that the laser displacement measuring device is a reflection type laser displacement measuring device. This is a transmission-type laser displacement measurement that uses a laser light-receiving unit to read the change in the shadow shape of the roller-shaped compact when the length of the roller-shaped compact in the circumferential direction of the roller is very small. This is because it is difficult for the apparatus to read the distortion, while the reflection type laser displacement measuring apparatus can measure the distortion even in such a case.
[0029]
Among the reflective laser displacement measuring instruments, a reflective laser displacement measuring instrument that employs a triangulation method or an autofocus method as a measurement principle is particularly preferable.
[0030]
Basically, in the triangulation method, the laser light emitting portion 1 and the reflected light receiving portion 1 'are fixed, and the laser displacement is determined by the incident angle of the reflected light entering the reflected light receiving portion 1' or the reflection angle at the measurement point. This is a method for calculating the distance between the measuring machine and the measuring point. The autofocus method basically means that the laser irradiation light and the reflected light are coaxial, the lens inside the sensor is moved up and down, and the laser position is determined by the position of the lens at which the maximum amount of light detected by the light receiving unit 1 ′ is reached. This is a method for calculating the distance between the displacement measuring device and the measurement point.
[0031]
In some cases, the surface of a roller-shaped molded body mounted in an electrophotographic apparatus employing an electrophotographic method may have an appropriate degree of roughness. In this case, the strain is buried in the surface roughness, and it is particularly difficult to measure the strain. In particular, a roller-shaped molded product having a surface roughness Rz in the range of 2 μm to 10 μm is used, but it is difficult to measure distortion particularly when the surface roughness is in this range.
[0032]
Here, the surface roughness Rz is a ten-point average roughness, and is a value measured by SURFCODER SE3500 (manufactured by Kosaka Laboratories) using a measurement method according to JIS B0601: 1982.
[0033]
In the case of such a distortion measurement of the surface of the roller-shaped molded body having a roughened surface, a circuit that can lengthen the laser lighting time when the amount of reflected light is small is adopted in the circuit of the reflection-type laser displacement measuring machine. Preferably.
[0034]
This is because the laser light applied to the surface of the object to be measured is absorbed or irregularly reflected due to the surface color, gloss, surface roughness, etc. of the surface of the roller-shaped molded body, so that reflected light required for measurement cannot be obtained. Because there is. On the other hand, with a laser displacement measuring device employing the above circuit, there is a possibility that the measurement can be easily performed without largely depending on the state of the surface of the roller-shaped molded body.
[0035]
In the method for measuring the distortion of the surface of the roller-shaped formed body of the present invention, it is particularly preferable that the shape of the laser spot of the laser displacement measuring machine is elliptical. The reason will be described below.
[0036]
The laser displacement measuring device outputs the average value of the displacement of the surface of the roller-shaped molded body in the laser spot as a measured value. When the shape of the laser spot is an ellipse, the displacement of the surface of the roller-shaped formed body in the major axis direction is averaged compared to the minor axis direction of the ellipse. For example, in the surface roughness component of the surface of the roller-shaped molded body, it is possible to measure the surface roughness component smaller in the long axis direction than in the short axis direction. Further, even when the surface roughness of the surface of the roller-shaped molded product is small, it is possible to average specific and minute irregularities in the axial direction of the surface of the roller-shaped molded product. That is, when the orientation direction of the surface distortion to be measured is known, the influence of the surface roughness on the measured value can be reduced by adjusting the major axis direction of the laser spot.
[0037]
The occurrence of distortion on the surface of the roller-shaped molded body in the image recording apparatus may be affected by a member that comes into contact with the roller-shaped molded body, and linear distortion is often generated in the axial direction of the roller-shaped molded body. .
[0038]
When measuring the distortion of the surface of the roller-shaped molded product with a laser displacement measuring machine using an elliptical laser spot, the major axis direction of the elliptical laser spot should be parallel to the axial direction of the roller-shaped molded product. It is possible to reduce the surface roughness and specific and minute irregularities of the surface of the roller-shaped body compared to the measurement with a laser displacement measuring machine using a circular laser spot. It is possible to measure the distortion of the surface of the roller-shaped molded body generated at the time of the measurement.
[0039]
The distortion of the surface of the roller-shaped molded product can be measured by appropriately changing the long axis direction or the short axis direction of the laser spot depending on the shape of the distortion to be measured or the shape of the surface of the roller-shaped molded product.
[0040]
【Example】
The present invention will be described in more detail based on the following examples, but the present invention is not limited to only these examples. Table 1 shows the results of the examples.
[0041]
[Table 1]
Figure 2004257906
[0042]
(Example 1)
Using a laser displacement measuring machine LK-035 (manufactured by KEYENCE CORPORATION), measurement data was taken in 10 ms from the laser displacement measuring machine while rotating the roller-shaped molded body at 1 rpm with a motor. A graph was drawn with the measured data taken as the measurement time on the horizontal axis and the displacement on the vertical axis. Thereafter, the strain was measured by a relative change in displacement of the surface of the roller-shaped formed body. As a result, it was possible to measure the distortion due to the toner regulating blade on the surface of the roller-shaped molded product. The laser displacement measuring device LK-035 is a reflection type laser displacement measuring device whose laser spot is elliptical.
[0043]
A developing roller mounted on a cartridge for a laser printer LBP-2510 manufactured by Canon was used as the object to be measured. The surface roughness Rz of the developing roller was 5.5. Table 1 shows the measurement results using different laser displacement measuring machines.
[0044]
(Example 2)
As the measuring method, using the same measuring method and the same object to be measured as in (Example 1), the distortion of the developing roller surface was measured using the following laser displacement measuring machine. As a laser displacement measuring device, LK-030 having a circular laser spot as a reflection type laser displacement measuring device was used.
[0045]
(Example 3)
Using the same measuring method and the same measuring object as those in Example 1 as the measuring method and the measuring object, distortion measurement of the developing roller surface was carried out using the following laser displacement measuring machine. As a laser displacement measuring device, a transmitted light laser displacement measuring device LS-5040 was used.
[0046]
[Comparative example]
The distortion of the surface of the developing roller used in the examples was measured by a contact type roundness / cylindrical shape measuring device Round Test RA-2000AS (manufactured by Mitsutoyo), but the surface of the developing roller was distorted during the measurement. The distortion derived from the toner regulating blade could not be measured. Table 1 shows the results of the comparative examples alongside the examples.
[0047]
【The invention's effect】
According to the present invention, in measuring the distortion of the surface of the roller-shaped molded product, it is possible to measure the distortion of the surface of the roller-shaped molded product by comprising a laser displacement measuring device, a roller axial driving unit, and a roller rotating mechanism.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a distortion measuring device used in a method for measuring the distortion of the surface of a roller-shaped molded product according to the present invention.
1 Laser irradiation part of laser displacement measuring machine 1 'Laser receiving part of laser displacement measuring machine 2 Roller fixing jig 3 Motor

Claims (6)

ローラ回転機構部によりローラ状成形体を回転させると共に、レーザ変位測定機により該ローラ状成形体に対しレーザを照射するローラ状成形体表面の歪み測定方法。A method for measuring the distortion of the surface of a roller-shaped molded body, wherein the roller-shaped molded body is rotated by a roller rotating mechanism and a laser is applied to the roller-shaped molded body by a laser displacement measuring device. 前記ローラ状成形体が金属支持部材、該支持部材外周面上に形成された導電性弾性層、および、その外周面上に形成された少なくとも1層以上の表面層からなることを特徴とする請求項1に記載のローラ状成形体表面の歪み測定方法。The roller-shaped formed body comprises a metal support member, a conductive elastic layer formed on the outer peripheral surface of the support member, and at least one surface layer formed on the outer peripheral surface. Item 4. The method for measuring distortion of the surface of a roller-shaped molded product according to Item 1. 前記ローラ状成形体表面の表面粗さRzが2μm〜10μmであることを特徴とする請求項1または2に記載のローラ状成形体表面の歪み測定方法。3. The method for measuring distortion of a surface of a roller-shaped molded product according to claim 1, wherein the surface roughness Rz of the surface of the roller-shaped molded product is 2 μm to 10 μm. 前記レーザ変位測定機が反射型レーザ変位測定機であることを特徴とする請求項1〜3の各項に記載のローラ状成形体表面の歪み測定方法。The method according to any one of claims 1 to 3, wherein the laser displacement measuring device is a reflection type laser displacement measuring device. 前記レーザ変位測定機のレーザスポットの形が楕円状であることを特徴とする請求項4に記載のローラ状成形体表面の歪み測定方法。5. The method according to claim 4, wherein the laser spot of the laser displacement measuring device has an elliptical shape. 前記形が楕円状のレーザスポットの楕円長軸方向がローラ軸方向に平行であることを特徴とする請求項5に記載のローラ状成形体表面の歪み測定方法。The method according to claim 5, wherein the major axis direction of the laser spot having the elliptical shape is parallel to the roller axis direction.
JP2003050162A 2003-02-26 2003-02-26 Method of measuring surface distortion of roller-shape molding Pending JP2004257906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050162A JP2004257906A (en) 2003-02-26 2003-02-26 Method of measuring surface distortion of roller-shape molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050162A JP2004257906A (en) 2003-02-26 2003-02-26 Method of measuring surface distortion of roller-shape molding

Publications (1)

Publication Number Publication Date
JP2004257906A true JP2004257906A (en) 2004-09-16

Family

ID=33115646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050162A Pending JP2004257906A (en) 2003-02-26 2003-02-26 Method of measuring surface distortion of roller-shape molding

Country Status (1)

Country Link
JP (1) JP2004257906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306935A (en) * 2005-04-26 2006-11-09 Doshisha Elastomer having fine unevenness
WO2010079661A1 (en) * 2009-01-07 2010-07-15 Ntn株式会社 Method and device for detecting circumferential surface distortion
CN102901450A (en) * 2012-09-12 2013-01-30 深圳深蓝精机有限公司 Measuring device and shaft body detection equipment
CN103344180A (en) * 2013-06-28 2013-10-09 济南强力胶辊设备有限公司 Rubber-covered roller laser detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306935A (en) * 2005-04-26 2006-11-09 Doshisha Elastomer having fine unevenness
JP4611098B2 (en) * 2005-04-26 2011-01-12 学校法人同志社 Method for evaluating the frictional properties of elastomers with minute irregularities
WO2010079661A1 (en) * 2009-01-07 2010-07-15 Ntn株式会社 Method and device for detecting circumferential surface distortion
CN102901450A (en) * 2012-09-12 2013-01-30 深圳深蓝精机有限公司 Measuring device and shaft body detection equipment
CN102901450B (en) * 2012-09-12 2015-04-29 深圳深蓝精机有限公司 Measuring device and shaft body detection equipment
CN103344180A (en) * 2013-06-28 2013-10-09 济南强力胶辊设备有限公司 Rubber-covered roller laser detector

Similar Documents

Publication Publication Date Title
CN108982531B (en) Inspection device for cylindrical object
EP1703274B1 (en) Defect inspecting method
JP2007240720A (en) Image forming apparatus
JP2004257906A (en) Method of measuring surface distortion of roller-shape molding
JP2010025705A (en) Surface flaw inspection device
US9431445B2 (en) Reflective optical sensor, image forming apparatus, and surface information detecting method
JP3144185B2 (en) Surface layer defect detector
JP3701477B2 (en) Cylindrical surface inspection device
JP5826578B2 (en) Image acquisition device
JPH10132552A (en) Form characteristic measuring device for cylinder, and manufacture of cylindrical electrophotographic photoreceptor
JP5293100B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photosensitive member
JP2000009451A (en) Apparatus for inspecting appearance of photosensitive drum for electrophotography, and appearance inspecting method using the same
JPH07239304A (en) Detector for detecting defect of surface layer
JP6746396B2 (en) Electrophotographic roller and charging device
JP3847886B2 (en) Inspection method and inspection apparatus for conductive elastic roll for image forming apparatus
JP2005127898A (en) Roller body shape measuring device and method, and manufacturing method for the same
JPH09189535A (en) Surface defect inspection device
JP2009199036A (en) Device and method for detecting residual toner and device for evaluating toner wiping-out performance
JPH11271008A (en) Inspection apparatus for cylindrical to-be-inspected object
US20230273556A1 (en) Fixing device
JPH04221983A (en) Abnormality detector for fixing unit
JP2006126191A (en) Detection method of small particle on approximately smooth reflecting surface by laser reflection pickup unit
JP2006258519A (en) Inspection device for cylindrical inspection object
JPS6314186A (en) Fixing device
JPH08115041A (en) Automatic inertia adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507