JP2006303237A - 化合物半導体レーザ素子 - Google Patents

化合物半導体レーザ素子 Download PDF

Info

Publication number
JP2006303237A
JP2006303237A JP2005123869A JP2005123869A JP2006303237A JP 2006303237 A JP2006303237 A JP 2006303237A JP 2005123869 A JP2005123869 A JP 2005123869A JP 2005123869 A JP2005123869 A JP 2005123869A JP 2006303237 A JP2006303237 A JP 2006303237A
Authority
JP
Japan
Prior art keywords
type
layer
cladding layer
semiconductor laser
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005123869A
Other languages
English (en)
Inventor
Yoshinori Obitsu
義徳 大櫃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005123869A priority Critical patent/JP2006303237A/ja
Priority to US11/398,549 priority patent/US20060239320A1/en
Priority to CNB2006100746493A priority patent/CN100426607C/zh
Publication of JP2006303237A publication Critical patent/JP2006303237A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • H01S5/3063Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping using Mg
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32316Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】製造歩留を向上でき、長期的信頼性を高めることができる化合物半導体レーザ素子を提供する。
【解決手段】 n型GaAs基板11には、n型GaAsバッファ層12、n型AlGa(1−y)As第1クラッド層13、n型AlGa(1−y)As第2クラッド層14、ノンドープAlGa(1−x)As活性層15、p型AlGa(1−y)As第3クラッド層16がこの順で形成されている。n型AlGa(1−y)As第2クラッド層14のキャリア濃度は、n型AlGa(1−y)As第1クラッド層13のキャリア濃度に比べて低くなっている。
【選択図】図1

Description

本発明は、例えば光学ディスクの読み取り及び書き込み光源として用いられる化合物半導体レーザ素子に関する。
近年、CD−ROM(読み取り専用コンパクトディスク)、CD−R/RW(書き込み可能なコンパクトディスク/書き換え可能なコンパクトディスク)、DVD−ROM(読み取り専用デジタル万能ディスク)、DVD−R/RW(書き込み可能なデジタル万能ディスク/書き換え可能なデジタル万能ディスク)などのメディアのピックアップ用光源として用いられる半導体レーザ素子の需要はますます拡大している。上記メディアを利用する商品の普及が進むにつれ、その商品の低価格化が進んでいる。そして、上記商品の低価格化に伴い、より低価格で特性のバラツキが少なく信頼性に優れた半導体レーザ素子が要求されている。
上記半導体レーザ素子の代表である例えばIII−V族化合物半導体レーザ素子を作成する際、半導体基板上に複数の半導体層の積層構造を形成する。上記各半導体層に所定の不純物を添加することにより、各半導体層の電気伝導型あるいは電気伝導率を制御して、半導体レーザ素子の所定の特性を得る。このように、上記各半導体層の電気伝導型あるいは電気伝導率を設計どおりに制御することは、半導体レーザ素子特性の均一化、製造歩留まりの向上には非常に重要である。
III−V族化合物半導体層を形成する方法としては、MOCVD(Metal−Organic Chemical Vapor Deposition:有機金属気相成長)法やMBE(molecular beam epitaxy:分子線エピタキシ)法などがある。これらの方法を用いた成長を行う場合、例えばn型のIII−V族化合物半導体層を得るための不純物の材料としては、SiのIV族元素や、Se等のVI族元素を用いる。このIV族元素は、III族元素であるAlあるいはGaあるいはInと置換することによってドナー不純物となる。一方、p型のIII−V族化合物半導体層を得るための不純物の材料としては、Zn、Be、Mg等のII族元素を用いる。このII族元素は、III族元素であるAlあるいはGaと置換することによってアクセプタ不純物となる。
半導体レーザ素子の構造については、セルフアライン構造と呼ばれるものが良く知られている。このセルフアライン構造の半導体レーザ素子について製造工程を以下に説明する。
まず、図3Aに示すように、MOCVD法によって、n型GaAs基板41上に、n型GaAsバッファ層42(層厚0.5μm)と、n型AlyGa(1−y)As第1クラッド層43(y=0.5、層厚1.0μm)と、ノンドープAlxGa(1−x)As活性層44(x=0.14、層厚0.085μm)と、p型AlyGa(1−y)As第2クラッド層45(y=0.5、層厚0.35μm)と、n型GaAs電流阻止層46(層厚0.6μm)とをこの順で成長させる。この時のn型不純物としてはSeを使用し、p型の不純物としてはZn、C等を使用する。
次に、図3Bに示すように、フォトリソグラフィー法などによって、n型GaAs電流阻止層46上に、ストライプ状の溝を有するエッチングマスク47を形成した後、このエッチングマスク47を用いて、n型GaAs電流阻止層46の一部を3.5μm〜4.0μmの幅でストライプ状かつ溝状に除去して、欠損部50を形成する。
次に、図3Cに示すように、上記n型GaAs電流阻止層46上に、MOCVD法やLPE(Liquid Phase Epitaxy:液相エピタキシ)法を用いて、p型AlyGa(1−y)As第3クラッド層48(y=0.5、層厚1.0μm)を成長させ、さらに、このp型AlyGa(1−y)As第3クラッド層48上にp型GaAsキャップ層49(層厚3μm〜50μm)を成長させる。このp型GaAsキャップ層49の層厚については、最終的な形状の半導体レーザ素子のチップ厚さに対する発光点位置をどの位置にするか、必要に応じて決定する。また、上記p型AlyGa(1−y)As第3クラッド層48やp型GaAsキャップ層49のp型不純物としてはZnやMgを用いる。
このようにして得る半導体レーザ素子において、n型AlyGa(1−y)As第1クラッド層43及びn型GaAs電流阻止層46への添加不純物としてSeを用い、p型AlyGa(1−y)As第2クラッド層45への添加不純物としてZnを用いた場合、これらの添加不純物が半導体レーザ素子の製造工程において、拡散あるいは不純物原子同士の相互作用により層相互間を移動し、設計の不純物プロファイルを得ることが困難になるという問題が生じる。
この問題を解決する第1の方法としては、p型AlyGa(1−y)As第2クラッド層45への添加不純物として不純物原子同士の相互作用が小さいCを用いると共に、p型AlyGa(1−y)As第3クラッド層48およびp型GaAsキャップ層49への添加不純物としてMgを用いる方法がある(特開2001−144383号公報(特許文献1)参照。)。
しかし、上記第1の方法でも、p型AlyGa(1−y)As第3クラッド層48およびp型GaAsキャップ層49をLPE法で成長させる際の熱履歴により、n型AlyGa(1−y)As第1クラッド層43への添加不純物であるSeの拡散を完全には抑えることが出来ない。さらに、上記p型AlyGa(1−y)As第3クラッド層48およびp型GaAsキャップ層49の添加不純物であるMgが、Seキャリア濃度が低下した部分まで拡散してくるため、図4に示すように、pn接合位置にバラツキが発生してしまう。特に、上記n型AlyGa(1−y)As第1クラッド層43のSeの不純物濃度が低い場合、閾値電流、動作電流、動作電圧の増大などの、レーザ素子特性の不良が発生することがあった。
また、上記n型AlyGa(1−y)As第1クラッド層43の添加不純物の熱履歴による拡散を低減させるための第2の方法としては、n型AlyGa(1−y)As第1クラッド層43およびn型電流阻止層46への添加不純物として拡散の小さいSiを用いると共に、p型AlyGa(1−y)As第3クラッド層48への添加不純物としてMgを用いる方法がある。この第2の方法では、p型AlyGa(1−y)As第3クラッド層48のキャリア濃度は良好なレーザ素子特性を得るため、1×1018cm−3〜2×1018cm−3程度にする必要がある。このため、上記p型AlyGa(1−y)As第3クラッド層48への添加不純物であるMgの拡散がn型AlyGa(1−y)As第1クラッド層43内に及ばないようするためには、n型AlyGa(1−y)As第1クラッド層43のキャリア濃度を1×1018cm−3〜2×1018cm−3の範囲内にする必要がある。
しかしながら、Si濃度を1×1018cm−3以上で作製した半導体レーザ素子では素子の長期的な信頼性において商品として実用できるものはできていない。つまり、上記第1の方法による半導体レーザ素子では5万時間以上の実用上問題のない信頼性が得られるが、上記第2の方法による半導体レーザ素子では長期使用中に特性劣化あるいは発振停止が頻繁におこるという問題がある。
以上のように、ドーピング制御の安定性とそれに伴う特性の均一化、製造歩留の向上と、素子の長期的信頼性とを両立することはできていなかった。
特開2001−144383号公報
そこで、本発明の課題は、製造歩留を向上でき、長期的信頼性を高めることができる化合物半導体レーザ素子を提供することにある。
上記課題を解決するため、本発明の化合物半導体レーザ素子は、
第1導電型の半導体基板と、
上記半導体基板上に形成された第1導電型の第1クラッド層と、
上記第1クラッド層上に形成され、上記第1クラッド層のキャリア濃度よりも低いキャリア濃度を有する第1導電型の第2クラッド層と、
上記第2クラッド層上に形成された活性層と、
上記活性層上に形成された第2導電型の第3クラッド層と
を備えたことを特徴としている。
本明細書において、第1導電型とは、p型またはn型を意味する。また、第2導電型とは、第1導電型がp型の場合はn型、n型の場合はp型を意味する。
上記構成の化合物半導体レーザ素子によれば、上記第2クラッド層のキャリア濃度が第1クラッド層のキャリア濃度より低いから、第1,第2クラッド層への第導電型の添加不純物の拡散を防止して、第1,第2導電型の添加不純物のドーピング制御を安定させることができる。つまり、設計の不純物プロファイルを得ることができる。従って、複数の半導体レーザ素子のレーザ素子特性を均一にすることができ、半導体レーザ素子の製造歩留の向上と、半導体レーザ素子の長期信頼性とを両立することができる。
また、上記半導体レーザ素子の製造歩留が向上するから、半導体レーザ素子を安価に製造することができる。従って、特性の安定した半導体レーザ素子を安価かつ安定に生産することができる。
一実施形態の化合物半導体レーザ素子では、上記第1導電型はn型であり、かつ、上記第2導電型はp型であり、かつ、上記第1クラッド層および第2クラッド層の不純物はSiである。
一実施形態の化合物半導体レーザ素子では、
上記第1クラッド層のキャリア濃度は1×1018cm−3以上2×1018cm−3以下であり、
上記第2クラッド層のキャリア濃度は1×1017cm−3以上5×1017cm−3以下である。
一実施形態の化合物半導体レーザ素子では、上記第2クラッド層の層厚が100Å〜500Åの範囲内である。
一実施形態の化合物半導体レーザ素子では、上記第2クラッド層は上記活性層に近接している。
一実施形態の化合物半導体レーザ素子では、
上記第3クラッド層上に形成され、ストライプ状かつ溝状の欠損部を有する第1導電型の電流阻止層と、
上記電流阻止層上に形成された第2導電型の第4クラッド層と
を備える。
本発明の化合物半導体レーザ素子によれば、第1クラッド層と活性層との間に位置する第2クラッド層のキャリア濃度より第1クラッド層のキャリア濃度が低いことによって、第1,第2クラッド層への第導電型の添加不純物の拡散を防止して、第1,第2導電型の添加不純物のドーピング制御を安定させることができるので、製造歩留を向上でき、長期的信頼性を高めることができる。
以下、本発明の化合物半導体レーザ素子を図示の実施の形態により詳細に説明する。なお、以下の実施の形態では、AlGaAs系の半導体レーザ素子において、活性層のAl混晶比を0.10〜0.14程度、クラッド層のAl混晶比を0.45〜0.60程度に設定しているが、Al混晶比は、両層とも0以上で、かつ、クラッド層のAl混晶比が活性層のAl混晶比よりも大きい範囲であれば、任意に設定することができる。
図1に、本発明の一実施の形態の化合物半導体レーザ素子の構造の概略断面図を示す。
上記化合物半導体レーザ素子は、n型GaAs基板11と、このn型GaAs基板11上に順次形成されたn型GaAsバッファ層12、n型AlyGa(1−y)As第1クラッド層13、n型AlyGa(1−y)As第2クラッド層14、ノンドープAlxGa(1−x)As活性層15、p型AlyGa(1−y)As第3クラッド層16、n型GaAs電流阻止層17、p型AlzGa(1−z)As第4クラッド層18およびp型GaAsキャップ層19を備えている。このように、上記化合物半導体レーザ素子はダブルヘテロ構造を有している。
上記n型AlyGa(1−y)As第2クラッド層14のキャリア濃度は、n型AlyGa(1−y)As第1クラッド層13のキャリア濃度に比べて低くなっている。より詳しくは、上記第1,第2クラッド層13,14へのn型の添加不純物として熱履歴による拡散の少ないSiを使用し、キャリア濃度が比較的高い第1クラッド層13のSi濃度を1×1018cm−3〜2×1018cm−3にし、キャリア濃度が比較的低い第2クラッド層14のSi濃度を5×1017cm−3以下にしている。
上記型AlzGa(1−z)As第4クラッド層18およびp型GaAsキャップ層19へのp型の添加不純物としてMgを使用している。
また、上記型AlzGa(1−z)As第4クラッド層18の下部(n型GaAs基板11側の部分)はリッジストライプ形状を有している。
上記構成の化合物半導体レーザ素子によれば、n型AlyGa(1−y)As第2クラッド層14のキャリア濃度が、n型AlyGa(1−y)As第1クラッド層13のキャリア濃度に比べて低いことによって、p型AlzGa(1−z)As第4クラッド層18とp型GaAsキャップ層19との成長時に発生するp型不純物であるMgの拡散が、キャリア濃度の低いn型第2クラッド層14内で制御できる。従って、図2に示すように、急峻な不純物プロファイルでpn接合位置を制御し、閾値電流、動作電流、動作電圧等の特性バラツキを抑えることが出来る。
また、上記活性層15に近接するn型の第2クラッド層14のSi濃度を5×1017cm−3以下とすることによって、信頼性の低下等の不具合を発生することがなく特性の安定した、半導体レーザ素子を安定して製造することが可能となる。
以下、上記化合物半導体レーザ素子の製造方法について説明する。
まず、n型GaAs基板11上に、有機金属気相成長(MOCVD)法により、n型GaAsバッファ層12を成長させた後、n型AlyGa(1−y)As第1クラッド層13(y=0.45〜0.6、層厚1μm)を成長させる。本実施の形態においては、n型AlyGa(1−y)As第1クラッド層13(y=0.45〜0.6、層厚1μm)を成長させる際に、n型添加不純物をSiとするため原料ガスとして、ジシランガス(Si水素希釈20ppm)を30sccm添加する。上記n型AlyGa(1−y)As第1クラッド層13の場合、n型AlyGa(1−y)As第1クラッド層13を成長温度750℃で成長させることにより、n型AlyGa(1−y)As第1クラッド層13のキャリア濃度を1×1018にすることが出来る。
次に、上記n型AlyGa(1−y)As第1クラッド層13上に、n型AlyGa(1−y)As第2クラッド層14(y=0.45〜0.6、層厚100Å)を成長させる。このとき、上記n型AlyGa(1−y)As第2クラッド層14にジシランガス(Si水素希釈20ppm)を15sccm添加することによって、n型AlyGa(1−y)As第2クラッド層14のキャリア濃度を5×1017にすることが出来る。
次に、上記n型AlyGa(1−y)As第2クラッド層14上に、ノンドープAlxGa(1−x)As活性層15(x=0.10〜0.14、層厚0.08μm)、p型AlyGa(1−y)As第3クラッド層16(y=0.45〜0.6、層厚0.35μm、C濃度5×1017cm−3)、n型GaAs電流阻止層17(層厚0.75μm、Si濃度2×1018cm−3をこの順で成長させる。
次に、図3Bと同様のフォトリソグラフィを行って、n型GaAs電流阻止層17上に、ストライプ状の溝を有するエッチングマスク47を形成した後、このエッチングマスク47を用いてn型GaAs電流阻止層17をエッチングする。これにより、上記n型GaAs電流阻止層17に、ストライプ状かつ溝状の欠損部20が形成される。
次に、LPE法により、Mgをp型の不純物としたp型AlzGa(1−z)As第4クラッド層18(z=0.45〜0.60、層厚2μm、Mg濃度1×1018cm−3〜2×1018cm−3)、p型GaAsキャップ層19(層厚50μm、Mg濃度6×1018cm−3)を再成長させる。
上記p型AlzGa(1−z)As第4クラッド層18およびp型GaAsキャップ層19を形成した結果、p型AlyGa(1−y)As第3クラッド層16のストライプ状かつ溝状の欠損部20に対向する部分は、当初Cによる不純物濃度5×1017cm−3に対して、Mgの拡散により不純物濃度が1×1018cm−3となり半導体レーザ素子として、電流を効率良くストライプ内に注入することができ、低閾値と、低電流駆動を実現できる。
このような方法で作成した半導体レーザ素子の不純物プロファイルは、図2に示すものと同様なものになり急峻な不純物プロファイルを得ることができた。
また、上記方法で作成した半導体レーザ素子の特性は、共振器長を200μmとし、閾値電流28.0mA、光出力5mW時の動作電流が37.5mA、動作電圧が1.85Vであり、良好な特性が得られた。また、素子温度80℃、光出力7mWでのエージング試験では、48時間以内駆動電流値が1.2倍以上増加する素子の発生もなく、信頼性の低下は見られなかった。
上記実施の形態では、n型AlyGa(1−y)As第2クラッド層14の層厚を100Åとしていたが、n型AlyGa(1−y)As第2クラッド層14の層厚を500Å、700Å、1000Åとし、かつ、n型AlyGa(1−y)As第2クラッド層14のSi濃度を5×1017cm−3として半導体レーザ素子を製造し、この半導体レーザ素子の特性評価を行った。この特性評価の結果を下表1に示す。
Figure 2006303237
上記表1から判るように、n型AlyGa(1−y)As第2クラッド層14の層厚を500Åにした半導体レーザ素子の動作電流値と比較し、n型AlyGa(1−y)As第2クラッド層14の層厚を1000Åにした半導体レーザ素子の動作電流値は増加する傾向であった。
また、上記n型AlyGa(1−y)As第2クラッド層14の層厚を50Åにした半導体レーザ素子では、素子温度80℃、光出力7mWでのエージング試験で、48時間以内でレーザ発振を停止する素子も発生し、信頼性の低下が見られた。
これらの結果より、n型AlyGa(1−y)As第2クラッド層14の層厚を100Å〜500Åとすることで、特性、信頼性ともに良好な半導体レーザ素子を製造することが可能である。
なお、上記n型AlyGa(1−y)As第1クラッド層13(y=0.45〜0.6、層厚1μm)のキャリア濃度を、p型AlzGa(1−z)As第4クラッド層18(z=0.45〜0.60、層厚2μm、Mg濃度1×1018cm−3〜2×1018cm−3)のキャリア濃度よりも高く設定することによって、LPEでの熱履歴によるMgの拡散を制御することが可能となる。
また、上記実施の形態では、n型AlyGa(1−y)As第2クラッド層14がAlxGa(1−x)As活性層15に接触していたが、n型AlyGa(1−y)As第2クラッド層14とAlxGa(1−x)As活性層15との間に例えば光ガイド層を設けてもよい。つまり、上記n型AlyGa(1−y)As第2クラッド層14はAlxGa(1−x)As活性層15の近傍に形成すればよい。
図1は本発明の一実施の形態の化合物半導体レーザ素子の構造の概略断面図である。 図2は図1のII−II線矢視断面とこの不純物プロファイルとを示す図である。 図3Aは従来の化合物半導体レーザ素子の一製造工程の概略断面図である。 図3Bは従来の化合物半導体レーザ素子の一製造工程の概略断面図である。 図3Cは従来の化合物半導体レーザ素子の一製造工程の概略断面図である。 図4は図3CのIV−IV線矢視断面とこの不純物プロファイルとを示す図である。
符号の説明
11 n型GaAs基板
12 n型GaAsバッファ層
13 n型AlGaAs第1クラッド層(高濃度部)
14 n型AlGaAs第2クラッド層 (低濃度部)
15 AlGaAs活性層
16 p型AlGaAs第3クラッド層
17 p型GaAs電流阻止層
18 p型AlGaAs第4クラッド層
19 p型GaAsキャップ層
20 欠損部

Claims (6)

  1. 第1導電型の半導体基板と、
    上記半導体基板上に形成された第1導電型の第1クラッド層と、
    上記第1クラッド層上に形成され、上記第1クラッド層のキャリア濃度よりも低いキャリア濃度を有する第1導電型の第2クラッド層と、
    上記第2クラッド層上に形成された活性層と、
    上記活性層上に形成された第2導電型の第3クラッド層と
    を備えたことを特徴とする化合物半導体レーザ素子。
  2. 請求項1に記載の化合物半導体レーザ素子において、
    上記第1導電型はn型であり、かつ、上記第2導電型はp型であり、かつ、上記第1クラッド層および第2クラッド層の不純物はSiであることを特徴とする化合物半導体レーザ素子。
  3. 請求項1に記載の化合物半導体レーザ素子において、
    上記第1クラッド層のキャリア濃度は1×1018cm−3以上2×1018cm−3以下であり、
    上記第2クラッド層のキャリア濃度は1×1017cm−3以上5×1017cm−3以下であることを特徴とする化合物半導体レーザ素子。
  4. 請求項1に記載の化合物半導体レーザ素子において、
    上記第2クラッド層の層厚が100Å〜500Åの範囲内であることを特徴とする化合物半導体レーザ素子。
  5. 請求項1に記載の化合物半導体レーザ素子において、
    上記第2クラッド層は上記活性層に近接していることを特徴とする化合物半導体レーザ素子。
  6. 請求項1に記載の化合物半導体レーザ素子において、
    上記第3クラッド層上に形成され、ストライプ状かつ溝状の欠損部を有する第1導電型の電流阻止層と、
    上記電流阻止層上に形成された第2導電型の第4クラッド層と
    を備えたことを特徴とする化合物半導体レーザ素子。
JP2005123869A 2005-04-21 2005-04-21 化合物半導体レーザ素子 Pending JP2006303237A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005123869A JP2006303237A (ja) 2005-04-21 2005-04-21 化合物半導体レーザ素子
US11/398,549 US20060239320A1 (en) 2005-04-21 2006-04-06 Compound semiconductor laser device
CNB2006100746493A CN100426607C (zh) 2005-04-21 2006-04-21 化合物半导体激光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123869A JP2006303237A (ja) 2005-04-21 2005-04-21 化合物半導体レーザ素子

Publications (1)

Publication Number Publication Date
JP2006303237A true JP2006303237A (ja) 2006-11-02

Family

ID=37186832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123869A Pending JP2006303237A (ja) 2005-04-21 2005-04-21 化合物半導体レーザ素子

Country Status (3)

Country Link
US (1) US20060239320A1 (ja)
JP (1) JP2006303237A (ja)
CN (1) CN100426607C (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223439B2 (ja) * 2007-05-28 2013-06-26 ソニー株式会社 半導体発光素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196488A (ja) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp 半導体レーザ装置
JPH1154828A (ja) * 1997-07-30 1999-02-26 Sharp Corp 半導体レーザ素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225488A (ja) * 1984-04-23 1985-11-09 Sony Corp 半導体レ−ザ−
JPS6482587A (en) * 1987-09-25 1989-03-28 Sumitomo Electric Industries Quantum well type semiconductor laser
JPH0212885A (ja) * 1988-06-29 1990-01-17 Nec Corp 半導体レーザ及びその出射ビームの垂直放射角の制御方法
US5297158A (en) * 1991-04-22 1994-03-22 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device including a gallium-aluminum arsenic compound
JPH0645698A (ja) * 1992-03-31 1994-02-18 Matsushita Electric Ind Co Ltd 半導体発光素子
JP3024484B2 (ja) * 1994-07-01 2000-03-21 サンケン電気株式会社 半導体発光素子
JPH11177176A (ja) * 1997-12-10 1999-07-02 Hitachi Cable Ltd 半導体レーザ
US6466597B1 (en) * 1998-06-17 2002-10-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device
US6298077B1 (en) * 1999-02-16 2001-10-02 Opto Power Corporation GaInAsP/AIGaInP laser diodes with AIGaAs type II carrier blocking layer in the waveguide
JP3676965B2 (ja) * 1999-08-31 2005-07-27 シャープ株式会社 半導体レーザ素子及びその製造方法
JP2001332811A (ja) * 2000-05-19 2001-11-30 Nec Corp 半導体レーザ素子、及び、その製造方法
JP2002134838A (ja) * 2000-10-30 2002-05-10 Mitsubishi Electric Corp 半導体レーザ装置及びその製造方法
TW550839B (en) * 2001-07-25 2003-09-01 Shinetsu Handotai Kk Light emitting element and method for manufacturing thereof
JP2003298185A (ja) * 2002-04-02 2003-10-17 Nec Compound Semiconductor Devices Ltd 半導体レーザ
US20050201439A1 (en) * 2002-09-06 2005-09-15 Mitsubishi Chemical Corporation Semiconductor light emitting device and semiconductor light emitting device module
JP2004349286A (ja) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd 半導体レーザ素子、半導体レーザ装置、光ピックアップ装置及び半導体レーザ装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196488A (ja) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp 半導体レーザ装置
JPH1154828A (ja) * 1997-07-30 1999-02-26 Sharp Corp 半導体レーザ素子

Also Published As

Publication number Publication date
CN1855653A (zh) 2006-11-01
CN100426607C (zh) 2008-10-15
US20060239320A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US7333523B2 (en) Semiconductor laser device
JP4193867B2 (ja) GaN系半導体レーザの製造方法
JP2004289157A (ja) レーザダイオード構造およびその製造方法
US20170294761A1 (en) Laser diode
JP3692269B2 (ja) 半導体レーザ素子及びその製造方法
US6865202B2 (en) Semiconductor laser element
JP3676965B2 (ja) 半導体レーザ素子及びその製造方法
JP2010278131A (ja) 半導体レーザ素子及びその製造方法
US7215691B2 (en) Semiconductor laser device and method for fabricating the same
JP4170679B2 (ja) 半導体発光装置及びその製造方法
JP2006303237A (ja) 化合物半導体レーザ素子
JP3892637B2 (ja) 半導体光デバイス装置
JP3763459B2 (ja) 半導体レーザ素子及びその製造方法
JP3078004B2 (ja) 半導体レーザの製造方法
JPH10256647A (ja) 半導体レーザ素子およびその製造方法
JPH07254750A (ja) 半導体レーザ
KR102440071B1 (ko) 반도체 레이저 다이오드 소자 및 그 제조 방법
JP4419520B2 (ja) 半導体レーザダイオード及びその製造方法
US7268007B2 (en) Compound semiconductor, method for manufacturing the same, semiconductor device, and method for manufacturing the same
JP2004134786A (ja) 半導体レーザ装置及びその製造方法
KR102253285B1 (ko) 반도체 레이저 다이오드 소자 및 그 제조 방법
JP3634564B2 (ja) AlGaAs系半導体レーザ素子
JP2005175340A (ja) 半導体レーザ用エピタキシャルウェハ
JP4534615B2 (ja) レーザダイオード用エピタキシャルウェハ及びレーザダイオード
JP2000269589A (ja) 半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323