JP2006294567A - Electric storage device and its manufacturing device - Google Patents

Electric storage device and its manufacturing device Download PDF

Info

Publication number
JP2006294567A
JP2006294567A JP2005117460A JP2005117460A JP2006294567A JP 2006294567 A JP2006294567 A JP 2006294567A JP 2005117460 A JP2005117460 A JP 2005117460A JP 2005117460 A JP2005117460 A JP 2005117460A JP 2006294567 A JP2006294567 A JP 2006294567A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
collector lead
terminal
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117460A
Other languages
Japanese (ja)
Other versions
JP4835025B2 (en
Inventor
Hiroyuki Tanaka
浩之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005117460A priority Critical patent/JP4835025B2/en
Publication of JP2006294567A publication Critical patent/JP2006294567A/en
Application granted granted Critical
Publication of JP4835025B2 publication Critical patent/JP4835025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric storage device composed by surely connecting one or more collector lead parts to terminals for external connection by solid-state welding instead of conventional welding; and to provide its manufacturing method. <P>SOLUTION: This manufacturing method is used for manufacturing this electric storage device provided with: an electrode body unit having a core part having a negative electrode collector and a positive electrode collector and one or more negative electrode collector lead parts and positive electrode collector lead parts extended to the outside from the core part; a negative electrode terminal connected to the negative electrode collector lead part(s); and a positive electrode terminal connected to the positive electrode collector lead part(s). The manufacturing method includes, in at least one of the positive and negative electrodes, steps of: stacking the one or more collector lead parts 14 and the terminal part 12; compressing at least a part of a layered product 11 thereof in the stacking direction; and connecting, by solid-state welding, the one or more collector lead parts and the terminal in the compressed parts by heating the compressed parts 14a and 12a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、少なくとも一つの電極体ユニットが端子と接続されて構成される蓄電装置(複数の電極体ユニットが接続されて構成されるモジュールタイプを含む。)及びその製造技術に関する。特に、電極体ユニットを構成する正負いずれかの集電体リード部と外部接続用端子(以下、単に「端子」という。)とを固相接合した蓄電装置に関する。   The present invention relates to a power storage device (including a module type in which a plurality of electrode body units are connected) configured by connecting at least one electrode body unit to a terminal and a manufacturing technique thereof. In particular, the present invention relates to a power storage device in which one of positive and negative current collector leads constituting an electrode body unit and an external connection terminal (hereinafter simply referred to as “terminal”) are solid-phase bonded.

種々の電池(例えばリチウム二次電池)やキャパシタ等のいわゆる蓄電装置は、電気を駆動源とする車両、パソコンその他の電気製品等に搭載される電源として利用される。
このような蓄電装置の一形態として、適当な活物質等が塗布されたシート状の正極集電体及び負極集電体がセパレータを挟んで複数回捲回されたもの(捲回型)、或いは適当な活物質等が塗布されたシート状の正極集電体及び負極集電体がセパレータを挟んで複数積層されたもの(積層型)が挙げられる。
これら蓄電装置では、正負極集電体それぞれが捲回又は積層された結果として、正負極を構成する集電体(典型的には集電箔)の端部即ちリード部が、当該蓄電装置の電極体コア部分(例えば正負極活物質、電解質等を含む蓄電素子(セル)の正負極から成る電極体を構成する中心部分に相当する。以下同じ。)から外方に複数並列して張り出している。そして、かかる正負極それぞれの多数の集電体リード部と、所定の正負極端子(即ち外部接続用集電端子)とを積層し、接続する。これにより、多数の集電部位(即ち集電体リード部)から端子に集電することが可能となり、蓄電装置の高出力化を図ることができる。
従来、かかる複数の積層された集電体リード部と端子とは、種々の溶接手段、例えばスポット溶接やレーザー溶接の他、特許文献1に記載されるような超音波溶接によって接続されていた。
A so-called power storage device such as various batteries (for example, a lithium secondary battery) or a capacitor is used as a power source mounted on a vehicle, a personal computer, or other electrical products using electricity as a driving source.
As one form of such a power storage device, a sheet-like positive electrode current collector and a negative electrode current collector coated with an appropriate active material or the like are wound a plurality of times with a separator (winding type), or A sheet-shaped positive electrode current collector and a negative electrode current collector coated with an appropriate active material or the like are stacked in layers with a separator (laminated type).
In these power storage devices, as a result of winding or laminating each of the positive and negative electrode current collectors, the ends of the current collectors (typically current collector foils) constituting the positive and negative electrodes, that is, the lead portions, A plurality of electrode body core parts (for example, a central part constituting an electrode body composed of positive and negative electrodes of a power storage element (cell) including positive and negative electrode active materials, electrolytes, etc., and the same applies hereinafter) are juxtaposed outwardly in parallel. Yes. Then, a large number of current collector lead portions for each of the positive and negative electrodes and a predetermined positive and negative electrode terminal (that is, a collector terminal for external connection) are stacked and connected. As a result, it is possible to collect current from a large number of current collecting portions (that is, current collector lead portions) to the terminal, and the output of the power storage device can be increased.
Conventionally, the plurality of stacked current collector lead portions and terminals are connected by various welding means, for example, spot welding or laser welding, or ultrasonic welding as described in Patent Document 1.

このような従来の溶接手段では、例えば箔のような薄い集電体リード部(例えば厚さ10μmの銅箔)と端子とを接続する場合、当該リード部が破損(更にはリード部破片が飛散)しないように細心の注意を払って溶接処理を行う必要があった。また、そのような満足すべき溶接を行うための条件設定は容易ならざることであった。
かかる溶接の困難性に鑑みて、特許文献2には、集電体と外部接続用端子(タブ)との間にグラファイト層を挟み込み、この三層構造物を加圧して密着させることによって当該グラファイト層を介在させた集電体と外部接続用端子(タブ)との電気的接続構造が記載されている。しかしながら、特許文献2に記載の接続手段では溶接による不具合は生じないもののグラファイト層を設ける必要があるため、この手段を適用し得る蓄電装置の形態や構造に制限がある。また、グラファイト層を付加する分だけ蓄電装置製造プロセスの煩雑化、製造コスト増が生じる。
In such a conventional welding means, for example, when a thin current collector lead part such as a foil (for example, a copper foil having a thickness of 10 μm) is connected to a terminal, the lead part is broken (and lead part fragments are scattered). ) It was necessary to carry out the welding process with great care. Moreover, setting conditions for performing such satisfactory welding has not been easy.
In view of the difficulty of welding, Patent Document 2 discloses that the graphite layer is sandwiched between a current collector and an external connection terminal (tab), and the three-layer structure is pressed and adhered. An electrical connection structure between a current collector with a layer interposed and an external connection terminal (tab) is described. However, although the connection means described in Patent Document 2 does not cause defects due to welding, it is necessary to provide a graphite layer. Therefore, there is a limitation on the form and structure of a power storage device to which this means can be applied. In addition, the power storage device manufacturing process becomes complicated and the manufacturing cost increases by the addition of the graphite layer.

特開2001−38475号公報JP 2001-38475 A 特開平11−283608号公報Japanese Patent Laid-Open No. 11-283608

そこで本発明は、上記のような集電体リード部(典型的には集電箔の端部)と外部接続用端子との接続構造に関する問題点を解決すべく創出されたものである。即ち、本発明の目的は、従来の慎重な操作と厳しい条件設定が要求される溶接手段に代えて、一又は複数の集電体リード部を破損を生じさせることなく外部接続用端子に確実に接続する方法を提供することである。また、他の目的は、そのような接続方法により接続された一又は複数の集電体リード部と端子とを備える蓄電装置を提供することである。また、他の目的は、そのような接続を行う工程を包含する蓄電装置製造方法を提供することである。   Therefore, the present invention has been created to solve the problems related to the connection structure between the current collector lead portion (typically, the end portion of the current collector foil) and the external connection terminal. In other words, the object of the present invention is to replace the welding means that require conventional careful operation and strict condition setting, and reliably connect the external connection terminals without causing damage to one or a plurality of current collector leads. It is to provide a way to connect. Another object is to provide a power storage device including one or a plurality of current collector lead parts and terminals connected by such a connection method. Another object is to provide a method for manufacturing a power storage device including a step of performing such connection.

本発明によって提供される一つの蓄電装置は、負極集電体及び正極集電体を有するコア部分と該部分から外方に出ている一又は複数の負極集電体リード部及び正極集電体リード部とを有する電極体ユニットと、前記負極集電体リード部に接続した負極端子と、前記正極集電体リード部に接続した正極端子とを備える蓄電装置である。
そして、前記正負極の少なくとも一方において、前記一又は複数の集電体リード部と端子とは積層され且つその積層体の少なくとも一部において固相接合により接続されている。また、該固層接合部分はその周囲の積層部分よりも積層方向の厚みが少なくなるように圧縮されていることを特徴とする。
One power storage device provided by the present invention includes a core part having a negative electrode current collector and a positive electrode current collector, and one or a plurality of negative electrode current collector lead parts and a positive electrode current collector protruding outward from the part. An electricity storage device comprising: an electrode body unit having a lead portion; a negative electrode terminal connected to the negative electrode current collector lead portion; and a positive electrode terminal connected to the positive electrode current collector lead portion.
In at least one of the positive and negative electrodes, the one or more current collector lead portions and the terminal are laminated, and at least a part of the laminated body is connected by solid phase bonding. Further, the solid-layer joined portion is compressed so as to have a smaller thickness in the laminating direction than the surrounding laminated portion.

本明細書において「蓄電装置」とは、所定の電気エネルギーを取り出し得る蓄電素子(典型的には電池(セル)或いはキャパシタ)を備える装置をいい、特定の蓄電機構に限定されない。リチウム二次電池その他の電池、或いは、電気二重層キャパシタ等のキャパシタ(物理電池)は、ここでいう蓄電装置に包含される典型例である。また、これら蓄電素子を電気的に接続した状態で複数配列させた蓄電素子集合体、即ち、蓄電モジュールもまた蓄電装置に包含される。
また、本明細書において「集電体」とは、正負極を構成する集電部材であって上記電極体コア部分より電気を取り出すためのリード部(端部)を有する導電性部材をいう。また、本明細書において「端子」とは、上記集電体リード部と接続される端子をいい、典型的には外部に電気を取り出す外部接続用端子をいう。
In this specification, the “power storage device” refers to a device including a power storage element (typically a battery (cell) or a capacitor) that can extract predetermined electrical energy, and is not limited to a specific power storage mechanism. A lithium secondary battery or other batteries, or a capacitor (physical battery) such as an electric double layer capacitor is a typical example included in the power storage device referred to herein. A power storage device includes a power storage element assembly in which a plurality of power storage elements are electrically connected, that is, a power storage module.
Further, in this specification, the “current collector” refers to a conductive member that constitutes a positive and negative electrode and has a lead portion (end portion) for taking out electricity from the electrode core portion. Further, in this specification, the “terminal” refers to a terminal connected to the current collector lead portion, and typically refers to an external connection terminal for taking out electricity to the outside.

かかる構成の蓄電装置では、正負極の少なくとも一方において、一又は複数の集電体リード部と端子とが固相接合により接続されている。このため、本構成の蓄電装置によると、当該一又は複数の集電体リード部に不測の破損(剥離、亀裂等)が生じるのを未然に防止し、所望する出力が得られ得る電気的接続(即ち各集電体リード部からの集電)を実現することができる。また、固相接合によって高強度の物理的接続(高接合強度)を実現することができる。   In the power storage device having such a configuration, at least one of the positive and negative electrodes is connected to one or a plurality of current collector lead portions and terminals by solid phase bonding. For this reason, according to the power storage device of this configuration, electrical connection that can prevent unexpected damage (peeling, cracking, etc.) from occurring in the one or more current collector lead parts and can obtain a desired output. (That is, current collection from each current collector lead portion) can be realized. Further, high-strength physical connection (high bonding strength) can be realized by solid phase bonding.

ここで開示される蓄電装置の好ましい一つの態様では、前記固相接合により接続された一又は複数の負極集電体リード部及び負極端子を備える。そして、かかる一又は複数の負極集電体リード部は銅箔により構成されており、負極端子は銅製端子であることを特徴とする。
銅箔製の薄い負極集電体リード部は、超音波溶接その他の溶接手段の適用が特に困難であるところ、本態様の蓄電装置では上記固相接合によって銅箔製負極集電体リード部及び銅製負極端子の確実な電気的接続が実現される。
In a preferred aspect of the power storage device disclosed herein, the power storage device includes one or a plurality of negative electrode current collector lead portions and a negative electrode terminal connected by the solid phase bonding. The one or more negative electrode current collector leads are made of copper foil, and the negative electrode terminal is a copper terminal.
The thin negative electrode current collector lead portion made of copper foil is particularly difficult to apply ultrasonic welding or other welding means. However, in the power storage device of this aspect, the negative electrode current collector lead portion made of copper foil and A reliable electrical connection of the copper negative terminal is realized.

また、本発明は他の側面として、ここで開示される蓄電装置を好適に製造する方法を提供する。
即ち、ここで開示される蓄電装置製造方法は、負極集電体及び正極集電体を有するコア部分と該部分から外方に出ている一又は複数の負極集電体リード部及び正極集電体リード部とを有する電極体ユニットと、前記負極集電体リード部に接続した負極端子と、前記正極集電体リード部に接続した正極端子とを備える蓄電装置の製造方法である。
そして、本蓄電装置製造方法は、前記正負極の少なくとも一方において、前記一又は複数の集電体リード部と端子とを積層すること、その積層体の少なくとも一部を積層方向に圧縮すること、および、該圧縮部分を加熱することによって該圧縮部分において一又は複数の集電体リード部と端子とを固相接合により接続すること、を包含する。
好ましくは、前記一又は複数の負極集電体リード部が銅箔により構成され且つ前記負極端子が銅製端子であり、該一又は複数の負極集電体リード部と負極端子とから成る積層体の少なくとも一部を固相接合により接続する。
本製造方法では、上記積層体を圧縮しつつ加熱することによって、該積層体を構成する一又は複数の集電体リード部と端子とを溶接することなく固相接合(即ち圧接)によって物理的に且つ電気的に接続することができる。このため、一又は複数の集電体リード部に不測の破損(剥離、亀裂等)が生じるのを未然に防止し、所望する出力が得られ得る集電効率のよい蓄電装置を製造することができる。
Moreover, this invention provides the method of manufacturing suitably the electrical storage apparatus disclosed here as another side surface.
That is, the power storage device manufacturing method disclosed herein includes a core portion having a negative electrode current collector and a positive electrode current collector, and one or more negative electrode current collector lead portions and a positive electrode current collector that protrude outward from the portion. A method of manufacturing a power storage device comprising: an electrode body unit having a body lead portion; a negative electrode terminal connected to the negative electrode current collector lead portion; and a positive electrode terminal connected to the positive electrode current collector lead portion.
And in this power storage device manufacturing method, in at least one of the positive and negative electrodes, the one or more current collector lead parts and terminals are laminated, and at least a part of the laminated body is compressed in the lamination direction. And heating the compressed portion to connect one or a plurality of current collector lead portions and the terminal by solid phase bonding in the compressed portion.
Preferably, the one or more negative electrode current collector leads are made of a copper foil, and the negative electrode terminal is a copper terminal, and the laminate comprising the one or more negative electrode current collector leads and the negative electrode terminal At least a part is connected by solid phase bonding.
In this manufacturing method, the laminate is heated while being compressed, so that it is physically bonded by solid-phase bonding (ie, pressure welding) without welding one or a plurality of current collector lead portions constituting the laminate and the terminal. And can be electrically connected. For this reason, it is possible to prevent an unexpected damage (peeling, cracking, etc.) from occurring in one or a plurality of current collector lead parts, and to manufacture a power storage device with good current collection efficiency that can obtain a desired output. it can.

ここで開示される蓄電装置製造方法の好ましい一つの態様は、通電可能な一対の押圧部材であって通電により発熱する発熱体を備えた一対の押圧部材を用意し、前記一対の押圧部材の各発熱体を前記積層体の積層方向の両外面にそれぞれ押し当てて該積層体を圧縮しつつ、通電により前記発熱体を発熱させて少なくとも該圧縮部分において前記一又は複数の集電体リード部と端子とを固相接合により接続することを特徴とする。
上記一対の押圧部材を使用することによって、圧縮されて密着した積層体を加熱して容易に固相接合(圧接)を実現することができる。
One preferable aspect of the power storage device manufacturing method disclosed herein is a pair of pressing members that can be energized, and each of the pair of pressing members includes a pair of pressing members that include a heating element that generates heat when energized. The heating element is pressed against both outer surfaces in the stacking direction of the laminate to compress the laminate, and the heating element is heated by energization to at least the one or a plurality of current collector lead portions in the compressed portion. The terminal is connected by solid phase bonding.
By using the pair of pressing members, it is possible to easily realize solid-phase bonding (pressure welding) by heating the laminated body that is compressed and closely adhered.

好ましくは、前記押圧部材の発熱体は、タングステン又はモリブデン製(それらを主体とする合金製を含む。以下同じ。)である。これら金属は、高融点であると共に電気抵抗率が高い(W:5.5×10−8Ωm、Mo:5.7×10−8Ωm)。このため、通電時には固相接合に適する発熱を迅速に達成することができる。 Preferably, the heating element of the pressing member is made of tungsten or molybdenum (including an alloy mainly composed of them). These metals have a high melting point and high electrical resistivity (W: 5.5 × 10 −8 Ωm, Mo: 5.7 × 10 −8 Ωm). For this reason, the heat generation suitable for the solid-phase bonding can be rapidly achieved during energization.

また、ここで開示される蓄電装置製造方法の好ましい他の一態様は、前記積層体を構成する全ての集電体リード部及び端子の合計の厚さ(積層体内部の空間を含まない正味の厚さ)が前記圧縮を行う前の厚さよりも15%〜50%減少するように、該圧縮を行うことを特徴とする。
かかる割合(以下、かかる厚さの減少割合(%)を圧縮率という。)で積層体を構成する集電体リード部及び端子の合計の厚さを減少することによって、容易に固相接合による集電体リード部相互及び集電体リード部と端子との接続を実現することができる。
In addition, another preferable embodiment of the method for manufacturing a power storage device disclosed herein is a total thickness of all the current collector lead parts and the terminals constituting the stacked body (a net including no space inside the stacked body). The compression is performed such that (thickness) is reduced by 15% to 50% from the thickness before the compression.
By reducing the total thickness of the current collector lead portions and the terminals constituting the laminate at such a ratio (hereinafter, the reduction ratio (%) of the thickness is referred to as a compression ratio), it is easily achieved by solid-phase bonding. Connection between the current collector lead parts and between the current collector lead part and the terminal can be realized.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、端子と集電体リード部の接続構造、固相接合方法)以外の事柄であって本発明の実施に必要な事柄(例えば、リチウム二次電池等の電池その他の蓄電装置の基本的構成やその構築方法)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
本発明は、集電体(典型的には集電箔)を支持材とする正極及び負極を有する捲回型又は積層型蓄電装置に幅広く適用し得る。ここで開示される典型的な蓄電装置としては、一次電池(例えばリチウム一次電池、マンガン電池、アルカリ電池)、二次電池(例えばリチウム二次電池、ニッケル水素電池)、或いはキャパシタ(例えば電気二重層キャパシタ)を挙げることができる。少なくとも一方の極(好ましくは負極)側において一又は複数の集電体リード部と端子とを積層し得る限りにおいて、これら蓄電装置の形態は特に限定されない。また、電極体コア部分と該コア部分から外方に出ている正負極それぞれの集電体リード部とを備える限り、それらの形状やサイズには特に制限はない。
Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than matters particularly mentioned in the present specification (for example, connection structure of terminal and current collector lead part, solid-phase bonding method) and matters necessary for the implementation of the present invention (for example, lithium secondary battery). A basic configuration of a battery such as a secondary battery and other power storage devices and a construction method thereof can be grasped as a design matter of a person skilled in the art based on conventional technology in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
The present invention can be widely applied to a wound or stacked power storage device having a positive electrode and a negative electrode using a current collector (typically, a current collector foil) as a support material. Typical power storage devices disclosed herein include primary batteries (for example, lithium primary batteries, manganese batteries, alkaline batteries), secondary batteries (for example, lithium secondary batteries, nickel metal hydride batteries), or capacitors (for example, electric double layers). Capacitor). As long as one or a plurality of current collector lead portions and terminals can be stacked on at least one of the poles (preferably the negative electrode) side, the form of these power storage devices is not particularly limited. Moreover, as long as it has an electrode body core part and the current collector lead part of each positive and negative electrode which has come out from the core part, there is no restriction | limiting in particular in those shapes and sizes.

本発明の蓄電装置は、上述したような構成の電極体コア部分、集電体(集電体リード部を含む)及び外部接続用端子を備える限りにおいて、本発明とは本質的に関連性のない他の構成要素を備え得る。例えば本発明により提供される蓄電装置は、典型的には、少なくとも電極体コア部分を収容し得る種々の形態の外装用ケースを備える。ケースとしては所望される部位に適当な絶縁処理が施された金属製ケース、樹脂製ケース、或いはリチウム二次電池等で採用され得るラミネートフィルム製のケースが挙げられる。
また、典型的には、シート状正極及び負極とともに更に適当なセパレータを捲回又は複数積層して電極体コア部分が形成される。リチウム二次電池(リチウムイオン二次電池ともいう)その他の電池に適用する場合の好適な態様では、典型的には、電極体コア部分には正負極及びセパレータと共に種々の電解質(電解液、固体電解質等)が備えられる。かかる電解質の内容は電池等の蓄電装置の種類に応じて異なり得るが本発明を特徴付けるものではない。
As long as the power storage device of the present invention includes the electrode core portion, the current collector (including the current collector lead portion), and the external connection terminal configured as described above, the power storage device is essentially relevant to the present invention. There may be no other components. For example, the power storage device provided by the present invention typically includes various types of exterior cases that can accommodate at least the electrode body core portion. Examples of the case include a metal case, a resin case, or a laminated film case that can be used in a lithium secondary battery or the like in which an appropriate insulation treatment is applied to a desired portion.
Typically, the electrode core portion is formed by winding or laminating a suitable separator together with the sheet-like positive electrode and negative electrode. In a preferred embodiment when applied to a lithium secondary battery (also referred to as a lithium ion secondary battery) or other batteries, typically, the electrode body core portion includes various electrolytes (electrolytes, solids) together with positive and negative electrodes and a separator. Electrolyte) and the like. The content of such an electrolyte may vary depending on the type of power storage device such as a battery, but does not characterize the present invention.

次に、本発明の蓄電装置製造方法について説明する。なお、ここで開示される蓄電装置製造方法は、正負極少なくとも一方(典型的には負極)において、一又は複数の集電体リード部と端子とを固相接合(圧接)により接続することで特徴付けられる方法であり、その他の工程、例えば正負極集電体にそれぞれ活物質等(合材)を塗布する工程、正負極集電体を捲回又は積層する工程、調製した電極体ユニットと適当な電解質とから蓄電素子(セル)を形成する工程、蓄電素子に外装を施す工程等は従来の蓄電装置を製造する場合と同様でよい。   Next, the power storage device manufacturing method of the present invention will be described. Note that the power storage device manufacturing method disclosed herein includes connecting at least one of the positive and negative electrodes (typically, the negative electrode) with one or a plurality of current collector lead parts and terminals by solid-phase bonding (pressure welding). Other methods, for example, a step of applying an active material or the like (a composite material) to the positive and negative electrode current collectors, a step of winding or laminating the positive and negative electrode current collectors, a prepared electrode body unit, The step of forming a power storage element (cell) from an appropriate electrolyte, the step of applying a sheath to the power storage element, and the like may be the same as in the case of manufacturing a conventional power storage device.

本発明の蓄電装置製造方法では、圧縮と加熱とで固相接合(圧接)可能であれば集電体(リード部)と端子の材料(典型的には導電性のよい金属単体又は合金)は特に限定されず、一般的に蓄電装置の内容(種類)に応じて異なり得るとともに正極と負極とで異なり得る。例えばリチウム二次電池等の電池では正極用集電体(リード部)としてアルミニウム箔が使用され、負極用集電体(リード部)として銅箔が好ましく使用される。そのような集電体(箔)を含む正負極の内容(活物質等の構成要素)は所望する蓄電装置の種類に応じて異なり、所定の電力を貯蔵及び放出し得る正負極の構成要素たり得るものであれば特に限定されない。
本発明の実施に特に好適な負極集電体(リード部)及び負極端子は銅で構成されたものである。銅製の集電体と端子は超音波溶接その他の溶接が特に困難な材質及び形状であるため、ここで開示される方法(固相接合技法)の適用が好ましい。
以下、捲回型又は積層型リチウム二次電池の電極体ユニットの負極を構成する銅箔製集電体リード部及び銅製端子(負極端子)を例にして本発明に係る集電体リード部と端子との固相接合を図面を参照しつつ説明する。
In the power storage device manufacturing method of the present invention, if solid phase bonding (pressure welding) is possible by compression and heating, the current collector (lead portion) and the terminal material (typically a single metal or alloy with good conductivity) It is not specifically limited, Generally, it may differ according to the content (kind) of an electrical storage apparatus, and may differ with a positive electrode and a negative electrode. For example, in a battery such as a lithium secondary battery, an aluminum foil is used as the positive electrode current collector (lead part), and a copper foil is preferably used as the negative electrode current collector (lead part). The contents of positive and negative electrodes including such a current collector (foil) (constituent elements such as active materials) vary depending on the type of power storage device desired, and positive and negative electrode constituents that can store and release predetermined power. There is no particular limitation as long as it can be obtained.
The negative electrode current collector (lead portion) and the negative electrode terminal particularly suitable for the implementation of the present invention are made of copper. Since the copper current collector and terminal are made of materials and shapes that are particularly difficult to weld by ultrasonic welding or the like, it is preferable to apply the method disclosed here (solid phase bonding technique).
Hereinafter, the current collector lead part according to the present invention will be described by taking as an example a copper foil current collector lead part and a copper terminal (negative electrode terminal) constituting the negative electrode of the electrode body unit of the wound or stacked lithium secondary battery. Solid phase bonding with a terminal will be described with reference to the drawings.

図1は複数の集電体リード部(負極集電体リード部)4と端子(負極端子)2とから成る積層体1(左図)と、ここで開示される方法に基づいて形成された接合部4aを模式的に示している(右上図)。図1の右下図に示すように、通常の溶接(例えば超音波溶接、レーザ溶接)では溶融部(ナゲット)5が形成され、また、集電体リード部4の破損やスパッタが生じ易い。
一方、ここで開示される方法によると、図1の右上図に示すように、積層された複数の集電体リード部4及び端子2に溶融が認められず、積層構造を保った固相接合特有の接合部4aが形成される。このように固相接合による本方法では、集電体リード部4の圧縮及び加熱を行った部位4aにおいて破損、亀裂等のみられない好ましい接続を行うことができる。従って、箔状の薄い集電体リード部を複数積層して端子に接続する場合に特に好ましい接合手段である。
FIG. 1 shows a laminate 1 (left figure) composed of a plurality of current collector lead portions (negative electrode current collector lead portions) 4 and terminals (negative electrode terminals) 2, and is formed based on the method disclosed herein. The joining portion 4a is schematically shown (upper right view). As shown in the lower right diagram of FIG. 1, in normal welding (for example, ultrasonic welding or laser welding), a melted portion (nugget) 5 is formed, and the current collector lead portion 4 is easily damaged or sputtered.
On the other hand, according to the method disclosed herein, as shown in the upper right diagram of FIG. 1, melting is not observed in the plurality of stacked current collector lead parts 4 and terminals 2, and solid phase bonding maintains a stacked structure. A unique joint 4a is formed. Thus, in this method by solid phase bonding, it is possible to make a preferable connection that does not cause breakage, cracks, or the like in the portion 4a where the current collector lead portion 4 is compressed and heated. Therefore, it is a particularly preferable joining means when a plurality of thin foil-shaped current collector lead portions are stacked and connected to the terminal.

上述した図1に示すような接合部4aは、適当な圧縮手段と加熱手段により形成することができる。このために、固相接合法で従来用いられてきた種々の手法が採用される。例えば、少なくとも集電体リード部又は端子に接触する部分(以下「当接部」ともいう。)が加熱された状態の押圧部材(プレス部材)を用いて、積層された複数の集電体リード部及び端子を当該積層方向に圧縮し加熱する。このことによって当該圧縮及び加熱部位において固相接合による接続を行うことができる。
例えば、図2に模式的に示すような、当接部(図ではペンシル型押圧部材20,21の先端部)が通電により発熱する発熱体22,23で構成されている一対の通電可能な押圧部材20,21を使用することが好ましい。使用される発熱体20,21としては、タングステン、モリブデン、白金、タンタル、鉄−クロム−アルミ系合金、ニッケル−クロム系合金等の金属発熱体、炭化ケイ素、カーボン等の非金属発熱体が挙げられる。このうち、電気抵抗率が高く、発熱効率のよい金属製のものが好ましい。電気抵抗率が高く高融点でもあるタングステン、モリブデン製の発熱体(抵抗発熱体)が特に好ましい。
The joint 4a as shown in FIG. 1 described above can be formed by appropriate compression means and heating means. For this purpose, various methods conventionally used in the solid phase bonding method are employed. For example, a plurality of current collector leads stacked using a pressing member (press member) in a state where at least a current collector lead portion or a portion in contact with a terminal (hereinafter also referred to as “contact portion”) is heated. The part and the terminal are compressed in the stacking direction and heated. Thereby, the connection by solid phase bonding can be performed at the compression and heating sites.
For example, as shown schematically in FIG. 2, a pair of energizable presses in which the contact portions (in the drawing, the tip portions of the pencil-type pressing members 20 and 21) are configured by heating elements 22 and 23 that generate heat when energized. Preferably, members 20 and 21 are used. Examples of the heating elements 20 and 21 used include metal heating elements such as tungsten, molybdenum, platinum, tantalum, iron-chromium-aluminum alloy, nickel-chromium alloy, and non-metallic heating elements such as silicon carbide and carbon. It is done. Of these, a metal having high electrical resistivity and good heat generation efficiency is preferable. A heating element (resistance heating element) made of tungsten or molybdenum having a high electric resistivity and a high melting point is particularly preferable.

このような通電可能な押圧部材20,21を使用することによって図2に模式的に示すような接続(接合)プロセスを行うことができる。
即ち、図2の(A)に示すように、予め積層した複数の集電体リード部(例えば銅箔製の負極集電体リード部)14と端子(例えば銅製の負極端子)12とから成る積層体11を挟み付けるようにして積層方向の両外面に押圧部材20,21の当接部(発熱体)22,23を押し当て、当該部分を圧縮する。このときの圧力は所望の固相接合が行われる限りにおいて特に限定されないが、図2の(B)に示すように、積層体11の圧縮率(即ち積層体11を構成する全ての集電体リード部14と端子12を合わせた正味の厚さ(mm)に対する減少した厚さサイズの比率)が15〜50%程度(特に20〜40%)となるように設定するとよい。
例えば、捲回型又は積層型リチウム二次電池における複数の銅箔製負極集電体リード部(例えば積層する部数が20〜100)と銅製負極端子とを接続する場合、150〜300MPa(概ね15〜30kgf/mm)程度の加圧が好適である。加圧力がこの範囲よりも小さすぎると固相接合が不良となりいわゆるスパッタ(飛散物)が発生し易くなるため好ましくない。他方、加圧力がこの範囲よりも大きすぎると、加熱した際に押圧部材の当接部の繰り返し使用時の寿命が短くなる(例えば当接部のつぶれや変形による)ので好ましくない。
By using such pressing members 20 and 21 that can be energized, a connection (joining) process as schematically shown in FIG. 2 can be performed.
That is, as shown in FIG. 2A, it is composed of a plurality of current collector lead portions (for example, a negative electrode current collector lead portion made of copper foil) 14 and a terminal (for example, a negative electrode terminal made of copper) 12 laminated in advance. The abutting portions (heating elements) 22 and 23 of the pressing members 20 and 21 are pressed against both outer surfaces in the stacking direction so as to sandwich the stacked body 11, and the portions are compressed. The pressure at this time is not particularly limited as long as desired solid phase bonding is performed, but as shown in FIG. 2B, the compressibility of the laminate 11 (that is, all the current collectors constituting the laminate 11). The ratio of the reduced thickness size to the total thickness (mm) of the lead portion 14 and the terminal 12 may be set to about 15 to 50% (particularly 20 to 40%).
For example, in the case of connecting a plurality of copper foil negative electrode current collector lead parts (for example, the number of laminated parts is 20 to 100) and a copper negative electrode terminal in a wound or stacked lithium secondary battery, 150 to 300 MPa (generally 15 A pressure of about ˜30 kgf / mm 2 ) is suitable. If the applied pressure is too smaller than this range, the solid phase bonding becomes poor and so-called spatter (scattered matter) is likely to occur, which is not preferable. On the other hand, if the applied pressure is too larger than this range, it is not preferable because the life of the contact portion of the pressing member when it is heated is shortened (for example, due to collapse or deformation of the contact portion).

そして、上記加圧と同時に当該一対の押圧部材20,21に通電し、発熱体(当接部)22,23を発熱させ、そのジュール熱によって積層体11の圧縮された部分14a,12aを加熱する。これにより、図2の(C)に示すように、当該圧縮部分14a,12aに固相接合により接続された複数の集電体リード部(例えば積層する部数が2〜100)と端子とから成る接合部15が形成される。ここで開示される方法では、圧縮と加熱により固相接合を生じさせ、典型的には接合のために積層体11に振動、摩擦等を付与しない。これにより、スパッタ等の異物発生が防止され、信頼性の高い接続構造の蓄電装置を製造することができる。
なお、固相接合を生じさせる際に通電する電力(電流)は、積層体の材質や厚みの程度、押圧部材に装備された発熱体の材質やサイズ等によって異なり得るが、例えば捲回型又は積層型リチウム二次電池における複数の銅箔製負極集電体リード部(例えば厚さ5〜20μm程度の集電体リード部を2〜100部数積層する場合)と銅製負極端子(例えば厚さが1〜2mm程度)とを接続する場合であって、積層体の表面側からみて直径1〜5mm程度の接合部を生じさせる場合(換言すれば該直径にほぼ対応する直径の発熱体を使用する場合)、通電電流は概ね1000〜1600A/mm程度が好ましい。通電時間は特に限定されず、典型的には1秒以下或いは数秒〜数分であり得るが、好ましくは集電体及び端子の融点を越える温度まで加熱しないように制御される。
Simultaneously with the pressurization, the pair of pressing members 20 and 21 are energized to heat the heating elements (contact portions) 22 and 23, and the compressed portions 14a and 12a of the laminate 11 are heated by the Joule heat. To do. As a result, as shown in FIG. 2C, it is composed of a plurality of current collector lead portions (for example, the number of layers to be stacked is 2 to 100) connected to the compression portions 14a and 12a by solid phase bonding and terminals. A junction 15 is formed. In the method disclosed here, solid-phase bonding is generated by compression and heating, and typically, vibration, friction, or the like is not applied to the laminate 11 for bonding. Thereby, the generation of foreign matter such as sputtering is prevented, and a highly reliable power storage device with a connection structure can be manufactured.
In addition, the electric power (current) to be energized when the solid phase bonding is generated may vary depending on the material and thickness of the laminated body, the material and size of the heating element mounted on the pressing member, but for example, a wound type or A plurality of copper foil negative electrode current collector lead portions (for example, when stacking 2 to 100 current collector lead portions having a thickness of about 5 to 20 μm) and a copper negative electrode terminal (for example, having a thickness) in a laminated lithium secondary battery 1 to 2 mm), and when a joined portion having a diameter of about 1 to 5 mm as viewed from the surface side of the laminate is formed (in other words, a heating element having a diameter substantially corresponding to the diameter is used. Case), the energization current is preferably about 1000 to 1600 A / mm 2 . The energization time is not particularly limited, and can be typically 1 second or less or several seconds to several minutes, but is preferably controlled so as not to be heated to a temperature exceeding the melting points of the current collector and the terminal.

以下、本発明に関する好適な実施例を図面を参照しつつ説明するが、本発明をかかる図面に示すものに限定することを意図したものではない。
図3に示す本実施例に係る蓄電装置50は、捲回型で扁平な電極体ユニット51を主体とするフィルム外装型のリチウム二次電池50である。
即ち、図3は、図示しないラミネートフィルムによって外装する前(即ちラミネートフィルムを除いた状態)のリチウム二次電池50を示す側面図である。図4は、図3のIV−IV線断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not intended to be limited to those shown in the drawings.
The power storage device 50 according to this embodiment shown in FIG. 3 is a film-covered lithium secondary battery 50 mainly composed of a wound and flat electrode body unit 51.
That is, FIG. 3 is a side view showing the lithium secondary battery 50 before being packaged with a laminate film (not shown) (that is, in a state where the laminate film is removed). 4 is a cross-sectional view taken along line IV-IV in FIG.

図3に示すように、本実施例に係るリチウム二次電池50は、主に、枠体80と、電極体ユニット51と、外部接続用の正極端子70及び負極端子60とから構成されている。
本実施例に係る電極体ユニット51はアルミニウム箔製の正極集電体(厚さ約10μm)と銅箔製の負極集電体(厚さ約10μm)とをセパレータと共に積層し、さらに当該正極集電体と負極集電体とをややずらしつつ捲回し且つ扁平にされた一般的な捲回型電極体ユニット51である。かかる捲回の結果、捲回方向に対する横方向の一方の端面には、正極集電体の端部が電極体コア部分52(即ち正極集電体と負極集電体とセパレータとが密に捲回されている部分)から外方に複数(ここでは54部数)出ており、本実施例に係る正極集電体リード部53を構成する。同様に、他方の端面には、負極集電体の端部が電極体コア部分52から外方に複数(ここでは54部数)出ており、本実施例に係る負極集電体リード部57を構成する。而して、これら複数の正極集電体リード部53及び負極集電体リード部57がそれぞれ後述する正極端子70及び負極端子60と電気的に接続される。
As shown in FIG. 3, the lithium secondary battery 50 according to the present embodiment mainly includes a frame body 80, an electrode body unit 51, a positive terminal 70 and a negative terminal 60 for external connection. .
The electrode body unit 51 according to the present example is formed by laminating a positive electrode current collector (thickness of about 10 μm) made of aluminum foil and a negative electrode current collector (thickness of about 10 μm) made of copper foil together with a separator. This is a general wound electrode body unit 51 in which the electric body and the negative electrode current collector are wound while being slightly shifted and flattened. As a result of such winding, the end of the positive electrode current collector is closely connected to the electrode core portion 52 (that is, the positive electrode current collector, the negative electrode current collector, and the separator) on one end face in the lateral direction with respect to the winding direction. A plurality (54 copies in this case) are provided outward from the rotated portion, and constitute the positive electrode current collector lead portion 53 according to the present embodiment. Similarly, on the other end face, a plurality of ends (54 in this case) of the negative electrode current collector protrude outward from the electrode core portion 52, and the negative electrode current collector lead portion 57 according to this example is provided. Constitute. Thus, the plurality of positive electrode current collector lead portions 53 and negative electrode current collector lead portions 57 are electrically connected to a positive electrode terminal 70 and a negative electrode terminal 60 described later, respectively.

なお、かかる電極体ユニット51の構成自体は本発明を制限するものではなく、従来使用されている種々の材料を用いて構成されておればよい。例えば、正極集電体にはリチウム二次電池用正極活物質層が付与される。正極活物質は従来からリチウム二次電池に用いられる物質の一種又は二種以上を特に限定することなく使用することができる。好適例として、LiMn、LiCoO、LiNiO等を挙げることができる。他方、負極集電体にはリチウム二次電池用負極活物質層が付与される。負極活物質は従来からリチウム二次電池に用いられる物質の一種又は二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等を挙げることができる。
正負極集電体間に使用される好適なセパレータとしては多孔質オレフィン系樹脂で構成されたシートが挙げられる。
In addition, the structure itself of this electrode body unit 51 does not restrict | limit this invention, What is necessary is just to be comprised using the various material used conventionally. For example, the positive electrode current collector is provided with a positive electrode active material layer for a lithium secondary battery. As the positive electrode active material, one kind or two or more kinds of substances conventionally used in lithium secondary batteries can be used without any particular limitation. Preferable examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 and the like. On the other hand, the negative electrode current collector is provided with a negative electrode active material layer for a lithium secondary battery. As the negative electrode active material, one or two or more kinds of materials conventionally used in lithium secondary batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium-containing transition metal oxides and transition metal nitrides.
A suitable separator used between the positive and negative electrode current collectors includes a sheet made of a porous olefin resin.

本実施例に係る枠体80は合成樹脂により構成されている。特にラミネートフィルムとの接着性に優れ且つ剛性な樹脂(例えばポリプロピレン、ポリスチレン、ポリエチレン製)であることが好適である。図3に示すように本実施例に係る枠体80は長方形状の筐体構造であり、その枠体80の内側に扁平な電極体ユニット51を収容する。このように枠体80に電極体ユニット51を収容することにより、当該電極体ユニット51が物理的に保護され、外側からの応力による変形、破損等を防止することができる。このため、信頼性の高い蓄電装置(ここではリチウム二次電池)が得られる。   The frame body 80 according to the present embodiment is made of a synthetic resin. In particular, it is preferable that the resin is excellent in adhesion to the laminate film and is rigid (for example, made of polypropylene, polystyrene, or polyethylene). As shown in FIG. 3, the frame body 80 according to the present embodiment has a rectangular housing structure, and a flat electrode body unit 51 is accommodated inside the frame body 80. By accommodating the electrode body unit 51 in the frame body 80 in this way, the electrode body unit 51 is physically protected, and deformation, breakage, and the like due to stress from the outside can be prevented. For this reason, a highly reliable power storage device (here, a lithium secondary battery) is obtained.

図3に示すように、負極端子60は薄い長板形状の部材(厚さ約1.5mm)であり、銅から形成されている。他方、正極端子70は薄い長板形状の部材(厚さ約1.5mm)であり、アルミニウムから形成されている。
そして、図4に示すように、負極端子60の一方の幅広面上には、束ねられた負極集電体リード部57が積層され載置されている。他方、図示していないが、正極端子70の一方の幅広面上には、負極側と同様、束ねられた正極集電体リード部53が積層され載置されている。
As shown in FIG. 3, the negative electrode terminal 60 is a thin long plate-shaped member (thickness: about 1.5 mm), and is made of copper. On the other hand, the positive electrode terminal 70 is a thin long plate-shaped member (thickness of about 1.5 mm) and is made of aluminum.
As shown in FIG. 4, the bundled negative electrode current collector lead portions 57 are stacked and placed on one wide surface of the negative electrode terminal 60. On the other hand, although not shown, a bundled positive electrode current collector lead portion 53 is stacked and placed on one wide surface of the positive electrode terminal 70 as in the negative electrode side.

而して、図3に示すように、正極端子70と複数の正極集電体リード部53とは、それらの積層部分において、正極集電体リード部外面側からみて直径約5mmの円状の接合部54a,54bが計2箇所形成されている。これら接合部54a,54bにより、正極端子70と複数の正極集電体リード部53との電気的及び物理的接続が実現されている。本実施例において、かかる正極側の接合部54a,54bは、一般的なスポット溶接(シリーズスポット溶接、ダイレクトスポット溶接、等)により接合されている。   Thus, as shown in FIG. 3, the positive electrode terminal 70 and the plurality of positive electrode current collector lead portions 53 are formed in a circular shape having a diameter of about 5 mm when viewed from the outer surface side of the positive electrode current collector lead portion. A total of two joint portions 54a and 54b are formed. Electrical and physical connection between the positive electrode terminal 70 and the plurality of positive electrode current collector lead portions 53 is realized by the joint portions 54a and 54b. In the present embodiment, the positive electrode side joining portions 54a and 54b are joined by general spot welding (series spot welding, direct spot welding, etc.).

他方、図3及び図4に示すように、負極端子60と複数の負極集電体リード部57とは、それらの積層部分において、負極集電体リード部外面側からみて直径約5mmの円状の接合部58a,58bが計2箇所形成されている。これら接合部58a,58bにより、負極端子60と複数の負極集電体リード部57との電気的及び物理的接続が実現されている。そして本実施例においては、かかる接合部58a,58bは、ここで開示される固相接合法によって形成されている。   On the other hand, as shown in FIG. 3 and FIG. 4, the negative electrode terminal 60 and the plurality of negative electrode current collector lead portions 57 are formed in a circular shape having a diameter of about 5 mm when viewed from the outer surface side of the negative electrode current collector lead portion. The joint portions 58a and 58b are formed in two places in total. Electrical and physical connection between the negative electrode terminal 60 and the plurality of negative electrode current collector lead portions 57 is realized by the joint portions 58a and 58b. In the present embodiment, the joints 58a and 58b are formed by the solid-phase joining method disclosed herein.

即ち、上述した図2に示すような形状の、先端直径5mm、高さ約2mmの緩いテーパ形状のタングステン製発熱体を先端(当接部)に備えた一対の通電可能なペンシル型クロム鋼製押圧部材を用意し、それらの当接部を負極端子60と複数の負極集電体リード部57とから成る積層体の両外面に対向するように押し当てた。そして、約200MPaの加圧力でかかる負極側積層体を積層方向に圧縮した(図2(B)参照)。圧縮率は約25%であった。
このように圧縮した状態で図示しない外部電源から両押圧部材間に通電してタングステン製発熱体を発熱させ、そのジュール熱によって積層体の圧縮部分を加熱した。このときの通電電流は約1380A/mmであった。また、通電時間は約0.12秒であった。
以上の操作によって、図4並びに図5及び図6に示すような構造の接合部58a,58bが得られた。なお、図5は接合部58bの断面構造を示す実体顕微鏡写真であり、図6は同断面構造の電子顕微鏡(SEM)写真である。これら顕微鏡写真から明らかなように、本発明に係る固相接合によると、内部にナゲットが生じない接合部、即ち、リチウム二次電池その他の蓄電装置に悪影響を及ぼす虞のあるスパッタ(典型的には集電体から飛散する破片)を生じさせない固相接合による接合部を形成することができる。
また、この処理によって接合された負極端子60と負極集電体リード部57との接合強度は、約843MPa(86kgf/mm)であった。本実施例に関連する試験例として、通電電流を1100〜1400A/mmの範囲で適宜変更して同様の固相接合を実施したところ、いずれにおいても良好な固相接合が行われ、上記接合強度も300MPa以上(典型的には300〜900MPa、即ち約30〜90kgf/mm)であった。
That is, a pair of energizable pencil-type chrome steels having a tip (abutting portion) with a tungsten heating element having a loose taper shape with a tip diameter of 5 mm and a height of about 2 mm, as shown in FIG. The pressing members were prepared, and the contact portions were pressed so as to face both outer surfaces of the laminate including the negative electrode terminal 60 and the plurality of negative electrode current collector lead portions 57. Then, the negative electrode side laminate was compressed in the laminating direction with a pressure of about 200 MPa (see FIG. 2B). The compression rate was about 25%.
In such a compressed state, a tungsten heating element was heated by energizing between the pressing members from an external power source (not shown), and the compressed portion of the laminate was heated by the Joule heat. The energization current at this time was about 1380 A / mm 2 . The energization time was about 0.12 seconds.
Through the above operation, joints 58a and 58b having the structures as shown in FIGS. 4, 5 and 6 were obtained. 5 is a stereomicrograph showing the cross-sectional structure of the joint 58b, and FIG. 6 is an electron microscope (SEM) photo of the cross-sectional structure. As is apparent from these micrographs, according to the solid-phase bonding according to the present invention, a splice (typically, a lithium ion secondary battery or other power storage device that may adversely affect the nugget is not generated inside, ie, a lithium secondary battery or the like. Can form a bonded portion by solid phase bonding that does not generate debris scattered from the current collector.
Further, the bonding strength between the negative electrode terminal 60 and the negative electrode current collector lead portion 57 bonded by this treatment was about 843 MPa (86 kgf / mm 2 ). As a test example related to this example, when the same solid phase bonding was performed by appropriately changing the energization current in the range of 1100 to 1400 A / mm 2 , good solid phase bonding was performed in any case, and the above bonding The strength was also 300 MPa or more (typically 300 to 900 MPa, that is, about 30 to 90 kgf / mm 2 ).

以上のようにして、電極体ユニットの正負極集電体リード部53,57と正負極端子70,60とをそれぞれ接続した後、これら端子70,60を備えた電極体ユニット51を枠体80に収容する。
そして、図示しない適当なラミネートフィルムによって枠体80の全体を覆うようにして外装する。次いで、適当な電解液(例えばLiPF等のリチウム塩を適当量含むジエチルカーボネートとエチレンカーボネートとの混合溶媒のような非水電解液)を注入して封止することによって本実施例に係る蓄電装置50(リチウム二次電池)の組み立て(構築)が完成する。尚、フィルム外装及び電解質注入プロセスは、従来のリチウム二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。
After connecting the positive and negative electrode current collector lead portions 53 and 57 of the electrode body unit and the positive and negative electrode terminals 70 and 60 as described above, the electrode body unit 51 including these terminals 70 and 60 is connected to the frame body 80. To house.
And it coats so that the whole frame 80 may be covered with the suitable laminate film which is not illustrated. Next, a suitable electrolytic solution (for example, a nonaqueous electrolytic solution such as a mixed solvent of diethyl carbonate and ethylene carbonate containing a suitable amount of a lithium salt such as LiPF 6 ) is injected and sealed, and the electricity storage according to this embodiment is performed. The assembly (construction) of the device 50 (lithium secondary battery) is completed. The film exterior and the electrolyte injection process may be the same as those used in the manufacture of conventional lithium secondary batteries, and do not characterize the present invention.

以上、本発明の好適な実施態様を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した態様を様々に変形、変更したものが含まれる。例えば、上述の実施例は捲回型蓄電装置(リチウム二次電池)の例であるが、電極体ユニットの基本的構成が異なる以外は同様の構成の積層型蓄電装置を同様に構築し得る。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
The preferred embodiments of the present invention have been described in detail above, but these are only examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the above-described embodiments. For example, although the above-described embodiment is an example of a wound type power storage device (lithium secondary battery), a stacked power storage device having a similar configuration can be similarly constructed except that the basic configuration of the electrode body unit is different.
In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

本発明に係る固相接合により得られる集電体リード部と端子との接合部(接合構造)を模式的に示す説明図であり、左図は集電体リード部と端子との積層体を示し、右上図は本発明に係る固相接合により得られる接合部(接合構造)を示し、右下図は一般的な溶接により得られる接合部(接合構造)を示す。It is explanatory drawing which shows typically the junction part (junction structure) of the collector lead part and terminal which are obtained by the solid phase joining which concerns on this invention, and the left figure shows the laminated body of a collector lead part and a terminal. The upper right diagram shows a joint (joint structure) obtained by solid phase joining according to the present invention, and the lower right diagram shows a joint (joint structure) obtained by general welding. 本発明に係る集電体リード部と端子との接続(接合)プロセスを示す説明図であり、(A)は一対の押圧部材を集電体リード部と端子とから成る積層体の表面に押し当てる状態を示し、(B)は当該一対の押圧部材によって集電体リード部と端子とから成る積層体を圧縮・加熱する状態を示し、(C)は当該圧縮・加熱によって得られた接合部(接合構造)を示す。It is explanatory drawing which shows the connection (joining) process of the collector lead part and terminal which concern on this invention, (A) pushes a pair of press member on the surface of the laminated body which consists of a collector lead part and a terminal. (B) shows a state of compressing and heating the laminate composed of the current collector lead part and the terminal by the pair of pressing members, and (C) shows a joint part obtained by the compression and heating. (Junction structure) is shown. 本発明の一実施例に係る蓄電装置(ラミネートフィルム外装前のリチウム二次電池)の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the electrical storage apparatus (lithium secondary battery before a laminate film exterior) which concerns on one Example of this invention. 図3におけるIV−IV線断面図であり、負極端子と負極集電体リード部との接合構造を示す。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3 and shows a joint structure between a negative electrode terminal and a negative electrode current collector lead portion. 負極端子と負極集電体リード部との接合部の断面構造を示す実体顕微鏡写真である。It is a stereoscopic microscope photograph which shows the cross-section of the junction part of a negative electrode terminal and a negative electrode collector lead part. 負極端子と負極集電体リード部との接合部の断面構造を示す電子顕微鏡(SEM)写真である。It is an electron microscope (SEM) photograph which shows the cross-sectional structure of the junction part of a negative electrode terminal and a negative electrode collector lead part.

符号の説明Explanation of symbols

1,11 積層体
2,12 端子
4,14 集電体リード部
4a,15,54a,54b,58a,58b 接合部
20,21 押圧部材
22,23 発熱体
50 蓄電装置(リチウム二次電池)
51 電極体ユニット
52 コア部分
53 正極集電体リード部
57 負極集電体リード部
60 負極端子
70 正極端子
DESCRIPTION OF SYMBOLS 1,11 Laminated body 2,12 Terminal 4,14 Current collector lead | read | reed parts 4a, 15,54a, 54b, 58a, 58b Joint part 20,21 Press member 22,23 Heat generating body 50 Power storage device (lithium secondary battery)
51 Electrode unit 52 Core portion 53 Positive electrode current collector lead portion 57 Negative electrode current collector lead portion 60 Negative electrode terminal 70 Positive electrode terminal

Claims (7)

負極集電体及び正極集電体を有するコア部分と該部分から外方に出ている一又は複数の負極集電体リード部及び正極集電体リード部とを有する電極体ユニットと、
前記負極集電体リード部に接続した負極端子と、
前記正極集電体リード部に接続した正極端子と、
を備える蓄電装置であって、
前記正負極の少なくとも一方において前記一又は複数の集電体リード部と端子とは積層され且つその積層体の少なくとも一部において固相接合により接続されており、
該固層接合部分はその周囲の積層部分よりも積層方向の厚みが少なくなるように圧縮されていることを特徴とする、蓄電装置。
An electrode body unit having a core portion having a negative electrode current collector and a positive electrode current collector, and one or a plurality of negative electrode current collector lead portions and a positive electrode current collector lead portion protruding outward from the portions;
A negative electrode terminal connected to the negative electrode current collector lead,
A positive electrode terminal connected to the positive electrode current collector lead;
A power storage device comprising:
In at least one of the positive and negative electrodes, the one or more current collector lead portions and the terminal are laminated, and at least a part of the laminated body is connected by solid phase bonding,
The power storage device, wherein the solid-layer bonded portion is compressed so that the thickness in the stacking direction is smaller than that of the surrounding stacked portion.
前記固相接合により接続された一又は複数の負極集電体リード部及び負極端子を備え、
ここで前記一又は複数の負極集電体リード部は銅箔により構成されており、
前記負極端子は銅製端子である、請求項1に記載の蓄電装置。
Comprising one or a plurality of negative electrode current collector leads connected by the solid phase bonding and a negative electrode terminal;
Here, the one or more negative electrode current collector lead portions are made of copper foil,
The power storage device according to claim 1, wherein the negative electrode terminal is a copper terminal.
負極集電体及び正極集電体を有するコア部分と該部分から外方に出ている一又は複数の負極集電体リード部及び正極集電体リード部とを有する電極体ユニットと、前記負極集電体リード部に接続した負極端子と、前記正極集電体リード部に接続した正極端子とを備える蓄電装置の製造方法であって、
前記正負極の少なくとも一方において、前記一又は複数の集電体リード部と端子とを積層すること、
その積層体の少なくとも一部を積層方向に圧縮すること、および、
該圧縮部分を加熱することによって該圧縮部分において一又は複数の集電体リード部と端子とを固相接合により接続すること、
を包含する蓄電装置製造方法。
An electrode body unit having a core portion having a negative electrode current collector and a positive electrode current collector, and one or more negative electrode current collector lead portions and a positive electrode current collector lead portion protruding outward from the portions, and the negative electrode A method of manufacturing a power storage device comprising a negative electrode terminal connected to a current collector lead part and a positive electrode terminal connected to the positive electrode current collector lead part,
Laminating the one or more current collector lead portions and terminals in at least one of the positive and negative electrodes,
Compressing at least a portion of the laminate in the lamination direction; and
Connecting the one or more current collector lead parts and the terminal by solid phase bonding in the compressed portion by heating the compressed portion;
A method for manufacturing a power storage device comprising:
通電可能な一対の押圧部材であって通電により発熱する発熱体を備えた一対の押圧部材を用意し、
前記一対の押圧部材の各発熱体を前記積層体の積層方向の両外面にそれぞれ押し当てて該積層体を圧縮しつつ、通電により前記発熱体を発熱させて少なくとも該圧縮部分において前記一又は複数の集電体リード部と端子とを固相接合により接続する、請求項3に記載の方法。
A pair of pressing members capable of being energized and having a heating element that generates heat when energized are prepared,
The heating elements of the pair of pressing members are pressed against both outer surfaces in the stacking direction of the stacked body to compress the stacked body, and the heating body is heated by energization so that at least one or a plurality of the heating elements is compressed in the compressed portion. The method according to claim 3, wherein the current collector lead part and the terminal are connected by solid phase bonding.
前記発熱体は、タングステン又はモリブデン製である、請求項4に記載の方法。   The method of claim 4, wherein the heating element is made of tungsten or molybdenum. 前記積層体を構成する全ての集電体リード部及び端子の合計の厚さが前記圧縮を行う前の厚さよりも15%〜50%減少するように、該圧縮を行う、請求項3〜5のいずれかに記載の方法。   The compression is performed such that the total thickness of all the current collector lead parts and terminals constituting the laminate is reduced by 15% to 50% from the thickness before the compression. The method in any one of. 前記一又は複数の負極集電体リード部は銅箔により構成され且つ前記負極端子は銅製端子であり、該一又は複数の負極集電体リード部と負極端子とから成る積層体の少なくとも一部を固相接合により接続する、請求項3〜6のいずれかに記載の方法。
The one or more negative electrode current collector leads are made of copper foil, and the negative electrode terminal is a copper terminal, and at least a part of a laminate comprising the one or more negative electrode current collector leads and the negative electrode terminal Are connected by solid-phase bonding.
JP2005117460A 2005-04-14 2005-04-14 Method for manufacturing power storage device Active JP4835025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117460A JP4835025B2 (en) 2005-04-14 2005-04-14 Method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117460A JP4835025B2 (en) 2005-04-14 2005-04-14 Method for manufacturing power storage device

Publications (2)

Publication Number Publication Date
JP2006294567A true JP2006294567A (en) 2006-10-26
JP4835025B2 JP4835025B2 (en) 2011-12-14

Family

ID=37414885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117460A Active JP4835025B2 (en) 2005-04-14 2005-04-14 Method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP4835025B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087611A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Laminate type battery
JP2010073398A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery and method of manufacturing the same
JP2011159977A (en) * 2010-02-02 2011-08-18 Samsung Electro-Mechanics Co Ltd Electric double-layer capacitor cell, electric double-layer capacitor package including same, and method for manufacturing the package
JP2013004482A (en) * 2011-06-21 2013-01-07 Sumitomo Electric Ind Ltd Lead member and method of manufacturing the same
JP2013046917A (en) * 2011-08-29 2013-03-07 Nippon Avionics Co Ltd Welding equipment
JP2014000594A (en) * 2012-06-20 2014-01-09 Toyota Motor Corp Method of manufacturing laminated aluminum material, method of manufacturing sealed battery including the same and sealed battery
JP2014121723A (en) * 2012-12-21 2014-07-03 Toyota Industries Corp Welding method and welding equipment
KR20150106913A (en) * 2013-01-16 2015-09-22 나그 시스템 가부시키가이샤 Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2015182095A (en) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 Resistance welder
US20150318535A1 (en) * 2012-01-17 2015-11-05 Nag System Co., Ltd. Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2016501424A (en) * 2013-03-11 2016-01-18 エルジー・ケム・リミテッド Secondary battery and manufacturing method thereof
JP2019153438A (en) * 2018-03-02 2019-09-12 三洋電機株式会社 Secondary battery and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752072B (en) * 2013-12-25 2018-02-06 中国电子科技集团公司第十八研究所 The preparation method of hermetically sealed nickel carbon supercapacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127469A (en) * 1977-04-07 1978-11-07 Squibb & Sons Inc Indazole derivative and process for preparing same
JPH0955222A (en) * 1995-08-10 1997-02-25 Hitachi Ltd Sodium-sulfur battery and manufacture thereof
JP2000348978A (en) * 1999-06-09 2000-12-15 Honda Motor Co Ltd Manufacture of electrode of electric double-layer capacitor
JP2001038475A (en) * 1999-07-29 2001-02-13 Denso Corp Jointing method of laminating material, and battery
JP2002008708A (en) * 2000-06-20 2002-01-11 Denso Corp Flat wound electrode cell
JP2002373640A (en) * 2001-06-13 2002-12-26 Denso Corp Comb-type divider and manufacturing method of battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127469A (en) * 1977-04-07 1978-11-07 Squibb & Sons Inc Indazole derivative and process for preparing same
JPH0955222A (en) * 1995-08-10 1997-02-25 Hitachi Ltd Sodium-sulfur battery and manufacture thereof
JP2000348978A (en) * 1999-06-09 2000-12-15 Honda Motor Co Ltd Manufacture of electrode of electric double-layer capacitor
JP2001038475A (en) * 1999-07-29 2001-02-13 Denso Corp Jointing method of laminating material, and battery
JP2002008708A (en) * 2000-06-20 2002-01-11 Denso Corp Flat wound electrode cell
JP2002373640A (en) * 2001-06-13 2002-12-26 Denso Corp Comb-type divider and manufacturing method of battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087611A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Laminate type battery
JP2010073398A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery and method of manufacturing the same
JP2011159977A (en) * 2010-02-02 2011-08-18 Samsung Electro-Mechanics Co Ltd Electric double-layer capacitor cell, electric double-layer capacitor package including same, and method for manufacturing the package
JP2013004482A (en) * 2011-06-21 2013-01-07 Sumitomo Electric Ind Ltd Lead member and method of manufacturing the same
JP2013046917A (en) * 2011-08-29 2013-03-07 Nippon Avionics Co Ltd Welding equipment
US20150318535A1 (en) * 2012-01-17 2015-11-05 Nag System Co., Ltd. Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
US10181594B2 (en) 2012-01-17 2019-01-15 Nag System Co., Ltd. Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2014000594A (en) * 2012-06-20 2014-01-09 Toyota Motor Corp Method of manufacturing laminated aluminum material, method of manufacturing sealed battery including the same and sealed battery
JP2014121723A (en) * 2012-12-21 2014-07-03 Toyota Industries Corp Welding method and welding equipment
CN104981316A (en) * 2013-01-16 2015-10-14 纳谷***株式会社 Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
EP2946868A4 (en) * 2013-01-16 2016-09-28 Nag System Co Ltd Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
KR20150106913A (en) * 2013-01-16 2015-09-22 나그 시스템 가부시키가이샤 Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
KR102060027B1 (en) * 2013-01-16 2019-12-27 나그 시스템 가부시키가이샤 Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2016501424A (en) * 2013-03-11 2016-01-18 エルジー・ケム・リミテッド Secondary battery and manufacturing method thereof
JP2015182095A (en) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 Resistance welder
JP2019153438A (en) * 2018-03-02 2019-09-12 三洋電機株式会社 Secondary battery and method of manufacturing the same
JP7021564B2 (en) 2018-03-02 2022-02-17 三洋電機株式会社 Secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP4835025B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835025B2 (en) Method for manufacturing power storage device
JP5054419B2 (en) Sheet-like secondary battery
WO2017149949A1 (en) Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery
JP2000150306A (en) Current collecting system of battery or capacitor
JP5487895B2 (en) Current collector and manufacturing method thereof
JP2018018600A (en) Laminate battery and method for manufacturing the same
JP6975387B2 (en) Manufacturing method of power storage device
JP5561507B2 (en) Winding type battery and manufacturing method thereof
JP2008004274A (en) Storage element
JP2009259697A (en) Battery and its manufacturing method
JP2010033922A (en) Layered secondary battery
JP2014167881A (en) Battery and method of manufacturing battery
JP3733403B2 (en) Electrode wound type battery
JP2010118625A (en) Electrode connection device and electric storage apparatus provided with the same
JP2014000594A (en) Method of manufacturing laminated aluminum material, method of manufacturing sealed battery including the same and sealed battery
JP2004241150A (en) Battery
JP5158435B2 (en) Battery and manufacturing method thereof
JPH1050556A (en) Electrical double-layer capacitor
JPH10146679A (en) Electric resistance welding method for different kinds of materials
JP2020024778A (en) Laminated secondary battery and manufacturing method thereof
JP2012209269A (en) Method for manufacturing sheet-like secondary battery
JP7205723B2 (en) Ultrasonic bonding method
JP6427074B2 (en) Ultrasonic welding method of electrode unit
JP3652550B2 (en) Lithium secondary battery and manufacturing method thereof
JP2002042882A (en) Method of manufacturing organic electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3