JP2014167881A - Battery and method of manufacturing battery - Google Patents

Battery and method of manufacturing battery Download PDF

Info

Publication number
JP2014167881A
JP2014167881A JP2013039745A JP2013039745A JP2014167881A JP 2014167881 A JP2014167881 A JP 2014167881A JP 2013039745 A JP2013039745 A JP 2013039745A JP 2013039745 A JP2013039745 A JP 2013039745A JP 2014167881 A JP2014167881 A JP 2014167881A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
tab
electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013039745A
Other languages
Japanese (ja)
Inventor
Tatsuji Mino
辰治 美濃
Takayuki Shirane
隆行 白根
Tomoteru Tuji
智輝 辻
Shin Haraguchi
心 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013039745A priority Critical patent/JP2014167881A/en
Publication of JP2014167881A publication Critical patent/JP2014167881A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence of damage on a tub during ultrasonic welding of a tub and a lead, and to allow for excellent joining of the tub and lead.SOLUTION: In a laminate battery, an electrode body 14 is manufactured by winding or laminating a positive electrode and a negative electrode so that a plurality of positive electrode tubs 23 protruding from one end of the positive electrode overlap each other, and a plurality of negative electrode tubs protruding from one end of the negative electrode overlap each other. Each positive electrode tub 23 and negative electrode tub are compressed, and a positive electrode lead 15 and a negative electrode lead are subjected to ultrasonic welding thus manufacturing the laminate battery. Ultrasonic welding is performed by placing a metal foil 24, i.e., a thin film piece for preventing contact of each positive electrode tub 23 and negative electrode tub and an ultrasonic horn 50, between them, and compressing the positive electrode tub 23 and negative electrode tub while placing the thin film piece.

Description

本発明は、電池及び電池の製造方法に関する。   The present invention relates to a battery and a battery manufacturing method.

リチウムイオン電池等の電池の一形態として、極板の一端から突出した複数の正極タブを有する正極と、極板の一端から突出した複数の負極タブを有する負極と、正極タブ同士が互いに重なるように、且つ前記負極タブ同士が互いに重なるように、正極及び負極を巻回して形成された電極体とを備えた巻回型電池が知られている(例えば、特許文献1,2参照)。また、特許文献1には、超音波溶接により上記各タブと正極リード及び負極リードとをそれぞれ接合することが開示されている。   As one form of a battery such as a lithium ion battery, a positive electrode having a plurality of positive electrode tabs protruding from one end of the electrode plate, a negative electrode having a plurality of negative electrode tabs protruding from one end of the electrode plate, and the positive electrode tabs overlap each other. In addition, a wound battery including an electrode body formed by winding a positive electrode and a negative electrode so that the negative electrode tabs overlap each other is known (for example, see Patent Documents 1 and 2). Patent Document 1 discloses that the tabs are joined to the positive electrode lead and the negative electrode lead by ultrasonic welding.

特開2008−226625号公報JP 2008-226625 A 特開2010−118315号公報JP 2010-118315 A

ところで、タブとリードとの超音波溶接は、積層されたタブを超音波ホーンで押圧して行われる。このとき、図9(従来の超音波溶接工程の断面図)に示すように、超音波ホーン50と接触するタブ100に破れ等の損傷が発生する場合がある。なお、かかる損傷は、超音波ホーン50に近いタブ100ほど、またタブ100の積層数が多くなるほど発生し易くなる。一方、タブ100が損傷しないように超音波の出力を小さくする、或いは処理時間を短くすると、タブ100とリード101との接合強度が弱くなり、接合不良を引き起こす場合がある。   By the way, ultrasonic welding of a tab and a lead is performed by pressing the laminated tab with an ultrasonic horn. At this time, as shown in FIG. 9 (a cross-sectional view of a conventional ultrasonic welding process), damage such as tearing may occur in the tab 100 in contact with the ultrasonic horn 50. Such damage is more likely to occur as the tab 100 is closer to the ultrasonic horn 50 and as the number of stacked tabs 100 increases. On the other hand, if the output of the ultrasonic wave is reduced or the processing time is shortened so that the tab 100 is not damaged, the bonding strength between the tab 100 and the lead 101 is weakened, which may cause a bonding failure.

本発明に係る電池の製造方法は、正極の一端から突出した複数の正極タブが互いに重なるように、且つ負極の一端から突出した複数の負極タブが互いに重なるように、正極及び負極を巻回又は積層して電極体を作製し、各正極タブ及び各負極タブを圧縮すると共に、それぞれ正極リード及び負極リードと超音波溶接する電池の製造方法であって、各タブと超音波ホーンとの間に両者の接触を防止する薄膜片を設置し、当該薄膜片を設置した状態で各正極タブ及び各負極タブを圧縮して超音波溶接を行うことを特徴とする。   In the battery manufacturing method according to the present invention, the positive electrode and the negative electrode are wound or wound so that the plurality of positive electrode tabs protruding from one end of the positive electrode overlap each other and the plurality of negative electrode tabs protruding from one end of the negative electrode overlap each other. An electrode body is manufactured by stacking, compressing each positive electrode tab and each negative electrode tab and ultrasonically welding the positive electrode lead and the negative electrode lead, respectively, between each tab and the ultrasonic horn. A thin film piece for preventing contact between the two is installed, and each positive electrode tab and each negative electrode tab are compressed in a state where the thin film piece is installed, and ultrasonic welding is performed.

本発明に係る電池は、極板の一端から突出した複数の正極タブを有する正極と、極板の一端から突出した複数の負極タブを有する負極と、正極タブ同士が互いに重なるように、且つ負極タブ同士が互いに重なるように、正極及び負極を巻回又は積層して形成された電極体と、正極リードと、負極リードとを備え、各正極タブ及び各負極タブが圧縮されて、それぞれ正極リード及び負極リードに溶接された電池であって、各タブの各リードが溶接された面と反対側の面に金属箔がそれぞれ溶接されていることを特徴とする。   A battery according to the present invention includes a positive electrode having a plurality of positive electrode tabs protruding from one end of an electrode plate, a negative electrode having a plurality of negative electrode tabs protruding from one end of the electrode plate, and the positive electrode tabs overlapping each other, and the negative electrode An electrode body formed by winding or laminating a positive electrode and a negative electrode so that the tabs overlap each other, a positive electrode lead, and a negative electrode lead are provided, and each positive electrode tab and each negative electrode tab are compressed, and each positive electrode lead And a battery welded to the negative electrode lead, wherein a metal foil is welded to the surface of each tab opposite to the surface where each lead is welded.

本発明に係る電池の製造方法によれば、タブとリードとの超音波溶接時にタブの損傷が発生することなく、且つタブとリードとの良好な接合を可能にする。   According to the battery manufacturing method of the present invention, the tab and the lead can be satisfactorily bonded without causing damage to the tab during ultrasonic welding of the tab and the lead.

本発明の実施形態の一例である電池を示す図である。It is a figure which shows the battery which is an example of embodiment of this invention. 本発明の実施形態の一例である電池において、リードが接合された電極体を抜き出して示す図である。In the battery which is an example of embodiment of this invention, it is a figure which extracts and shows the electrode body to which the lead was joined. 本発明の実施形態の一例である電池において、リードが接合される前の電極体を示す図である。In the battery which is an example of embodiment of this invention, it is a figure which shows the electrode body before a lead is joined. 図3に示す電極体を展開した図である。It is the figure which expand | deployed the electrode body shown in FIG. 本発明の実施形態の一例である超音波溶接工程を示す図である。It is a figure which shows the ultrasonic welding process which is an example of embodiment of this invention. 本発明の実施形態の一例である超音波溶接工程を示す図である。It is a figure which shows the ultrasonic welding process which is an example of embodiment of this invention. 本発明の実施形態の一例である超音波溶接工程を示す図である。It is a figure which shows the ultrasonic welding process which is an example of embodiment of this invention. 本発明の実施形態の一例である超音波溶接工程を示す図である。It is a figure which shows the ultrasonic welding process which is an example of embodiment of this invention. 従来の超音波溶接工程を示す図である。It is a figure which shows the conventional ultrasonic welding process.

以下、図面を参照しながら、本発明の実施形態の一例について詳細に説明する。
実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
The drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.

以下で説明するラミネート電池10は、本発明の実施形態の一例であって、後述の製造方法による製造物の一例である。なお、本発明は、ラミネート電池10に限定されず、例えば扁平形状の角型電池、或いは円筒電池等、種々の電池形態に適用できる。特に、本発明は、巻回型の電極体を有する扁平形状のラミネート電池、角型電池に好適である。   A laminated battery 10 described below is an example of an embodiment of the present invention, and is an example of a product manufactured by a manufacturing method described later. The present invention is not limited to the laminate battery 10, and can be applied to various battery forms such as a flat prismatic battery or a cylindrical battery. In particular, the present invention is suitable for a flat laminate battery and a square battery having a wound electrode body.

図1〜図4を用いて、ラミネート電池10の構成について詳説する。図1は、ラミネート電池10の外観を示す図である。図2は、ラミネート電池10を構成する電極体14であって、正極リード15、負極リード16が接合された状態を示す図である。図3は、各リードが接合される前の電極体14を示す図である。図4は、電極体14を展開した図である。   The configuration of the laminated battery 10 will be described in detail with reference to FIGS. FIG. 1 is a view showing the appearance of a laminated battery 10. FIG. 2 is a view showing a state in which the positive electrode lead 15 and the negative electrode lead 16 are joined to the electrode body 14 constituting the laminated battery 10. FIG. 3 is a diagram showing the electrode body 14 before each lead is joined. FIG. 4 is a developed view of the electrode body 14.

図1に示すように、ラミネート電池10は、2枚のラミネートフィルム11a,11bから構成された外装体11を備える。後述の発電要素(電極体14及び電解質)は、ラミネートフィルム11a,11bの間に形成された収容部12の内部空間に収容されている。外装体11にはラミネートフィルム11a,11b同士を接合して封止部13が形成され、これにより発電要素が収容された内部空間が密閉されている。   As shown in FIG. 1, the laminate battery 10 includes an exterior body 11 composed of two laminate films 11a and 11b. The power generation elements (electrode body 14 and electrolyte) described later are accommodated in the internal space of the accommodating portion 12 formed between the laminate films 11a and 11b. A sealing portion 13 is formed on the exterior body 11 by bonding the laminate films 11a and 11b to each other, thereby sealing an internal space in which the power generation element is accommodated.

ラミネート電池10の形状、即ち外装体11の形状は特に限定されず、例えば、図1に示すように平面視略矩形形状とすることができる。ここで、「平面視」とは、ラミネートフィルム11a,11bの主面(面積が最も大きな面)に対して垂直な方向から見た状態を意味する。封止部13は、外装体11の端縁に沿って略同じ幅で枠状に形成することができる。封止部13に囲まれた平面視略矩形状の部分が収容部12である。なお、収容部12は、ラミネートフィルム11a,11bの少なくとも一方に発電要素を収容可能な窪みを形成して設けることが好適である。本実施形態では、当該窪みがラミネートフィルム11aのみに形成されている。   The shape of the laminated battery 10, that is, the shape of the exterior body 11 is not particularly limited, and can be, for example, a substantially rectangular shape in plan view as shown in FIG. Here, “plan view” means a state viewed from a direction perpendicular to the main surfaces (surfaces having the largest areas) of the laminate films 11a and 11b. The sealing portion 13 can be formed in a frame shape with substantially the same width along the edge of the exterior body 11. A portion having a substantially rectangular shape in plan view surrounded by the sealing portion 13 is the accommodating portion 12. In addition, it is suitable for the accommodating part 12 to form the hollow which can accommodate an electric power generation element in at least one of laminate film 11a, 11b. In the present embodiment, the depression is formed only in the laminate film 11a.

ラミネート電池10では、電極体14の正極20に接続された正極リード15、及び負極30に接続された負極リード16が、収容部12の内部空間から引き出されている。各リードは、外装体11の同じ端辺から互いに略平行となるように引き出されることが好適である。各リードは、例えばニッケルや銅を主成分とする金属から構成される。各リードの厚みは、例えば0.1mm〜1mm程度であり、好ましくは0.3mm〜0.7mm程度である。   In the laminated battery 10, the positive electrode lead 15 connected to the positive electrode 20 of the electrode body 14 and the negative electrode lead 16 connected to the negative electrode 30 are drawn out from the internal space of the housing portion 12. The leads are preferably drawn out from the same end side of the outer package 11 so as to be substantially parallel to each other. Each lead is made of a metal whose main component is, for example, nickel or copper. The thickness of each lead is, for example, about 0.1 mm to 1 mm, and preferably about 0.3 mm to 0.7 mm.

ラミネート電池10は、発電要素として、電極体14と、図示しない電解質を備える。発電要素は、上記のように、封止部13で密閉された収容部12に収容されている。電解質としては、例えば非水溶媒と、非水溶媒に溶解したリチウム塩等の電解質塩を含む非水電解質が用いられる。非水電解質は、液状に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。   The laminate battery 10 includes an electrode body 14 and an electrolyte (not shown) as power generation elements. As described above, the power generation element is accommodated in the accommodating portion 12 sealed with the sealing portion 13. As the electrolyte, for example, a nonaqueous electrolyte containing a nonaqueous solvent and an electrolyte salt such as a lithium salt dissolved in the nonaqueous solvent is used. The non-aqueous electrolyte is not limited to a liquid, and may be a solid electrolyte using a gel polymer.

図2〜図4に示すように、電極体14は、正極20と負極30がセパレータ40を介して巻回された巻回型構造を有する。以下、電極体14において、巻回構造の中心軸方向及びこれに平行な方向を「軸方向」という。電極体14は、円筒を一方向に押しつぶした扁平形状であり、「軸方向」に垂直で電極体14の扁平面に沿った方向を「幅方向」といい、「軸方向」及び「幅方向」に垂直で扁平面に垂直な方向を「厚み方向又は積層方向」という。本実施形態では、巻回体(電極体14)の内側から、セパレータ40、負極30、セパレータ40、及び正極20を順に積層して電極体14が形成されている。なお、電極体14は、負極30よりも正極20を内側にして巻回された構造であってもよい。   As shown in FIGS. 2 to 4, the electrode body 14 has a winding structure in which the positive electrode 20 and the negative electrode 30 are wound through a separator 40. Hereinafter, in the electrode body 14, the central axis direction of the winding structure and the direction parallel thereto are referred to as “axial direction”. The electrode body 14 has a flat shape in which a cylinder is crushed in one direction, and a direction perpendicular to the “axial direction” and along the flat plane of the electrode body 14 is referred to as a “width direction”. The direction perpendicular to the flat surface and perpendicular to the flat surface is referred to as the “thickness direction or stacking direction”. In the present embodiment, the electrode body 14 is formed by sequentially laminating the separator 40, the negative electrode 30, the separator 40, and the positive electrode 20 from the inside of the wound body (electrode body 14). The electrode body 14 may have a structure wound with the positive electrode 20 inside the negative electrode 30.

正極20は、正極集電体21と、当該集電体上に形成された正極活物質層22とを有する(図4参照)。また、正極20は、極板の一端から突出した複数の正極タブ23を有する。正極タブ23は、正極集電体21の一部が電極体14の軸方向一端から突出して形成されている。詳しくは後述するが、電極体14は、複数の正極タブ23が互いに重なるように、且つ複数の負極タブ33が互いに重なるように、正極20及び負極30を巻回して形成される。以下、複数の正極タブ23が積層されたものを「積層タブ23z」、複数の負極タブ33が積層されたものを「積層タブ33z」とする。   The positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22 formed on the current collector (see FIG. 4). The positive electrode 20 has a plurality of positive electrode tabs 23 protruding from one end of the electrode plate. The positive electrode tab 23 is formed such that a part of the positive electrode current collector 21 protrudes from one end in the axial direction of the electrode body 14. As will be described in detail later, the electrode body 14 is formed by winding the positive electrode 20 and the negative electrode 30 so that the plurality of positive electrode tabs 23 overlap each other and the plurality of negative electrode tabs 33 overlap each other. Hereinafter, a stack of a plurality of positive electrode tabs 23 is referred to as a “stack tab 23z”, and a stack of a plurality of negative electrode tabs 33 is referred to as a “stack tab 33z”.

正極20では、積層タブ23zが電極体14の厚み方向に圧縮されると共に、当該積層タブ23zに正極リード15が溶接されている。また、積層タブ23zの正極リード15が溶接される面と反対側の面に、金属箔24が溶接されている。   In the positive electrode 20, the laminated tab 23z is compressed in the thickness direction of the electrode body 14, and the positive electrode lead 15 is welded to the laminated tab 23z. Further, the metal foil 24 is welded to the surface of the laminated tab 23z opposite to the surface to which the positive electrode lead 15 is welded.

正極集電体21は、長尺状のシート形状を有し、その両面に正極活物質層22が形成されている。正極集電体21には、導電性を有する薄膜シート、特にアルミニウムなどの正極20の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルム等を用いることができる。正極集電体21の厚みは、集電性や機械的強度等の観点から、5μm〜40μm程度が好ましく、10μm〜20μm程度がより好ましい。   The positive electrode current collector 21 has a long sheet shape, and a positive electrode active material layer 22 is formed on both surfaces thereof. As the positive electrode current collector 21, a conductive thin film sheet, in particular, a metal foil or alloy foil that is stable in the potential range of the positive electrode 20 such as aluminum, a film having a metal surface layer such as aluminum, or the like can be used. The thickness of the positive electrode current collector 21 is preferably about 5 μm to 40 μm, and more preferably about 10 μm to 20 μm, from the viewpoints of current collection and mechanical strength.

正極活物質層22は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム含有遷移金属酸化物が例示できる。リチウム含有遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種)である。ここで、0<x≦1.2(活物質作製直後の値であり、充放電により増減する)、0<y≦0.9、2.0≦z≦2.3である。 The positive electrode active material layer 22 preferably contains a conductive material and a binder in addition to the positive electrode active material. Examples of the positive electrode active material include lithium-containing transition metal oxides containing transition metal elements such as Co, Mn, and Ni. Examples of the lithium-containing transition metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1 -y O 2 , Li x Co y M 1 -y O z , and Li x Ni 1. -y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, At least one of Ni, Cu, Zn, Al, Cr, Pb, Sb, and B). Here, 0 <x ≦ 1.2 (value immediately after the production of the active material, which increases or decreases due to charge / discharge), 0 <y ≦ 0.9, and 2.0 ≦ z ≦ 2.3.

正極タブ23は、上記のように、電極体14の軸方向一端から突出した凸部であって、正極活物質層22を有さず正極集電体21のみから構成されている。本実施形態では、台形形状の正極タブ23が巻回体1周につき1個の割合で設けられている。但し、正極タブ23の形状や個数はこれに限定されない。正極タブ23(積層タブ23z)及び金属箔24の構成については、さらに後述する。   As described above, the positive electrode tab 23 is a convex portion that protrudes from one end in the axial direction of the electrode body 14, and does not have the positive electrode active material layer 22, and is configured only from the positive electrode current collector 21. In the present embodiment, a trapezoidal positive electrode tab 23 is provided at a rate of one per circumference of the wound body. However, the shape and number of the positive electrode tabs 23 are not limited to this. The configuration of the positive electrode tab 23 (laminated tab 23z) and the metal foil 24 will be further described later.

負極30は、負極集電体31と、当該集電体上に形成された負極活物質層32とを有する(図4参照)。また、負極30は、極板の一端から突出した複数の負極タブ33を有する。負極タブ33は、正極タブ23と同様に、負極集電体31の一部が電極体14の軸方向一端から突出して形成されている。本実施形態では、正極タブ23と同じ方向に負極タブ33が突出しており、台形形状の負極タブ33が巻回体1周につき1個の割合で設けられている。電極体14は、正極タブ23と負極タブ33とが交互に並ぶように正極20と負極30とを積層し、当該積層体を上記のように巻回することで形成される。これにより、電極体14の幅方向両端にそれぞれ積層タブ23z,33zが形成される。   The negative electrode 30 includes a negative electrode current collector 31 and a negative electrode active material layer 32 formed on the current collector (see FIG. 4). The negative electrode 30 has a plurality of negative electrode tabs 33 protruding from one end of the electrode plate. Similarly to the positive electrode tab 23, the negative electrode tab 33 is formed such that a part of the negative electrode current collector 31 protrudes from one axial end of the electrode body 14. In this embodiment, the negative electrode tab 33 protrudes in the same direction as the positive electrode tab 23, and the trapezoidal negative electrode tab 33 is provided at a rate of one per circumference of the wound body. The electrode body 14 is formed by laminating the positive electrode 20 and the negative electrode 30 so that the positive electrode tabs 23 and the negative electrode tabs 33 are alternately arranged, and winding the laminated body as described above. Thereby, lamination tabs 23z and 33z are formed at both ends in the width direction of the electrode body 14, respectively.

負極30では、積層タブ33zが電極体14の厚み方向に圧縮されると共に、当該積層タブ33zに負極リード16が溶接されている。また、積層タブ33zの負極リード16が溶接される面と反対側の面に、金属箔34が溶接されている。負極タブ33(積層タブ33z)及び金属箔34の構成については、さらに後述する。   In the negative electrode 30, the laminated tab 33z is compressed in the thickness direction of the electrode body 14, and the negative electrode lead 16 is welded to the laminated tab 33z. Further, the metal foil 34 is welded to the surface of the laminated tab 33z opposite to the surface to which the negative electrode lead 16 is welded. The configuration of the negative electrode tab 33 (laminated tab 33z) and the metal foil 34 will be further described later.

負極集電体31は、長尺状のシート形状であって、その両面に負極活物質層32が形成されている。負極集電体31には、導電性を有する薄膜シート、特に銅などの負極30の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルム等を用いることができる。負極集電体31の厚みは、正極集電体21と同様に、5μm〜40μm程度が好ましく、10μm〜20μm程度がより好ましい。   The negative electrode current collector 31 has a long sheet shape, and a negative electrode active material layer 32 is formed on both surfaces thereof. As the negative electrode current collector 31, a conductive thin film sheet, in particular, a metal foil or alloy foil that is stable in the potential range of the negative electrode 30 such as copper, a film having a metal surface layer such as copper, or the like can be used. The thickness of the negative electrode current collector 31 is preferably about 5 μm to 40 μm, more preferably about 10 μm to 20 μm, like the positive electrode current collector 21.

負極活物質層32は、例えば、リチウムイオンを吸蔵・脱離可能な負極活物質の他に、導電材や結着剤を含む。負極活物質としては、天然黒鉛、人造黒鉛、リチウム、珪素、炭素、錫、ゲルマニウム、アルミニウム、鉛、インジウム、ガリウム、チタン酸リチウム及びこれらの合金並びに混合物が例示できる。   The negative electrode active material layer 32 includes, for example, a conductive material and a binder in addition to the negative electrode active material capable of inserting and extracting lithium ions. Examples of the negative electrode active material include natural graphite, artificial graphite, lithium, silicon, carbon, tin, germanium, aluminum, lead, indium, gallium, lithium titanate, and alloys and mixtures thereof.

セパレータ40には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布、等が挙げられる。セパレータ40の材質としては、セルロースまたはポリエチレン、ポリプロピレン等のオレフィン系樹脂が好適である。   As the separator 40, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric. As a material of the separator 40, an olefin resin such as cellulose, polyethylene, or polypropylene is suitable.

図5〜図8を用いて、ラミネート電池10を構成する電極体14の製造方法について詳説する。図5,6は、超音波溶接装置の超音波ホーン50とアンビル51との間に積層タブ23z、正極リード15、及び金属箔24をセットした様子を示す図である。図7,8は、超音波ホーン50で積層タブ23zを圧縮した様子を示す図である。なお、図5,7は、電極体14等の側面図を示し、図6,8は、電極体14等の断面図を示す。   The manufacturing method of the electrode body 14 which comprises the laminated battery 10 is explained in full detail using FIGS. 5 and 6 are views showing a state in which the laminated tab 23z, the positive electrode lead 15, and the metal foil 24 are set between the ultrasonic horn 50 and the anvil 51 of the ultrasonic welding apparatus. 7 and 8 are views showing a state in which the laminated tab 23z is compressed by the ultrasonic horn 50. FIG. 5 and 7 are side views of the electrode body 14 and the like, and FIGS. 6 and 8 are cross-sectional views of the electrode body 14 and the like.

電極体14の製造工程(以下、「本工程」という」)では、まず正極20、負極30、及びセパレータ40が準備される。正極20等は、いずれも長尺状のシート形状を有し、従来公知の方法で製造することができる(当該方法の詳しい説明は省略)。電極体14は、正極20、負極30、及び2枚のセパレータ40を互いに積層し、後述のように巻回して形成される。各構成部材の積層構造は、例えばセパレータ40、負極30、セパレータ40、正極20の順で積層して形成される。このとき、正極20及び負極30は、正極タブ23及び負極タブ33が長尺状シートの長手方向に沿って交互に並ぶように積層される。   In the manufacturing process of the electrode body 14 (hereinafter referred to as “this process”), first, the positive electrode 20, the negative electrode 30, and the separator 40 are prepared. Each of the positive electrode 20 and the like has a long sheet shape, and can be manufactured by a conventionally known method (detailed description of the method is omitted). The electrode body 14 is formed by laminating the positive electrode 20, the negative electrode 30, and the two separators 40, and winding them as described later. The laminated structure of each component is formed by, for example, laminating the separator 40, the negative electrode 30, the separator 40, and the positive electrode 20 in this order. At this time, the positive electrode 20 and the negative electrode 30 are laminated so that the positive electrode tabs 23 and the negative electrode tabs 33 are alternately arranged along the longitudinal direction of the long sheet.

電極体14は、各正極タブ23同士が互いに重なるように、且つ各負極タブ33同士が互いに重なるように、また扁平形状を呈するように、上記各構成部材の積層体を巻回して作製される。これにより、電極体14の幅方向両端に積層タブ23z,33zがそれぞれ形成される。正極タブ23及び負極タブ33は、上記のように、巻回体1周につき1個の割合で設けられ、積層タブ23z,33zは、各タブが数十個重なって形成される。なお、正極タブ23及び負極タブ33には、各活物質層が形成されていないため、その厚みは各集電体の厚みと同じである。例えば、正極タブ23の厚みが15μmで積層数が60である場合、圧縮された積層タブ23zの厚みは0.9mmとなる。   The electrode body 14 is produced by winding a laminate of the above constituent members so that the positive electrode tabs 23 overlap each other, the negative electrode tabs 33 overlap each other, and have a flat shape. . Thereby, the lamination tabs 23z and 33z are formed at both ends in the width direction of the electrode body 14, respectively. As described above, the positive electrode tab 23 and the negative electrode tab 33 are provided at a rate of one per wound body, and the laminated tabs 23z and 33z are formed by overlapping several tens of tabs. In addition, since each active material layer is not formed in the positive electrode tab 23 and the negative electrode tab 33, the thickness is the same as the thickness of each collector. For example, when the thickness of the positive electrode tab 23 is 15 μm and the number of laminated layers is 60, the thickness of the compressed laminated tab 23z is 0.9 mm.

続いて、積層タブ23z,33zには、正極リード15及び負極リード16がそれぞれ接合される。具体的には、各積層タブの厚み方向(積層方向)一端側の面に、各リードがそれぞれ接合される。本実施形態では、正極リード15及び負極リード16の引き出し性の観点から、各リードが各積層タブの同じ側の面に接合されることが好適である。   Subsequently, the positive electrode lead 15 and the negative electrode lead 16 are joined to the laminated tabs 23z and 33z, respectively. Specifically, each lead is joined to a surface on one end side in the thickness direction (stacking direction) of each stacked tab. In the present embodiment, it is preferable that each lead is bonded to the same side surface of each laminated tab from the viewpoint of the drawability of the positive electrode lead 15 and the negative electrode lead 16.

図5,6に示すように、積層タブ23zと正極リード15との接合は、超音波振動と加圧力によって金属同士を溶接する超音波溶接により行われる。なお、積層タブ33zと負極リード16との接合も、積層タブ23zと正極リード15との接合と同様にして行うことができる。積層タブ23z,33zと各リードとの接合は、同時に行われてもよいし、別々に行われてもよい。以下では、積層タブ23zと正極リード15との接合を例に挙げて本工程を説明する。   As shown in FIGS. 5 and 6, the laminated tab 23 z and the positive electrode lead 15 are joined by ultrasonic welding in which metals are welded by ultrasonic vibration and pressure. The lamination tab 33z and the negative electrode lead 16 can be joined in the same manner as the lamination tab 23z and the positive electrode lead 15. The lamination tabs 23z and 33z and the leads may be joined at the same time or separately. Hereinafter, this process will be described by taking the joining of the laminated tab 23z and the positive electrode lead 15 as an example.

超音波溶接装置は、処理対象である積層タブ23z及び正極リード15に超音波振動を与える超音波ホーン50と、処理対象が載せられるアンビル51を備える。処理対象のグリップ性を高めるため、少なくとも超音波ホーン50の表面はナール加工されていることが好適である。超音波溶接装置では、例えば、発振器から電気信号が振動子に伝達され、振動子の振動エネルギーが共鳴体である超音波ホーン50を介して処理対象に伝達される。   The ultrasonic welding apparatus includes an ultrasonic horn 50 that applies ultrasonic vibration to the laminated tab 23z and the positive electrode lead 15 that are processing targets, and an anvil 51 on which the processing target is placed. In order to improve the grip performance of the processing target, it is preferable that at least the surface of the ultrasonic horn 50 is knurled. In the ultrasonic welding apparatus, for example, an electrical signal is transmitted from an oscillator to a vibrator, and vibration energy of the vibrator is transmitted to an object to be processed via an ultrasonic horn 50 that is a resonator.

具体的には、アンビル51上に正極リード15及び積層タブ23zを順に載置して、積層タブ23zの正極リード15と反対側の面に超音波ホーン50を押し付ける。即ち、積層タブ23zが超音波ホーン50側に位置するように、超音波ホーン50とアンビル51との間に正極リード15及び積層タブ23zを配置する。このとき、積層タブ23zと超音波ホーン50との間に、両者の接触を防止するための薄膜片である金属箔24を設置する。なお、本実施形態では、積層タブ23zだけがアンビル51上に載せられ、電極体14の本体(積層タブ23z,33z以外の部分)は支持台52上に載せられている。   Specifically, the positive electrode lead 15 and the laminated tab 23z are sequentially placed on the anvil 51, and the ultrasonic horn 50 is pressed against the surface of the laminated tab 23z opposite to the positive electrode lead 15. That is, the positive electrode lead 15 and the laminated tab 23z are arranged between the ultrasonic horn 50 and the anvil 51 so that the laminated tab 23z is positioned on the ultrasonic horn 50 side. At this time, a metal foil 24 that is a thin film piece for preventing contact between the laminated tab 23z and the ultrasonic horn 50 is installed. In the present embodiment, only the laminated tab 23z is placed on the anvil 51, and the main body of the electrode body 14 (the portion other than the laminated tabs 23z and 33z) is placed on the support base 52.

図7,8に示すように、本工程では、積層タブ23zと超音波ホーン50との間に金属箔24を設置した状態で超音波溶接を行う。即ち、金属箔24を設置した状態で超音波ホーン50により積層タブ23zを厚み方向に圧縮すると共に、積層タブ23zと正極リード15を超音波溶接する。このとき、積層タブ23zを構成する各正極タブ23同士も互いに溶接される。また、金属箔24も積層タブ23zの正極リード15と反対側の面に溶接される。   As shown in FIGS. 7 and 8, in this step, ultrasonic welding is performed in a state where the metal foil 24 is installed between the laminated tab 23 z and the ultrasonic horn 50. That is, the laminated tab 23z is compressed in the thickness direction by the ultrasonic horn 50 with the metal foil 24 installed, and the laminated tab 23z and the positive electrode lead 15 are ultrasonically welded. At this time, the positive electrode tabs 23 constituting the laminated tab 23z are also welded together. The metal foil 24 is also welded to the surface of the laminated tab 23z opposite to the positive electrode lead 15.

本実施形態では、正極リード15の収容部12からの引き出しを容易にするため、積層タブ23zを構成する正極タブ23を厚み方向一方側に偏在させるように圧縮することが好適である。このため、特に超音波ホーン50側に位置する正極タブ23、例えば超音波ホーン50に最近接する正極タブ23(以下、「表層タブ」という)は、強く引っ張られる。そして、かかる状態で超音波ホーン50から超音波振動が与えられる。   In the present embodiment, in order to easily pull out the positive electrode lead 15 from the accommodating portion 12, it is preferable to compress the positive electrode tab 23 constituting the laminated tab 23z so as to be unevenly distributed on one side in the thickness direction. For this reason, especially the positive electrode tab 23 located on the ultrasonic horn 50 side, for example, the positive electrode tab 23 closest to the ultrasonic horn 50 (hereinafter referred to as “surface tab”) is strongly pulled. In this state, ultrasonic vibration is applied from the ultrasonic horn 50.

本工程では、上記のように、金属箔24によって積層タブ23zと超音波ホーン50との接触が防止されている。金属箔24は、表層タブ上に載せられた薄膜片であって、超音波溶接される前はどこにも固定されていない。このため、金属箔24は、積層タブ23の表面と超音波ホーン50の表面との間に滑りを発生させ、両表面間の摩擦力を低減する。つまり、金属箔24は、表層タブに付与される強い振動エネルギーを下げる緩衝材として機能し、表層タブの面方向に作用する振動を緩和する。表層タブは、超音波ホーン50の押し付けにより強く引っ張られているため、強い振動が作用すると破断し易いが、金属箔24を設けることにより表層タブに作用する振動を抑えることができる。   In this step, contact between the laminated tab 23z and the ultrasonic horn 50 is prevented by the metal foil 24 as described above. The metal foil 24 is a thin film piece placed on the surface tab and is not fixed anywhere before ultrasonic welding. For this reason, the metal foil 24 generates a slip between the surface of the laminated tab 23 and the surface of the ultrasonic horn 50, and reduces the frictional force between both surfaces. That is, the metal foil 24 functions as a cushioning material that lowers strong vibrational energy imparted to the surface tab, and relieves vibrations acting in the surface direction of the surface tab. Since the surface tab is strongly pulled by the pressing of the ultrasonic horn 50, it is easy to break when strong vibration is applied, but by providing the metal foil 24, the vibration acting on the surface tab can be suppressed.

金属箔24,34としては、上記超音波溶接により積層タブ23z,33zに溶接される金属箔を用いることが好ましい。好適な例としては、アルミニウム、銅、ニッケル、鉄、又はそれらの合金、クラッド鋼からなる金属箔が挙げられる。これらのうち、アルミニウムを主成分とする箔が特に好ましい。   As the metal foils 24 and 34, it is preferable to use metal foils welded to the laminated tabs 23z and 33z by the above ultrasonic welding. Preferable examples include a metal foil made of aluminum, copper, nickel, iron, an alloy thereof, or clad steel. Of these, a foil mainly composed of aluminum is particularly preferable.

金属箔24,34は、超音波溶接時に破れない程度の厚みを有することが好ましく、例えば各タブの厚みよりも大きな厚みを有する。具体的には、12μm〜60μm程度が好ましい。厚みの大きい金属箔24,34を1枚用いることもできるが、より好ましくは5μm〜60μm程度の厚みの金属箔24,34を複数枚用いる。本実施形態では、2枚の金属箔24,34を用いている。これにより、滑りが発生する界面が増えるため、表層タブに加わる振動エネルギーをさらに低減できる。   The metal foils 24 and 34 preferably have a thickness that does not break during ultrasonic welding. For example, the metal foils 24 and 34 have a thickness larger than the thickness of each tab. Specifically, about 12 μm to 60 μm is preferable. One metal foil 24, 34 having a large thickness can be used, but more preferably a plurality of metal foils 24, 34 having a thickness of about 5 μm to 60 μm are used. In this embodiment, two metal foils 24 and 34 are used. Thereby, since the interface which a slip generate | occur | produces increases, the vibration energy added to a surface layer tab can further be reduced.

上記のようにして正極リード15及び負極リード16が超音波溶接された電極体14は、電解質と共にラミネートフィルム11aの収容部12に収容される。そして、ラミネートフィルム11bをラミネートフィルム11aに重ねて封止部13を形成することで、収容部12の内部空間が密閉され、各リードが収容部12から引き出されたラミネート電池10が製造される。   The electrode body 14 in which the positive electrode lead 15 and the negative electrode lead 16 are ultrasonically welded as described above is accommodated in the accommodating portion 12 of the laminate film 11a together with the electrolyte. Then, the laminated film 11b is stacked on the laminate film 11a to form the sealing portion 13, whereby the internal space of the housing portion 12 is sealed, and the laminated battery 10 in which each lead is drawn out from the housing portion 12 is manufactured.

以上のように、本製造方法によれば、金属箔24,34の緩衝機能により、各積層タブと各リードとを良好に超音波溶接することができる。つまり、各タブの損傷、特に表層タブの破断が発生することなく、且つ各積層タブと各リードとの良好な接合が可能となる。本製造方法は、タブの積層数が多くなる長尺極板を用いた場合、即ちタブとリードとの接合に強い超音波出力が必要となる場合に特に好適である。   As described above, according to the present manufacturing method, each laminated tab and each lead can be satisfactorily ultrasonically welded by the buffer function of the metal foils 24 and 34. That is, it is possible to satisfactorily join each laminated tab and each lead without causing damage to each tab, in particular, no breakage of the surface layer tab. This manufacturing method is particularly suitable when a long electrode plate with a large number of stacked tabs is used, that is, when a strong ultrasonic output is required for joining the tab and the lead.

表1に超音波処理の出力及び処理時間と接合状態との関係を示す。超音波溶接装置としては、日本エマソン社(ブランソン事業本部)製の2000Xeaを用いた。試験用タブは、厚み15μmのアルミニウム箔を60枚積層したものとした。試験用リードには、厚み500μmのアルミ板(サイズ:50mm×30mm)用いた。試験用タブと試験用リードとの接合強度は、引っ張り強度(今田製作所製SV−55Cにより測定)により評価した。なお、接合強度(引っ張り強度)は、130N以上が好ましい。   Table 1 shows the relationship between the ultrasonic treatment output and treatment time and the bonding state. As the ultrasonic welding apparatus, 2000Xea manufactured by Nippon Emerson (Branson Division) was used. The test tab was obtained by stacking 60 aluminum foils having a thickness of 15 μm. An aluminum plate (size: 50 mm × 30 mm) having a thickness of 500 μm was used as a test lead. The bonding strength between the test tab and the test lead was evaluated based on the tensile strength (measured by SV-55C manufactured by Imada Seisakusho). Note that the bonding strength (tensile strength) is preferably 130 N or more.

Figure 2014167881

A1〜A5;超音波ホーンと試験用タブとの間に、上記薄膜片として2枚のアルミニウ
ム箔(厚み15μm)を設置
X1〜X5;上記薄膜片を設置せず
Figure 2014167881

A1 to A5: Two pieces of aluminum as the thin film piece between the ultrasonic horn and the test tab
Foil foil (thickness 15 μm) installed X1-X5;

表1に示すように、超音波出力が弱い場合(70%)、処理時間が短時間である場合(0.125秒)は、試験用タブに破れ等の損傷は発生しないものの、試験用タブと試験用リードとを接合することができなかった。一方、超音波出力を所定値(80%)以上とし、且つ処理時間を所定値(0.150秒)以上とした場合には、試験用タブと試験用リードとの接合が可能であった。しかし、試験用タブと超音波ホーンとの間に薄膜片を設置しない場合(X1〜X5)は、超音波ホーンと接触する表層タブに破れが発生した(図9参照)。これに対して、試験用タブと超音波ホーンとの間に薄膜片を設置した場合(A1〜A5)は、良好な接合強度が得られると共に、表層タブに破れ等の損傷は確認できなかった。   As shown in Table 1, when the ultrasonic output is weak (70%) and when the processing time is short (0.125 seconds), the test tab does not break or damage, but the test tab And the test lead could not be joined. On the other hand, when the ultrasonic output is set to a predetermined value (80%) or more and the processing time is set to a predetermined value (0.150 seconds) or more, the test tab and the test lead can be joined. However, when a thin film piece was not installed between the test tab and the ultrasonic horn (X1 to X5), the surface layer tab in contact with the ultrasonic horn was torn (see FIG. 9). On the other hand, when a thin film piece was installed between the test tab and the ultrasonic horn (A1 to A5), good bonding strength was obtained, and damage such as tearing on the surface layer tab could not be confirmed. .

なお、上記実施形態は、本発明の目的を損なわない範囲で適宜設計変更できる。
例えば、上記実施形態では、積層タブ23z,33zと超音波ホーン50との間に設置する薄膜片としてアルミニウム箔等の金属箔24,34を例示したが、薄膜片は樹脂フィルムであってもよい。樹脂フィルムとして熱可塑性樹脂からなるフィルムを用いた場合、超音波溶接時の摩擦による熱で表層タブに溶着する場合がある。
In addition, the said embodiment can be changed in design suitably in the range which does not impair the objective of this invention.
For example, in the said embodiment, although metal foil 24,34, such as aluminum foil, was illustrated as a thin film piece installed between lamination | stacking tab 23z, 33z and the ultrasonic horn 50, a thin film piece may be a resin film. . When a film made of a thermoplastic resin is used as the resin film, it may be welded to the surface tab by heat due to friction during ultrasonic welding.

また、上記実施形態では、巻回型の電極体を例示したが、電極体の構造はセパレータを介して複数の正極と複数の負極とを交互に積層して形成される積層型であってもよい。   In the above embodiment, the wound electrode body is exemplified, but the structure of the electrode body may be a laminated type formed by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes via separators. Good.

10 ラミネート電池、11 外装体、12 収容部、13 封止部、14 電極体、15 正極リード、16 負極リード、20 正極、21 正極集電体、22 正極活物質層、23 正極タブ、23z 積層タブ、24 金属箔、30 負極、31 負極集電体、32 負極活物質層、33 負極タブ、33z 積層タブ、34 金属箔、40 セパレータ、50 超音波ホーン、51 アンビル、52 支持台。   DESCRIPTION OF SYMBOLS 10 laminated battery, 11 exterior body, 12 accommodating part, 13 sealing part, 14 electrode body, 15 positive electrode lead, 16 negative electrode lead, 20 positive electrode, 21 positive electrode current collector, 22 positive electrode active material layer, 23 positive electrode tab, 23z lamination Tab, 24 Metal foil, 30 Negative electrode, 31 Negative electrode current collector, 32 Negative electrode active material layer, 33 Negative electrode tab, 33z Laminated tab, 34 Metal foil, 40 Separator, 50 Ultrasonic horn, 51 Anvil, 52 Support stand.

Claims (6)

正極の一端から突出した複数の正極タブが互いに重なるように、且つ負極の一端から突出した複数の負極タブが互いに重なるように、前記正極及び前記負極を巻回又は積層して電極体を作製し、
前記各正極タブ及び前記各負極タブを圧縮すると共に、それぞれ正極リード及び負極リードと超音波溶接する電池の製造方法であって、
前記各タブと超音波ホーンとの間に両者の接触を防止する薄膜片を設置し、当該薄膜片を設置した状態で前記各正極タブ及び前記各負極タブを圧縮して超音波溶接を行う、電池の製造方法。
The positive electrode and the negative electrode are wound or laminated so that a plurality of positive electrode tabs protruding from one end of the positive electrode overlap each other, and a plurality of negative electrode tabs protruding from one end of the negative electrode overlap each other to produce an electrode body. ,
While compressing each said positive electrode tab and each said negative electrode tab, it is a manufacturing method of the battery which carries out ultrasonic welding with a positive electrode lead and a negative electrode lead, respectively,
A thin film piece for preventing contact between the tabs and the ultrasonic horn is installed, and the positive electrode tab and the negative electrode tab are compressed and ultrasonic welding is performed in a state where the thin film piece is installed. Battery manufacturing method.
請求項1に記載の電池の製造方法において、
前記電極体は、扁平形状を有する巻回型電極体であり、
前記各正極タブ及び前記各負極タブを前記電極体の厚み方向に圧縮して、当該厚み方向一方側に偏在させる、電池の製造方法。
In the manufacturing method of the battery according to claim 1,
The electrode body is a wound electrode body having a flat shape,
The battery manufacturing method, wherein the positive electrode tabs and the negative electrode tabs are compressed in the thickness direction of the electrode body and unevenly distributed on one side in the thickness direction.
請求項1又は2に記載の電池の製造方法において、
前記薄膜片は、前記超音波溶接により前記各タブに溶接される金属箔である、電池の製造方法。
In the manufacturing method of the battery according to claim 1 or 2,
The method of manufacturing a battery, wherein the thin film piece is a metal foil welded to the tabs by the ultrasonic welding.
請求項3に記載の電池の製造方法において、
前記金属箔は、アルミニウム、銅、ニッケル、鉄、又はそれらの合金、クラッド鋼からなる箔である、電池の製造方法。
In the manufacturing method of the battery according to claim 3,
The method for manufacturing a battery, wherein the metal foil is a foil made of aluminum, copper, nickel, iron, an alloy thereof, or clad steel.
請求項1〜4のいずれか1項に記載の電池の製造方法において、
前記薄膜片の厚みが12μm〜60μmであり、当該薄膜片を前記各タブと前記超音波ホーンとの間に複数設置する、電池の製造方法。
In the manufacturing method of the battery of any one of Claims 1-4,
The method of manufacturing a battery, wherein the thin film piece has a thickness of 12 μm to 60 μm, and a plurality of the thin film pieces are installed between the tabs and the ultrasonic horn.
極板の一端から突出した複数の正極タブを有する正極と、
極板の一端から突出した複数の負極タブを有する負極と、
前記正極タブ同士が互いに重なるように、且つ前記負極タブ同士が互いに重なるように、前記正極及び前記負極を巻回又は積層して形成された電極体と、
正極リードと、
負極リードと、
を備え、前記各正極タブ及び前記各負極タブが圧縮されて、それぞれ前記正極リード及び前記負極リードに溶接された電池であって、
前記各タブの前記各リードが溶接された面と反対側の面に、金属箔がそれぞれ溶接されている、電池。
A positive electrode having a plurality of positive electrode tabs protruding from one end of the electrode plate;
A negative electrode having a plurality of negative electrode tabs protruding from one end of the electrode plate;
An electrode body formed by winding or laminating the positive electrode and the negative electrode so that the positive electrode tabs overlap each other and the negative electrode tabs overlap each other;
A positive lead,
A negative electrode lead;
Each positive electrode tab and each negative electrode tab are compressed and welded to the positive electrode lead and the negative electrode lead, respectively,
A battery in which a metal foil is welded to a surface opposite to a surface on which each lead of each tab is welded.
JP2013039745A 2013-02-28 2013-02-28 Battery and method of manufacturing battery Pending JP2014167881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039745A JP2014167881A (en) 2013-02-28 2013-02-28 Battery and method of manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039745A JP2014167881A (en) 2013-02-28 2013-02-28 Battery and method of manufacturing battery

Publications (1)

Publication Number Publication Date
JP2014167881A true JP2014167881A (en) 2014-09-11

Family

ID=51617479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039745A Pending JP2014167881A (en) 2013-02-28 2013-02-28 Battery and method of manufacturing battery

Country Status (1)

Country Link
JP (1) JP2014167881A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191967A (en) * 2013-03-27 2014-10-06 Murata Mfg Co Ltd Battery
JP2017157372A (en) * 2016-03-01 2017-09-07 株式会社東芝 Secondary battery, battery module, and vehicle
WO2017149949A1 (en) * 2016-02-29 2017-09-08 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery
WO2018062231A1 (en) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 Square-shaped secondary battery
EP3316349A4 (en) * 2015-06-25 2018-12-26 NEC Energy Devices, Inc. Method for manufacturing electrochemical device
WO2022225309A1 (en) * 2021-04-21 2022-10-27 주식회사 엘지에너지솔루션 Electrode assembly welding method
WO2023280103A1 (en) * 2021-07-05 2023-01-12 Damitz Thomas Gerhard Wilhelm Lithium ion battery
WO2023059009A1 (en) * 2021-10-08 2023-04-13 주식회사 엘지에너지솔루션 Secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191967A (en) * 2013-03-27 2014-10-06 Murata Mfg Co Ltd Battery
EP3316349A4 (en) * 2015-06-25 2018-12-26 NEC Energy Devices, Inc. Method for manufacturing electrochemical device
US11075374B2 (en) 2016-02-29 2021-07-27 Panasonic Intellectual Property Management Co., Ltd. Method for producing electrode assembly and method for producing nonaqueous electrolyte secondary battery
CN108475756A (en) * 2016-02-29 2018-08-31 松下知识产权经营株式会社 The manufacturing method of electrode body and the manufacturing method of non-aqueous electrolyte secondary battery
US20180358608A1 (en) * 2016-02-29 2018-12-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing electrode assembly and method for producing nonaqueous electrolyte secondary battery
WO2017149949A1 (en) * 2016-02-29 2017-09-08 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery
JPWO2017149949A1 (en) * 2016-02-29 2018-12-27 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body and method for manufacturing non-aqueous electrolyte secondary battery
CN108475756B (en) * 2016-02-29 2021-07-09 松下知识产权经营株式会社 Method for manufacturing electrode body and method for manufacturing nonaqueous electrolyte secondary battery
JP2017157372A (en) * 2016-03-01 2017-09-07 株式会社東芝 Secondary battery, battery module, and vehicle
WO2018062231A1 (en) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 Square-shaped secondary battery
WO2022225309A1 (en) * 2021-04-21 2022-10-27 주식회사 엘지에너지솔루션 Electrode assembly welding method
WO2023280103A1 (en) * 2021-07-05 2023-01-12 Damitz Thomas Gerhard Wilhelm Lithium ion battery
WO2023059009A1 (en) * 2021-10-08 2023-04-13 주식회사 엘지에너지솔루션 Secondary battery

Similar Documents

Publication Publication Date Title
US11075374B2 (en) Method for producing electrode assembly and method for producing nonaqueous electrolyte secondary battery
JP2014167881A (en) Battery and method of manufacturing battery
JP4936839B2 (en) Manufacturing method of sealed battery
JP5981809B2 (en) Prismatic secondary battery
JP4835025B2 (en) Method for manufacturing power storage device
KR102568341B1 (en) Energy storage device
TW201017961A (en) Layered secondary battery
JP2008034356A (en) Sheet-shaped secondary battery and its manufacturing method
JP2007053002A (en) Manufacturing method of battery
JP2014212012A (en) Method of manufacturing secondary battery and secondary battery
JP2012212506A (en) Laminate type battery
KR101483425B1 (en) Secondary Battery Having Novel Electrode Tap-Lead Joint Portion
JP2013037816A (en) Battery and manufacturing method therefor
WO2021020032A1 (en) Ultrasonic horn, secondary battery, and method for manufacturing secondary battery
WO2017057200A1 (en) Electricity storage element and method for manufacturing electricity storage element
JP2023089037A (en) Terminal for secondary battery and method for manufacturing terminal for secondary battery
JP2004241150A (en) Battery
CN111554960B (en) Method for manufacturing power storage element, bonding method, and bonded body
JP7085976B2 (en) How to manufacture a secondary battery
KR101802297B1 (en) Manufacturing Method of Electrode for Secondary Battery
JP2012209269A (en) Method for manufacturing sheet-like secondary battery
JP7205723B2 (en) Ultrasonic bonding method
JP2003077450A (en) Thin battery
JP2017080792A (en) Manufacturing method for weld structure
KR20190061573A (en) Welding method of electrode tap and lead