JP2006284493A - Semiconductor device and circuit testing method of semiconductor device - Google Patents

Semiconductor device and circuit testing method of semiconductor device Download PDF

Info

Publication number
JP2006284493A
JP2006284493A JP2005107638A JP2005107638A JP2006284493A JP 2006284493 A JP2006284493 A JP 2006284493A JP 2005107638 A JP2005107638 A JP 2005107638A JP 2005107638 A JP2005107638 A JP 2005107638A JP 2006284493 A JP2006284493 A JP 2006284493A
Authority
JP
Japan
Prior art keywords
power supply
circuit
supply voltage
voltage supply
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005107638A
Other languages
Japanese (ja)
Inventor
Hirokazu Koshiba
寛和 小柴
Yoshiyuki Tanaka
良幸 田中
Tsutomu Okawa
勉 大川
Noriyuki Yamaguchi
徳志 山口
Isamu Tsusaka
勇 都坂
Hiroyuki Gomyo
寛之 後明
Kentaro Yamamoto
健太郎 山本
Ryoichi Imada
亮一 今田
Takahiro Sone
貴裕 曽根
Takehiko Iwasaki
剛彦 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005107638A priority Critical patent/JP2006284493A/en
Publication of JP2006284493A publication Critical patent/JP2006284493A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a test time by enabling discrimination of an abnormal circuit in simple configuration and reducing the number of current measuring points when performing direct current leak test by dividing the semiconductor device into a plurality of circuit blocks. <P>SOLUTION: A plurality of mutually separated power source voltage supply sources 105 and 106 and a plurality of mutually separated earths 107 and 108 are connected so that the combination of the power source voltage supply sources 105 and 106 and the earths 107 and 108 to each of circuit blocks 101-104 divided into two or more is the one. Current values 109-112 flowing in each of the power source voltage supply sources 105 and 106 and the earths 107 and 108 are measured, and the circuit block in which abnormality occurs is specified by the combination of the power source voltage supply sources 105 and 106 and the earths 107 and 108 in which the current value is abnormal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置の直流電流リーク試験方法に係り、特に電流測定ポイント数の削減に有効な技術に関するものである。   The present invention relates to a DC current leakage test method for a semiconductor device, and more particularly to a technique effective for reducing the number of current measurement points.

半導体集積回路技術の発展に伴って素子の微細化と大規模化が平行して加速的に進んだ結果、半導体集積回路のリーク電流の増加が問題となっており、その試験時や不良品の解析時に不良箇所の特定手法の重要性が高くなっている。従来の直流電流リーク試験技術として、大規模化した半導体集積回路を複数の回路ブロックに分割し、各回路ブロックの電源供給源を分離することにより、回路ブロック毎に直流電流リークを測定するものがある(例えば、特許文献1参照)。
特開平10−242397号公報
With the development of semiconductor integrated circuit technology, the miniaturization and scale-up of elements progressed in parallel, and as a result, an increase in leakage current of semiconductor integrated circuits has become a problem. At the time of analysis, the importance of a method for identifying a defective portion is increasing. As a conventional DC current leak test technique, a large-scale semiconductor integrated circuit is divided into a plurality of circuit blocks, and a power supply source of each circuit block is separated to measure a DC current leak for each circuit block. Yes (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-242397

上記従来の方法は、複数に分割された回路ブロックの電源供給線を分離することにより、回路ブロック毎のリーク電流測定結果から不良回路ブロックを判別する方法があるが、回路ブロック数が多くなるに従って測定用の電源端子の増加と試験時間の増大が加速的に進んでしまうという問題が生じる。   In the above conventional method, there is a method of determining a defective circuit block from the leakage current measurement result for each circuit block by separating the power supply lines of the circuit blocks divided into a plurality, but as the number of circuit blocks increases, There is a problem that the increase in the number of power terminals for measurement and the increase in test time are accelerated.

本発明は、半導体装置を複数の回路ブロックに分割して直流電流リーク試験を行う際に、より簡単な回路構成で異常回路を判別することができ、電流測定ポイント数を削減し、試験時間を短縮することを目的とする。   In the present invention, when a DC current leak test is performed by dividing a semiconductor device into a plurality of circuit blocks, an abnormal circuit can be identified with a simpler circuit configuration, the number of current measurement points can be reduced, and the test time can be reduced. The purpose is to shorten.

本発明の半導体装置の回路試験方法は、半導体装置を複数の回路ブロックに分割して直流電流リーク試験を行う回路試験方法であって、相互に分離された複数の電源電圧供給源と相互に分離された複数の接地を用い、前記回路ブロックのそれぞれに対して前記電源電圧供給源と前記接地の組み合わせが唯一であるように接続し、それぞれの前記電源電圧供給源とそれぞれの前記接地を流れる電流値を測定し、電流値が異常となる前記電源電圧供給源と前記接地の組み合わせにより異常が発生した前記回路ブロックを特定する。   A circuit test method for a semiconductor device according to the present invention is a circuit test method for performing a DC current leakage test by dividing a semiconductor device into a plurality of circuit blocks, and is separated from a plurality of power supply voltage supply sources separated from each other. A plurality of grounds connected to each of the circuit blocks such that a combination of the power supply voltage supply source and the ground is unique, and a current flowing through the power supply voltage supply source and the ground. A value is measured, and the circuit block in which an abnormality has occurred due to a combination of the power supply voltage supply source and the ground in which the current value is abnormal is specified.

上記構成によれば、いずれの回路ブロックに接続されている電源電圧供給源と接地の組み合わせも全体の組み合わせ中で唯一の組み合わせであるため、測定した電流値が異常となる電源電圧供給源と接地の組み合わせにより、異常が発生した回路ブロックを容易に特定することができる。   According to the above configuration, the combination of the power supply voltage supply source connected to any circuit block and the ground is the only combination in the whole combination. With this combination, it is possible to easily identify the circuit block in which an abnormality has occurred.

本発明の半導体装置は、複数に分割された回路ブロックと、相互に分離された複数の電源電圧供給源と、相互に分離された複数の接地とを備え、前記回路ブロックのそれぞれに対して前記電源電圧供給源と前記接地の組み合わせが唯一であるように接続する。   A semiconductor device according to the present invention includes a plurality of circuit blocks divided into a plurality, a plurality of power supply voltage supply sources separated from each other, and a plurality of grounds separated from each other. Connection is made so that the combination of the power supply voltage source and the ground is unique.

上記構成によれば、いずれの回路ブロックに接続されている電源電圧供給源と接地の組み合わせも全体の組み合わせ中で唯一の組み合わせであるため、電源電圧供給源と接地を流れるそれぞれの電流値を測定し、測定した電流値が異常となる電源電圧供給源と接地の組み合わせにより、異常が発生した回路ブロックを容易に特定することができる。   According to the above configuration, since the combination of the power supply voltage supply source and the ground connected to any circuit block is the only combination in the whole combination, each current value flowing through the power supply voltage supply source and the ground is measured. The circuit block in which the abnormality has occurred can be easily identified by the combination of the power supply voltage supply source and the ground in which the measured current value becomes abnormal.

本発明の半導体装置において、前記電源電圧供給源は2値以上の電源電圧レベルの設定が可能なものである。複数の被測定回路において同時にリーク電流異常が発生した場合には、1回の測定では異常が発生した被測定回路の判別が困難な場合があるが、上記構成によれば、電源電圧供給源は2値以上の電源電圧レベルの設定が可能なため、2回以上の測定により異常が発生した被測定回路を判別することができる。   In the semiconductor device of the present invention, the power supply voltage supply source can set a power supply voltage level of two or more values. When a leakage current abnormality occurs simultaneously in a plurality of measured circuits, it may be difficult to determine the measured circuit in which an abnormality has occurred in a single measurement. Since two or more power supply voltage levels can be set, it is possible to determine a circuit under measurement in which an abnormality has occurred due to two or more measurements.

本発明の半導体装置において、前記回路ブロックに接続される前記電源電圧供給源を切り替える手段を備える。複数の被測定回路において同時にリーク電流異常が発生した場合には、1回の測定では異常が発生した被測定回路の判別が困難な場合があるが、上記構成によれば、回路ブロックに接続される電源電圧供給源を切り替え、2回以上の測定を行うことにより異常が発生した被測定回路を判別することができる。   The semiconductor device of the present invention includes means for switching the power supply voltage supply source connected to the circuit block. When a leakage current abnormality occurs simultaneously in a plurality of measured circuits, it may be difficult to determine the measured circuit in which an abnormality has occurred in a single measurement, but according to the above configuration, the circuit is connected to a circuit block. It is possible to determine the circuit under measurement in which an abnormality has occurred by switching the power supply voltage supply source and performing the measurement twice or more.

本発明半導体装置において、前記回路ブロックに接続される前記電源電圧供給源を個別に切断する手段を備える。上記構成によれば、リーク電流異常回路が判別された場合に、異常リーク電流が発生している回路を個別に切断装置で電源電圧供給源から切断し、ストレス印加時の全体の異常電流を停止することにより、過電流による基盤および基盤に装着された部品の破壊を予防することができる。   The semiconductor device of the present invention further includes means for individually disconnecting the power supply voltage supply source connected to the circuit block. According to the above configuration, when an abnormal leakage current circuit is determined, the circuit in which the abnormal leakage current has occurred is individually disconnected from the power supply source by the cutting device, and the entire abnormal current is stopped when stress is applied. By doing so, it is possible to prevent destruction of the base and parts mounted on the base due to overcurrent.

本発明の半導体装置として、半導体集積回路のウェハ上に前記電源電圧供給源と前記接地を格子構造に配置する。半導体集積回路のウェハ上のチップは行方向と列方向に規則的な配置構造を持つため、上記構成によれば、回路ブロックのそれぞれに対して電源電圧供給源と接地の組み合わせが唯一であるように接続する格子構造を最適に実現することができる。   As a semiconductor device of the present invention, the power supply voltage supply source and the ground are arranged in a lattice structure on a wafer of a semiconductor integrated circuit. Since the chips on the semiconductor integrated circuit wafer have a regular arrangement structure in the row direction and the column direction, according to the above configuration, the combination of the power supply voltage source and the ground seems to be unique for each circuit block. The lattice structure connected to can be optimally realized.

本発明の半導体装置において、前記回路ブロックはある機能を果たす素子領域あるいは機能セルあるいはベースチップに搭載された半導体チップであり、異常であることが特定された前記回路ブロックを置換するための冗長素子領域あるいは冗長機能セルあるいは冗長半導体チップを備える。   In the semiconductor device of the present invention, the circuit block is an element region that performs a certain function, a semiconductor chip mounted on a function cell or a base chip, and a redundant element for replacing the circuit block that is specified to be abnormal A region, a redundant function cell, or a redundant semiconductor chip is provided.

上記構成によれば、測定した電流値が異常となる電源電圧供給源と接地の組み合わせにより、異常が発生した素子領域あるいは機能セルあるいは半導体チップを容易に特定することができるため、電流リーク試験を行うだけで不良箇所の判別と救済を実施でき、総試験時間の短縮によるコスト削減が期待できる。   According to the above configuration, an element region or a functional cell or a semiconductor chip in which an abnormality has occurred can be easily identified by a combination of a power supply voltage supply source and a ground in which the measured current value becomes abnormal. Defects can be identified and remedied just by doing this, and cost reductions can be expected by shortening the total test time.

本発明によれば、半導体装置を複数の回路ブロックに分割して直流電流リーク試験を行う際に、いずれの回路ブロックに接続されている電源電圧供給源と接地の組み合わせも全体の組み合わせ中で唯一の組み合わせとすることができるため、測定した電流値が異常となる電源電圧供給源と接地の組み合わせにより異常が発生した回路ブロックを容易に特定することができる。その結果、総電源電流測定ポイント数の削減と試験時間の短縮化を図ることができる。   According to the present invention, when a semiconductor device is divided into a plurality of circuit blocks and a DC current leak test is performed, the combination of the power supply voltage supply source connected to any circuit block and the ground is the only combination in the whole combination. Therefore, it is possible to easily identify the circuit block in which an abnormality has occurred due to the combination of the power supply voltage supply source and the ground in which the measured current value becomes abnormal. As a result, the total number of power supply current measurement points can be reduced and the test time can be shortened.

以下、本発明の実施形態について図面を参照しながら説明する。図1は本発明の第1の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図であり、複数の回路ブロックに分割された半導体装置に対して、複数の個別電源電圧供給源と複数の個別接地を組み合わせている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a circuit configuration example of a semiconductor device for carrying out a circuit testing method according to the first embodiment of the present invention. A plurality of individual devices are divided into a plurality of semiconductor devices divided into a plurality of circuit blocks. A power supply voltage source and a plurality of individual grounds are combined.

図1において、101〜104はそれぞれ被測定回路A〜被測定回路Dの4つの回路ブロック、105と106はそれぞれ相互に電気的に分離された電源電圧供給源、107と108はそれぞれ相互に電気的に分離された接地である。なお、図1の回路構成例は回路数を特に限定するものではなく、以降の各実施形態の回路構成例においても同様である。   In FIG. 1, 101 to 104 are four circuit blocks of a circuit under test A to a circuit under test D, 105 and 106 are power supply sources that are electrically separated from each other, and 107 and 108 are electrically connected to each other. Isolated ground. The circuit configuration example of FIG. 1 does not particularly limit the number of circuits, and the same applies to the circuit configuration examples of the following embodiments.

電源電圧供給源105は被測定回路101と被測定回路102に共通に接続されて電源電圧を供給し、電源電圧供給源106は被測定回路103と被測定回路104に共通に接続されて電源電圧を供給し、接地107は被測定回路101と被測定回路103に共通に接続され、接地108は被測定回路102と被測定回路104に共通に接続されている。   The power supply voltage supply source 105 is connected in common to the circuit under test 101 and the circuit under test 102 to supply power supply voltage, and the power supply voltage supply source 106 is connected in common to the circuit under test 103 and the circuit under test 104 to supply power supply voltage. The ground 107 is connected in common to the circuit under test 101 and the circuit under test 103, and the ground 108 is connected in common to the circuit under test 102 and the circuit under test 104.

このような複数の個別電源電圧供給源と複数の個別接地を接続した組み合わせ構造を持つことにより、被測定回路101〜被測定回路104のそれぞれに接続される電源電圧供給源と接地の組み合わせは互いに異なる唯一の組み合わせとなる。   By having such a combined structure in which a plurality of individual power supply voltage supply sources and a plurality of individual grounds are connected, the combination of the power supply voltage supply source and the ground connected to each of the circuit under test 101 to the circuit under test 104 is mutually connected. Only one different combination.

電源電圧供給源105に流れる電流値は電源電流109で測定し、電源電圧供給源106に流れる電流値は電源電流110で測定し、接地107に流れ込む電流値は電源電流111で測定し、接地108に流れ込む電流値は電源電流112で測定する。   The current value flowing through the power supply voltage supply source 105 is measured by the power supply current 109, the current value flowing through the power supply voltage supply source 106 is measured by the power supply current 110, the current value flowing into the ground 107 is measured by the power supply current 111, and the ground 108 is measured. The value of the current flowing into is measured with the power supply current 112.

電源電流109の電流値は被測定回路101と被測定回路102に流れる電流値の総計となり、電源電流110の電流値は被測定回路103と被測定回路104に流れる電流値の総計となり、電源電流111の電流値は被測定回路101と被測定回路103から流れ込む電流値の総計となり、電源電流112の電流値は被測定回路102と被測定回路104から流れ込む電流値の総計となる。   The current value of the power source current 109 is the sum of the current values flowing through the circuit under test 101 and the circuit under test 102, and the current value of the power source current 110 is the sum of the current values flowing through the circuit under test 103 and the circuit under test 104. The current value 111 is the sum of the current values flowing from the circuit under test 101 and the circuit under test 103, and the current value of the power source current 112 is the sum of the current values flowing from the circuit under test 102 and the circuit under test 104.

直流リーク電流Iddqの測定を行うときに、全回路が正常なリーク電流値以下の回路であれば電源電流値はすべて正常値以下であるが、仮に被測定回路103が異常に大きいリーク電流が流れる不良箇所を含む回路であった場合は、電源電圧供給源106から被測定回路103を通って接地107へ抜ける電流経路に異常電流が流れ、電流値の測定ポイントとしては電源電流110と電源電流111に異常な電流が検出される。   When the DC leakage current Iddq is measured, if all the circuits are below the normal leakage current value, the power supply current values are all below the normal value, but the circuit under test 103 has an abnormally large leakage current. In the case of a circuit including a defective portion, an abnormal current flows through a current path from the power supply voltage supply source 106 to the ground 107 through the circuit 103 to be measured, and the power supply current 110 and the power supply current 111 are used as current value measurement points. An abnormal current is detected.

被測定回路101〜被測定回路104の電源電圧供給源と接地の接続組み合わせは互いに異なる唯一の構成であるため、被測定回路101〜被測定回路104のいずれかに直流リーク電流Iddqの異常があった場合は、電源電流109と電源電流110および電源電流111と電源電流112のどの電源電流測定ポイントの組み合わせで異常電流が流れているかにより、異常電流が流れている被測定回路を判別することが可能となる。   Since the circuit under test 101 to circuit under test 104 have a unique combination of power supply voltage supply source and ground connection, any one of the circuit under test 101 to circuit under test 104 has an abnormality in the DC leakage current Iddq. In this case, the circuit under measurement in which the abnormal current flows can be determined depending on the combination of the power supply current measurement point of the power supply current 109, the power supply current 110, the power supply current 111, and the power supply current 112. It becomes possible.

上記回路構成例は回路数を特に限定するものではなく、例えば、電源電圧供給源が5つで接地が4つの構成を持った場合は、各電源電圧供給源に被測定回路が4つずつ接続され、各接地に被測定回路が5つずつ接続された構成が考えられ、上記と同様に電源電流値の観測結果の組み合わせにより20個の被測定回路の内から異常回路ブロックの判別が可能である。   The above circuit configuration example does not particularly limit the number of circuits. For example, when there are five power supply voltage supply sources and four grounding configurations, four circuits to be measured are connected to each power supply voltage supply source. A configuration in which five circuits under test are connected to each ground is conceivable, and an abnormal circuit block can be identified from among 20 circuits under measurement by combining the observation results of the power supply current values in the same manner as described above. is there.

仮に20個の被測定回路に個別に電源電圧供給源のみを接続した場合は、異常回路の判別に20箇所の電源電流測定ポイントが必要になるが、上記の例では電源電流測定ポイントは電源電圧供給源側の5つと接地側の4つの合計9箇所となり、試験回路構成を簡単にすることができる。   If only 20 power supply voltage sources are individually connected to 20 circuits under test, 20 power supply current measurement points are required to identify an abnormal circuit. In the above example, the power supply current measurement points are the power supply voltage. There are a total of 9 locations, 5 on the supply side and 4 on the ground side, so that the test circuit configuration can be simplified.

被測定回路に対して電源電圧供給源と接地の組み合わせを唯一の組み合わせであるようにする本実施形態の回路構成方法は、半導体装置上において、行方向の被測定回路を行毎に1つの電源電圧供給源接続で共通接続し、列方向の被測定回路を列毎に1つの接地接続で共通接続すると、配線構造が簡単でかつ電流値測定によって判別された異常なリーク電流回路ブロックの判別が容易なものとなる。このような格子構造を被測定回路を3行3列に配置して実現した半導体装置の構成例を図9に示す。   The circuit configuration method according to the present embodiment in which the combination of the power supply voltage supply source and the ground is the only combination for the circuit to be measured. In the semiconductor device, the circuit under measurement in the row direction has one power supply for each row. When the voltage supply source connection is connected in common and the circuit under test in the column direction is connected in common by one ground connection for each column, the wiring structure is simple and abnormal leakage current circuit blocks determined by current value measurement can be identified. It will be easy. FIG. 9 shows a configuration example of a semiconductor device in which such a lattice structure is realized by arranging circuits to be measured in 3 rows and 3 columns.

また、半導体集積回路のウェハ上のチップは行方向と列方向に規則的な配置構造を持つため、この格子構造は特に半導体集積回路のウェハ上で実現するのに適している。図10は半導体集積回路のウェハ状態で電源電圧供給源と接地を4行4列の格子構造に組み合わせた例を示したものである。   Further, since the chips on the semiconductor integrated circuit wafer have a regular arrangement structure in the row direction and the column direction, this lattice structure is particularly suitable for realization on the semiconductor integrated circuit wafer. FIG. 10 shows an example in which a power supply voltage supply source and grounding are combined in a 4 × 4 lattice structure in a wafer state of a semiconductor integrated circuit.

図2は本発明の第2の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図である。図2において、201と202はそれぞれ個別に2値以上の電源電圧レベルを任意に設定できる構成を持つ電源電圧供給源である。これ以外の点では、本実施形態の構成は図1の構成と同一である。   FIG. 2 is a diagram showing a circuit configuration example of a semiconductor device for carrying out a circuit test method according to the second embodiment of the present invention. In FIG. 2, reference numerals 201 and 202 denote power supply voltage sources having a configuration that can arbitrarily set power supply voltage levels of two or more values individually. In other respects, the configuration of the present embodiment is the same as the configuration of FIG.

第1の実施形態のように電源電圧供給源の電源電圧レベルが1値しか設定できない構成では、被測定回路101〜被測定回路104の内で複数の被測定回路において同時にリーク電流異常が発生した場合に1回の測定では異常発生した被測定回路の判別が困難な場合がある。   In the configuration in which only one power supply voltage level of the power supply voltage supply source can be set as in the first embodiment, a leakage current abnormality occurred simultaneously in a plurality of measured circuits among the measured circuits 101 to 104. In some cases, it may be difficult to determine the circuit under measurement where an abnormality has occurred in one measurement.

例えば、電源電流109と電源電流110に流れる異常リーク電流値が同一で、かつ、電源電流111と電源電流112に流れる異常リーク電流値も同一であった場合は、被測定回路101と被測定回路104に同じ値のリーク電流値異常が発生しているのか、被測定回路102と被測定回路103に同じ値のリーク電流値異常が発生しているのかの判別ができない。   For example, when the abnormal leakage current values flowing in the power supply current 109 and the power supply current 110 are the same and the abnormal leakage current values flowing in the power supply current 111 and the power supply current 112 are also the same, the circuit under test 101 and the circuit under measurement are It is impossible to determine whether a leak current value abnormality having the same value has occurred in 104 or whether a leak current value abnormality having the same value has occurred in the circuit under measurement 102 and the circuit under measurement 103.

本実施形態においては、複数の異常回路ブロックが存在する場合に、電源電圧供給源201もしくは電源電圧供給源202の電源電圧を変化させた前後における電源電流109〜電源電流112の電流値の変化した値を用いることで、被測定回路101〜被測定回路104の内のどの回路にリーク電流異常が発生したかの判別が可能となる。   In this embodiment, when there are a plurality of abnormal circuit blocks, the current values of the power supply current 109 to the power supply current 112 change before and after the power supply voltage of the power supply voltage supply source 201 or the power supply voltage supply source 202 is changed. By using the value, it is possible to determine in which circuit among the circuit under test 101 to the circuit under test 104 the leakage current abnormality has occurred.

例えば、被測定回路101と被測定回路104に同じ値のリーク電流値異常が発生している場合に、電源電圧供給源201の電圧を最初に基準とした測定した電圧から下げた場合は、被測定回路101から接地107に流れ込む電源電流111の電流値は減少するが、接地108に流れ込む電源電流112は変化しないので、異常回路ブロックの判別が可能となる。   For example, when the leakage current value abnormality of the same value has occurred in the circuit under test 101 and the circuit under measurement 104, when the voltage of the power supply voltage supply source 201 is lowered from the voltage measured first, Although the current value of the power supply current 111 flowing from the measurement circuit 101 to the ground 107 decreases, the power supply current 112 flowing to the ground 108 does not change, so that an abnormal circuit block can be identified.

被測定回路のブロック数が上記構成例より多く、電源電圧供給源と接地数がそれぞれ3つ以上の場合であっても、上記の方法と同様に、電源電圧供給源の電圧値を個別に2値以上変化させて設定することにより、複数の被測定回路ブロックでの異常発生を必要最低限のリーク電流測定回数で判別することができ、試験時間の短縮を図ることができる。   Even when the number of blocks of the circuit under test is larger than the above configuration example and the number of power supply voltage supply sources and the number of grounds are three or more, respectively, the voltage value of the power supply voltage supply source is set to 2 individually as in the above method. By setting the value by changing more than the value, it is possible to determine the occurrence of an abnormality in a plurality of circuit blocks to be measured with the minimum necessary number of leak current measurements, and to shorten the test time.

図3は本発明の第3の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図である。図3において、301は被測定回路102の電源電圧供給源を電源電圧供給源105または電源電圧供給源106のいずれかに切り替えることができる経路切替装置である。これ以外の点では、本実施形態の構成は図1の構成と同一である。   FIG. 3 is a diagram showing a circuit configuration example of a semiconductor device for carrying out a circuit testing method according to the third embodiment of the present invention. In FIG. 3, reference numeral 301 denotes a path switching device that can switch the power supply voltage supply source of the circuit under test 102 to either the power supply voltage supply source 105 or the power supply voltage supply source 106. In other respects, the configuration of the present embodiment is the same as the configuration of FIG.

前記第2の実施形態で述べたように、被測定回路101〜被測定回路104の内で複数の被測定回路において同時にリーク電流異常が発生した場合に1回の測定では異常発生した被測定回路の判別が困難な場合があるが、本実施形態では、被測定回路の電源電圧供給源を切り替えて電流値の変化を測定することで電流異常がある回路を判別する。   As described in the second embodiment, when a leakage current abnormality occurs simultaneously in a plurality of measured circuits among the measured circuit 101 to the measured circuit 104, the measured circuit in which an abnormality occurs in one measurement. In this embodiment, the circuit having the current abnormality is determined by switching the power supply voltage supply source of the circuit under measurement and measuring the change in the current value.

例えば、被測定回路101と被測定回路104に同じ値のリーク電流値異常が発生している場合に、被測定回路102に電流リーク異常が発生していない結果として、経路切替装置301を電源電圧供給源105から電源電圧供給源106に切り替えた前後では電源電流109〜電源電流112の電流値が変化しないため、被測定回路101と被測定回路104に同じ値のリーク電流値異常が発生しているという異常回路ブロックの判別が可能となる。   For example, when a leakage current value abnormality having the same value occurs in the circuit under measurement 101 and the circuit under measurement 104, the path switching device 301 is connected to the power supply voltage as a result of no current leakage abnormality occurring in the circuit under measurement 102. Before and after switching from the supply source 105 to the power supply voltage supply source 106, the current values of the power supply current 109 to the power supply current 112 do not change, and therefore the leakage current value abnormality with the same value occurs in the circuit under test 101 and the circuit under test 104. It is possible to discriminate an abnormal circuit block.

被測定回路のブロック数が上記構成例より多く、電源電圧供給源と接地数がそれぞれ3つ以上の場合であっても、経路切替装置を複数箇所挿入することにより、前記第2の実施形態の方法と同様に、複数の被測定回路ブロックでの異常発生を必要最低限のリーク電流測定回数で判別することができ、試験時間の短縮を図ることができる。   Even if the number of blocks of the circuit under test is larger than that in the above configuration example and the number of power supply voltage supply sources and the number of grounds are each 3 or more, by inserting a plurality of path switching devices in the second embodiment, Similarly to the method, it is possible to determine the occurrence of an abnormality in a plurality of circuit blocks to be measured with the minimum necessary number of leak current measurements, and to shorten the test time.

図4は本発明の第4の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図である。図4において、401は被測定回路101〜被測定回路104の電源電圧供給源側の電流経路に個別に挿入された切断装置である。これ以外の点では、本実施形態の構成は図1の構成と同一である。   FIG. 4 is a diagram showing a circuit configuration example of a semiconductor device for carrying out a circuit test method according to the fourth embodiment of the present invention. In FIG. 4, reference numeral 401 denotes a cutting device inserted individually in the current path on the power source voltage supply source side of the circuit under test 101 to the circuit under test 104. In other respects, the configuration of the present embodiment is the same as the configuration of FIG.

この切断装置は半導体集積回路の初期不良発生品の選別に有用である。すなわち、この切断装置をパッケージ製品数十個をまとめてソケットで装着した電圧ストレス印加用の基盤や、ウェハ状態の半導体集積回路に同時に電気接続用のプローブ針で電圧ストレス印加する基盤に実装し、各被測定回路への電源電圧供給源を個別に切断可能にする。   This cutting apparatus is useful for selecting an initial defective product of a semiconductor integrated circuit. In other words, this cutting device is mounted on a base for voltage stress application in which dozens of package products are mounted together with a socket, or on a base for voltage stress application with a probe needle for electrical connection simultaneously to a semiconductor integrated circuit in a wafer state, The power supply voltage supply source to each circuit under test can be disconnected individually.

個別の電源電圧供給源と個別の接地の電流値測定でリーク電流異常回路を判別した後に、異常リーク電流が発生している回路を個別に切断装置で電源電圧供給源から切断し、ストレス印加時の全体の異常電流を停止することにより、過電流による基盤および基盤に装着された部品の破壊を予防することができる。   After determining the leakage current abnormal circuit by measuring the current value of the individual power voltage supply source and individual ground, disconnect the circuit where the abnormal leakage current has occurred from the power voltage supply source individually with a cutting device, and when applying stress By stopping the abnormal current as a whole, it is possible to prevent destruction of the base and parts mounted on the base due to overcurrent.

図5は本発明の第5の実施形態に係る半導体装置の回路構成を示す図である。本実施形態においては、半導体装置が複数の機能ブロックおよび冗長機能ブロックで構成される場合に、機能ブロックの直流電流リーク試験を第1の実施形態と同様の方法で行い、その結果で判別された異常な機能ブロックを置換する方法を示す。   FIG. 5 is a diagram showing a circuit configuration of a semiconductor device according to the fifth embodiment of the present invention. In the present embodiment, when the semiconductor device is configured by a plurality of functional blocks and redundant functional blocks, the DC current leakage test of the functional blocks is performed by the same method as that of the first embodiment, and is determined based on the result. Shows how to replace abnormal functional blocks.

図5の(a)に示すように、半導体装置内は機能ブロック501〜機能ブロック504と、機能ブロック501〜機能ブロック504のそれぞれと同一の機能を有する冗長機能ブロック505〜冗長機能ブロック508を内蔵している。   As shown in FIG. 5A, the semiconductor device includes function blocks 501 to 504 and redundant function blocks 505 to 508 having the same functions as the function blocks 501 to 504, respectively. is doing.

機能ブロック501〜機能ブロック504に対しては、第1の実施形態と同様に、電源電圧供給源105と電源電圧供給源106と接地107と接地108を組み合わせた接続がなされており、冗長機能ブロック505〜冗長機能ブロック508に対しては、それぞれ対応する機能ブロック501〜機能ブロック504と同様に、接地107と接地108が接続されている。   Similarly to the first embodiment, the function block 501 to the function block 504 are connected by combining the power supply voltage supply source 105, the power supply voltage supply source 106, the ground 107, and the ground 108, and the redundant function block. Similarly to the corresponding function blocks 501 to 504, the ground 107 and the ground 108 are connected to the 505 to redundant function block 508, respectively.

リーク電流測定によって電流異常が発生している機能ブロックが有った場合は、第1の実施形態と同様に、電源電圧供給源105と電源電圧供給源106と接地107と接地108の電流値の確認により不良が発生している機能ブロックを判別することができる。   If there is a functional block in which a current abnormality has occurred due to leakage current measurement, the current values of the power supply voltage supply source 105, the power supply voltage supply source 106, the ground 107, and the ground 108 are determined as in the first embodiment. A functional block in which a defect has occurred can be determined by confirmation.

また、例えば不良機能ブロックが機能ブロック504と判定された場合は、図5の(b)に示すように、半導体装置内で機能ブロック504から冗長機能ブロック508に電源電圧供給源と制御信号を切り替えて接続することにより、半導体装置全体としての電流値異常発生と機能異常発生を回避して不良の救済をすることができる。   For example, when the defective functional block is determined to be the functional block 504, the power supply voltage supply source and the control signal are switched from the functional block 504 to the redundant functional block 508 in the semiconductor device as shown in FIG. Thus, the occurrence of current value abnormality and functional abnormality as a whole semiconductor device can be avoided and the defect can be remedied.

この例では、4つの機能ブロックであるため電源電圧供給源と接地がそれぞれ2つずつであるが、機能ブロックが多数の場合は必要最低限の個別の電源電圧供給源と個別の接地を持つことにより、半導体装置内の故障した機能ブロックの判別と機能救済を行うことができる。   In this example, since there are four function blocks, there are two power supply voltage supply sources and two grounds each. However, when there are a large number of function blocks, a minimum number of individual power supply voltage supply sources and individual grounds are required. As a result, it is possible to determine the functional block in the semiconductor device and to repair the function.

図6は本発明の第6の実施形態に係る半導体装置の回路構成を示す図である。本実施形態では、半導体装置においてSRAMメモリセルのような同一物理構成の機能セルが連続して配置されている場合に、機能セルの直流電流リーク試験を第1の実施形態と同様の方法で行い、その結果で判別された異常な機能セルを置換して救済する方法を示す。   FIG. 6 is a diagram showing a circuit configuration of a semiconductor device according to the sixth embodiment of the present invention. In the present embodiment, when functional cells having the same physical configuration, such as SRAM memory cells, are continuously arranged in the semiconductor device, the direct current leakage test of the functional cells is performed by the same method as in the first embodiment. Then, a method of repairing by replacing the abnormal functional cell determined by the result will be described.

図6の(a)に示すように、半導体装置内のある機能ブロック606において、第1の実施形態と同様に、機能セル601〜機能セル604に対して電源電圧供給源105と電源電圧供給源106と接地107と接地108を組み合わせた接続がなされており、リーク電流測定によって電流異常が発生している機能セルが有った場合は、電源電圧供給源105と電源電圧供給源106と接地107と接地108の異常リーク電流値の確認により不良機能セルを判別することができる。   As shown in FIG. 6A, in a certain function block 606 in the semiconductor device, the power supply voltage supply source 105 and the power supply voltage supply source for the function cells 601 to 604 are the same as in the first embodiment. 106, the ground 107, and the ground 108 are connected, and if there is a functional cell in which a current abnormality has occurred due to leakage current measurement, the power supply voltage supply source 105, the power supply voltage supply source 106, and the ground 107 The defective function cell can be identified by checking the abnormal leakage current value of the ground 108.

機能セルは同一物理構造なので、救済用に必要な最低限の冗長機能セル605を予め備えておくことができる。例えば、機能セル603がリーク電流測定で異常と判別同定された場合は、図6の(b)に示すように、不良判定された機能セル603の電源電圧供給源と制御信号を冗長機能セル605に切り替えることにより、機能ブロック606全体のリーク電流異常と機能の救済を実施する。電流リーク試験を行うだけで不良機能セルの判別と救済を実施できるため、総試験時間の短縮によるコスト削減が期待できる。   Since the functional cells have the same physical structure, the minimum redundant functional cells 605 necessary for repair can be provided in advance. For example, if the function cell 603 is determined to be abnormal by the leakage current measurement, as shown in FIG. 6B, the power supply voltage supply source and the control signal of the function cell 603 determined to be defective are transferred to the redundant function cell 605. By switching to, leakage current abnormality and functional relief of the entire functional block 606 are implemented. Since it is possible to identify and relieve defective function cells simply by performing a current leak test, cost reduction can be expected by shortening the total test time.

図7は本発明の第7の実施形態に係る半導体装置の回路構成を示す図である。本実施形態では、例えばSRAMやフラッシュROMのような個別のメモリチップが複数組み込まれた半導体装置など、複数の半導体チップが同一パッケージ内に組み込まれた構成を持つ半導体装置において、半導体チップの直流電流リーク試験を第1の実施形態と同様の方法で行い、その結果で判別された異常な半導体チップを置換して救済する方法を示す。   FIG. 7 is a diagram showing a circuit configuration of a semiconductor device according to the seventh embodiment of the present invention. In the present embodiment, in a semiconductor device having a configuration in which a plurality of semiconductor chips are incorporated in the same package, such as a semiconductor device in which a plurality of individual memory chips such as SRAM and flash ROM are incorporated, the direct current of the semiconductor chip A method of performing a leak test by the same method as that of the first embodiment and replacing the abnormal semiconductor chip determined based on the result will be described.

図7の(a)に示すように、半導体チップ701〜半導体チップ704に対して、第1の実施形態と同様に、ベースチップ706上で電源電圧供給源105と電源電圧供給源106と接地107と接地108を組み合わせた接続がなされており、リーク電流測定によって電流異常が発生している半導体チップが有った場合は、電源電圧供給源105と電源電圧供給源106と接地107と接地108の電流値の確認により不良半導体チップを判別することができる。   As shown in FIG. 7A, for the semiconductor chips 701 to 704, the power supply voltage supply source 105, the power supply voltage supply source 106, and the ground 107 on the base chip 706, as in the first embodiment. Are connected to each other and ground 108, and when there is a semiconductor chip in which a current abnormality has occurred due to leakage current measurement, the power supply voltage supply source 105, the power supply voltage supply source 106, the ground 107, and the ground 108 are connected. A defective semiconductor chip can be identified by checking the current value.

ベースチップ706上には、救済用に必要な最低限の冗長機能セル705を予め備えておく。例えば、半導体チップ704がリーク電流測定で異常と判別された場合は、図7の(b)に示すように、不良判定された半導体チップ704の電源電圧供給源と制御信号を冗長半導体チップ705に切り替えることにより、半導体装置全体のリーク電流異常と機能の救済を実施する。   On the base chip 706, the minimum redundant functional cells 705 necessary for repair are provided in advance. For example, when the semiconductor chip 704 is determined to be abnormal by the leakage current measurement, the power supply voltage supply source and the control signal of the semiconductor chip 704 determined to be defective are supplied to the redundant semiconductor chip 705 as shown in FIG. By switching, the leakage current abnormality and function of the entire semiconductor device are remedied.

電流リーク試験を行うだけで不良半導体チップの判別と救済を事前に実施できるため、試験時間の短縮ができ、また、複数チップを同一パッケージに組み込んだ高価な半導体装置であっても、製造の最後の工程においても機能救済が可能なため、コスト削減の効果が期待できる。   Since it is possible to identify and relieve defective semiconductor chips in advance simply by performing a current leak test, the test time can be shortened, and even an expensive semiconductor device that incorporates multiple chips in the same package can be used at the end of manufacturing. Since the function can be relieved even in this process, an effect of cost reduction can be expected.

図8は、以上説明した本発明に係る回路試験方法を要約したフローチャートである。図8において、ステップ802で複数の個別電源電圧供給源と複数の個別接地の構成により異常個所の存在が判別されると、ステップ803で論理配置情報データベース811と物理配置情報データベース812を参照することにより異常箇所を特定し、異常箇所に対する置換データが無い場合はステップ804からステップ805に進み、異常箇所情報を出力する。   FIG. 8 is a flowchart summarizing the circuit test method according to the present invention described above. In FIG. 8, when the presence of an abnormal location is determined in step 802 by the configuration of a plurality of individual power supply voltage sources and a plurality of individual grounds, the logical location information database 811 and the physical location information database 812 are referred to in step 803. The abnormal part is identified by the above, and when there is no replacement data for the abnormal part, the process proceeds from step 804 to step 805 to output abnormal part information.

異常箇所を置換するための機能ブロックや機能セルや半導体チップが半導体装置内に用意されている場合は、その配置と接続情報により予め置換情報データベース813を作成しておく。この場合はステップ804からステップ806に進み、異常箇所の特定結果に対して置換情報データベース813を参照して置換場所を特定し、ステップ807で置換による救済情報を出力する。   When functional blocks, functional cells, or semiconductor chips for replacing abnormal parts are prepared in the semiconductor device, a replacement information database 813 is created in advance based on the arrangement and connection information. In this case, the process proceeds from step 804 to step 806, the replacement location is specified with reference to the replacement information database 813 for the result of specifying the abnormal part, and the repair information by replacement is output in step 807.

本発明の半導体装置および半導体装置の回路試験方法は、半導体装置を複数の回路ブロックに分割して直流電流リーク試験を行う際に、いずれの回路ブロックに接続されている電源電圧供給源と接地の組み合わせも全体の組み合わせ中で唯一の組み合わせとすることができるため、測定した電流値が異常となる電源電圧供給源と接地の組み合わせにより異常が発生した回路ブロックを容易に特定することができ、その結果、総電源電流測定ポイント数の削減と試験時間の短縮化を図ることができるという効果を有し、半導体装置の直流電流リーク試験方法等として有用である。   According to the semiconductor device and the circuit testing method of the semiconductor device of the present invention, when the DC current leakage test is performed by dividing the semiconductor device into a plurality of circuit blocks, the power supply voltage supply source connected to any circuit block and the ground Since the combination can also be the only combination in the overall combination, it is possible to easily identify the circuit block in which an abnormality has occurred due to the combination of the power supply voltage supply source and the ground in which the measured current value is abnormal, As a result, it has the effect of reducing the total number of power supply current measurement points and shortening the test time, and is useful as a DC current leak test method for semiconductor devices.

本発明の第1の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図。The figure which shows the circuit structural example of the semiconductor device for enforcing the circuit test method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図。The figure which shows the circuit structural example of the semiconductor device for enforcing the circuit test method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図。The figure which shows the circuit structural example of the semiconductor device for enforcing the circuit test method which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る回路試験方法を実施するための半導体装置の回路構成例を示す図。The figure which shows the circuit structural example of the semiconductor device for enforcing the circuit test method which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る半導体装置の回路構成を示す図。The figure which shows the circuit structure of the semiconductor device which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る半導体装置の回路構成を示す図。The figure which shows the circuit structure of the semiconductor device which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る半導体装置の回路構成を示す図。The figure which shows the circuit structure of the semiconductor device which concerns on the 7th Embodiment of this invention. 本発明に係る回路試験方法を要約したフローチャート。The flowchart which summarized the circuit test method which concerns on this invention. 本発明に係る半導体装置の格子構造の構成例を示す図。FIG. 10 shows a structural example of a lattice structure of a semiconductor device according to the invention. 本発明に係る半導体装置の格子構造を半導体集積回路のウェハ上に実現した構成例を示す図。1 is a diagram showing a configuration example in which a lattice structure of a semiconductor device according to the present invention is realized on a semiconductor integrated circuit wafer;

符号の説明Explanation of symbols

101、102、103、104 被測定回路
105、106、201、202 電源電圧供給源
107、108 接地
109、110、111、112 電源電流
301 経路切替装置
401 切断装置
501、502、503、504 機能ブロック
505、506、507、508 冗長機能ブロック
601、602、603、604 機能セル
605 冗長機能セル
606 機能ブロック
701、702、703、704 半導体チップ
705 冗長半導体チップ
706 ベースチップ
801〜807 処理ステップ
811 論理配置情報データベース
812 物理配置情報データベース
813 置換情報データベース
101, 102, 103, 104 Circuit under test 105, 106, 201, 202 Power supply voltage source 107, 108 Ground 109, 110, 111, 112 Power supply current 301 Path switching device 401 Cutting device 501, 502, 503, 504 Function block 505, 506, 507, 508 Redundant functional block 601, 602, 603, 604 Functional cell 605 Redundant functional cell 606 Functional block 701, 702, 703, 704 Semiconductor chip 705 Redundant semiconductor chip 706 Base chip 801-807 Processing step 811 Logical arrangement Information database 812 Physical location information database 813 Replacement information database

Claims (9)

半導体装置を複数の回路ブロックに分割して直流電流リーク試験を行う回路試験方法であって、相互に分離された複数の電源電圧供給源と相互に分離された複数の接地を用い、前記回路ブロックのそれぞれに対して前記電源電圧供給源と前記接地の組み合わせが唯一であるように接続し、それぞれの前記電源電圧供給源とそれぞれの前記接地を流れる電流値を測定し、電流値が異常となる前記電源電圧供給源と前記接地の組み合わせにより異常が発生した前記回路ブロックを特定する半導体装置の回路試験方法。   A circuit test method for performing a DC current leakage test by dividing a semiconductor device into a plurality of circuit blocks, wherein the circuit block uses a plurality of power supply voltage supply sources separated from each other and a plurality of grounds separated from each other. Are connected so that the combination of the power supply voltage supply source and the ground is unique, the current value flowing through the power supply voltage supply source and the ground is measured, and the current value becomes abnormal. A circuit test method for a semiconductor device for identifying the circuit block in which an abnormality has occurred due to a combination of the power supply voltage supply source and the ground. 複数に分割された回路ブロックと、相互に分離された複数の電源電圧供給源と、相互に分離された複数の接地とを備え、前記回路ブロックのそれぞれに対して前記電源電圧供給源と前記接地の組み合わせが唯一であるように接続した半導体装置。   A circuit block divided into a plurality of parts, a plurality of power supply voltage supply sources separated from each other, and a plurality of grounds separated from each other, and the power supply voltage supply source and the ground for each of the circuit blocks Semiconductor devices connected so that there is only one combination. 前記電源電圧供給源は2値以上の電源電圧レベルの設定が可能である請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, wherein the power supply voltage supply source can set a power supply voltage level of two or more values. 前記回路ブロックに接続される前記電源電圧供給源を切り替える手段を備える請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, further comprising means for switching the power supply voltage supply source connected to the circuit block. 前記回路ブロックに接続される前記電源電圧供給源を個別に切断する手段を備える請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, further comprising means for individually disconnecting the power supply voltage supply source connected to the circuit block. 半導体集積回路のウェハ上に前記電源電圧供給源と前記接地を格子構造に配置した請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, wherein said power supply voltage supply source and said ground are arranged in a lattice structure on a wafer of a semiconductor integrated circuit. 前記回路ブロックはある機能を果たす素子領域、機能セルまたはベースチップに搭載された半導体チップであり、異常であることが特定された前記回路ブロックを置換するための冗長素子領域、冗長機能セルまたは冗長半導体チップを備える請求項2記載の半導体装置。   The circuit block is a semiconductor chip mounted on an element region, a function cell or a base chip that performs a certain function, and a redundant element region, a redundant function cell, or a redundancy for replacing the circuit block identified as abnormal The semiconductor device according to claim 2, comprising a semiconductor chip. 請求項2記載の半導体装置において、それぞれの前記電源電圧供給源とそれぞれの前記接地を流れる電流値を測定し、電流値が異常となる前記電源電圧供給源と前記接地の組み合わせにより異常が発生した前記回路ブロックを特定する情報を出力する回路試験ツール。   3. The semiconductor device according to claim 2, wherein a current value flowing through each power supply voltage supply source and each ground is measured, and an abnormality occurs due to a combination of the power supply voltage supply source and the ground in which the current value becomes abnormal. A circuit test tool for outputting information for specifying the circuit block. 請求項7記載の半導体装置において、それぞれの前記電源電圧供給源とそれぞれの前記接地を流れる電流値を測定し、電流値が異常となる前記電源電圧供給源と前記接地の組み合わせにより異常が発生した前記回路ブロックを特定し、特定した前記回路ブロックを前記冗長素子領域あるいは冗長機能セルあるいは冗長半導体チップで置換する情報を出力する回路試験ツール。   8. The semiconductor device according to claim 7, wherein a current value flowing through each power supply voltage supply source and each ground is measured, and an abnormality has occurred due to a combination of the power supply voltage supply source and the ground in which the current value becomes abnormal. A circuit test tool for specifying the circuit block and outputting information for replacing the specified circuit block with the redundant element region, redundant function cell, or redundant semiconductor chip.
JP2005107638A 2005-04-04 2005-04-04 Semiconductor device and circuit testing method of semiconductor device Withdrawn JP2006284493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107638A JP2006284493A (en) 2005-04-04 2005-04-04 Semiconductor device and circuit testing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107638A JP2006284493A (en) 2005-04-04 2005-04-04 Semiconductor device and circuit testing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2006284493A true JP2006284493A (en) 2006-10-19

Family

ID=37406565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107638A Withdrawn JP2006284493A (en) 2005-04-04 2005-04-04 Semiconductor device and circuit testing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2006284493A (en)

Similar Documents

Publication Publication Date Title
KR100466984B1 (en) Integrated circuit chip having test element group circuit and method of test the same
KR101431708B1 (en) Method and apparatus for monitoring vias in a semiconductor fab
JP2008021848A (en) Method of testing wafer and semiconductor device
US6115300A (en) Column redundancy based on column slices
WO2006025140A1 (en) Semiconductor integrated circuit device and method for inspecting the same, semiconductor wafer and burn-in inspection apparatus
TWI393245B (en) A fuse circuit for use in a semiconductor integrated apparatus
US6940299B1 (en) Method of testing for short circuits between adjacent input/output pins of an integrated circuit
JP2006284493A (en) Semiconductor device and circuit testing method of semiconductor device
US8614589B2 (en) Method of fabricating semiconductor device
JP2010206114A (en) Method of testing electric fuse, and electric fuse circuit
KR100545907B1 (en) Semiconductor wafer testing system and method
JP2008198707A (en) Semiconductor integrated circuit
JP2006209946A (en) Method and system for testing ram redundant integrated circuit
KR100842909B1 (en) Scan method of Burn-in test
JP2009188371A (en) Semiconductor device and evaluation method thereof
JP2015225990A (en) Semiconductor device and evaluation method of the same
JP5318597B2 (en) Semiconductor device and semiconductor device manufacturing method
KR100821095B1 (en) Test device for the semiconductor and the testing method thereof
JP2003309050A (en) Manufacturing method of semiconductor device
JP2020128881A (en) Short circuit inspection system, and short circuit inspection method
JP2009099602A (en) Semiconductor device and its inspecting method
US6715114B2 (en) Test method and apparatus for semiconductor device
JP2010165819A (en) Apparatus and method for testing semiconductor integrated circuits
JP2007201166A (en) Redundancy repair method for semiconductor integrated circuit device
JP6509697B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071120

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701