JP2006275449A - 蓄熱式空調装置 - Google Patents

蓄熱式空調装置 Download PDF

Info

Publication number
JP2006275449A
JP2006275449A JP2005097641A JP2005097641A JP2006275449A JP 2006275449 A JP2006275449 A JP 2006275449A JP 2005097641 A JP2005097641 A JP 2005097641A JP 2005097641 A JP2005097641 A JP 2005097641A JP 2006275449 A JP2006275449 A JP 2006275449A
Authority
JP
Japan
Prior art keywords
heat storage
heat
heat exchanger
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005097641A
Other languages
English (en)
Inventor
Osamu Morimoto
修 森本
Jiro Okajima
次郎 岡島
Koji Taki
幸司 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005097641A priority Critical patent/JP2006275449A/ja
Publication of JP2006275449A publication Critical patent/JP2006275449A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】蓄熱槽内の蓄熱媒体が適正量より少なくなった場合に、素早い対応を可能にして、蓄熱式空調装置が有する蓄冷熱能力を十分に発揮させる。
【解決手段】蓄冷運転が可能な蓄熱式空調装置において、蓄熱熱交換器21を通過した冷媒を取り込む圧縮機1の吸入側に設けた該圧縮機の吸入圧力を検出する圧力センサ33と、蓄冷運転中、予め設定した目標蓄冷時間以内において、圧力センサ33が蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、圧縮機1を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段50とを備えた。
【選択図】図1

Description

この発明は、室外機と、蓄冷熱可能な蓄熱媒体を内蔵し蓄冷熱用熱交換器を持つ蓄熱槽と、室内機とを備え、冷暖房を行うことのできる蓄熱式空調装置に関するものである。
蓄熱式空調装置は、夜間の蓄冷熱運転を利用して昼間の冷房運転時等のピークカット対応運転ができるという利点を備えている(例えば、特許文献1)。また、これに関連して、蓄氷式熱交換器における蒸発温度に対応した温度を検出し、その検出温度が所定温度より低下した場合に、圧縮機を停止する蓄氷運転保護装置も知られている(例えば、特許文献2)。
特許登録3284582号(段落[0106]、図2) 特許登録2836411号(段落[0014]、図1)
しかしながら従来の蓄熱式空調装置は、蓄熱槽内の蓄熱媒体(通常は水)がもともとない場合、もしくは蓄冷熱媒体が基準水位よりも低下した場合に、それらに気がつかずに蓄冷運転と蓄熱運転を繰り返し、このため蓄熱式空調機として十分な能力を発揮できないという問題があった。
この発明は上記課題に対応してなされたもので、蓄熱槽内の蓄熱媒体が適正量より少なくなった場合に、素早い対応を可能にして、蓄熱式空調装置が有する蓄冷熱能力を無駄なく十分に発揮させることができる蓄熱式空調装置を提案するものである。
この発明の蓄熱式空調装置は、圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、前記蓄熱熱交換器を通過した冷媒を取り込む前記圧縮機の吸入側に設けた該圧縮機の吸入圧力を検出する圧力検出装置と、蓄冷運転中、予め設定した目標蓄冷時間以内において、前記圧力検出装置が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備えたものである。
また、圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、前記蓄熱媒体の温度を検出する蓄熱媒体温度検出装置と、前記蓄熱熱交換器を通過した冷媒の凝縮温度を検出する冷媒凝縮温度検出装置と、蓄熱運転中、前記蓄熱媒体温度検出装置による温度と前記冷媒凝縮温度検出装置による温度との差が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した値となった場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備えたものである。
この発明の蓄熱式空調装置は、蓄熱熱交換器を通過した冷媒を取り込む圧縮機の吸入側に設けた該圧縮機の吸入圧力を検出する圧力検出装置と、蓄冷運転中、予め設定した目標蓄冷時間以内において、圧力検出装置が蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備える。このため、蓄熱槽内の蓄熱媒体の不足に対する対処が迅速に行えることになり、蓄熱式空調装置の冷房能力を無駄にすることなく十分に活用することが可能となる。
また、蓄熱媒体の温度を検出する蓄熱媒体温度検出装置と、蓄熱熱交換器を通過した冷媒の凝縮温度を検出する冷媒凝縮温度検出装置と、蓄熱運転中、蓄熱媒体温度検出装置による温度と冷媒凝縮温度検出装置による温度との差が蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した値となった場合に、圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備える。このため、蓄熱槽内の蓄熱媒体の不足に対する対処を迅速に行えることになり、蓄熱式空調装置の暖房能力を無駄にすることなく十分に活用することが可能となる。
以下、本発明をその実施形態に基づいて説明する。図1はこの発明の実施形態に係る蓄熱式空調装置の構成図である。この蓄熱式空調装置は、室外機A(室外ユニット)、蓄熱槽B(蓄熱ユニット)、及び室内機C1及びC2(室内ユニット)が接続された冷凍サイクルを構成している。室外機Aと蓄熱槽Bとは、液管P3、低圧ガス管P2、及び高圧ガス管P1により接続され、蓄熱槽Bと室内機C1及びC2とは、液側延長配管P5、及びガス側延長配管P4により接続されている。なお、この例では2台の室内機を備える構成としているが、その台数は2台に限定されるものではい。
さらに、蓄熱式空調装置には後述する各運転の制御を行う運転制御手段50が設けられ、室外機A、蓄熱槽B、及び室内機C1及びC2の各構成機器のうち、運転制御に関係する機器に接続されている。運転制御手段50は、運転制御アルゴリズムが記載されたプログラムとそのプログラムを動作させるCPU(中央処理装置)あるいはマイコン等から構成できる。なお、運転制御手段50は通常、室外機Aに設置されるが、その設置場所は特に限定されるものではなく適宜決定して良い。
室外機Aは圧縮機1、流路切替装置としての四方弁2、熱源側熱交換器である室外熱交換器3、過冷却熱交換器4、及び第3の流量制御弁5が配管により接続されて構成されている。また、過冷却熱交換器4と室外熱交換器3との間の配管、過冷却熱交換器4と第3の流量制御弁5との間の配管、過冷却熱交換器4と圧縮機1との間の配管には、それぞれ第1、第2、第3の温度センサ6、7、8が設けられている。さらに、圧縮機1の吐出側冷媒回路と吸入側冷媒回路には、該回路内の圧力を測定する高圧圧力センサ32と低圧圧力センサ33をそれぞれ備える。
蓄熱槽Bは水等の蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器21を有する。蓄熱熱交換器21の一端は第2の流量制御弁23、第1の流量制御弁22を介して液管P3に接続されている。また、蓄熱熱交換器21の他端は3つに分割され、第1の開閉弁24を介して高圧ガス管P1と、第2の開閉弁25を介して低圧ガス管P2と、そして、第1の逆止弁28及び第4の開閉弁27を介し液延長配管P5とにそれぞれ接続している。
また、第2の流量制御弁23と第1の流量制御弁22との接続配管より分岐した配管が、第3の開閉弁26を介して、第1の逆止弁28と第4の開閉弁27との接続配管に接続している。
また、液側延長配管P5の第4の開閉弁27との接続部より分岐し、第3の開閉弁26と第1の流量制御弁22とを接続する配管の中途に接続する配管に第2逆止弁29が設けられている。
さらに、蓄熱熱交換器21の出入口配管には、出入口配管を通過する冷媒の温度を検出する第4,第5の温度センサ30,31が設けられている。
これらに加えて、蓄熱槽Bには、貯留している蓄熱媒体の温度を測定する蓄熱媒体温度センサ34も備えられている。
室内機C1は負荷側熱交換器としての室内熱交換器40a、室内流量制御弁41a、室内熱交換器40aの出入口配管に設けられた第6,第7の温度センサ42a,43aを備えてなる。同様に、室内機C2は負荷側熱交換器としての室内熱交換器40b、室内流量制御弁41b、室内熱交換器40bの出入口配管に設けられた第8,第9の温度センサ42b,43bを備えてなる。
室外機Aを構成する圧縮機1、四方弁2、室外熱交換器3、過冷却熱交換器4及び第3の流量制御弁5は、高圧ガス管P1とガス側延長配管P4を介して、室内機C1,C2を構成する室内熱交換器40a,40bの一方の出入口に接続され、さらに液管P3と液側延長配管P5を介して、室内熱交換器40a,40bの他方の出入口に接続されている。そして、この室外機Aと室内機C1,C2からなる冷媒回路の間に蓄熱熱交換器21が接続されている。
次に、上記のように構成された蓄熱式空調装置の運転動作について説明する。この蓄熱式空調装置の運転動作には、冷房関連運転として冷房、蓄冷、利用冷房の各運転があり、暖房関連運転として暖房、蓄熱、利用暖房、併用暖房、利用デフロストの各運転がある。以下、これらの運転動作について順次説明する。
表1に冷房関連運転時の制御弁の動作状態をまとめて示す。
Figure 2006275449
(冷房運転)
図2は図1の蓄熱式空調装置の冷房運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2を介して室外熱交換器3に流入し、冷却され凝縮液化する。そして、この凝縮液化した冷媒は過冷却熱交換器4に流入し、更に冷却されて過冷却した液となる。第3の流量制御弁5は第2の温度センサ7と第3の温度センサ8とが検知した温度差が所定範囲となるよう流量制御する。過冷却状態の液冷媒は液管P3から第1の流量制御弁22(全開)、第3の開閉弁26、第4の開閉弁27を通り室内機C1,C2に流入し、室内流量制御弁41a、41bにより低圧まで減圧される。そして、低圧となった冷媒は室内熱交換器40a、40bで室内空気と熱交換して蒸発、ガス状態となり配管P4及びP1を通り圧縮機1に吸入される。室内流量制御弁41aは第6、第7の温度センサ42a、43aで検出した温度を基に、室内流量制御弁41bは第8、第9の温度センサ42b、43bで検出した温度を基に、冷媒の加熱度が所定範囲となるよう流量制御する。
このように、過冷却熱交換器4により室外機1から出る冷媒の過冷却度を十分大きくすることで、蓄熱槽B、室内機C1,C2を接続する接続配管P3,P5が長い場合や、これらのユニット間に高低差があって、圧損により圧力が低下しても冷媒を液状態とすることができ、室内流量制御弁41a,41bの制御性を確保することができる。
(蓄冷運転)
次に、蓄熱槽Bの内部に溜められた蓄熱媒体である水を冷却して、冷水や氷とする蓄冷運転の動作について説明する。図3は図1の蓄熱式空調装置の蓄冷運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2を介して室外熱交換器3、過冷却熱交換器4に流入し過冷却した液冷媒となる。第3の流量制御弁5は第2の温度センサ7と第3の温度センサ8とで検出した温度差が所定範囲となるよう流量制御する。この過冷却した液冷媒は液配管P3から第1の流量制御弁22に流入し低圧まで減圧される。その後、液冷媒は第2の流量制御弁23(全開)を通り蓄熱熱交換器21に流入し、そこで熱交換してガス状態となり、第1の開閉弁24、第2の開閉弁25を通って圧縮機1に吸入される。第1の流量制御弁22は蓄熱熱交換器21の出入口配管に設けられた第4、第5の温度センサ30、31の検出温度を基に加熱度が所定範囲となるよう流量制御する。
第3の流量制御弁5は、第2の温度センサ7と第3の温度センサ8の検出温度を基にその温度差が所定範囲となるよう流量制御するが、室外熱交換器3の出口に設けられた第1の温度センサ6と圧縮機1の吐出側に設けられた高圧センサ32の値を基に求められた蓄熱熱交換器21の出口冷媒の過冷却度が所定値以上となった場合は、過冷却度の制御に切り替え、過冷却度が所定値以下となるよう制御する。
このように制御することにより、蓄熱熱交換器21に流入する冷媒の過冷却度が十分大きくなるため蓄熱熱交換器21の圧力損失が小さく、また、室外熱交換器3の過冷却度が過度に大きくなることがないため、液溜めを設けなくても高圧を適正にすることができる等により効率の高い運転が可能となる。
ここで、上記蓄冷運転の制御アルゴリズムについて説明する。図4はこの発明の実施形態に係る運転制御手段50による蓄冷運転のアルゴリズムを示すフローチャートである。蓄冷運転は蓄冷運転指令を受けて開始する(STEP1)。次に、昼間の空調運転時間や負荷の状態を冷凍サイクルの高低圧と圧縮機の運転周波数から得て、目標蓄冷時間t1を算出する(STEP2)。次に、低圧センサ33で圧縮機1の吸入圧力(低圧)Psを検出する(STEP3)。次に、蓄冷運転開始からの時間t2とSTEP2で決定した目標蓄冷時間t1を比較する(STEP4)。STEP4で、開始からの蓄冷運転時間t2が目標蓄冷時間t1に達していない場合は、STEP3で検知した低圧圧力Psと予め定めた低圧圧力の下限値Pbとを比較し、PsがPb以上であればSTEP4に戻り、PsがPbよりも小さい場合にはSTEP6に進む(STEP5)。ただし、通常は、目標蓄冷時間t1の方が開始からの蓄冷運転時間t2より大きくなっているため、STEP4からSTEP6への進行は事実上行われない。
なお、予め定めた低圧圧力の下限値Pbとは、蓄熱槽B内の蓄熱媒体量の適正範囲の下限値に対応する圧力値であり、Psがこの下限値Pbを下回る場合、蓄熱槽B内の蓄熱媒体の量を不足状態とみなしている。
STEP6では、開始からの蓄冷運転時間t2と予め定めた所定の運転時間t3とを比較し、開始からの蓄冷運転時間が所定の運転時間よりも短い場合にはSTEP7に進む。そして、STEP7では、圧縮機1を停止して蓄冷運転を終了するとともに、室内機C1,C2やリモコン(図示せず)等に蓄熱槽B内の水が不足している旨の警報を発報する。この発報はランプ表示及び/又は音声出力により行うことができる。なお、この場合、圧縮機1の停止又は警報の発報のいずれか一方だけの処理としても良い。これにより、蓄熱槽内の蓄熱媒体の不足に対する対処が迅速に行えることになり、蓄熱式空調装置の冷房能力を無駄にすることなく十分に活用することが可能となる。
一方、STEP6で、開始からの蓄冷運転時間が所定の運転時間t3以上の場合には、圧縮機1の運転を停止させて蓄冷運転を終了する。
ところで、上記STEP6における所定の時間t3とは、目標の蓄熱量を蓄熱槽Bに蓄積する前に、蓄熱槽B内の水位が低下したことにより、蓄冷運転を終了しなければならない時間を予め試験等で求めておき、それを運転制御手段50等に記憶しておいたものである。所定の時間t3は、例えば吸入圧力(低圧)Psとの関係データとして予め求めておくことができ、STEP6では低圧センサ33で測定された吸入圧力(低圧)Psに対応して決定される時間となる。従って、STEP6は、蓄熱槽B内の水が低下して所定の蓄熱量を溜められない運転を継続することを防止し、能力を確保するのに寄与するとともに、誤動作防止にも役立っている。
なお、蓄熱媒体の水位が正常になるまでは、蓄熱槽を利用した空調運転及び蓄冷運転をしないようにすることで、異常な状態で装置を運転し続け、装置が破損することを防止することができる。また、蓄熱媒体の水位が正常位置に戻ったことを確認した場合には、リセットボタンで異常をリセットすることで、蓄熱槽を利用する正常な運転に戻るようにしても良い。さらに、定期的に異常を自動リセットさせて、再度、蓄熱媒体の水位が低下した異常を検知したら、蓄熱槽を利用した空調運転をしないように設定しても良い。
(利用冷房運転)
ここでは、蓄熱槽B内部に溜められた冷水及び氷の冷熱を室外機出口冷媒の冷却に利用する利用冷房の動作について説明する。図5は図1の蓄熱式空調装置の利用冷房運転時の冷媒の流れを示す図である。
圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2を介して室外熱交換器3に流入し、冷却され凝縮液化する。そして、この凝縮液化した冷媒は過冷却熱交換器4に流入するが、第3の流量制御弁5は全閉状態とされるため冷却されずに過冷却熱交換器4を通り液配管P3から蓄熱槽Bに流入して、第1の流量制御弁22(全開)、第2の流量制御弁23(中間開度)を通り熱交換器21に入りそこで冷却され過冷却状態まで冷却される。そして更に、この冷媒は第1の逆止弁28、第4の開閉弁27を通り室内流量制御弁41a,41bで低圧まで減圧され、室内熱交換器40a、40bで室内空気と熱交換することによりガス状態となり接続配管P4、P1から圧縮機1に吸入される。このとき、室内流量制御弁41a,41は冷房運転の時と同様に制御される。このようにして、蓄熱槽Bに溜められた冷熱により冷媒を過冷却度状態としているので、効率の高い冷房運転が行える。
次に、図1の蓄熱式空調装置による暖房関連の運転、すなわち、暖房、蓄熱、利用暖房、併用暖房、利用デフロストの各運転について説明する。表2にこれらの運転の制御弁制御状態をまとめて示す。
Figure 2006275449
(暖房運転)
図6は図1の蓄熱式空調装置の暖房運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は高圧ガス管P1から蓄熱ユニットB、ガス側延長配管P4を通り室内熱交換器40a、40bに流入し、室内空気と熱交換して凝縮液化する。そして、この冷媒液は室内流量制御弁41a、41bにより低圧まで減圧され、第4の開閉弁27、第3の開閉弁26と第2の逆止弁29とを流通して全開状態の第1の流量制御弁22を通り室外熱交換器3で蒸発、ガス常態となり圧縮機1に吸入される。室内流量制御弁41a、41bは第6〜第9の温度センサ42a,43a,42b、43bの検出値を基に、冷媒の過冷却度が所定範囲となるよう流量制御する。室内流量制御弁41a,41bの出口側は低圧となっているため制御弁の出入口の差圧が大きく、複数の室内機間での配管長差や高低差が大きい場合にも適性流量を流すことができ、複数室内機での能力にアンバランスを発生することがない。
(蓄熱運転)
次に、蓄熱槽Bに溜められた蓄熱媒体である水を加熱、温水として蓄熱する蓄熱運転について説明する。図7は図1の蓄熱式空調装置の蓄熱運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は四方弁2、第1の開閉弁24を通り熱交換器21に流入し、蓄熱槽B内の水と熱交換して凝縮液化する。そして、この液冷媒は全開状態の第2の流量制御弁23を通り、第1の流量制御弁22で低圧に減圧され室外熱交換器3に流入し、そこで外気と熱交換してガス状態となり圧縮機1に吸入される。第1の流量制御弁22は第4の温度センサ30と高圧センサ32から冷媒の過冷却度を検知し、過冷却度が所定範囲内となるよう流量制御する。
上記の場合、第1の流量制御弁22で流量制御するようにしたが、第2の流量制御弁23で流量制御した場合、第2の流量制御弁23の開度により第1の流量制御弁22の入口冷媒状態が変化するため、この制御弁での圧損が変化する。このため低圧が異常に低下する運転となり室外熱交換器3に着霜したり、冷媒循環量が減少し立ち上がりに長時間を要してしまう。
なお、室内流量制御弁41a、41bは全閉状態とされるが、一定時間毎に開き、ガス側延長配管P4、室内熱交換器40a,40bに溜まり込んだ冷媒を室外機A側に回収しても良い。
ここで、蓄熱運転の制御アルゴリズムについて説明する。図8はこの発明の実施形態に係る運転制御手段50による蓄熱運転のアルゴリズムを示すフローチャートである。蓄熱運転は、STEP1で蓄熱運転指令を受けて蓄熱運転を開始する。STEP2では、蓄熱運転開始からの時間t5と最大蓄熱時間t4を比較し、蓄熱運転開始からの時間t5が最大蓄熱時間t4以上の場合には、STEP5に進み蓄熱運転を終了する。なお、最大蓄熱時間t4とは、機器毎に定められた定格の蓄熱量をためるのに必要な時間である。STEP2で、蓄熱運転開始からの時間t5が最大蓄熱時間t4未満の場合には、STEP3に進む。STEP3では、蓄熱媒体の水温T1を検知し、水温T1が予め定めておいた上限値T2以上の場合には、STEP5に進み蓄熱運転を終了する。STEP3で、水温T1が上限値T2未満の場合には、STEP4に進む。STEP4で、冷媒の凝縮温度T3と蓄熱媒体の水温T1との差として予め決定しておいた所定の温度差T4とを比較し、凝縮温度T3と蓄熱媒体の水温T1の差が所定の温度差T4よりも小さい場合は、STEP2に戻る。STEP4で、凝縮温度T3と蓄熱媒体の水温T1の差が所定の温度差T4以上の場合は、STEP6に進む。STEP6では、圧縮機1を停止して蓄熱運転を終了するとともに、室内機C1,C2やリモコン(図示せず)等に蓄熱槽B内の水が不足している旨の警報を発報する。警告の発報はランプ表示及び/又は音声出力により行うことができる。なお、この場合、圧縮機1の停止又は警報の発報のいずれか一方だけの処理としても良い。これにより、蓄熱槽内の蓄熱媒体の不足に対する対処を迅速に行えることになり、蓄熱式空調装置の暖房能力を無駄にすることなく十分に活用することが可能となる。
ところで、上記STEP4における所定の温度差T4とは、蓄熱槽B内の水位が低下したことにより、蓄熱槽B内の伝熱管が水没しなくなり、蓄熱槽伝熱管の伝熱状態が悪化して凝縮温度T3と水温T1の差が広がる現象を、予め試験等で水位と温度差の関係を調査し水位低下となる温度差を決定して、それを所定の温度差T4として運転制御手段50等に記憶しておいたものである。これによって、蓄熱槽B内の水が低下して所定の蓄熱量を溜められない運転を継続することを防止し、能力を確保できるようになる。
なお、蓄熱媒体の水位が正常になるまでは、蓄熱槽を利用した空調運転及び蓄熱運転をしないようにすることで、異常な状態で装置を運転し続け、装置が破損することを防止することができる。また、蓄熱媒体の水位が正常位置に戻ったことを確認した場合には、リセットボタンで異常をリセットすることで、蓄熱槽を利用する正常な運転に戻るようにしても良い。さらに、定期的に異常を自動リセットさせて、再度、蓄熱媒体の水位が低下した異常を検知したら、蓄熱槽を利用した空調運転をしないように設定しても良い。
(利用暖房運転)
次に、蓄熱槽Bに溜められた温水及び水から吸熱する利用暖房運転について説明する。図9は図1の蓄熱式空調装置の利用暖房時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2、高圧ガス管P1から蓄熱ユニットB、ガス側延長配管P4を通り室内熱交換器40a、40bに流入し、そこで室内空気と熱交換して凝縮液化する。そして、この冷媒液は室内流量制御弁41a、41bにより低圧まで減圧され第4の開閉弁27、第3の開閉弁26、第2の逆止弁29を通過し、さらに、全開状態の第2の流量制御弁23を通り蓄熱熱交換器21で蓄熱媒体の温水より吸熱して蒸発、ガス状態となって、第2の開閉弁25、低圧ガス管P2から圧縮機1に戻る。なお、室内流量制御弁41a,41bは上記暖房運転の場合と同様に制御される。
(併用暖房運転)
併用暖房運転は上記利用暖房において、蓄熱媒体の温水温度が低下して吸入飽和温度が外気温度を下回った場合に、蓄熱槽B内の水と外気の両方から吸熱して暖房運転するものである。図10は図1の蓄熱式空調装置の併用暖房時の冷媒の流れを示す図である。圧縮機1から吐出された冷媒は、四方弁2、高圧ガス管P1から蓄熱ユニットB、ガス側延長配管P4を通り室内熱交換器40a,40bに流入し、室内流量制御弁41a、41bにより低圧まで減圧され、第4の開閉弁27、第3の開閉弁26、第2の逆止弁29を通過し、一部の冷媒は第2の流量制御弁23から蓄熱熱交換器21に流入し、そこで熱交換してガス状態となり、第2の開閉弁25から低圧ガス管P2を通り圧縮機1に吸入される。一方、残りの冷媒は第1の流量制御弁22を通過し、室外熱交換器3で外気と熱交換してガス状態となり、低圧ガス管P2からの冷媒と合流して圧縮機1に吸入される。この場合、第2の流量制御弁23は全開状態のままとし、第1の流量制御弁22は所定開度開いた状態とする。
(利用デフロスト運転)
最後に、蓄熱槽Bから吸熱して室外熱交換器3に付着した霜を融解する利用デフロスト運転について説明する。図11は図1の蓄熱式空調装置の利用デフロスト運転時の冷媒の流れを示す図である。圧縮機1から高温高圧ガス冷媒を四方弁2を介して室外熱交換器3に流入させ霜を加熱してデフロストする。霜と熱交換し凝縮した冷媒は、第1の流量制御弁22、第2の流量制御弁23を通り、蓄熱熱交換器21に流入して熱交換しガス状態となり第2の開閉弁25から低圧ガス管P2を通り圧縮機1に吸入される。
デフロスト運転の入切条件は、例えば、室外熱交換器3の接続配管に設けられた第1の温度センサ6の温度とタイマ(図示せず)により行い、デフロスト入条件は第1の温度センサ6の温度が所定温度より低下し、かつその時間をタイマによりカウントして所定時間を越えた場合とする。また、デフロスト切条件は、第1の温度センサ6の温度が所定温度以上となった場合とする。なおこの運転時、第2の流量制御弁23は予め決められた開度に固定する。
ところで、上記実施形態において説明した各温度センサや各圧力センサは、温度計や圧力計等他の温度検出装置や圧力検出装置で代用しても良い。また、室外機Aに備えた四方弁2は同様の作用を果たす他の弁や切替装置等で代用しても良い。さらに、上記実施形態では運転制御手段50が蓄冷運転制御と蓄熱運転制御の両方を行う態様としたが、必要に応じてこれらのうちの一方の制御だけを行うようにしても良い。
この発明の実施形態に係る蓄熱式空調装置の構成図。 図1の蓄熱式空調装置の冷房運転時の冷媒の流れを示す図。 図1の蓄熱式空調装置の蓄冷運転時の冷媒の流れを示す図。 この発明の実施形態に係る蓄冷運転のアルゴリズムを示すフローチャート。 図1の蓄熱式空調装置の利用冷房運転時の冷媒の流れを示す図。 図1の蓄熱式空調装置の暖房運転時の冷媒の流れを示す図。 図1の蓄熱式空調装置の蓄熱運転時の冷媒の流れを示す図。 この発明の実施形態に係る蓄熱運転のアルゴリズムを示すフローチャート。 図1の蓄熱式空調装置の利用暖房時の冷媒の流れを示す図。 図1の蓄熱式空調装置の併用暖房時の冷媒の流れを示す図。 図1の蓄熱式空調装置の利用デフロスト運転時の冷媒の流れを示す図。
符号の説明
1 圧縮機、2 四方弁、3 室外熱交換器、4 過冷却熱交換器、5 第3の流量制御弁、6〜8 第1〜第3の温度センサ、21 蓄熱熱交換器、24〜27、第1〜第4の開閉弁、28,29 第1,第2の逆止弁、30,31 第4,第5の温度センサ、32 高圧センサ、33 低圧センサ、34 蓄熱媒体温度センサ、40a,40b 室内熱交換器、41a,41b 室内流量制御弁、42a,43a 第6,第7の温度センサ、42b,43b 第8,第9の温度センサ、50 運転制御手段、A 室外機、B 蓄熱槽、C1,C2 室内機。

Claims (5)

  1. 圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、
    前記蓄熱熱交換器を通過した冷媒を取り込む前記圧縮機の吸入側に設けた該圧縮機の吸入圧力を検出する圧力検出装置と、
    蓄冷運転中、予め設定した目標蓄冷時間以内において、前記圧力検出装置が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを、備えたことを特徴とする蓄熱式空調装置。
  2. 前記運転制御手段は、開始からの蓄冷運転時間を予め定めた所定の時間と比較し、開始からの蓄冷運転時間が前記所定の時間よりも短い場合に、前記保護運転を実行することを特徴とする請求項1記載の蓄熱式空調装置。
  3. 前記運転制御手段は、前記圧力検出装置が前記蓄熱槽内にある蓄熱媒体を正常量であるとみなす圧力値を検出するまでは前記蓄熱熱交換器を利用する運転を不可能にすることを特徴とする請求項1又は2記載の蓄熱式空調装置。
  4. 圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、
    前記蓄熱媒体の温度を検出する蓄熱媒体温度検出装置と、
    前記蓄熱熱交換器を通過した冷媒の凝縮温度を検出する冷媒凝縮温度検出装置と、
    蓄熱運転中、前記蓄熱媒体温度検出装置による温度と前記冷媒凝縮温度検出装置による温度との差が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した値となった場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを、備えたことを特徴とする蓄熱式空調装置。
  5. 前記運転制御手段は、前記温度差が前記蓄熱槽内にある蓄熱媒体を正常量であるとみなす温度差になるまでは前記蓄熱熱交換器を利用する運転を不可能にすることを特徴とする請求項4記載の蓄熱式空調装置。
JP2005097641A 2005-03-30 2005-03-30 蓄熱式空調装置 Withdrawn JP2006275449A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097641A JP2006275449A (ja) 2005-03-30 2005-03-30 蓄熱式空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097641A JP2006275449A (ja) 2005-03-30 2005-03-30 蓄熱式空調装置

Publications (1)

Publication Number Publication Date
JP2006275449A true JP2006275449A (ja) 2006-10-12

Family

ID=37210392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097641A Withdrawn JP2006275449A (ja) 2005-03-30 2005-03-30 蓄熱式空調装置

Country Status (1)

Country Link
JP (1) JP2006275449A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063846A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 空気調和装置
CN105588360A (zh) * 2015-06-30 2016-05-18 青岛海信日立空调***有限公司 一种蓄热室外机、热泵***及其控制方法
CN106885406A (zh) * 2017-04-17 2017-06-23 珠海格力电器股份有限公司 空调控制方法、装置和***
US20180058769A1 (en) * 2016-08-24 2018-03-01 Ford Global Technologies, Llc Systems and methods for thermal battery control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063846A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 空気調和装置
JP5963971B2 (ja) * 2013-10-29 2016-08-03 三菱電機株式会社 空気調和装置
CN105588360A (zh) * 2015-06-30 2016-05-18 青岛海信日立空调***有限公司 一种蓄热室外机、热泵***及其控制方法
CN105588360B (zh) * 2015-06-30 2018-09-25 青岛海信日立空调***有限公司 一种蓄热室外机、热泵***及其控制方法
US20180058769A1 (en) * 2016-08-24 2018-03-01 Ford Global Technologies, Llc Systems and methods for thermal battery control
US11002493B2 (en) * 2016-08-24 2021-05-11 Ford Global Technologies, Llc Systems and methods for thermal battery control
CN106885406A (zh) * 2017-04-17 2017-06-23 珠海格力电器股份有限公司 空调控制方法、装置和***
CN106885406B (zh) * 2017-04-17 2023-09-05 珠海格力电器股份有限公司 空调控制方法、装置和***

Similar Documents

Publication Publication Date Title
CN102272534B (zh) 空气调节装置
KR101155345B1 (ko) 공기조화기 및 공기조화기의 제어방법
CN102378881B (zh) 制冷循环装置
JP2017142039A (ja) 空気調和装置
KR100821728B1 (ko) 공기 조화 시스템
WO2012032680A1 (ja) 冷凍サイクル装置
WO2011093050A1 (ja) 冷凍サイクル装置
EP2891849A1 (en) Heat reclaim for a multifunction heat pump and a multifunction air conditioner
JP2010234945A (ja) 鉄道車両用ヒートポンプ空調装置
EP2623897B1 (en) Refrigeration cycle equipment
JP6479181B2 (ja) 空気調和装置
JP2013104623A (ja) 冷凍サイクル装置およびそれを備えた空気調和機
CN101307964B (zh) 制冷循环装置
JP6715655B2 (ja) 冷却装置
JP2006275449A (ja) 蓄熱式空調装置
JP2011153812A (ja) 冷凍サイクル装置
JP2006242506A (ja) 蓄熱式空気調和装置
JP5138292B2 (ja) 空気調和装置
JP5693990B2 (ja) 空気熱源ヒートポンプエアコン
CN106895519A (zh) 空调***及空调器控制方法
JP2018036002A (ja) 空調給湯システム
JP5287820B2 (ja) 空気調和機
JP5927500B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
JP4186492B2 (ja) 空気調和装置
WO2011108019A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603