JP2006272038A - Filter medium and its manufacturing method - Google Patents

Filter medium and its manufacturing method Download PDF

Info

Publication number
JP2006272038A
JP2006272038A JP2005090694A JP2005090694A JP2006272038A JP 2006272038 A JP2006272038 A JP 2006272038A JP 2005090694 A JP2005090694 A JP 2005090694A JP 2005090694 A JP2005090694 A JP 2005090694A JP 2006272038 A JP2006272038 A JP 2006272038A
Authority
JP
Japan
Prior art keywords
vapor deposition
filter medium
carbon fiber
antibacterial
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090694A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shimura
義之 志村
Ritsuo Shimura
律夫 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMURA SHOJI KK
Original Assignee
SHIMURA SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMURA SHOJI KK filed Critical SHIMURA SHOJI KK
Priority to JP2005090694A priority Critical patent/JP2006272038A/en
Publication of JP2006272038A publication Critical patent/JP2006272038A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium which is made to have an adsorptive function by using a porous carbon fiber and contains a material which functions as a photocatalyst and is stuck to the porous carbon fiber by a vapor deposition method or a thermal spraying method and to provide a method for manufacturing the filter medium. <P>SOLUTION: The filter medium is manufactured by sticking the material functioning as the photocatalyst to both sides or one side of a woven fabric, a nonwoven fabric or felt of the porous carbon fiber by the vapor deposition method or the thermal spraying method so that the filter medium can have the adsorptive function and deodorizing and antibacterial actions and keep these function and actions continuously. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フィルター材に関し、多孔質炭素繊維の織布及び不織布の吸着機能に加えて、光触媒作用で、消臭作用を増加させ、抗菌作用も付加して、さらにその相互作用で持続的維持を図るため蒸着加工或いは溶射加工してなる消臭材、空気清浄材、抗菌材、水質浄化材等に有益なフィルター材及びその製造方法に関する。 The present invention relates to a filter material, in addition to the adsorption function of woven and non-woven fabrics of porous carbon fibers, increases the deodorizing effect by photocatalytic action, adds antibacterial action, and further maintains the interaction continuously. The present invention relates to a filter material useful for a deodorizing material, an air cleaning material, an antibacterial material, a water purification material, etc. formed by vapor deposition or thermal spraying, and a method for producing the same.

近年、空気環境や水環境に対する関心が非常に高まり、特に人間の生活空間における悪臭や悪細菌類の除去が必要不可欠の時代になってきた。悪臭の除去や水質の浄化方法として、一般に吸着性を利用した良く知られている物として、活性炭、ゼオライト、セピオライト、麦飯石等の多孔質のセラミックがあり、そのなかでも、吸着力の大きい活性炭が悪臭除去や水質浄化の主流になり、また、特殊なものとして、多孔質炭素繊維の織布或いは不織布があり、空気清浄材や水質浄化材として殆どのものが利用されている。 In recent years, interest in the air environment and the water environment has been greatly increased, and it has become an indispensable era of removal of bad odors and bacteria in human living spaces. Well-known materials that use adsorptivity as a method for removing malodor and water purification include activated carbon, zeolite, sepiolite, barley stone, and other porous ceramics. Has become the mainstream for removing bad odors and purifying water, and as special ones, there are woven or non-woven fabrics of porous carbon fibers, and most of them are used as air purifiers and water purifiers.

悪臭除去の空気清浄器や、水質浄化の浄化器、特に、家庭用の蛇口に取り付ける小型浄化器として、塊状の活性炭を小さな網目容器に詰め込み、悪臭や水中の遊離塩素類を瞬時に通過させて、吸着除去するものであるが、殆どの悪臭や水中の遊離塩素類は高濃度でもあり、瞬時に、小型容器に通過させても、大部分、吸着除去できていないのが現状である。すべての悪臭や水質浄化をするには、循環方式か、通過時間の長い大きな容器に詰め込むしかないのが現状である。また、活性炭等の吸着材を使用しているため、吸着が衡量に達すると、取り替える必要があり、また、高濃度の悪臭の場合、短時間で性能が低下しつつ、吸着できない欠点があった。 Odor removal air purifier and water purification purifier, especially as a small purifier attached to a faucet for home use. However, most offensive odors and free chlorine in water are high in concentration, and even if they are passed through a small container instantaneously, most of them cannot be removed by adsorption. Currently, the only way to purify all offensive odors and water quality is to pack them in a circulation system or a large container with a long transit time. In addition, since an adsorbent such as activated carbon is used, it is necessary to replace it when the adsorption reaches a balance. Also, in the case of a high concentration of bad odor, there is a drawback that the performance deteriorates in a short time and cannot be adsorbed. .

一方、悪臭の除去及び抗菌効果の方法として、注目されるようになってきた光触媒機能材料を使った製品が多く市場にみられるようになった。光触媒機能材料の先行技術が特許や出願或いは市場に販売されている。その中で代表的な下記の3件を挙げる。 On the other hand, as a method of removing malodor and antibacterial effect, many products using photocatalytic functional materials that have been attracting attention have come to be seen in the market. Prior art of photocatalytic functional materials are sold in patents, applications or markets. The following are three typical examples.

特開2000−233113号公報(1)バインダーにより保持された吸着材が含まれる保持用不織布1と、該保持用不織布をその間に挟持する除塵用不織布2及び3とから成る3層の不織布から成る積層構造の脱臭フィルターであって、光触媒がバインダーに含まれていることを特徴とする、脱臭フィルター。(2)前記吸着材は、活性炭を含むことを特徴とする、脱臭フィルター。(3)前記バインダーは、熱可塑性のホットメルト型の粒状結着剤であることを特徴とする脱臭フィルター。(4)前記バインダーは、酸化チタンと該酸化チタンを接着保持する無機接着剤とを含むコーティング剤を含むことを特徴とする、脱臭フィルター。(5)光触媒はバインダー表面に存在していることを特徴とする脱臭フィルター。(6)バインダーに光触媒を含有させる工程、保持用不織布1を除塵用不織布3の上に載置し、保持用不織布1の上方より、前記工程で得られた光触媒を含有するバインダーと吸着材との混合物を散布する工程、次いで除塵用不織布1の上に載置し、加熱圧着することにより3層積層体とする工程を含むことを特徴とする脱臭フィルター。(7)前記記載の脱臭フィルターに、被脱臭成分を含むガスを接触させて被脱臭成分を吸着させる過程と、吸着した被脱臭成分を含むフィルターに光触媒を活性化させる波長の光を含む光を照射する過程とを含むことを特徴とする脱臭フィルターの利用方法。JP, 2000-233113, A (1) It consists of a nonwoven fabric of three layers which consists of non-woven fabric 1 for holding in which an adsorbent held by a binder is contained, and non-woven fabrics 2 and 3 for dust removal which sandwich the non-woven fabric for holding between A deodorizing filter having a laminated structure, wherein a photocatalyst is contained in a binder. (2) The deodorizing filter, wherein the adsorbent contains activated carbon. (3) The deodorizing filter, wherein the binder is a thermoplastic hot-melt type particulate binder. (4) The deodorizing filter, wherein the binder includes a coating agent containing titanium oxide and an inorganic adhesive that adheres and holds the titanium oxide. (5) A deodorizing filter, wherein the photocatalyst is present on the binder surface. (6) A step of incorporating a photocatalyst into the binder, the holding nonwoven fabric 1 is placed on the dust removing nonwoven fabric 3, and the binder and adsorbent containing the photocatalyst obtained in the above step from above the holding nonwoven fabric 1 The deodorizing filter characterized by including the process of spraying the mixture of this, and the process of mounting on the nonwoven fabric 1 for dust removal, and making it a three-layer laminated body by thermocompression bonding. (7) The process of making the gas containing a deodorized component contact the deodorizing filter described above and adsorbing the deodorized component, and light containing light having a wavelength that activates the photocatalyst to the filter containing the adsorbed deodorized component A method of using a deodorizing filter, characterized by comprising a process of irradiation.

光触媒といわれる数〜数百nmの酸化チタンが、太陽光の紫外線にあたると、光電効果で電子が励起、電子と正孔が発生し、電子は、空気中の酸素を還元しスーパーオキサイドイオンに、正孔は表面の水分を酸化して水酸化ラジカルに変える。このスーパーオキサイドイオンと水酸化ラジカルは、強い酸化力を示し、この状態でチタニア表面に有機物が付着すると、スーパーオキサイドイオンが有機物の炭素を、水酸化ラジカルが水素を奪って分解する。こうした自浄作用が、抗菌作用及び消臭作用となるメカニズムとなっている。しかしながら、上記の光触媒は、太陽光の紫外線が当たらなければ光電効果が生じず、また、チタン表面の作用効果であるため、離れたところでの抗菌作用及び消臭作用の効果は全く得られない大きな欠点があるものであった。When several to several hundreds of nanometers of titanium oxide called photocatalyst hits ultraviolet rays of sunlight, electrons are excited by the photoelectric effect, electrons and holes are generated, and the electrons reduce oxygen in the air to superoxide ions. Holes oxidize surface moisture and turn them into hydroxyl radicals. The superoxide ion and hydroxyl radical exhibit strong oxidizing power, and when an organic substance adheres to the titania surface in this state, the superoxide ion decomposes the organic substance carbon and the hydroxyl radical takes hydrogen. Such a self-cleaning action is a mechanism that becomes an antibacterial action and a deodorizing action. However, the above photocatalyst does not produce a photoelectric effect unless it is exposed to the ultraviolet rays of sunlight, and since it is an effect of the titanium surface, it cannot obtain the effect of antibacterial action and deodorizing action at a distance. There was a fault.

蒸着加工及び溶射加工は、一般に金属或いはガラス等に、単一のセラミックを直接コーティングする方法で、金属等の表面を改質高耐磨耗性、高耐熱性、高強度、防錆性等を得られるセラミックコーティング方法である。その蒸着加工方法及び溶射加工方法として、PVD物理的蒸着法、CVD蒸着法、レーザー蒸着法、溶射法が良く知られている。これらのうちより接着強度が得られるプラズマを利用したプラズマ蒸気着及びプラズマ溶射がよく多用されている。Vapor deposition and thermal spraying are generally methods in which a single ceramic is directly coated on a metal or glass, etc., and the surface of the metal is modified to have high wear resistance, high heat resistance, high strength, rust prevention, etc. The resulting ceramic coating method. As the vapor deposition method and thermal spraying method, PVD physical vapor deposition, CVD vapor deposition, laser vapor deposition, and thermal spraying are well known. Of these, plasma vapor deposition and plasma spraying using plasma, which can provide more adhesive strength, are often used.

本発明において解決しようとする問題点は、高濃度の悪臭を除去する消臭材及び水中の遊離塩素類を除去する浄化材として、小型の容器或いは有形成形品たとえば、平板状型状に、通過させるだけで除去できる素材が必要になってきた点であり、また、活性炭バインダー付着フィルターや光触媒バインダー付着フィルターや活性炭バインダー付着複合フィルターに代わる素材が必要になってきた。また、多孔質炭素繊維フィルターでは、抗菌性がない為、悪臭の除去と同時に、悪細菌も殺菌させ、さらに光触媒の欠点である離れたところでも抗菌効果及び消臭作用が促進されるような素材が必要になってきた。   The problem to be solved in the present invention is that as a deodorizing material for removing high-concentration malodor and a purifying material for removing free chlorine in water, a small container or a shaped product, for example, a plate-like mold is passed. In addition, a material that can be removed simply by making it necessary has become necessary, and a material that can replace the activated carbon binder-attached filter, the photocatalyst binder-attached filter, and the activated carbon binder-attached composite filter has become necessary. In addition, porous carbon fiber filter has no antibacterial properties, so it can disinfect odors at the same time as it removes malodors, and further promotes antibacterial and deodorizing effects even at remote locations, which is a disadvantage of photocatalysts. Has become necessary.

上記問題点に鑑みて、吸着性のある多孔質炭素繊維の織布及び不織布或いはフェルトの両面或いは片面に、光触媒機能材料を蒸着加工或いは溶射加工したフィルター材が、悪臭物質及び悪細菌を吸着すると同時に、吸着した悪臭物質及び悪細菌を光触媒機能作用で、消臭分解及び抗菌作用が維持される機能を発揮し得るフィルター材に到達した。   In view of the above problems, when a filter material obtained by vapor-depositing or spraying a photocatalytic functional material on both sides or one side of an adsorbent porous carbon fiber woven fabric and non-woven fabric or felt adsorbs malodorous substances and bacteria. At the same time, the adsorbed malodorous substance and malodorous bacteria reached the filter material that can exhibit the function of maintaining the deodorizing decomposition and antibacterial activity by the photocatalytic function.

本発明において、多孔質の炭素繊維の織布及び不織布として、織布及び不織布を直接炭化賦活した活性炭素織布及び活性炭素不織布、繊維糸を直接炭化した活性炭素繊維を紡織及び不織布化或いはフェルト化した活性炭素織布及び活性炭素不織布或いは活性炭素フェルトをいずれも使用することができる。市販品として、例えば、商品名カイノール 活性炭素繊維クロス及び活性炭繊維不織布 日本カイノール社製を使用することができる。   In the present invention, as the porous carbon fiber woven fabric and nonwoven fabric, the activated carbon woven fabric and activated carbon nonwoven fabric obtained by directly carbonizing the woven fabric and nonwoven fabric, and the activated carbon fiber obtained by directly carbonizing the fiber yarn are spun and formed into a nonwoven fabric or felted. Both activated carbon woven fabric and activated carbon nonwoven fabric or activated carbon felt can be used. As a commercial item, the brand name Kynol activated carbon fiber cloth and activated carbon fiber nonwoven fabric made by Nippon Kynol Co., Ltd. can be used, for example.

本発明において、光触媒機能材料として、アナターゼ型二酸化チタン、ブルッカイト型二酸化チタン、アパタイト被覆酸化チタン、無機セラミック包含二酸化チタン等をいずれも使用することができる。アナターゼ型二酸化チタン及びブルッカイト型二酸化チタンの粒径として、5〜200nmに粉砕されたものを使用することができる。最も好ましくは、6〜30nmの方が電子を励起するうえで有益である。   In the present invention, as the photocatalytic functional material, any of anatase type titanium dioxide, brookite type titanium dioxide, apatite-coated titanium oxide, titanium dioxide including inorganic ceramic, and the like can be used. As the particle size of anatase type titanium dioxide and brookite type titanium dioxide, those pulverized to 5 to 200 nm can be used. Most preferably, 6-30 nm is more beneficial for exciting electrons.

アパタイト被覆二酸化チタンとして、上記二酸化チタンをアパタイト、すなわちリン酸カルシウムで被覆したものを使用することができる。市販品として、例えば、商品名アパタイト被覆酸化チタンNSP−001ナノウェーブ製を使用することができる。無機セラセラミック包含二酸化チタンとして、無機セラミックの成分が、シリカ、アルミナ、酸化クロム、酸化ジルコニウム、ジルコニア、酸化イットリウム等の1種の合成セラミック或いは2種以上含む合成セラミックであり、また、上記成分を含む天然鉱物である。上記の粒径として、平均粒径30ミクロン以下のものを使用することができる。市販品として、例えば、商品名ライオナイト ライオン製を使用することができる。   As the apatite-coated titanium dioxide, it is possible to use the titanium dioxide coated with apatite, that is, calcium phosphate. As a commercial item, the brand name apatite covering titanium oxide NSP-001 nanowave make can be used, for example. As inorganic ceramic ceramic-containing titanium dioxide, the component of the inorganic ceramic is one type of synthetic ceramic such as silica, alumina, chromium oxide, zirconium oxide, zirconia, yttrium oxide, or a synthetic ceramic containing two or more types. Contains natural minerals. As said particle size, an average particle size of 30 microns or less can be used. As a commercial item, the product name Lionite Lion make can be used, for example.

本発明において、蒸着加工として、セラミックを直接に接着加工できるPVD法(物理蒸着)加工のうち、真空蒸着加工及びイオンプレーディング蒸着加工及びスパッタ蒸着加工、CVD法(化学蒸着)加工、レーザー蒸着加工、プラズマ溶射加工のいずれの蒸着加工方法を使用することができる。このうち最も好ましくは、ブラズマを利用したプラズマ蒸着を使用する方が、混合物を強固に接着コーティングできるうえで有利である。   In the present invention, among the PVD methods (physical vapor deposition) that can directly bond ceramics as the vapor deposition, vacuum vapor deposition, ion plating vapor deposition and sputter vapor deposition, CVD (chemical vapor deposition), and laser vapor deposition. Any vapor deposition method such as plasma spraying can be used. Of these, it is most preferable to use plasma deposition utilizing a plasma because the mixture can be firmly adhered and coated.

本発明は、多孔質炭素繊維の織布又は不織布或いはフェルトの両面又は片面に、光触媒機能材料を、蒸着加工或いは溶射加工することにより、悪臭物質及び悪細菌を吸着力すると同時に、吸着した悪臭物質及び悪細菌を光触媒作用で悪臭分解及び抗菌し、さらにその作用効果で持続的長期に消臭並びに抗菌でき、かつ高能率で除去できるフィルター材及びその製造法として優れた効果を奏する。   The present invention relates to adsorbing malodorous substances and malodorous bacteria at the same time by adsorbing or spraying a photocatalytic functional material on both sides or one side of a porous carbon fiber woven or non-woven fabric or felt. In addition, the present invention has an excellent effect as a filter material that can be decomposed and antibacterial by photocatalytic action and decomposed and antibacterial by photocatalytic action, and can be deodorized and antibacterized for a long period of time by the action and can be removed with high efficiency.

以下に、実施例を挙げて、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

実施例の試料の作成方法として、(1)蒸着加工方法では、スパッタ法プラズマ蒸着方法のECRスパッタ装置を使用して、3mm厚のカイノール活性炭繊維不織布(日本カイノール製)に、光触媒二酸化チタンPC−101チタン工業製を、塗布量約10g/m2 でプラズマ蒸着加工をして、実施例1の試料を作成した。(2)プラズマ溶射加工方法とて、プラズマ溶射装置を使用して、3mm厚のカイノール活性炭繊維不織布に、光触媒二酸化チタンPC−101チタン工業製を、塗布量約10g/m2 でプラズマ溶射加工をして、実施例2の試料を作成した。さらに、ブラックライトを内部に装着した空気清浄器に試料1あるいは試料2〜をセットし、会社トイレで、2ケ月間使用したフィルターを実施例3並びに実施例4の試料とした。 As a sample preparation method of the examples, (1) In the vapor deposition processing method, an ECR sputtering apparatus of a sputtering method plasma vapor deposition method is used to form a 3 mm-thick kainol activated carbon fiber nonwoven fabric (manufactured by Nihon Kaynol), photocatalytic titanium dioxide PC- A sample of Example 1 was prepared by subjecting 101 Titanium Industry Co., Ltd. to plasma deposition processing at an application amount of about 10 g / m 2 . (2) Plasma spraying using a plasma spraying apparatus, plasma spraying using a photocatalytic titanium dioxide PC-101 titanium industry on a 3 mm thick quinol activated carbon fiber nonwoven fabric with a coating amount of about 10 g / m 2 Thus, a sample of Example 2 was prepared. Further, Sample 1 or Sample 2 was set in an air cleaner equipped with a black light, and a filter used for two months in a company toilet was used as a sample of Example 3 and Example 4.

消臭試験
消臭試験方法として、検知管法を用いた。試験方法として、5リットルのテトラーバッグに実施例の試料5cm角及び所定濃度のアンモニア或いは硫化水素を充填して、10分の脱臭率を求めた。アンモニアガスの初期濃度として、100ppm、硫化水素ガスの初期濃度として、50ppmとした。環境条件として、ブラックライト照射方法で行った。その結果を、表1に示した。
Deodorization test As a deodorization test method, the detector tube method was used. As a test method, a 5-liter square bag was filled with 5 cm square of the sample of Example and a predetermined concentration of ammonia or hydrogen sulfide, and the deodorization rate for 10 minutes was determined. The initial concentration of ammonia gas was 100 ppm, and the initial concentration of hydrogen sulfide gas was 50 ppm. The environmental condition was the black light irradiation method. The results are shown in Table 1.

Figure 2006272038
消臭試験の結果、実施例1〜4共に、大差なく短時間で高効率に消臭したこと、また、実施例3及び4の長期使用のフィルターが吸着と同時に、光触媒作用で分解した為に、初期使用の実施例1及び2と変らない消臭作用が得られたことが明らかとなった。
Figure 2006272038
As a result of the deodorization test, both Examples 1 to 4 were deodorized with high efficiency in a short time without much difference, and the long-term use filters of Examples 3 and 4 were decomposed by the photocatalytic action simultaneously with the adsorption. It became clear that the deodorizing action which was not different from Example 1 and 2 of initial use was obtained.

抗菌試験
抗菌試験として、(財)日本紡績検査協会で試験を行なった。試験方法として、JIS−L1902定量試験法を準拠した。試験菌株として、MRSA(耐性黄色ぶどう球菌)を使用した。環境条件として、ブラックライト照射時の方法で行なった。その結果を、表2に示した。
Antibacterial test As an antibacterial test, a test was conducted by the Japan Spinning Inspection Association. As a test method, JIS-L1902 quantitative test method was applied. MRSA (resistant Staphylococcus aureus) was used as a test strain. The environmental conditions were the same as that used for black light irradiation. The results are shown in Table 2.

Figure 2006272038
上記の抗菌試験結果から明らかなように、実施例1〜4共に、大差なく高い抗菌性の性能を有することで、実施例3及び4の長期使用のフィルターが吸着と同時に、光触媒で分解したために初期使用の実施例1及び2と変らない抗菌作用が得られたことが明らかとなった。
Figure 2006272038
As is clear from the above antibacterial test results, both Examples 1 to 4 have high antibacterial performance, so that the long-term filters of Examples 3 and 4 were decomposed by the photocatalyst simultaneously with adsorption. It became clear that the antibacterial effect which was not different from Example 1 and 2 of the initial use was obtained.

水質浄化試験
試験方法として、100ccのビーカーに各々の試料を入れ、次いで水道水を注ぎ、その直後に、水道水中の遊離塩素を、オルトトリジン法の簡易測定遊離塩素測定キット(井内盛栄堂製)を用いて、測定した。環境条件として、ブラックライト照射時の方法で行なった。その結果を、表3に示した。
Water quality purification test As a test method, put each sample into a 100cc beaker, then pour tap water, and immediately after that, free chlorine in tap water, a simple measurement free chlorine measurement kit (manufactured by Inoue Seieido) of the orthotolidine method. And measured. The environmental conditions were the same as that used for black light irradiation. The results are shown in Table 3.

Figure 2006272038
上記の水質浄化試験結果から、実施例1〜4共に、瞬時に水道水中の遊離塩素が無くなったことが明らかとなった。この現象は、吸着力と同時に、光触媒作用で瞬時に遊離塩素が分解したことが明らかである。また、実施例3及び4の長期使用のフィルターが吸着と同時に、光触媒作用で分解したために、初期使用の実施例1及び2と変らない浄化作用が得られたことが明らかとなった。
Figure 2006272038
From the above water quality purification test results, it was revealed that in all of Examples 1 to 4, free chlorine in tap water disappeared instantaneously. This phenomenon clearly shows that free chlorine was instantaneously decomposed by the photocatalytic action as well as the adsorptive power. In addition, since the long-term filters of Examples 3 and 4 were decomposed by photocatalytic action at the same time as the adsorption, it was clarified that a purification action that was not different from that of Examples 1 and 2 of the initial use was obtained.

比較例
本発明をより明らかにするため、比較例を示して実施例の作用効果を明らかにする。
Comparative Example In order to clarify the present invention, a comparative example is shown to clarify the operational effects of the example.

比較例の試料として、実施例で用いた同じカイノール活性炭不織布を使用した。   As the sample of the comparative example, the same quinol activated carbon nonwoven fabric used in the examples was used.

消臭試験
比較例の消臭試験方法は、実施例と同じ方法で行なった。その結果を、表4に示した。その結果、比較例は、アンモニア及び硫化水素の脱臭率は、45〜50%と実施例よりも半減していた。短時間では脱臭できないことが明らかである。
Deodorization test The deodorization test method of the comparative example was performed in the same manner as in the examples. The results are shown in Table 4. As a result, in the comparative example, the deodorization rate of ammonia and hydrogen sulfide was 45 to 50%, which was half that of the example. It is clear that it cannot be deodorized in a short time.

Figure 2006272038
抗菌試験
抗菌試験方法として、実施例と同じ方法で行なった。その結果を表5に示した。その結果、比較例は全く抗菌性が得られないものであることが明らかである。
Figure 2006272038
Antibacterial test The antibacterial test was carried out in the same manner as in the examples. The results are shown in Table 5. As a result, it is clear that the comparative example cannot obtain antibacterial properties at all.

Figure 2006272038
水質浄化試験
水質浄化試験方法として、実施例と同じ方法で行なった。その結果を、表6に示した。
Figure 2006272038
Water purification test The water purification test was performed in the same manner as in the examples. The results are shown in Table 6.

Figure 2006272038
その結果、比較例は、遊離塩素濃度が、50%半減したのみとなり、瞬時に吸着できるものでなかった。
Figure 2006272038
As a result, in the comparative example, the free chlorine concentration was only halved by 50%, and it was not possible to adsorb instantaneously.

Claims (3)

多孔質炭素繊維の織布又は不織布及びフェルトの両面或いは片面に、光触媒機能材料を、蒸着加工或いは溶射加工してなることを特徴とするフィルター材。 A filter material, wherein a photocatalytic functional material is vapor-deposited or sprayed on both or one side of a porous carbon fiber woven or non-woven fabric and felt. 前記蒸着加工をPVD法物理的蒸着加工或いはCVD法化学的蒸着加工或いはレーザー蒸着加工してなる請求項1記載のフィルター材。 The filter material according to claim 1, wherein the vapor deposition is performed by PVD physical vapor deposition, CVD chemical vapor deposition, or laser vapor deposition. 前記溶射加工をプラズマ蒸着加工してなる請求項1記載のフィルター材。 The filter material according to claim 1, wherein the thermal spraying is performed by plasma deposition.
JP2005090694A 2005-03-28 2005-03-28 Filter medium and its manufacturing method Pending JP2006272038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090694A JP2006272038A (en) 2005-03-28 2005-03-28 Filter medium and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090694A JP2006272038A (en) 2005-03-28 2005-03-28 Filter medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006272038A true JP2006272038A (en) 2006-10-12

Family

ID=37207299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090694A Pending JP2006272038A (en) 2005-03-28 2005-03-28 Filter medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006272038A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049140A1 (en) * 2009-10-20 2011-04-28 株式会社フジコー Fibrous filter and air purification device
WO2015088003A1 (en) * 2013-12-13 2015-06-18 株式会社フジコー Air cleaning filter and air cleaner provided with same
JP2018530426A (en) * 2015-09-14 2018-10-18 デ モントフォート ユニバーシティ Rotary contact reactor
JP6989993B1 (en) 2021-09-09 2022-01-14 壽幸 三好 Crushing and sterilizing equipment for waste decomposition equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049140A1 (en) * 2009-10-20 2011-04-28 株式会社フジコー Fibrous filter and air purification device
KR101351485B1 (en) * 2009-10-20 2014-01-14 후지코 가부시키가이샤 Fibrous filter and air purification device
JP5390630B2 (en) * 2009-10-20 2014-01-15 株式会社フジコー Filter and air purifier
WO2015088003A1 (en) * 2013-12-13 2015-06-18 株式会社フジコー Air cleaning filter and air cleaner provided with same
CN105813710A (en) * 2013-12-13 2016-07-27 株式会社富士工 Air cleaning filter and air cleaner provided with same
JPWO2015088003A1 (en) * 2013-12-13 2017-03-16 株式会社フジコー Air purifying filter and air purifier provided with the same
JP2018530426A (en) * 2015-09-14 2018-10-18 デ モントフォート ユニバーシティ Rotary contact reactor
JP6989993B1 (en) 2021-09-09 2022-01-14 壽幸 三好 Crushing and sterilizing equipment for waste decomposition equipment
JP2023039524A (en) * 2021-09-09 2023-03-22 壽幸 三好 Crush and sterilization device of waste decomposition apparatus

Similar Documents

Publication Publication Date Title
KR100313891B1 (en) photocatalyst filter, method for fabricating the same and air cleaner using the same
KR101962356B1 (en) Air purifier with complex filter
KR101321493B1 (en) Air filter which having superior effective to filtration of super fine particle and sterilization
JP5173105B2 (en) Filter media
JP2011056155A (en) Air cleaner
JP2004002176A (en) Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same
US20130236365A1 (en) Adsorptive photo-catalytic oxidation air purification device
US9943785B2 (en) Water purifier
KR20220115593A (en) Method for manufacturing photocatalytic device, photocatalytic device, photocatalytic composition and gas decontamination device
JP2017035645A (en) Adsorbent, method for producing adsorbent, filter for air cleaning and air cleaning machine
JP2006272038A (en) Filter medium and its manufacturing method
JP3713667B1 (en) Multi-functional filter material
KR200432637Y1 (en) Cabin air filter
KR100395264B1 (en) Photocatalytic composition having functions of air purification and antimicrobial activity and a moth-proof net coated with the composition
KR100773913B1 (en) Preparing method of filter member for heat exchanger
JP2004350935A (en) Filter
JP2000102598A (en) Air purifying membrane and article provided with it
Kabir et al. A review of some representative techniques for controlling the indoor volatile organic compounds
CN112781164B (en) Photocatalytic air purification and sterilization fiber, manufacturing method and application thereof, photocatalytic air purification and sterilization filter and manufacturing method thereof
JP2000167034A (en) Air cleaning filter device and air cleaner using such device
JP2005245998A (en) Bactericidal and deodorizing filter, and air purifier equipped with the same
JP2000070726A (en) Oxide photocatalyst and article with same
KR100475276B1 (en) Air purification method
JP2009297700A (en) Air cleaner having co decomposition function
JP5083295B2 (en) Photocatalyst carrier and method for producing photocatalyst carrier