JP2006266794A - Probe for magnetic force microscope - Google Patents

Probe for magnetic force microscope Download PDF

Info

Publication number
JP2006266794A
JP2006266794A JP2005083652A JP2005083652A JP2006266794A JP 2006266794 A JP2006266794 A JP 2006266794A JP 2005083652 A JP2005083652 A JP 2005083652A JP 2005083652 A JP2005083652 A JP 2005083652A JP 2006266794 A JP2006266794 A JP 2006266794A
Authority
JP
Japan
Prior art keywords
magnetic
probe
magnetic force
tip
force microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005083652A
Other languages
Japanese (ja)
Other versions
JP4485393B2 (en
Inventor
Takekazu Ishida
武和 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP2005083652A priority Critical patent/JP4485393B2/en
Publication of JP2006266794A publication Critical patent/JP2006266794A/en
Application granted granted Critical
Publication of JP4485393B2 publication Critical patent/JP4485393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe for a magnetic force microscope capable of observing a magnetic domain structure without causing the invasion problem of local magnetism even in the magnetic domain structure of a nanometer size. <P>SOLUTION: In the probe 10 for the magnetic force microscope having a magnetic region at its pointed end part 12 and detecting the magnetic force caused by allowing the magnetic region to approach the surface of a sample, the magnetic region of the pointed end part 12 of the probe 10 is formed of a dia-ferromagnetic single crystal to micronize the self-magnetic field leaked from the magnetic region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気力顕微鏡用のプローブに関し、さらに詳細には、ナノスケール以下の磁区構造の観察、究極的には磁束量子単位での磁気測定を目標とした微小な磁気力検出のための磁気力顕微鏡用プローブに関する。   The present invention relates to a probe for a magnetic force microscope. More specifically, the present invention relates to a magnetic field for detecting a minute magnetic force aimed at observing a magnetic domain structure below a nanoscale, and ultimately measuring a magnetic field in a flux quantum unit. The present invention relates to a force microscope probe.

走査型の磁気力顕微鏡(MFM)は、例えば磁気記憶媒体等の磁性体試料における磁区構造の観察に用いられている。
一般に、磁気力顕微鏡は、プローブの尖端部に強磁性膜が形成された磁気力顕微鏡専用のプローブを用いており、このプローブで磁性体試料の表面を走査し、そのときに作用する引力あるいは斥力に基づいて磁気力勾配を測定したり、試料表面における磁区構造の磁化方向が上向きか下向きかを測定したりし、これにより、試料表面の磁場画像や磁区構造を観察できるようにしている。
A scanning magnetic force microscope (MFM) is used for observing a magnetic domain structure in a magnetic material sample such as a magnetic storage medium.
In general, a magnetic force microscope uses a probe dedicated to a magnetic force microscope in which a ferromagnetic film is formed at the tip of the probe, and the surface of the magnetic sample is scanned with this probe, and the attractive force or repulsive force acting at that time is scanned. Based on the above, the magnetic force gradient is measured, or the magnetization direction of the magnetic domain structure on the sample surface is measured upward or downward, so that the magnetic field image or magnetic domain structure on the sample surface can be observed.

一方、先端部が導電性強磁性体層と絶縁性反強磁性体層との積層膜構造であるプローブを用いることにより、外部磁場を印加することなく、隣接する反強磁性体層との交換異方性を利用してプローブの強磁性体層のスピン磁気能率を特定方向に規定し、測定を行う走査型プローブ顕微鏡用の短針が開示されている(特許文献1参照)。   On the other hand, by using a probe whose tip is a laminated film structure of a conductive ferromagnetic layer and an insulating antiferromagnetic layer, it is possible to exchange with an adjacent antiferromagnetic layer without applying an external magnetic field. A short needle for a scanning probe microscope is disclosed in which anisotropy is used to define the spin magnetic efficiency of a ferromagnetic layer of a probe in a specific direction and perform measurement (see Patent Document 1).

同様に、プローブ先端に強磁性層と反強磁性層とを含む磁気構造が形成されることにより、顕微鏡としての解像度を高めるとともに、プローブ先端と試料との相互作用により生じる試料の磁区への影響を避けるようにした磁気プローブか開示されている(特許文献2参照)。
特開平6−94813号公報 特開2003−166929号公報
Similarly, by forming a magnetic structure including a ferromagnetic layer and an antiferromagnetic layer at the probe tip, the resolution as a microscope is enhanced and the influence on the magnetic domain of the sample caused by the interaction between the probe tip and the sample is increased. A magnetic probe that avoids the above has been disclosed (see Patent Document 2).
JP-A-6-94813 JP 2003-166929 A

従来の磁気力顕微鏡用のプローブでは、上述したように、基本的に強磁性体層を有している。そのため、プローブの強磁性体層が発生する自己磁場が測定試料へ及ぼす影響、すなわち、局所磁性の侵襲作用(磁区構造の書き換え)を低減する必要があり、一部のプローブでは、上述したように強磁性体層に反強磁性薄膜層を積層形成する構造が提案されていた。
ところで磁気記憶媒体は、記憶素子の高密度化が求められており、そのためには磁気記憶の単位となる磁区構造の微細化を図る必要があり、早晩、磁気記憶媒体の磁区構造は、ナノメートルオーダに達すると考えられる。
A conventional probe for a magnetic force microscope basically has a ferromagnetic layer as described above. Therefore, it is necessary to reduce the influence of the self magnetic field generated by the ferromagnetic layer of the probe on the measurement sample, that is, the invasive action of local magnetism (rewriting of the magnetic domain structure). A structure in which an antiferromagnetic thin film layer is formed on a ferromagnetic layer has been proposed.
By the way, a magnetic storage medium is required to have a high density of storage elements. To that end, it is necessary to refine the magnetic domain structure that is a unit of magnetic storage. It is considered to reach the order.

磁区構造の微細化が進むにつれ、磁区構造の解析技術も微細化させる必要があり、磁気力顕微鏡による観察がますます重要になる。ところが磁気力顕微鏡による観察を行う場合、局所磁性の侵襲が避けられない問題となる。すなわち、磁区の微細化とともに、試料の磁区構造についても、プローブの強磁性体層の影響による磁気力で、これまで以上に簡単に磁気反転が発生してしまうことになる。
そこで、本発明は、微細な磁区構造、特に、ナノメートルサイズの微小な磁区構造であっても局所磁性の侵襲の問題が生じることなく磁区構造の観測が可能な磁気力顕微鏡用プローブを提供することを目的とする。
As the magnetic domain structure is further refined, it is necessary to refine the magnetic domain structure analysis technique, and observation with a magnetic force microscope becomes more and more important. However, when observing with a magnetic force microscope, invasion of local magnetism becomes an unavoidable problem. That is, along with the miniaturization of the magnetic domain, the magnetic reversal of the magnetic domain structure of the sample is more easily caused by the magnetic force due to the influence of the ferromagnetic layer of the probe.
Therefore, the present invention provides a probe for a magnetic force microscope capable of observing a magnetic domain structure without causing a problem of local magnetic invasion even with a fine magnetic domain structure, in particular, a nanometer-sized fine magnetic domain structure. For the purpose.

また、本発明は、磁区構造の最小単位と見なせる磁束量子、すなわちSQUID素子など超伝導体を用いたデバイスによって計測される磁束量子単位の変化の無侵襲計測が可能な磁気力顕微鏡用プローブを提供することを目的とする。   The present invention also provides a magnetic force microscope probe capable of non-invasive measurement of changes in magnetic flux quantum that can be regarded as a minimum unit of a magnetic domain structure, that is, a magnetic quantum unit measured by a device using a superconductor such as a SQUID element. The purpose is to do.

上記課題を解決するためになされた本発明の磁気力顕微鏡用プローブは、尖端部に磁性体領域を有し、この磁性体領域を試料表面に接近させることにより試料との磁気的相互作用により生じる磁気力を検出する磁気力顕微鏡用プローブであって、プローブ尖端部の磁性体領域が反強磁性単結晶で形成されるようにしている。   The probe for a magnetic force microscope of the present invention, which has been made to solve the above problems, has a magnetic region at the tip, and is caused by magnetic interaction with the sample by bringing the magnetic region close to the sample surface. A probe for a magnetic force microscope that detects a magnetic force, wherein a magnetic region at the tip of the probe is formed of an antiferromagnetic single crystal.

すなわち、プローブ尖端部に反強磁性体単結晶の磁性体領域を形成し、強磁性体材料を用いないようにする。反強磁性体単結晶は、結晶内で上向きスピン層と下向きスピン層とが交互に並んでいるため、プローブ尖端に反強磁性体単結晶を取り付ける際の結晶軸の方向により、最表面に現れるスピンの向きを定めることができる。したがって、反強磁性単結晶の最表面に一方のスピン層を露出させることにより、最表面スピン層の原子は、測定試料側が形成する磁場に近づくことで、大きな相互作用(引力または斥力)が生じる。一方、最表面原子層以外の内側層の原子スピンは、上向きスピン、下向きスピンが形成する磁場どうしが互いに打ち消し合い、その結果、外部に大きな磁気的影響を与えるのは、実質的に最表面のスピンだけとなる。   That is, an antiferromagnetic single crystal magnetic region is formed at the tip of the probe so that no ferromagnetic material is used. The antiferromagnetic single crystal has an upward spin layer and a downward spin layer alternately arranged in the crystal, so that it appears on the outermost surface depending on the direction of the crystal axis when the antiferromagnetic single crystal is attached to the probe tip. The direction of the spin can be determined. Therefore, by exposing one spin layer on the outermost surface of the antiferromagnetic single crystal, the atoms on the outermost surface spin layer approach a magnetic field formed on the measurement sample side, and a large interaction (attraction or repulsion) occurs. . On the other hand, the atomic spins of the inner layer other than the outermost surface atomic layer cancel each other out of the magnetic fields formed by the upward spin and the downward spin, and as a result, it is substantially the outermost surface that has a large magnetic influence. Only spin.

その結果、反強磁性単結晶を用い、最表面に上向き、下向きのいずれか一方のみのスピン層を露出させた場合には、この最表面に露出しているスピンと近接する位置に磁性体試料がある場合に、最表面露出スピンと試料との間で磁気力を生じ、プローブに引力または斥力を生じる。このように、プローブ尖端部の最表面のスピンのみが試料との間で磁気的相互作用を及ぼすようになるので、これを検出する。最表面層のスピンによる磁気的相互作用(すなわちプローブが作る自己磁場による相互作用)の影響が及ぶ範囲は、ナノメートルオーダの範囲であり、これまでのプローブに比べて格段に小さい磁気領域(磁区構造)単位での検出することができるとともに、これまでと比べて格段に小さい自己磁場しか漏れ出さないため、試料の磁区構造に与える影響はほとんどない。   As a result, when an antiferromagnetic single crystal is used and only one of the upward and downward spin layers is exposed on the outermost surface, the magnetic material sample is positioned close to the spin exposed on the outermost surface. When there is a magnetic force, a magnetic force is generated between the surface-exposed spin and the sample, and an attractive or repulsive force is generated on the probe. In this way, only the spin on the outermost surface of the probe tip has a magnetic interaction with the sample, and this is detected. The range affected by the magnetic interaction due to the spin of the outermost surface layer (that is, the interaction due to the self-magnetic field generated by the probe) is in the nanometer order, which is a much smaller magnetic region (magnetic domain) than conventional probes. The structure can be detected in units, and only a self magnetic field that is much smaller than before leaks out, so there is almost no influence on the magnetic domain structure of the sample.

ここで、磁気力顕微鏡用プローブの形状には、一端に尖端部が形成され、他端が顕微鏡本体に支持されるカンチレバータイプのものを用いることができる。例えば、原子間力顕微鏡用(AFM用)のカンチレバープローブを加工して、その尖端部に反強磁性体単結晶の磁性体領域を形成するようにしてもよい。   Here, as the shape of the probe for the magnetic force microscope, a cantilever type having a pointed end at one end and the other end supported by the microscope main body can be used. For example, a cantilever probe for an atomic force microscope (for AFM) may be processed to form an antiferromagnetic single crystal magnetic region at the tip.

プローブの尖端部の磁性体領域を形成する反強磁性単結晶には、NiO、MnO、FeS、MnTe、MnF、FeF、FeCl、FeO、CoCl、CoO、NiCl、Cr、LaCrO,LaFeO,MnTiO,FeTiO,Pr1−xCaMnOを用いることができる。
これらの反強磁性単結晶は、結晶軸方向を調整することにより、表面に露出する原子面(すなわち結晶軸方向)を、強磁性的な性質の面または反強磁性的な性質の面にすることができる。したがって、プローブ尖端に露出する端面を選択することにより、プローブ尖端が試料表面から受ける相互作用の方向や大きさを制御することができる。
The antiferromagnetic single crystal that forms the magnetic region at the tip of the probe includes NiO, MnO, FeS, MnTe, MnF 2 , FeF 2 , FeCl 2 , FeO, CoCl 2 , CoO, NiCl 2 , Cr, LaCrO 3 LaFeO 3 , MnTiO 3 , FeTiO 3 , Pr 1-x Ca x MnO 3 can be used.
In these antiferromagnetic single crystals, by adjusting the crystal axis direction, the atomic plane exposed on the surface (that is, the crystal axis direction) is made a surface having a ferromagnetic property or a surface having an antiferromagnetic property. be able to. Therefore, by selecting the end face exposed at the probe tip, the direction and magnitude of the interaction that the probe tip receives from the sample surface can be controlled.

また、プローブ尖端部の磁性体領域は、反強磁性単結晶のスピンが揃った面がプローブ尖端部の最尖端面となるように反強磁性単結晶の結晶軸方向が定められるようにしてもよい。プローブ尖端部の最尖端表面に露出する原子面を、スピン方向が上向きまたは下向きのいずれか一方のスピン方向が揃った原子面にすることで、プローブ最表面の原子面と試料の磁気領域との間で、打ち消されない磁気的相互作用を生じさせることができる。例えば、試料面に形成された垂直磁化膜の磁区構造(磁化方向)を観察する場合に、垂直磁化膜からの磁力線とプローブのスピン方向とが平行になるため、最も感度よく検出することができる。また、垂直磁化膜側に漏れ出ている自己磁場は最表面の原子面に含まれる原子のスピンによる磁場の影響だけであることから、磁区の磁化方向の反転は生じにくい。   In addition, the magnetic region of the probe tip may be configured such that the crystal axis direction of the antiferromagnetic single crystal is determined so that the surface where the spins of the antiferromagnetic single crystal are aligned becomes the extreme tip of the probe tip. Good. By making the atomic plane exposed on the top surface of the probe tip the atomic plane with the spin direction of either the upward or downward spin direction aligned, the atomic surface of the probe outermost surface and the magnetic region of the sample In between, magnetic interactions that are not counteracted can occur. For example, when observing the magnetic domain structure (magnetization direction) of the perpendicular magnetization film formed on the sample surface, the magnetic field lines from the perpendicular magnetization film and the spin direction of the probe are parallel, so that detection can be performed with the highest sensitivity. . Further, since the self-magnetic field leaking to the perpendicular magnetization film side is only the influence of the magnetic field due to the spin of atoms contained in the outermost atomic plane, the magnetization direction of the magnetic domain is hardly reversed.

本発明によれば、プローブ尖端部に強磁性体領域を形成することなく、反強磁性体単結晶でプローブの磁性体領域を形成したので、磁性体領域から漏れ出る自己磁場が微小磁場となり、ナノメートルサイズの磁区構造であっても、磁気反転現象を生じさせることがなくなるので局所磁性の侵襲問題を生じることなく磁区構造の観測が可能となる。
また、測定対象が超伝導体デバイスの場合には、磁束量子単位の変化の無侵襲計測が可能となる。
According to the present invention, since the magnetic region of the probe is formed of an antiferromagnetic single crystal without forming a ferromagnetic region at the probe tip, the self-magnetic field leaking from the magnetic region becomes a minute magnetic field, Even a nanometer-sized magnetic domain structure does not cause a magnetic reversal phenomenon, so that the magnetic domain structure can be observed without causing the problem of local magnetic invasion.
In addition, when the measurement target is a superconductor device, non-invasive measurement of changes in magnetic flux quantum units is possible.

さらに、反強磁性単結晶にNiO、MnO、FeSなどを用いることができるので、結晶軸方向を調整することにより、表面に露出する原子面(すなわち結晶軸方向)を、強磁性的な性質の面または反強磁性的な性質の面にすることができ、プローブ尖端に露出する端面を選択することにより、プローブ尖端が試料表面から受ける相互作用の方向や大きさを制御することができる。
具体的に例示すると、NiOやMnOは、常磁性イオンが面心立方格子を形成し、{111}方向にスピンが揃った面が現れるのでこの方向に露出面を切り出すことにより強磁性的な性質を得ることができる。また、MnTe、FeClは六方層状構造を形成し、MnFは体心正方構造を形成しているので、適当な方向の端面を選択することにより異なるスピン面を露出させることができる。
Furthermore, since NiO, MnO, FeS, etc. can be used for the antiferromagnetic single crystal, by adjusting the crystal axis direction, the atomic plane exposed on the surface (that is, the crystal axis direction) is made ferromagnetic. By selecting the end face exposed to the probe tip, the direction and magnitude of the interaction that the probe tip receives from the sample surface can be controlled.
Specifically, NiO and MnO form a face-centered cubic lattice of paramagnetic ions, and a surface in which spins are aligned in the {111} direction appears. Therefore, by cutting the exposed surface in this direction, ferromagnetic properties are obtained. Can be obtained. Further, since MnTe and FeCl 2 form a hexagonal layered structure and MnF 2 forms a body-centered tetragonal structure, different spin planes can be exposed by selecting an end face in an appropriate direction.

さらに、プローブ尖端部の最尖端表面に露出する原子面を、スピン方向が揃った原子面にすることで、プローブ最表面の原子面と試料の磁気構造との間で、打ち消されない磁気的相互作用を生じさせることができ、例えば、試料面に形成された垂直磁化膜の磁区構造(磁化方向)を観察する場合に、垂直磁化膜からの磁力線とプローブのスピン方向とが平行になるため、微小な磁区構造を感度よく検出することができる。   Furthermore, by making the atomic surface exposed on the top surface of the probe tip part an atomic surface with a uniform spin direction, the magnetic mutual relationship between the atomic surface of the probe top surface and the magnetic structure of the sample is not canceled. For example, when observing the magnetic domain structure (magnetization direction) of the perpendicular magnetization film formed on the sample surface, the magnetic field lines from the perpendicular magnetization film and the spin direction of the probe are parallel. A minute magnetic domain structure can be detected with high sensitivity.

以下、本発明の一実施形態について、図面を用いて説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることは言うまでもない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the gist of the present invention.

図1は、本発明の一実施形態である磁気力顕微鏡用のプローブの構成を示す図である。
プローブ10は、プローブ本体11と、その一端に形成される尖端部12とから構成される。
このプローブ10は、走査型トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)で用いるカンチレバープローブと同形状にすることで、STMやAFM等で採用している検出機構をそのまま用いて、磁気力を測定できるようにしている。例えば、プローブ本体11部分にレーザビームを照射し、プローブ本体で反射させ、この反射光を光検出器でモニタするいわゆる光梃子方式の検出機構を用いることができる。
FIG. 1 is a diagram showing a configuration of a probe for a magnetic force microscope according to an embodiment of the present invention.
The probe 10 includes a probe main body 11 and a pointed end portion 12 formed at one end thereof.
This probe 10 has the same shape as a cantilever probe used in a scanning tunneling microscope (STM) or an atomic force microscope (AFM), so that the detection mechanism employed in the STM or AFM can be used as it is, and the magnetic force Can be measured. For example, it is possible to use a so-called optical insulator type detection mechanism that irradiates the probe main body 11 with a laser beam, reflects it with the probe main body, and monitors the reflected light with a photodetector.

なお、磁気力と原子間力とが同時に測定される系では、別途にAFM用のプローブによる原子間力の測定を行っておき、本発明による磁気力顕微鏡用のプローブ10による磁気力と原子間力とを含む測定を行い、差分をとることにより磁気力を計測することができる。   In the system in which the magnetic force and the interatomic force are measured simultaneously, the atomic force is separately measured by the AFM probe, and the magnetic force and the interatomic force by the probe 10 for the magnetic force microscope according to the present invention are measured. The magnetic force can be measured by performing a measurement including the force and taking the difference.

プローブ本体11には、原子間力顕微鏡(AFM)や走査型トンネル顕微鏡(STM)のプローブと同じく、SiN(窒化シリコン)やSi(シリコン)を用いる。これ以外の材料として、ガラス、あるいは非強磁性体金属材料、非反強磁性体金属材料を用いてもよい。   The probe body 11 is made of SiN (silicon nitride) or Si (silicon) as in the case of an atomic force microscope (AFM) or a scanning tunneling microscope (STM). As other materials, glass, a non-ferromagnetic metal material, or a non-antiferromagnetic metal material may be used.

尖端部12には、反強磁性単結晶であるNiOを用いる。NiOは、図3に示すように、NaCl構造を有しており、その(111)面内のNi原子のスピンは、強磁性的に並び、隣り合う(111)面どうしは、反強磁性的な結合をしている。NiOは、例えば公知のTSFZ炉により結晶成長させることができるので、NiOを結晶成長させ、結晶軸方向を確認しながらプローブ本体11に貼り付ければよい。   NiO, which is an antiferromagnetic single crystal, is used for the tip portion 12. As shown in FIG. 3, NiO has a NaCl structure, and the spins of Ni atoms in the (111) plane are arranged ferromagnetically, and adjacent (111) planes are antiferromagnetic. Have a strong bond. Since NiO can be crystal-grown using, for example, a known TSFZ furnace, NiO may be crystal-grown and attached to the probe body 11 while confirming the crystal axis direction.

NiOの取り付けは、図2(a)の模式図に示すように、尖端部12の軸方向(鉛直方向)に沿って上向きスピン層と下向きスピン層とが積層するようにNiO結晶の軸方向を選択して、プローブ本体11の一端に形成する。これにより、尖端部12の最尖端表面(露出する端面)に一方のスピン層が露出するようにする。この場合、NiO結晶のバルク部分(表面以外の部分)を構成するスピンから漏れ出る磁場の影響は相殺されるようになり(最表面以外のスピンは、互いの磁場を相殺するともに試料からの距離が最表面の原子よりも離れているため影響は激減することになる)、最尖端表面(端面)のスピンから漏れ出る磁場のみが測定対象となる試料と相互作用するようになる。   As shown in the schematic diagram of FIG. 2A, the NiO is attached by changing the axial direction of the NiO crystal so that the upward spin layer and the downward spin layer are laminated along the axial direction (vertical direction) of the tip 12. Select and form at one end of the probe body 11. As a result, one spin layer is exposed on the most apex surface (exposed end surface) of the apex 12. In this case, the influence of the magnetic field leaking from the spin constituting the bulk portion (the portion other than the surface) of the NiO crystal is canceled (the spins other than the outermost surface cancel each other's magnetic field and distance from the sample). Is far away from the outermost atoms, the effect is drastically reduced), and only the magnetic field leaking from the spin on the apex surface (end face) will interact with the sample to be measured.

尖端部12の最尖端表面に形成されるスピン層は、例えばFIB加工やエッチング加工によって、尖端を先鋭化し、100nm以下、好ましくはそれ以下のナノメートルサイズとする。プローブは、尖端部分と同程度の面積の分解能で磁気測定できるので、ナノメートルサイズでの測定を行う場合には、尖端表面もナノメートルサイズに近づけるようにする。なお、尖端面を小さくすることにより、最尖端表面に露出する原子数(スピン数)が少なくなり、これに伴って尖端部12から漏れ出る自己磁場の影響も小さくなり、試料の磁気反転が発生しにくくなる。   The spin layer formed on the most apex surface of the tip 12 sharpens the tip by, for example, FIB processing or etching, and has a nanometer size of 100 nm or less, preferably less. Since the probe can perform magnetic measurement with a resolution of the same area as that of the tip portion, when performing measurement at the nanometer size, the tip surface is also brought close to the nanometer size. By reducing the tip surface, the number of atoms (spin number) exposed on the surface of the tip end is reduced, and the influence of the self-magnetic field leaking from the tip portion 12 is reduced accordingly, and magnetic reversal of the sample occurs. It becomes difficult to do.

このプローブ10を、磁気構造を有する試料表面に接近させると、プローブ最表面の露出原子と試料原子との相互作用による磁気力が発生する。これをプローブ10に付設された図示しない検出機構(例えば光梃子方式の検出機構)により検出することができる。   When the probe 10 is brought close to the sample surface having a magnetic structure, a magnetic force is generated by the interaction between the exposed atoms on the probe outermost surface and the sample atoms. This can be detected by a detection mechanism (not shown) attached to the probe 10 (for example, an optical lever detection mechanism).

上記実施形態では、尖端部12のプローブ軸方向(鉛直方向)に沿って上向きスピン層と下向きスピン層とが積層するようにNiO結晶の軸方向を選択したが、図2(b)に示すように、尖端部12のプローブ軸方向と直角方向(すなわち水平方向)に上向きスピン層と下向きスピン層とが積層するようにすれば、試料表面に存在する水平方向の磁場を検出することができるようになる。   In the above embodiment, the axial direction of the NiO crystal is selected so that the upward spin layer and the downward spin layer are stacked along the probe axial direction (vertical direction) of the tip portion 12, but as shown in FIG. In addition, if an upward spin layer and a downward spin layer are stacked in a direction perpendicular to the probe axis direction of the tip 12 (that is, the horizontal direction), a horizontal magnetic field existing on the sample surface can be detected. become.

また、上向きスピンと下向きスピンとが交互に並ぶように結晶軸を選択すれば、試料表面の磁気構造との相互作用が相殺されるようになり、磁気力を検出しない参照用プローブとすることができる。この参照用プローブと、上述した磁気力測定を行うためのプローブ10とにより全く同条件での2つの測定を行うことで、磁気力以外の影響を差分として排除したデータを取得することができるようになる。
また、上記実施形態では、尖端部12の全体をひとつの反強磁性体単結晶で形成するようにしたが、最尖端部分のみを反強磁性単結晶で形成するようにしてもよい。
Further, if the crystal axis is selected so that upward spins and downward spins are alternately arranged, the interaction with the magnetic structure of the sample surface is canceled out, and a reference probe that does not detect magnetic force can be obtained. it can. By performing two measurements under exactly the same conditions with the reference probe and the probe 10 for performing the magnetic force measurement described above, it is possible to acquire data excluding influences other than magnetic force as differences. become.
Moreover, in the said embodiment, although the whole pointed part 12 was formed with one antiferromagnetic single crystal, you may make it form only the most pointed end part with an antiferromagnetic single crystal.

本発明は、ナノメートルサイズの磁区構造を観察できる磁気力顕微鏡用のプローブ製造に利用することができる。   The present invention can be used for manufacturing a probe for a magnetic force microscope capable of observing a nanometer-sized magnetic domain structure.

本発明の一実施形態である磁気力顕微鏡用プローブの構成を示す図。The figure which shows the structure of the probe for magnetic force microscopes which is one Embodiment of this invention. 本発明の一実施形態である磁気力顕微鏡用プローブにおける尖端部の磁気構造の概念図。The conceptual diagram of the magnetic structure of the tip part in the probe for magnetic force microscopes which is one Embodiment of this invention. 反強磁性結晶であるNiOの原子面の磁性構造を説明する図。The figure explaining the magnetic structure of the atomic surface of NiO which is an antiferromagnetic crystal.

符号の説明Explanation of symbols

10: プローブ
11: プローブ本体
12: 尖端部
10: Probe 11: Probe body 12: Pointed end

Claims (3)

尖端部に磁性体領域を有し、この磁性体領域を試料表面に接近させることにより試料との磁気的相互作用により生じる磁気力を検出する磁気力顕微鏡用プローブであって、
プローブ尖端部の磁性体領域が反強磁性単結晶で形成されることを特徴とする磁気力顕微鏡用プローブ。
A probe for a magnetic force microscope that has a magnetic region at the tip and detects a magnetic force generated by magnetic interaction with a sample by bringing the magnetic region close to the sample surface,
A probe for a magnetic force microscope, characterized in that the magnetic region at the tip of the probe is formed of an antiferromagnetic single crystal.
反強磁性単結晶がNiO、MnO、MnTe、MnF、FeF、FeCl、FeO、CoCl、CoO、NiCl、Cr、LaCrO,LaFeO,MnTiO,FeTiO,Pr1−xCaMnO、または、FeSのいずれかである請求項1に記載の磁気力顕微鏡用プローブ。 Antiferromagnetic single crystal NiO, MnO, MnTe, MnF 2 , FeF 2, FeCl 2, FeO, CoCl 2, CoO, NiCl 2, Cr, LaCrO 3, LaFeO 3, MnTiO 3, FeTiO 3, Pr 1-x Ca The probe for a magnetic force microscope according to claim 1, which is either xMnO 3 or FeS. プローブ尖端部の磁性体領域は、反強磁性単結晶のスピンが揃った面がプローブ尖端部の最尖端面となるように反強磁性単結晶の結晶軸方向が定められることを特徴とする請求項1に記載の磁気力顕微鏡用プローブ。 The magnetic body region of the probe tip is characterized in that the crystal axis direction of the antiferromagnetic single crystal is determined so that the surface of the antiferromagnetic single crystal having the same spin becomes the tip of the probe tip. Item 2. The probe for a magnetic force microscope according to Item 1.
JP2005083652A 2005-03-23 2005-03-23 Magnetic force measurement method Active JP4485393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083652A JP4485393B2 (en) 2005-03-23 2005-03-23 Magnetic force measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083652A JP4485393B2 (en) 2005-03-23 2005-03-23 Magnetic force measurement method

Publications (2)

Publication Number Publication Date
JP2006266794A true JP2006266794A (en) 2006-10-05
JP4485393B2 JP4485393B2 (en) 2010-06-23

Family

ID=37202942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083652A Active JP4485393B2 (en) 2005-03-23 2005-03-23 Magnetic force measurement method

Country Status (1)

Country Link
JP (1) JP4485393B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041494A1 (en) 2006-09-29 2008-04-10 Aisin Seiki Kabushiki Kaisha Head rest adjusting device and method
CN107064565A (en) * 2017-05-27 2017-08-18 中国科学院宁波材料技术与工程研究所 The hot many reference amounts coupling microscope probe of magnetoelectricity, its preparation method and detection method
CN110333372A (en) * 2019-07-18 2019-10-15 中国科学院宁波材料技术与工程研究所 A kind of magnetic scanning microscope probe and preparation method thereof
CN113193068A (en) * 2021-05-08 2021-07-30 吉林大学 Infrared photoelectric detector based on cobalt-doped lanthanum iron cobaltate nano film and manufacturing method thereof
CN107064565B (en) * 2017-05-27 2024-04-23 中国科学院宁波材料技术与工程研究所 Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041494A1 (en) 2006-09-29 2008-04-10 Aisin Seiki Kabushiki Kaisha Head rest adjusting device and method
CN107064565A (en) * 2017-05-27 2017-08-18 中国科学院宁波材料技术与工程研究所 The hot many reference amounts coupling microscope probe of magnetoelectricity, its preparation method and detection method
CN107064565B (en) * 2017-05-27 2024-04-23 中国科学院宁波材料技术与工程研究所 Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof
CN110333372A (en) * 2019-07-18 2019-10-15 中国科学院宁波材料技术与工程研究所 A kind of magnetic scanning microscope probe and preparation method thereof
CN113193068A (en) * 2021-05-08 2021-07-30 吉林大学 Infrared photoelectric detector based on cobalt-doped lanthanum iron cobaltate nano film and manufacturing method thereof
CN113193068B (en) * 2021-05-08 2022-11-22 吉林大学 Infrared photoelectric detector based on cobalt-doped lanthanum iron cobaltate nano film and manufacturing method thereof

Also Published As

Publication number Publication date
JP4485393B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
Kazakova et al. Frontiers of magnetic force microscopy
US6448765B1 (en) Microscopic tips having stable magnetic moments and disposed on cantilevers for sensing magnetic characteristics of adjacent structures
JP4485393B2 (en) Magnetic force measurement method
Laraoui et al. Opportunities for nitrogen-vacancy-assisted magnetometry to study magnetism in 2D van der Waals magnets
De Lozanne Application of magnetic force microscopy in nanomaterials characterization
Tanase et al. In situ TEM observation of magnetic materials
JP2003166929A (en) Magnetic force microscope having magnetic probe coated with exchange-coupled magnetic multi-layer
Milde et al. Surface pinning and triggered unwinding of skyrmions in a cubic chiral magnet
Memmert et al. Probes for magnetic force microscopy imaging of soft magnetic samples
Parker et al. Optimizing magnetic force microscopy resolution and sensitivity to visualize nanoscale magnetic domains
Rastei et al. Field-dependent behavior of a magnetic force microscopy tip probed by means of high coercive nanomagnets
Zhu Magnetic force microscopy studies of submicron and nanoscale magnet arrays
Matteucci et al. Study of the field around magnetic force microscopy probes using electron holography
US20220384715A1 (en) Magnetoresistive stack without radiated field, sensor and magnetic mapping system comprising such a stack
US6476386B1 (en) Method and device for tunnel microscopy
Cromwijk Magnetic force sensing using functionalized planar probes
Schwarz et al. Scanning probe techniques: MFM and SP-STM
Jin et al. Scanning Near Field Circular Polarization Optical Microscope for Measuring Magnetic Nanodot Arrays
Wahlström et al. Scanning tunneling microscopy for laterally resolved measurements of magnetoresistance through a point contact
Singh Magnetic Domains and Domain Wall Oscillations in Planar and 3D Curved Membranes
Trojková et al. Research Article Magnetic Domain Patterns in Bilayered Ribbons Studied by Magnetic Force Microscopy and Magneto-Optical Kerr Microscopy
モハマド,タウヒード,キブリア SUPPRESSION OF MAGNETIC DEAD LAYER AT INTERFACES: Fe FILMS ON IRON SILICIDES, GRAPHENE AND FEW-LAYER GRAPHITE
Cros et al. Report on imaging of individual skyrmions of MML systems made by different techniques
Petford-Long Magnetic imaging
Vinai Scalability and improvement of exchange bias properties for Thermally Assisted MRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350