JP2006263809A - Diffusion bonding method for metal - Google Patents

Diffusion bonding method for metal Download PDF

Info

Publication number
JP2006263809A
JP2006263809A JP2005203048A JP2005203048A JP2006263809A JP 2006263809 A JP2006263809 A JP 2006263809A JP 2005203048 A JP2005203048 A JP 2005203048A JP 2005203048 A JP2005203048 A JP 2005203048A JP 2006263809 A JP2006263809 A JP 2006263809A
Authority
JP
Japan
Prior art keywords
hole
metal
diffusion bonding
bonding method
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005203048A
Other languages
Japanese (ja)
Other versions
JP4435040B2 (en
Inventor
Koji Sasaki
佐々木  広治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2005203048A priority Critical patent/JP4435040B2/en
Publication of JP2006263809A publication Critical patent/JP2006263809A/en
Application granted granted Critical
Publication of JP4435040B2 publication Critical patent/JP4435040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for bonding metals of a different hardness, the method by which a large bonding strength can be obtained. <P>SOLUTION: The diffusion bonding method is used for bonding a first member 110 formed using a first metal and a second member 120 formed using a second metal that has a higher harness than the first metal. The method comprises a process of removing an oxidized film formed at least on one bonding face by sliding the bonding face 112 of the first member and that 126 of the second member, and a process of bonding the first and second members by making an electric current flow between them while imparting a pressing force thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、硬度の異なる金属同士の拡散接合方法に関する。特に、接合部の接合強度の大きい金属の拡散接合方法に関する。   The present invention relates to a diffusion bonding method for metals having different hardnesses. In particular, the present invention relates to a metal diffusion bonding method in which the bonding strength of the bonding portion is large.

機械部品においては、軽量化の要求が厳しくなり、高強度を要求される部分にだけ高強度の金属を使用し、その他の部分には軽量の金属を用いて、軽量化を図っている。たとえば、自動車部品に代表されるように、大きな強度が要求される部分や摺動部には鉄系材料を用い、その他の部分をアルミニウム系材料で構成する機械部品が使用されている。このように強度あるいは硬度の異なる金属同士を接合する要求が増加している。   In machine parts, the demand for weight reduction becomes strict, and high-strength metal is used only in parts where high strength is required, and light-weight metal is used in other parts to reduce weight. For example, as represented by automobile parts, a machine part is used in which a ferrous material is used for a part requiring high strength and a sliding part, and the other part is made of an aluminum material. Thus, the request | requirement which joins the metal from which intensity | strength or hardness differs is increasing.

ところで、たとえばアルミニウム系材料は溶接が難しく、これまでは主に抵抗スポット溶接により行われてきた。抵抗スポット溶接によると、ナゲットが形成されるので、外観上好ましくはなかった。そこで、被溶接物の双方にプロジェクションを形成したプロジェクション溶接により溶接する方法が提案されている(特許文献−1参照)。
特開2002−103056(第3−5頁、図1)
By the way, for example, an aluminum-based material is difficult to weld, so far, it has been mainly performed by resistance spot welding. According to resistance spot welding, a nugget is formed, which is not preferable in appearance. Then, the method of welding by the projection welding which formed the projection on both of the to-be-welded objects is proposed (refer patent document 1).
JP 2002-103056 (page 3-5, FIG. 1)

しかし、鉄系材料にアルミニウム系材料のような硬度の異なる金属を溶接する場合には、充分な溶接強度が得られない場合がほとんどである。そこで、本発明は、大きな接合強度が得られる、硬度の異なる金属同士の接合方法を提供することを目的とする。   However, when welding metals having different hardness such as aluminum-based materials to iron-based materials, in most cases, sufficient welding strength cannot be obtained. Then, an object of this invention is to provide the joining method of metals with different hardness from which a big joining strength is obtained.

上記目的を達成するため、請求項1に記載の発明に係る金属の拡散接合方法は、たとえば図1に示すように、第1の金属で形成された第1の部材110と、第1の金属より硬度の高い第2の金属で形成された第2の部材120との拡散接合方法であって;第1の部材110の接合面112と、第2の部材120の接合面126とを摺動し、少なくとも一方の接合面112、126に形成されている酸化膜を除去する工程と;第1の部材110と第2の部材120とを押し付ける力を加えながら、第1の部材110と第2の部材120との間に通電し、第1の部材110と第2の部材120とを接合する工程とを備える。なお、「拡散接合方法」とは、固相の被接合材料同士の接合面で原子間の結合を起こさせる固相接合方法をいうが、接合面において被接合材料に僅かな溶融が生ずる場合をも含む。また、「硬度」とは材料の塑性変形に対する抵抗の大小をいい、「硬度の高い」とは、例えばビッカース硬さ、ブリネル硬さ、ショア硬さ、ビアバウム硬さなど、工業的に用いられるいずれか一の測定方法により測定された硬さが高い値を示すことをいう。   To achieve the above object, the metal diffusion bonding method according to the first aspect of the present invention includes a first member 110 formed of a first metal and a first metal as shown in FIG. A diffusion bonding method with the second member 120 formed of the second metal having higher hardness; sliding on the bonding surface 112 of the first member 110 and the bonding surface 126 of the second member 120 And removing the oxide film formed on at least one of the joining surfaces 112 and 126; while applying a force for pressing the first member 110 and the second member 120, the first member 110 and the second member A step of energizing between the member 120 and the first member 110 and the second member 120. The “diffusion bonding method” refers to a solid phase bonding method in which bonding between atoms is caused at the bonding surface between solid phase bonded materials. However, a slight melting of the bonded material occurs at the bonding surface. Including. “Hardness” refers to the magnitude of resistance to plastic deformation of a material, and “high hardness” refers to any industrially used material such as Vickers hardness, Brinell hardness, Shore hardness, Viabaum hardness, etc. This means that the hardness measured by one measurement method shows a high value.

このように構成すると、金属同士が接している界面を電流が流れることにより発熱し、発熱により軟化した金属表面が摺動されることにより塑性流動し、表面酸化膜が除去されて清浄な表面が得られ、金属原子が拡散して拡散接合されるので、接合強度の大きな金属の接合方法となる。   With this configuration, heat is generated when current flows through the interface where the metals are in contact with each other, and the plastic surface flows when the metal surface softened by the heat generation is slid. Since the metal atoms are diffused and diffusion-bonded, the metal bonding method has a high bonding strength.

また、請求項2に記載の発明に係る金属の拡散接合方法では、請求項1に記載の金属の拡散接合方法において、たとえば図1に示すように、第1の部材110または第2の部材120の内、いずれか一つの部材110に孔111が形成され、他の部材120は孔111より少なくとも一部が大きな外形126を有し;摺動する力P1を、孔111を貫通する方向に加えて、他の部材120を孔111に嵌入するようにしてもよい。   Further, in the metal diffusion bonding method according to the second aspect of the present invention, as shown in FIG. 1, for example, the first member 110 or the second member 120 in the metal diffusion bonding method according to the first aspect. Hole 111 is formed in one of the members 110, and the other member 120 has an outer shape 126 that is at least partially larger than the hole 111; a sliding force P 1 is applied in a direction penetrating the hole 111. Thus, the other member 120 may be fitted into the hole 111.

このように構成すると、他の部材が少なくとも一部が孔より大きな外形を有しているので、孔より大きな外形を孔に嵌入するときに、孔の面と他の部材の外形とが摺動されることにより塑性流動し、そこに形成されている酸化膜は除去される。また、孔に他の部材を嵌入することにより、孔の面と他の部材の外形とは密着し、拡散接合され易くなる。   If comprised in this way, since the other member has an external shape at least partially larger than the hole, when the external shape larger than the hole is inserted into the hole, the surface of the hole and the external shape of the other member slide. As a result, plastic flow occurs, and the oxide film formed there is removed. Further, by inserting another member into the hole, the surface of the hole and the outer shape of the other member are in close contact with each other, and diffusion bonding is facilitated.

また、請求項3に記載の発明に係る金属の拡散接合方法では、例えば図6(a)に示すように、請求項2に記載の金属の拡散接合方法において、孔71は、他の部材80と摺動する第1の面72と、第1の面72から孔の内側に延びる第2の面76とを含んで形成され;第2の面76、あるいは、孔71に嵌入する他の部材80の第2の面76と相対する面82に突起77が形成され;他の部材80を、第2の面76とほぼ接するまで嵌入してもよい。   Further, in the metal diffusion bonding method according to the third aspect of the present invention, for example, as shown in FIG. 6A, in the metal diffusion bonding method according to the second aspect, the hole 71 is formed by another member 80. And the second surface 76 extending from the first surface 72 to the inside of the hole; the second surface 76 or another member that fits into the hole 71 A protrusion 77 is formed on the surface 82 of the 80 facing the second surface 76; another member 80 may be fitted until it is substantially in contact with the second surface 76.

このように構成すると、他の部材が孔に嵌入するときに孔の面と他の部材の外形とが摺動し塑性流動した金属は、第2の面から流れる出ることが突起により防止される。その結果、一の部材と他の部材との接合部分の端部がきれいな仕上がりになる。   According to this structure, when the other member is fitted into the hole, the metal which has been plastically flowed by sliding the surface of the hole and the outer shape of the other member is prevented from flowing out from the second surface by the protrusion. . As a result, the end of the joint portion between one member and another member has a clean finish.

また、請求項4に記載の発明に係る金属の拡散接合方法では、例えば図8(a)に示すように、請求項2に記載の金属の拡散接合方法において、孔71の他の部材80と摺動する面72あるいは他の部材80の孔71の面72と摺動する面86の少なくともいずれか一方に、他の部材80が嵌入する方向と交差する方向の溝78が形成され;他の部材80は、溝78を越えてあるいは溝が孔71に嵌入するまで、孔71に嵌入してもよい。   Further, in the metal diffusion bonding method according to the invention described in claim 4, in the metal diffusion bonding method according to claim 2, for example, as shown in FIG. At least one of the sliding surface 72 or the surface 72 of the hole 71 of the other member 80 and the sliding surface 86 is formed with a groove 78 that intersects the direction in which the other member 80 is fitted; The member 80 may be fitted into the hole 71 beyond the groove 78 or until the groove is fitted into the hole 71.

このように構成すると、他の部材が孔に嵌入するときに孔の面と他の部材の外形とが摺動し塑性流動した金属は、溝に流れ込むので、接合部分の周囲に流れる出ることが防止される。その結果、一の部材と他の部材との接合部分の端部がきれいな仕上がりになる。   With this configuration, when the other member is fitted into the hole, the surface of the hole and the outer shape of the other member slide and plastically flow metal flows into the groove, so that it flows out around the joint portion. Is prevented. As a result, the end of the joint portion between one member and another member has a clean finish.

また、請求項5に記載の発明に係る金属の拡散接合方法では、例えば図8(b)に示すように、請求項2に記載の金属の拡散接合方法において、孔71は、他の部材80と摺動する第1の面72と、第1の面72から孔71の内側に延びる第2の面76とを含んで形成され;第2の面76、あるいは、孔71に嵌入する他の部材80の第2の面76と相対する第3の面82に周囲より窪んだ凹部96が形成され;他の部材80を、第2の面76と第3の面82とがほぼ接するまで嵌入してもよい。   Further, in the metal diffusion bonding method according to the fifth aspect of the present invention, for example, as shown in FIG. 8B, in the metal diffusion bonding method according to the second aspect, the hole 71 is formed by another member 80. And a second surface 76 extending from the first surface 72 to the inside of the hole 71; the second surface 76, or any other that fits into the hole 71. A concave portion 96 that is recessed from the periphery is formed in the third surface 82 opposite to the second surface 76 of the member 80; the other member 80 is fitted until the second surface 76 and the third surface 82 are substantially in contact with each other. May be.

このように構成すると、他の部材が孔に嵌入するときに孔の面と他の部材の外形とが摺動し塑性流動した金属は、凹部に流れ込むので、接合部分の周囲に流れる出ることが防止される。その結果、一の部材と他の部材との接合部分の端部がきれいな仕上がりになる。   If comprised in this way, when the other member fits in a hole, the surface of the hole and the outer shape of the other member slide and plastically flowed metal flows into the concave portion, and therefore flows out around the joint portion. Is prevented. As a result, the end of the joint portion between one member and another member has a clean finish.

また、請求項6に記載の発明に係る金属の拡散接合方法では、例えば図7(a)に示すように、請求項2に記載の金属の拡散接合方法において、他の部材80は、孔71に嵌入しない部分を有し、孔71に嵌入しない部分の周囲に、孔に嵌入する部分より大きな外形の張り出しであって、孔71に嵌入した後に他の部材80が嵌入した孔71の入口の周囲を、一つの部材70と共に覆う張り出し88を有し;他の部材80を、張り出し88が、一つの部材70にほぼ接するまで孔71に嵌入してもよい。   Further, in the metal diffusion bonding method according to the sixth aspect of the present invention, as shown in, for example, FIG. 7A, in the metal diffusion bonding method according to the second aspect, the other member 80 has holes 71. A portion that does not fit into the hole 71, and has an outer shape that is larger than the portion that fits into the hole around the portion that does not fit into the hole 71. An overhang 88 covering the periphery with one member 70 is provided; another member 80 may be fitted into the hole 71 until the overhang 88 is substantially in contact with one member 70.

このように構成すると、他の部材が孔に嵌入するときに孔の面と他の部材の外形とが摺動し塑性流動した金属は、張り出しにより覆われることにより流出することが防止される。その結果、一の部材と他の部材との接合部分の端部がきれいな仕上がりになる。   If comprised in this way, when the other member fits in a hole, the surface of a hole and the external shape of the other member will slide, and the metal which carried out plastic flow will be prevented from flowing out by being covered by overhang | projection. As a result, the end of the joint portion between one member and another member has a clean finish.

また、請求項7に記載の発明に係る金属の拡散接合方法では、請求項2ないし請求項6のいずれか1項に記載の金属の拡散接合方法において、たとえば図1に示すように、孔が円形断面の孔111であり;他の部材120の外形126が円形断面であるように構成してもよい。   Further, in the metal diffusion bonding method according to the invention described in claim 7, in the metal diffusion bonding method according to any one of claims 2 to 6, for example, as shown in FIG. The hole 111 has a circular cross section; the outer shape 126 of the other member 120 may have a circular cross section.

このように構成すると、孔も他の部材の外形も円形であるので、広く均一に拡散接合される面が得られ、接合強度の大きな金属の接合方法となり易い。   If comprised in this way, since the hole and the external shape of another member are circular, the surface uniformly diffused-bonded is obtained, and it becomes easy to become a metal joining method with high joining strength.

また、請求項8に記載の発明に係る金属の拡散接合方法では、請求項2ないし請求項7のいずれか1項に記載の金属の拡散接合方法において、たとえば図1に示すように、他の部材120の外形126の大きな部分が孔111の形成された部材110と重なり合う重ね合わせ代Wが、0.2mmないし1mmであるように構成してもよい。   Further, in the metal diffusion bonding method according to the invention described in claim 8, in the metal diffusion bonding method according to any one of claims 2 to 7, in another method as shown in FIG. The overlapping margin W in which a large portion of the outer shape 126 of the member 120 overlaps the member 110 in which the hole 111 is formed may be 0.2 mm to 1 mm.

このように構成すると、重ね合わせ代が0.2mmないし1mmであるので、他の部材を孔に嵌入させ易く、かつ、嵌入させるときに表面に形成されている酸化膜が除去され易い。   If comprised in this way, since an overlap margin is 0.2 mm thru | or 1 mm, it is easy to insert another member in a hole, and when making it insert, the oxide film currently formed in the surface is easy to be removed.

更に、請求項9に記載の発明に係る金属の拡散接合方法では、請求項2ないし請求項8のいずれか1項に記載の金属の拡散接合方法において、たとえば図4に示すように、接合した他の部材160に、接合する前よりも接合面166の法線方向に張り出し、孔151の形成された部材150に食い込む膨らみ部Sが形成されるように構成するとよい。   Furthermore, in the metal diffusion bonding method according to the ninth aspect of the present invention, in the metal diffusion bonding method according to any one of the second to eighth aspects, the bonding is performed, for example, as shown in FIG. The other member 160 may be configured to be formed with a bulging portion S that protrudes in the normal direction of the joining surface 166 than before joining, and bites into the member 150 in which the hole 151 is formed.

このように構成すると、接合した箇所において、他の部材が孔の形成された部材に食い込む膨らみ部が形成され、膨らみ部により更に強固に接合されるので、接合強度が一層大きくなる。   If comprised in this way, in the location joined, the bulging part which another member bites into the member in which the hole was formed is formed, and since it joins still more firmly by the bulging part, joining strength becomes still larger.

また、請求項10に記載の発明に係る金属の拡散接合方法では、請求項1ないし請求項9のいずれか1項に記載の金属の拡散接合方法において、第1の金属がアルミニウム系材料であり;第2の金属が鉄系材料であり;酸化被膜が、少なくとも第2の部材の接合面に形成されているように構成してもよい。   The metal diffusion bonding method according to claim 10 is the metal diffusion bonding method according to any one of claims 1 to 9, wherein the first metal is an aluminum-based material. The second metal may be an iron-based material; and an oxide film may be formed on at least the bonding surface of the second member.

このように構成すると、強度の得られにくかったアルミニウム系材料と鉄系材料との接合において、アルミニウム系材料と鉄系材料とが接している界面を電流が流れることにより発熱し、鉄系材料の酸化膜も摺動されることにより塑性流動して除去され清浄な面が得られ、そのためにアルミニウムあるいは鉄原子が拡散して拡散接合されるので、接合強度の大きなアルミニウム系材料と鉄系材料との接合方法となる。ここで、鉄系材料とは、鉄鋼を始めとして鉄を主成分とする合金を含み、アルミニウム系材料とは、アルミニウムあるいはアルミニウムを主成分とする合金を含む。なお、「主成分とする」とは、構成する成分中最も重量%の大きいこと、典型的には当該成分を50重量%以上含むことをいう。   With this configuration, in the joining of the aluminum-based material and the iron-based material, for which it was difficult to obtain strength, heat is generated by the current flowing through the interface where the aluminum-based material and the iron-based material are in contact, and the iron-based material When the oxide film is slid, it is removed by plastic flow and a clean surface is obtained. For this reason, aluminum or iron atoms are diffused and diffusion-bonded. This is a joining method. Here, the iron-based material includes iron and other alloys containing iron as a main component, and the aluminum-based material includes aluminum or an alloy containing aluminum as a main component. “Containing as a main component” means that the component has the largest weight%, and typically includes 50% by weight or more of the component.

本発明に係る金属の拡散接合方法によれば、第1の部材の接合面と、第2の部材の接合面とを摺動し、少なくとも一方の接合面に形成されている酸化膜を除去する工程と、第1の部材と第2の部材とを押し付ける力を加えながら、第1の部材と第2の部材との間に通電し、第1の部材と第2の部材とを接合する工程とを備えるので、金属同士が接している界面を電流が流れることにより発熱し、発熱により軟化した金属表面が摺動されることにより塑性流動し、表面酸化膜が除去されて清浄な表面が得られ、そのために金属原子が拡散して拡散接合されるので、接合強度の大きな金属の接合方法となる。   According to the metal diffusion bonding method according to the present invention, the bonding surface of the first member and the bonding surface of the second member are slid, and the oxide film formed on at least one of the bonding surfaces is removed. While applying a step and a force for pressing the first member and the second member, energizing between the first member and the second member, and joining the first member and the second member Therefore, heat is generated when an electric current flows through the interface where the metals are in contact with each other, and the metal surface softened by the heat generation is plastically flowed and the surface oxide film is removed to obtain a clean surface. For this reason, metal atoms are diffused and diffusion-bonded to form a metal bonding method with high bonding strength.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一または相当する装置には同一符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding devices are denoted by the same reference numerals, and redundant description is omitted.

図1を参照して、本発明の実施の形態であるリングマッシュ溶接による鉄系材料とアルミニウム系材料との拡散接合方法を説明する。図1は、アルミニウム系材料で形成された部材110(以下、単に「アルミニウム系部材110」という。)と鉄系材料で形成された部材120(以下、単に「鉄系部材120」という。)との接合方法の概念を説明する上面図および断面図であり、(a)は接合前の鉄系部材120とアルミニウム系部材110との上面図、(b)は同じく接合前の断面図、そして、(c)は接合後の断面図である。ここで、リングマッシュ溶接とは、アルミニウム系部材110の接合部または鉄系部材120の接合部のいずれか一つが該材料に形成された孔111の内周面112を含み、アルミニウム系部材110の接合部または鉄系部材120の接合部のいずれか一つとは別の一つが、形成された孔111よりも少なくとも一部が大きな外形の外周面126を含み、形成された孔111を貫通する方向に内周面112と外周面126とを摺動する力を有する押込み力P1が加えられ、形成された孔111に外周面126が嵌合するようにしながら、すなわち内周面112と外周面126とに押し付ける力を発生しながら、アルミニウム系部材110と鉄系部材120との間に通電し接合する固相接合としての拡散接合方法をいう。   With reference to FIG. 1, the diffusion joining method of the iron-type material and aluminum-type material by ring mash welding which is embodiment of this invention is demonstrated. FIG. 1 shows a member 110 made of an aluminum-based material (hereinafter simply referred to as “aluminum-based member 110”) and a member 120 formed of an iron-based material (hereinafter simply referred to as “iron-based member 120”). (A) is a top view of the iron-based member 120 and the aluminum-based member 110 before joining, (b) is also a sectional view before the joining, and (C) is sectional drawing after joining. Here, the ring mash welding includes the inner peripheral surface 112 of the hole 111 in which either one of the joining portion of the aluminum-based member 110 or the joining portion of the iron-based member 120 is formed in the material. A direction different from any one of the joined portion or the joined portion of the iron-based member 120 includes the outer peripheral surface 126 having an outer shape at least partly larger than the formed hole 111 and penetrating the formed hole 111. A pressing force P1 having a force for sliding between the inner peripheral surface 112 and the outer peripheral surface 126 is applied to the outer peripheral surface 126 so that the outer peripheral surface 126 fits into the formed hole 111, that is, the inner peripheral surface 112 and the outer peripheral surface 126. This is a diffusion bonding method as solid phase bonding in which an electric force is applied between the aluminum-based member 110 and the iron-based member 120 while generating a pressing force.

図1(a)に示すように、アルミニウム系部材110は、平板に断面形状が円形の孔111が形成されている。孔111の形状は、円形には限られず、楕円形、四角形を始めとする多角形等、任意の形状でよい。孔111の内周面112は、平板の表面に垂直に形成されている。なお、内周面112は、平板の表面に必ずしも垂直である必要はないが、垂直であると、後述の押込み力P1(図1(b)参照)を平板と垂直方向に加えるのが容易で、かつ、押込み力P1の方向が内周面112の方向と一致するので、嵌合させ易い。アルミニウム系部材110は、下部電極(不図示)上に載置される。   As shown in FIG. 1A, the aluminum-based member 110 has a hole 111 having a circular cross-sectional shape in a flat plate. The shape of the hole 111 is not limited to a circle, and may be any shape such as an ellipse or a polygon including a quadrangle. The inner peripheral surface 112 of the hole 111 is formed perpendicular to the surface of the flat plate. The inner peripheral surface 112 is not necessarily perpendicular to the surface of the flat plate. However, if the inner peripheral surface 112 is vertical, it is easy to apply a pressing force P1 (see FIG. 1B) described later in a direction perpendicular to the flat plate. And since the direction of pushing force P1 corresponds with the direction of the internal peripheral surface 112, it is easy to make it fit. The aluminum-based member 110 is placed on a lower electrode (not shown).

鉄系部材120は、孔111の直径よりも大きな外形の外周面126を有する円板である。なお、鉄系部材120の形状は、孔111の形状に適合させる。すなわち、図1に示す実施の形態では、孔111の断面形状が円形であるので、円形断面すなわち円板としているが、孔の形状が楕円形であれば鉄系部材120の断面形状も楕円形とし、孔の形状が四角形であれば鉄系部材120の断面形状も四角形とするのがよい。鉄系部材120は、その接合部にアルミニウム系部材110に形成された孔111より少なくとも一部が大きな外形の外周面126を有していればよい。   The iron-based member 120 is a disc having an outer peripheral surface 126 having an outer shape larger than the diameter of the hole 111. The shape of the iron-based member 120 is adapted to the shape of the hole 111. That is, in the embodiment shown in FIG. 1, since the cross-sectional shape of the hole 111 is circular, a circular cross-section, that is, a disk is used. However, if the hole has an elliptical shape, the cross-sectional shape of the iron-based member 120 is also elliptical. If the shape of the hole is square, the cross-sectional shape of the iron-based member 120 is preferably square. The iron-based member 120 only needs to have an outer peripheral surface 126 having an outer shape that is at least partially larger than the hole 111 formed in the aluminum-based member 110 at the joint.

外周面126が内周面112より大きく、孔111に嵌入するためにアルミニウム系部材110に鉄系部材120を重ねたときに、鉄系部材120とアルミニウム系部材110とが重なり合い、鉄系部材120が孔111に入り込めなくしている部分が重ね合わせ代Wとなる。ここで、「大きな」とは、孔111よりも僅かに大きければよく、重ね合わせ代Wを0.2mm以上、1mm以下とすると鉄系部材120を孔111に嵌入するときに外周面126と内周面112との間で摺動が生じ、外周面126あるいは内周面112に形成されている酸化膜が除去されるので好ましく、また、鉄系部材120を孔111に嵌入させやすい。好ましくは重ね合わせ代Wを0.3mm以上、0.5mm以下とすると熱ひずみが小さな拡散接合が可能となり、溶接箇所の外観も損なわれず好適である。特に、外周面126の直径が、10mm〜100mm程度の部材を用いるときには、前述の大きさの重ね合わせ代Wとするのがよい。   When the outer peripheral surface 126 is larger than the inner peripheral surface 112 and the iron-based member 120 is overlapped with the aluminum-based member 110 so as to be fitted into the hole 111, the iron-based member 120 and the aluminum-based member 110 overlap, and the iron-based member 120 is overlapped. The portion which is not allowed to enter the hole 111 is the overlap allowance W. Here, “large” is only required to be slightly larger than the hole 111, and when the overlap margin W is 0.2 mm or more and 1 mm or less, when the iron-based member 120 is inserted into the hole 111, Sliding occurs between the peripheral surface 112 and the oxide film formed on the outer peripheral surface 126 or the inner peripheral surface 112 is preferably removed, and the iron-based member 120 can be easily fitted into the hole 111. Preferably, when the overlap allowance W is 0.3 mm or more and 0.5 mm or less, diffusion bonding with a small thermal strain is possible, and the appearance of the welded portion is not impaired. In particular, when using a member having a diameter of the outer peripheral surface 126 of about 10 mm to 100 mm, the overlap allowance W having the above-described size is preferable.

鉄系部材120は、孔111に外周面126を重ね合わせ代Wを持って同心に、アルミニウム系部材110の上に載置される。このときに、図1(b)に示すように、鉄系部材120にいわゆる面取りが形成されていると、孔111と外周面126との位置合わせが容易になる。すなわち、鉄系部材120の外周面126を含む接合部に、孔111よりも小さな径の端部(下端)122が形成され、端部122から、孔111よりも大きな外形の外周面126に至るテーパ面(面取り面)124が形成されるとよい。すると、端部122は穴111に挿入され、面取り面124が内周面112に当たった状態となる。なお、面取り面124は、いわゆる面取りといわれるよりも大きくとってもよい。極端には、端部122が尖端をなして、端部122から外周面126に至る、円錐形をしていてもよい。   The iron-based member 120 is placed on the aluminum-based member 110 concentrically with the outer peripheral surface 126 overlapped with the hole 111 with a margin W. At this time, as shown in FIG. 1B, if the so-called chamfering is formed on the iron-based member 120, the alignment between the hole 111 and the outer peripheral surface 126 becomes easy. That is, an end (lower end) 122 having a diameter smaller than that of the hole 111 is formed at a joint portion including the outer peripheral surface 126 of the iron-based member 120, and reaches the outer peripheral surface 126 having an outer shape larger than that of the hole 111. A tapered surface (chamfered surface) 124 is preferably formed. Then, the end portion 122 is inserted into the hole 111 and the chamfered surface 124 comes into contact with the inner peripheral surface 112. The chamfered surface 124 may be larger than what is called chamfering. In an extreme case, the end 122 may have a conical shape with a sharp tip and extending from the end 122 to the outer peripheral surface 126.

なお、図2の断面図に示すように、鉄系部材120と接するアルミニウム系部材110の内周面112に、面取り面114を形成すると、面取り面114、124同士で接触するようになるので、好適である。あるいは、面取り面114だけを形成し、面取り面124を形成しなくても、位置合わせが容易になる。なお、面取り面114、124は形成されていなくてもよい。   As shown in the cross-sectional view of FIG. 2, when the chamfered surface 114 is formed on the inner peripheral surface 112 of the aluminum-based member 110 that is in contact with the iron-based member 120, the chamfered surfaces 114 and 124 come into contact with each other. Is preferred. Alternatively, alignment is facilitated even if only the chamfered surface 114 is formed and the chamfered surface 124 is not formed. Note that the chamfered surfaces 114 and 124 may not be formed.

鉄系部材120をアルミニウム系部材110上に載置したら、図1(b)に示すように、鉄系部材120を下方に、すなわち、孔111を貫通する方向に、よって力を加える方向を接合面に平行方向に、押込み力P1を加える。鉄系材料120は、その上部から上部電極(不図示)により押込み力P1を付加される。ここで、押込み力P1の方向は、必ずしも鉛直下方でなくてもよく、内周面112あるいは外周面126の法線方向より下向きの方向であればよい。つまり、外周面126が内周面112内に嵌入する方向の、すなわち接合面に平行な方向の力ベクトルを有していれば、内周面112と外周面126とが摺動され、鉄系部材120は孔111に嵌入される。また、押込み力P1は、重ね合わせ代W、その長さ、および拡散接合の深さ、すなわち、アルミニウム系部材110の厚さあるいは鉄系部材120の外周面126の高さなどにより決まる接合体積に応じた大きさが必要となる。また、材料の硬度によっても変わる。   When the iron-based member 120 is placed on the aluminum-based member 110, as shown in FIG. 1 (b), the iron-based member 120 is joined downward, that is, in the direction penetrating the hole 111, and thus the direction in which the force is applied. A pushing force P1 is applied in a direction parallel to the surface. The iron-based material 120 is applied with a pressing force P1 from above by an upper electrode (not shown). Here, the direction of the pushing force P <b> 1 does not necessarily have to be vertically downward, and may be a direction downward from the normal direction of the inner peripheral surface 112 or the outer peripheral surface 126. That is, if the outer peripheral surface 126 has a force vector in a direction in which the outer peripheral surface 126 is fitted into the inner peripheral surface 112, that is, a direction parallel to the joint surface, the inner peripheral surface 112 and the outer peripheral surface 126 are slid, The member 120 is inserted into the hole 111. Further, the indentation force P1 has a joining volume determined by the overlap allowance W, its length, and the depth of diffusion joining, that is, the thickness of the aluminum-based member 110 or the height of the outer peripheral surface 126 of the iron-based member 120. A corresponding size is required. It also depends on the hardness of the material.

下部電極と上部電極(共に、不図示)との間には、パルス電流を流すための電源供給装置(不図示)が接続されている。電源供給装置は、例えば30ms以下、好ましくは15ms以下の時間幅を有するパルス電流を通電する装置であればよい。装置例については、実施例1のところで後に説明する。   A power supply device (not shown) for supplying a pulse current is connected between the lower electrode and the upper electrode (both not shown). The power supply device may be a device that supplies a pulse current having a time width of, for example, 30 ms or less, preferably 15 ms or less. An example of the apparatus will be described later in the first embodiment.

上部電極には、鉄系部材120を下方へ押込み力P1で加圧する加圧機構(不図示)が備えられている。また、上部電極から鉄系部材120、アルミニウム系部材110を伝わった押込み力P1が作用するので、下部電極は押込み力P1に充分に耐えるだけの強度を有している。   The upper electrode is provided with a pressurizing mechanism (not shown) that pressurizes the iron-based member 120 downward with a pressing force P1. Moreover, since the pushing force P1 transmitted from the upper electrode to the iron-based member 120 and the aluminum-based member 110 acts, the lower electrode has a strength sufficient to withstand the pushing force P1.

押込み力P1を加えながら、アルミニウム系部材110と鉄系部材120との間に、1または複数のパルス電流を流す。すると、アルミニウム系部材110と鉄系部材120との接触部に、押込み力P1とパルス電流とが集中する。ここでパルス電流は、孔の内周面112、外周面126および近傍の材料を溶融させてナゲットを形成する電流ピーク値や電流量よりは小さく、孔の内周面112および外周面126の表面付近の材料を融点以下で塑性流動させる程度の温度まで上昇させる程度のパルス電流である。   One or more pulse currents are passed between the aluminum-based member 110 and the iron-based member 120 while applying the pushing force P1. Then, the pushing force P1 and the pulse current are concentrated on the contact portion between the aluminum-based member 110 and the iron-based member 120. Here, the pulse current is smaller than the current peak value or current amount for melting the inner peripheral surface 112, the outer peripheral surface 126 and the nearby material of the hole to form a nugget, and the surface of the inner peripheral surface 112 and the outer peripheral surface 126 of the hole. The pulse current is such that the temperature of the nearby material is raised to a temperature at which the material flows plastically below the melting point.

パルス電流が通電されると、温度上昇により接触部および近傍で材料の軟化が起きる。先ずは、融点が低くかつ硬度の低いアルミニウム系部材110での軟化が生ずる。軟化することにより変形し易くなった接触部近傍のアルミニウム系部材110は、押込み力P1を受けた鉄系部材120により押しのけられる。すなわち、アルミニウム系部材110の表面に酸化膜が形成されていても、除去される。鉄系部材120は、アルミニウム系部材110を押しのけながら、内周面112と摺動しながら孔111に入り込む。   When a pulse current is applied, the material softens at and near the contact portion due to temperature rise. First, softening occurs in the aluminum-based member 110 having a low melting point and low hardness. The aluminum-based member 110 in the vicinity of the contact portion that is easily deformed by being softened is pushed away by the iron-based member 120 that has received the pushing force P1. That is, even if an oxide film is formed on the surface of the aluminum-based member 110, it is removed. The iron-based member 120 enters the hole 111 while sliding on the inner peripheral surface 112 while pushing away the aluminum-based member 110.

アルミニウム系部材110が軟化するのに僅かに遅れて、融点の高い鉄系部材120でも軟化が生ずる。軟化することにより変形し易くなった接触部近傍の鉄系部材120は、押込み力P1を受け、孔111に嵌入していく。そのときに、軟化した接触部近傍が、アルミニウム系部材110と摺動し、塑性流動を生ずる。すなわち、鉄系部材120の表面に酸化膜が形成されていても、除去される。   A slight delay in the softening of the aluminum-based member 110 causes the softening of the iron-based member 120 having a high melting point. The iron-based member 120 in the vicinity of the contact portion that is easily deformed by being softened receives the pushing force P <b> 1 and is fitted into the hole 111. At that time, the vicinity of the softened contact portion slides with the aluminum-based member 110 to cause plastic flow. That is, even if an oxide film is formed on the surface of the iron-based member 120, it is removed.

内周面112と外周面126とが塑性流動しながら、鉄系部材120が孔111に嵌入し、鉄系部材120の清浄な面とアルミニウム系部材110の清浄な面との間で、拡散接合が行われる。なお、押込み力P1を付加しながらパルス電流を通電することにより、上記の鉄系材料120の孔111への嵌入および拡散接合は一挙に、例えば30ms以下の短時間で行われる。   While the inner peripheral surface 112 and the outer peripheral surface 126 are plastically flowed, the iron-based member 120 is fitted into the hole 111, and diffusion bonding is performed between the clean surface of the iron-based member 120 and the clean surface of the aluminum-based member 110. Is done. In addition, by applying a pulse current while applying the pushing force P1, the insertion and diffusion bonding of the iron-based material 120 into the hole 111 are performed in a short time of, for example, 30 ms or less.

このように、接合部において、その表面が塑性流動し、酸化膜が除去されることにより、アルミニウム系部材110と鉄系部材120との接合が、清浄な面同士で行われることになる。また、鉄系部材120を孔111に嵌入することにより、内周面112と外周面126とには押し付ける力が生じている。したがって、金属原子の拡散が起き易く、接合強度の大きな接合方法となる。この拡散接合は、外周面126と内周面112との間で全周にわたってほぼ均一に行われる。ただし、拡散接合は、全周にわたって行われなくてもよく、一部が接合されなかったり、一部が接合されずに機械的に嵌合されてもよい。   As described above, the surface of the joining portion plastically flows and the oxide film is removed, so that the joining of the aluminum-based member 110 and the iron-based member 120 is performed between clean surfaces. Further, by inserting the iron-based member 120 into the hole 111, a pressing force is generated on the inner peripheral surface 112 and the outer peripheral surface 126. Accordingly, diffusion of metal atoms is likely to occur and the bonding method has a high bonding strength. This diffusion bonding is performed almost uniformly between the outer peripheral surface 126 and the inner peripheral surface 112 over the entire circumference. However, the diffusion bonding may not be performed over the entire circumference, and part of the diffusion bonding may not be performed, or the part may be mechanically fitted without being bonded.

上記の接合方法によると、アルミニウム系部材110と鉄系部材120とを、僅かな重ね合わせを持って配置し、通常のコンデンサ蓄勢式抵抗溶接と同様に、これらを上部電極と下部電極(共に、不図示)の間に挟んで、一つ以上のパルス電流を流し、一挙に拡散接合するので、熱ひずみが小さく、かつ、短時間で溶接が完了する。また、ナゲットが形成されないので、外観も損なわず好適である。特に、清浄な面同士で拡散接合が行われるので、機械的結合力が強く、接合強度の十分な、鉄系材料とアルミニウム系材料との拡散接合方法となる。   According to the above joining method, the aluminum-based member 110 and the iron-based member 120 are arranged with a slight overlap, and these are connected to the upper electrode and the lower electrode (both in the same manner as in ordinary capacitor energy storage type resistance welding). 1), one or more pulse currents are passed between them and diffusion bonding is performed at once, so that the thermal strain is small and welding is completed in a short time. Moreover, since the nugget is not formed, the appearance is not impaired, which is preferable. In particular, since diffusion bonding is performed between clean surfaces, this is a diffusion bonding method between an iron-based material and an aluminum-based material that has a strong mechanical bonding force and sufficient bonding strength.

なお、鉄系部材120が炭素を2重量%以上含有する高炭素鋼からなる場合には、パルス電流の通電による拡散接合で、焼入れが行われてしまう。そこで、パルス電流の通電後、ある程度の時間経過後にパルス状の後熱用電流を流して焼き戻しを行う。ここで、ある程度の時間経過後に後熱用電流を流すのは、一般的にパルス電流を供給する電源供給装置では、パルス電流を通電した後に、再度パルス電流を流すのに充電するための時間が必要なためである。なお、パルス電流とパルス状の後熱用電流とを共通の電流供給装置から供給するように構成すると、装置が少なくて済むので好適である。   In addition, when the iron-based member 120 is made of high carbon steel containing 2% by weight or more of carbon, quenching is performed by diffusion bonding by applying a pulse current. Therefore, tempering is performed by supplying a pulsed post-heating current after a certain amount of time has elapsed after applying the pulse current. Here, after a certain amount of time has passed, the post-heating current is generally flowed in a power supply device that supplies a pulse current, and after charging the pulse current, it takes time for charging to flow again. This is necessary. Note that it is preferable to supply the pulse current and the pulsed post-heating current from a common current supply device because the number of devices can be reduced.

これまでは、アルミニウム系部材110に孔111が形成され、鉄系部材120の外周面126を孔111に嵌入するものとして説明したが、鉄系部材120に孔が形成され、アルミニウム系部材110の外周面を孔に嵌入するようにして、拡散接合してもよい。また、孔が形成された板状材料を上に、孔に嵌入する材料を下に置いて、押込み力を加えながら通電し、拡散接合してもよい。   Up to now, it has been described that the hole 111 is formed in the aluminum-based member 110 and the outer peripheral surface 126 of the iron-based member 120 is fitted into the hole 111, but the hole is formed in the iron-based member 120, and the aluminum-based member 110. Diffusion bonding may be performed by fitting the outer peripheral surface into the hole. Alternatively, diffusion bonding may be performed by placing a plate-like material in which holes are formed on the top and a material to be inserted into the holes on the bottom and applying current while applying a pressing force.

また、図3の概念図に示すように、孔141、142が複数形成され、それぞれの孔141、142に複数の突起131、132(図1の外周面126を有する鉄系部材120に相当)が嵌入するように構成してもよい。また、図3(b)の断面図に示すように、突起131、132が形成された材料130を下に配置し、その上に孔141、142の形成された材料140を載置し、押込み力P2を加えながらパルス電流を流して、接合してもよい。ただし、押込み力P2は材料140の各孔141、142の周囲に均等に加えられるようにすることが好ましい。   Also, as shown in the conceptual diagram of FIG. 3, a plurality of holes 141 and 142 are formed, and a plurality of protrusions 131 and 132 (corresponding to the iron-based member 120 having the outer peripheral surface 126 of FIG. 1) in each of the holes 141 and 142. May be configured to fit. Further, as shown in the cross-sectional view of FIG. 3B, the material 130 in which the protrusions 131 and 132 are formed is disposed below, and the material 140 in which the holes 141 and 142 are formed thereon is placed and pushed. The joining may be performed by applying a pulse current while applying the force P2. However, it is preferable that the pushing force P <b> 2 is applied evenly around the holes 141 and 142 of the material 140.

あるいは、孔に嵌入することなく、例えば平板の鉄系部材と平板のアルミニウム系部材とを、押し付けながら摺動し通電することにより拡散接合してもよい。なお、接合面に垂直な方向の力である押し付ける力と、接合する面に平行な方向の摺動する力とが作用する。この場合にも、押し付けられながら通電されることにより界面での温度が上昇し、界面付近の鉄系部材とアルミニウム系部材が軟化し変形し易くなり、摺動されることにより塑性流動し、鉄系部材あるいはアルミニウム系部材の表面に形成された酸化膜は除去され、清浄な面の間で原子拡散が起こり、拡散接合される。なお、押し付ける力および通電される電流を集中させるため、平板同士が一様に接触するよりは、例えば微小な凹凸を形成し、接触面を小さくすることが好ましい。   Alternatively, diffusion bonding may be performed by sliding and energizing a flat iron-based member and a flat aluminum-based member, for example, without being inserted into the hole. A pressing force that is a force in a direction perpendicular to the joining surface and a sliding force in a direction parallel to the joining surface act. Also in this case, the temperature at the interface rises by being energized while being pressed, and the iron-based member and the aluminum-based member near the interface are softened and easily deformed. The oxide film formed on the surface of the system member or the aluminum system member is removed, atomic diffusion occurs between clean surfaces, and diffusion bonding is performed. In order to concentrate the pressing force and the energized current, it is preferable to form, for example, minute irregularities and make the contact surface smaller than the flat plates contact each other uniformly.

図4に接合した後の鉄系材料とアルミニウム系材料との境界の様子を説明する拡大断面図を示す。図4は、アルミニウム系部材150としてアルミニウム製の平板に円形の孔151を形成したものを用い、鉄系部材160として鉄製のボスを用い、鉄系部材160をアルミニウム系部材150の孔に嵌入させて、拡散接合した後の、アルミニウム系部材150と鉄系部材160との境界部の拡大断面図である。図4の上方から、鉄系部材160をアルミニウム系部材150の孔151に嵌入して、孔151を貫通せずに、孔の途中で嵌入を終わらせたものである。   FIG. 4 is an enlarged cross-sectional view for explaining the state of the boundary between the iron-based material and the aluminum-based material after joining. In FIG. 4, an aluminum-based member 150 in which a circular hole 151 is formed on a flat plate made of aluminum is used, an iron boss is used as the iron-based member 160, and the iron-based member 160 is fitted into the hole of the aluminum-based member 150. FIG. 5 is an enlarged cross-sectional view of a boundary portion between an aluminum-based member 150 and an iron-based member 160 after diffusion bonding. From the upper side of FIG. 4, the iron-based member 160 is inserted into the hole 151 of the aluminum-based member 150, and the insertion is terminated in the middle of the hole without penetrating the hole 151.

鉄系部材160は、その先端部162付近では、孔151の径とほぼ同径となり、アルミニウム系部材150の上面155付近では、接合前の径とほぼ同径となっている。これは、鉄系部材160が嵌入されるにつれ、アルミニウム系部材150と摺動され、その外周面166が除去され細くなるが、僅かに嵌入した上面155付近では、鉄系部材160の方がアルミニウム系部材150より融点が高く、かつ、硬度が高いので、主としてアルミニウム系部材150が塑性流動し、孔の内周面152が削られるものと考えられる。その間で、鉄系部材160が、接合面の方向に張り出し、エラをはったような状態となっている膨らみ部Sが形成されている。   The iron-based member 160 has substantially the same diameter as the diameter of the hole 151 in the vicinity of the tip 162 thereof, and is substantially the same as the diameter before joining in the vicinity of the upper surface 155 of the aluminum-based member 150. As the iron-based member 160 is inserted, it slides with the aluminum-based member 150, and its outer peripheral surface 166 is removed and becomes thin. However, in the vicinity of the slightly inserted upper surface 155, the iron-based member 160 is more aluminum. Since the melting point is higher than that of the system member 150 and the hardness is higher, it is considered that the aluminum system member 150 mainly plastically flows and the inner peripheral surface 152 of the hole is scraped. In the meantime, the bulge part S in which the iron-based member 160 protrudes in the direction of the joint surface and has an error is formed.

この膨らみ部Sは、次のような現象により形成されるものと考えられる。すなわち、
(1)接合の初めには、融点が低くかつ硬度の低いアルミニウム系部材150に、鉄系部材160が食い込んで、すなわち、孔の内周面152が塑性流動し、削られる。
(2)遅れて、鉄系部材160が発熱し、発熱により軟化が始まり、外周部が塑性流動する。鉄系部材160が孔151に嵌入されるにつれ、その先端部162の近くの外周面166から塑性流動し、アルミニウム系部材150との摺動により、アルミニウム系部材150の上面155方向に流れる。
(3)先端部162より上面155に寄った箇所で、塑性流動化した鉄系部材160の圧力が高くなり、外側に広がろうとする。そこで、上面155方向に流れる塑性流動した鉄系部材160の一部は、軟化したアルミニウム系部材150に食い込む。したがって、接合面の法線方向に張り出す。
This bulging portion S is considered to be formed by the following phenomenon. That is,
(1) At the beginning of joining, the iron-based member 160 bites into the aluminum-based member 150 having a low melting point and low hardness, that is, the inner peripheral surface 152 of the hole is plastically flowed and scraped.
(2) The iron-based member 160 generates heat with a delay, softening starts due to heat generation, and the outer peripheral portion plastically flows. As the iron-based member 160 is fitted into the hole 151, it plastically flows from the outer peripheral surface 166 near the tip 162, and flows in the direction of the upper surface 155 of the aluminum-based member 150 by sliding with the aluminum-based member 150.
(3) At a location closer to the upper surface 155 than the front end portion 162, the pressure of the plastic fluidized iron-based member 160 increases and tends to spread outward. Accordingly, a part of the plastic-based iron-based member 160 flowing in the direction of the upper surface 155 bites into the softened aluminum-based member 150. Therefore, it protrudes in the normal direction of the joint surface.

鉄系部材160の先端部162から膨らみ部Sまでの間には、鉄系部材160とアルミニウム系部材150との接合面に、鉄系部材160の原子とアルミニウム系部材150の原子とが幅広く拡散した拡散部Bが形成されている。拡散部Bの幅は、例えば0.2μm程度であり、この拡散部Bが形成されることにより、接合強度の大きな拡散接合が行われる。   Between the tip 162 of the iron-based member 160 and the bulging portion S, the atoms of the iron-based member 160 and the atoms of the aluminum-based member 150 diffuse widely on the joint surface between the iron-based member 160 and the aluminum-based member 150. The diffused part B is formed. The width of the diffusion part B is, for example, about 0.2 μm. By forming this diffusion part B, diffusion bonding with high bonding strength is performed.

膨らみ部Sが塑性流動により形成され、より強固に接合され、強度の充分に大きな拡散接合となる。なお、図4に示す実施の形態とは反対に、硬度の高い鉄系部材に形成された孔に、硬度の低いアルミニウム系部材を嵌入させて接合するときにも、膨らみ部は形成される。   The swollen portion S is formed by plastic flow, and is joined more firmly, resulting in diffusion joining with a sufficiently large strength. Contrary to the embodiment shown in FIG. 4, the bulging portion is also formed when an aluminum member having a low hardness is inserted into and joined to a hole formed in the iron member having a high hardness.

鉄系部材160を孔151に嵌入する際に、貫通せず、その途中で止める用途も多い。そこで、例えば、図5(a)の部分断面図に示すように、孔つき平板70の孔71を段差76付きにして、ストッパとしての段差76で棒鋼80の嵌入を止めることにより、嵌入深さを所定量に調整することが可能となる。すなわち、孔つき平板70の孔71の内周面は、2つの径の内周面72、73で形成される。2つの径の違いにより、段差76が形成される。大きな内径の内周面72側から、棒鋼80を嵌入させる。すなわち、孔71は、棒鋼80が嵌入する第1の面としての内周面72と、内周面72から孔71の内側に延びる第2の面としての段差76とを有している。棒鋼80が孔71に嵌入し、第3の面としての棒鋼80の端部82が内周面72の深さと同じ深さにまで達すると、重ね合わせ代が大きくなりすぎるので小さな径の内周面73には嵌入することができず、段差76の深さに止まる。   When the iron-based member 160 is inserted into the hole 151, there are many uses that do not penetrate and stop in the middle. Therefore, for example, as shown in the partial cross-sectional view of FIG. 5 (a), the hole 71 of the flat plate 70 with a hole is provided with a step 76, and the insertion of the steel bar 80 is stopped by the step 76 as a stopper. Can be adjusted to a predetermined amount. That is, the inner peripheral surface of the hole 71 of the flat plate 70 with holes is formed by inner peripheral surfaces 72 and 73 having two diameters. A step 76 is formed due to the difference between the two diameters. The steel bar 80 is inserted from the inner peripheral surface 72 side having a large inner diameter. That is, the hole 71 has an inner peripheral surface 72 as a first surface into which the steel bar 80 is fitted, and a step 76 as a second surface extending from the inner peripheral surface 72 to the inside of the hole 71. When the steel bar 80 is fitted into the hole 71 and the end portion 82 of the steel bar 80 as the third surface reaches the same depth as the inner peripheral surface 72, the overlap margin becomes too large, so that the inner circumference with a small diameter is obtained. The surface 73 cannot be fitted and stops at the depth of the step 76.

あるいは、図5(b)の部分断面図に示すように、下部電極30に突起31を設け、突起31を孔つき平板90の孔91に挿入してもよい。このとき、突起31の高さを、棒鋼80が嵌入する深さに一致させておく。そこで、棒鋼80が孔91に嵌入すると、その端部82が、ストッパとしての突起31の先端32に当接し、それ以上嵌入しなくなる。さらに、棒鋼80が、下部電極30に直接接触することにより、余剰な電流は、孔付き平板90に流れることがなくなり、孔付き平板90の温度上昇による歪が防止される。   Alternatively, as shown in the partial cross-sectional view of FIG. 5B, a protrusion 31 may be provided on the lower electrode 30, and the protrusion 31 may be inserted into the hole 91 of the flat plate 90 with a hole. At this time, the height of the protrusion 31 is made to coincide with the depth at which the steel bar 80 is inserted. Therefore, when the steel bar 80 is fitted into the hole 91, the end portion 82 comes into contact with the tip 32 of the projection 31 as a stopper, and does not fit any further. Further, since the steel bar 80 is in direct contact with the lower electrode 30, excess current does not flow into the holed flat plate 90, and distortion due to the temperature rise of the holed flat plate 90 is prevented.

さらに、図6の部分断面図に示すように、図5(a)に示すストッパとしての段差付きの孔71を有する孔付き平板70と棒鋼80との接合において、塑性流動した金属が接合部から押し出され、段差76から内周面73側に流出して固化したはみ出し部を形成させないためにチリ防止溝を形成してもよい。図6(a)は、段差76にチリ防止溝を形成した孔付き平板70を説明する部分断面図である。段差76と小さな径の内周面73との交わりに内周面73を延長する縁である突起77を形成すると、段差76の面全体が、溝のようになる。棒鋼80と内周面72とが摺動し、塑性流動した金属(孔つき平板70の素材および/または棒鋼80の素材、孔付き平板70と棒鋼80との高速の摺動により飛散した金属を含む。)が、段差76から内周面73に流れるのが防止され、塑性流動した金属は溝のように形成された段差76に留まる。棒鋼80の嵌入が深くなり、突起77が棒鋼80の端部82で押しつぶされるときに、段差76に留まった金属は中に封じ込められる。棒鋼80は、突起77に接して、若しくは、突起77の一部をつぶしてほぼ段差76の深さに止まることになる。なお、摺動することにより塑性流動した金属が突起77を越えて内周面73側に流れるとすると突起77と相対する棒鋼80の端部82に接触するくらいの深さまで棒鋼80が孔71に嵌入することにより、塑性流動した金属が内周面73側に流れる抵抗が大きくなるので、突起77のチリ防止溝としての効果は十分に得られる。このように突起77に接するもしくは突起77をつぶす程度まで、あるいは、塑性流動した金属が突起77を越えて流れにくくなる程度まで棒鋼80が嵌入する場合を、ほぼ接する程度まで嵌入するという。はみ出し部が形成されなくなることにより、外観が損なわれずきれいな仕上がりとなる。   Furthermore, as shown in the partial cross-sectional view of FIG. 6, in joining the flat plate 70 with a hole having the stepped hole 71 as the stopper shown in FIG. An anti-dust groove may be formed in order not to form a protruding portion that is pushed out and flows out from the step 76 toward the inner peripheral surface 73 side and solidifies. FIG. 6A is a partial cross-sectional view illustrating a flat plate 70 with a hole in which a dust prevention groove is formed in the step 76. When a protrusion 77 that is an edge extending the inner peripheral surface 73 is formed at the intersection of the step 76 and the inner peripheral surface 73 having a small diameter, the entire surface of the step 76 becomes like a groove. The metal 80 which the steel bar 80 and the inner peripheral surface 72 slid and plastically flowed (the material of the flat plate 70 with holes and / or the material of the steel bar 80, the metal scattered by the high-speed sliding between the flat plate 70 with holes and the steel bar 80) Is prevented from flowing from the step 76 to the inner peripheral surface 73, and the plastically flowed metal remains in the step 76 formed like a groove. When the insertion of the steel bar 80 is deepened and the protrusion 77 is crushed by the end 82 of the steel bar 80, the metal remaining on the step 76 is contained therein. The steel bar 80 comes into contact with the protrusion 77 or crushes a part of the protrusion 77 and stops at the depth of the step 76. In addition, if the metal plastically flowed by sliding flows over the protrusion 77 toward the inner peripheral surface 73 side, the steel bar 80 enters the hole 71 to such a depth that it contacts the end portion 82 of the steel bar 80 facing the protrusion 77. By inserting, the resistance of the plastically flowing metal to the inner peripheral surface 73 side is increased, so that the effect of the protrusion 77 as a dust prevention groove can be sufficiently obtained. When the steel bar 80 is fitted to such an extent that it touches the projection 77 or crushes the projection 77, or to the extent that the plastically flowed metal becomes difficult to flow beyond the projection 77, it is said to be fitted to the extent that it is almost in contact. Since the protruding portion is not formed, the appearance is not impaired and a beautiful finish is obtained.

なお、図6(b)の部分断面図に示すように、突起77の溝側の面79は、段差76と垂直に形成されてもよい(段差と突起とが垂直と呼ぶ)。段差と突起とを垂直にすると、図6(a)に示すような滑らかな傾斜を持って突起77が形成され場合に比べ、塑性流動して流れた金属が段差76から突起77を越えて内周面73側に流れにくくなる。さらに、図6(c)の部分断面図に示すように、突起77の溝側の面79は、段差76との交線より、その先端部を内周面72側に、すなわち、孔71の外側寄りに位置するように形成される(段差と突起とが鋭角と呼ぶ)と、塑性流動して流れた金属が段差76から突起77を越えて内周面73側により流れにくくなるので好ましい。この場合に、突起77の溝側の面79は、図6(c)に示す断面において直線(面としては円錐の一部分)である必要はなく、曲線(例えば弧、面としては楕円球の一部分)であってもよい。孔71に嵌入する棒鋼80の移動速度が速く、孔71内で段差76上に外側から内側に向け、さらに、内周面73で囲まれた径の小さな孔を通って外部に抜ける、流速の大きな空気の流れが生じ、そのために、例えば図6(a)に示すような形状の突起77では、塑性流動した金属が突起77を越えて流れ易いことが考えられる。しかし、段差と突起とを鋭角にすることにより、段差76上の空気の流れの向きが突起77の溝側の面79で逆向きに変えられ、塑性流動した金属を突起77を越えて流す力が弱まるため、塑性流動して流れた金属が突起77を越えて流れにくくなるものと考えられる。なお、段差と突起とが鋭角の場合に比べ、段差と突起とが垂直であると、製作加工がし易い。図6(a)に示すような形状を含め、いかなる形状の突起であっても、塑性流動した金属が内周面73側に流れることを防ぐ効果を有するのは前述の通りである。   As shown in the partial cross-sectional view of FIG. 6B, the groove-side surface 79 of the protrusion 77 may be formed perpendicular to the step 76 (the step and the protrusion are called vertical). When the step and the protrusion are made vertical, the metal that has flowed plastically flows from the step 76 to the inside of the protrusion 77 as compared with the case where the protrusion 77 is formed with a smooth inclination as shown in FIG. It becomes difficult to flow to the peripheral surface 73 side. Further, as shown in the partial cross-sectional view of FIG. 6C, the groove-side surface 79 of the protrusion 77 has its tip portion on the inner peripheral surface 72 side, that is, the hole 71, from the intersection line with the step 76. It is preferable that the metal is formed so as to be located on the outer side (the step and the projection are called acute angles) because the metal that has flowed plastically flows more easily from the step 76 over the projection 77 to the inner peripheral surface 73 side. In this case, the groove-side surface 79 of the protrusion 77 does not need to be a straight line (a part of a cone as a surface) in the cross section shown in FIG. ). The moving speed of the steel bar 80 fitted into the hole 71 is fast, the inside of the hole 71 is directed from the outside to the inside on the stepped portion 76, and further through the small diameter hole surrounded by the inner peripheral surface 73 to the outside. For example, a large flow of air is generated, and therefore, in the protrusion 77 having a shape as shown in FIG. However, by making the step and the projection have an acute angle, the direction of the air flow on the step 76 is changed to the opposite direction on the groove-side surface 79 of the projection 77, and the force of flowing the plastically flowed metal beyond the projection 77. Therefore, it is considered that the metal that has flowed through plastic flow becomes difficult to flow beyond the protrusion 77. In addition, compared with the case where a level | step difference and protrusion are acute angles, when a level | step difference and protrusion are perpendicular | vertical, it is easy to manufacture. As described above, the protrusion having any shape including the shape shown in FIG. 6A has the effect of preventing the plastically flowed metal from flowing to the inner peripheral surface 73 side.

あるいは、図7(a)の部分断面図に示すように、棒鋼80にはみ出し部の形成を防止するチリ防止壁を形成してもよい。棒鋼80の端部82の段差76と相対する部分で、小さな径の内周面73寄りの位置に、突出した縁である突起84を形成する。棒鋼80と内周面72とが摺動し、塑性流動した金属が、段差76に流れると、棒鋼80の嵌入に伴い突起84が段差76に当接するので、内周面73側に流れるのが防止される。さらに棒鋼80の嵌入が深くなり、突起84が段差76で押しつぶされるようになると、段差76に流れた金属は中に封じ込められる。さらに、突起84の内側(孔71の中心寄り)の端部に溝を形成し、突起84を越えた金属を捕捉する構成としてもよい。突起84と段差76とが接しなくても、突起84の下を流れて内周面73側に流れ出ようとする塑性流動した金属が、突起84の先端に接触する程度に近接すれば、金属は突起84を越えて流れにくくなるので、チリ防止壁としての機能は果たせる。このような状態あるいは前述のように突起84の先端が段差76に接しあるいは押しつぶされる状態を、突起84が段差76にほぼ接するという。   Alternatively, as shown in the partial cross-sectional view of FIG. 7A, the steel bar 80 may be formed with a dust prevention wall that prevents the formation of the protruding portion. A protrusion 84, which is a protruding edge, is formed at a position near the inner peripheral surface 73 having a small diameter at a portion facing the step 76 of the end portion 82 of the steel bar 80. When the steel bar 80 and the inner peripheral surface 72 slide and the plastically flowed metal flows into the stepped portion 76, the protrusion 84 comes into contact with the stepped step 76 as the steel bar 80 is fitted, so that it flows toward the inner peripheral surface 73 side. Is prevented. Further, when the steel bar 80 is deeply inserted and the protrusion 84 is crushed by the step 76, the metal that has flowed into the step 76 is contained inside. Furthermore, it is good also as a structure which forms a groove | channel in the edge part inside the processus | protrusion 84 (near center of the hole 71), and captures the metal beyond the processus | protrusion 84. FIG. Even if the protrusion 84 and the step 76 are not in contact with each other, if the plastic fluidized metal that flows under the protrusion 84 and flows out toward the inner peripheral surface 73 is close enough to contact the tip of the protrusion 84, the metal is Since it becomes difficult to flow over the protrusion 84, the function as a dust prevention wall can be performed. Such a state or a state in which the tip of the projection 84 is in contact with or crushed as described above is referred to as the projection 84 substantially in contact with the step 76.

また、棒鋼80の外周面86に、半径方向外向きに張り出す張り出しであって下向きの鉤形の張り出し88を設けることにより、孔付き平板70と張り出し88を含む棒鋼80とで覆われた溝87を形成してもよい。溝87が形成されると、孔付き平板70の上面75、すなわち入口箇所に流れた塑性流動した金属は、張り出し88の鉤形の先端部が上面75と当接することによりそれより外側に流れるのが防止され、棒鋼80の孔71へ嵌入する入口付近に流出して固化し、はみ出し部を形成しなくなる。すなわち、溝87は、はみ出し部の形成を防止するチリ防止溝として機能する。あるいは飛散したチリは張り出し88に捕捉される。そして、棒鋼80の嵌入が深くなり、張り出し88の鉤形に折れた先端が上面75で押しつぶされるときに、入口箇所に流れた金属やチリは溝87の中に封じ込められる。すなわち、張り出し88は、棒鋼80の孔71に嵌入されない位置に形成される。また、張り出し88の鉤形の先端部は、上面75に接しなくても、先端部の下を外側に流れ出ようとする塑性流動した金属が、鉤形の先端部に接触する程度に近接すれば、金属は鉤形を越えて広がりにくくなるので、チリ防止溝の機能は果たせる。このような状態あるいは前述のように鉤形の先端が上面75に接しあるいは押しつぶされる状態を、張り出し88が孔付き平板70にほぼ接するという。前述のように段差76に突起77を形成し、鉤形の張り出し88を棒鋼80に設置する構成としてもよい。   In addition, a groove covered with the flat plate 70 with the hole and the bar steel 80 including the overhang 88 is provided on the outer peripheral surface 86 of the bar steel 80 by providing an overhang 88 that protrudes outward in the radial direction and has a downward hook-like shape. 87 may be formed. When the groove 87 is formed, the plastic fluidized metal that has flowed to the upper surface 75 of the holed flat plate 70, that is, the entrance point, flows outward due to the contact of the hook-shaped tip of the overhang 88 with the upper surface 75. Is prevented, and flows out and solidifies in the vicinity of the entrance that fits into the hole 71 of the steel bar 80, so that no protruding portion is formed. That is, the groove 87 functions as a dust prevention groove that prevents the protruding portion from being formed. Alternatively, the scattered dust is captured by the overhang 88. Then, when the steel bar 80 is deeply inserted, and the tip of the overhang 88 that is bent into a bowl shape is crushed by the upper surface 75, the metal or dust that has flowed to the entrance is confined in the groove 87. That is, the overhang 88 is formed at a position where it does not fit into the hole 71 of the steel bar 80. Further, even if the hook-shaped tip portion of the overhang 88 is not in contact with the upper surface 75, the plastic-flowed metal that flows out under the tip portion is close enough to contact the tip portion of the hook shape. Since metal is difficult to spread beyond the saddle shape, it can function as a dust prevention groove. In this state or the state in which the hook-shaped tip is in contact with or crushed as described above, the overhang 88 is substantially in contact with the flat plate 70 with holes. As described above, the protrusions 77 may be formed on the step 76 and the hook-shaped overhang 88 may be installed on the steel bar 80.

また、図7(b)の部分断面図に示すように、棒鋼80の張り出しは鉤形でなくてもよく、棒鋼80は、外周が大きくなるだけの張り出し89を備え、孔付き平板70の上面75から突起98が突出する構造として、突起98を含む孔付き平板70と張り出し89を含む棒鋼80とで覆われた溝87を形成してもよい。この場合にも、孔付き平板70の上面75に流れた塑性流動した金属は、突起89により外側に流れるのが防止され、張り出し89と突起98とが当接することによりチリ防止の機能は果たせる。張り出し89と突起98とが接しなくても、突起98を越えて外側に流れ出ようとする塑性流動した金属が、張り出し89に接触する程度に近接すれば、塑性流動した金属は突起98を越えて広がりにくくなるので、チリ防止の機能は果たせる。このような状態あるいは前述のように突起98が張り出し89に接しあるいは押しつぶされる状態を、張り出し98が孔付き平板70にほぼ接するという。なお、図7(a)および(b)に示すように、突起84、張り出し88および突起98の形状は、先端が細く形成されても、同じ太さで形成されてもよく、あるいは、他の形状であってもよい。あるいは、図7(b)に示す例において、張り出し89が形成され、突起98が形成されていなくても、上面75に流れた塑性流動した金属が、張り出し89と上面75とで覆われ(間に挟まれ)、チリ防止としての機能、すなわち、きれいな仕上がりが得られる。   Further, as shown in the partial cross-sectional view of FIG. 7B, the steel bar 80 may not have a hook shape, and the steel bar 80 is provided with a protrusion 89 having a large outer periphery, and the upper surface of the flat plate 70 with holes. As a structure in which the protrusion 98 protrudes from 75, a groove 87 covered with a flat plate 70 with a hole including the protrusion 98 and a steel bar 80 including an overhang 89 may be formed. Also in this case, the plastically flowing metal that has flowed to the upper surface 75 of the flat plate 70 with holes is prevented from flowing outward by the protrusions 89, and the function of preventing dust can be achieved by the contact between the overhangs 89 and the protrusions 98. Even if the overhang 89 and the protrusion 98 are not in contact with each other, if the plastic fluidized metal that is about to flow outward beyond the protrusion 98 is close enough to contact the overhang 89, the plastically flowed metal exceeds the protrusion 98. Since it becomes difficult to spread, it can function to prevent dust. In this state or the state in which the protrusion 98 is in contact with or crushed as described above, the protrusion 98 substantially contacts the flat plate 70 with holes. As shown in FIGS. 7A and 7B, the protrusions 84, the overhang 88, and the protrusions 98 may be formed with a thin tip, the same thickness, or other shapes. It may be a shape. Alternatively, in the example shown in FIG. 7B, even if the overhang 89 is formed and the protrusion 98 is not formed, the plastically flowed metal that has flowed to the upper surface 75 is covered with the overhang 89 and the upper surface 75 (between The function of preventing dust, that is, a beautiful finish is obtained.

また、図8(a)の部分断面図に示すように、孔付き平板70の内周面72と棒鋼80の外周面86とが摺動し塑性流動した金属が、摺動している面72、86から逃げる逃げ溝78を、摺動する孔付き平板70の接合面72に形成してもよい。逃げ溝78は、典型的には棒鋼80が嵌入する方向に垂直な平面上に配置されるが、棒鋼80が嵌入する方向に交差する平面上(内周面72の円周上)、さらに平面上ではなく例えば波型など、任意な形状に配置されてもよい。また、逃げ溝78の断面形状は、矩形、台形、半円形など、任意の形状でよい。金属が逃げ溝78に流れるので、塑性流動した金属が棒鋼80の端部に押し出され、あるいは、押しのけられて嵌入した入口箇所の棒鋼80の周囲に流れて固化したはみ出し部が形成されなくなる。逃げ溝78は、孔付き平板70の内周面72に形成するのが好ましく、逃げ溝78は、前述の膨らみ部および拡散部が形成される位置の近くに配置するのが好適である。よりこの詳しくは、逃げ溝78は、前述の膨らみ部および拡散部が形成される部分より僅かに孔71の入口(上面75側)に形成することが好ましい。逃げ溝78を前述の膨らみ部および拡散部が形成される位置の近くに配置することにより、塑性流動して流れた金属が逃げ溝78に流れ易くなる。   Further, as shown in the partial cross-sectional view of FIG. 8A, the surface 72 on which the metal which is plastically flowed by sliding between the inner peripheral surface 72 of the flat plate 70 with holes and the outer peripheral surface 86 of the steel bar 80 is sliding. , 86 may be formed on the joint surface 72 of the sliding flat plate 70 with holes. The escape groove 78 is typically disposed on a plane perpendicular to the direction in which the steel bar 80 is inserted, but on a plane that intersects the direction in which the steel bar 80 is inserted (on the circumference of the inner peripheral surface 72), and further on a plane. For example, it may be arranged in an arbitrary shape such as a corrugated shape. The sectional shape of the escape groove 78 may be any shape such as a rectangle, a trapezoid, or a semicircle. Since the metal flows into the escape groove 78, the plastically flowed metal is pushed out to the end of the steel bar 80, or is not formed as a protruding part solidified by flowing around the steel bar 80 at the entrance where it has been pushed away and fitted. The escape groove 78 is preferably formed on the inner peripheral surface 72 of the flat plate 70 with a hole, and the escape groove 78 is preferably arranged near the position where the bulge part and the diffusion part are formed. More specifically, it is preferable that the relief groove 78 is formed slightly at the inlet (on the upper surface 75 side) of the hole 71 from the portion where the bulge portion and the diffusion portion are formed. By disposing the escape groove 78 near the position where the bulging part and the diffusion part are formed, the metal that has flowed plastically flows easily into the escape groove 78.

ここで、逃げ溝78の上部の内周面74を内周面72より多少大きな径で形成し、棒鋼80の外周面86と僅かなクリアランスCを有する構成としてもよい。図8では誇張して示されているが、僅かなクリアランスCは、例えば、0.1mmから0.3mm程度である。このように構成することにより、クリアランスCより大きな径の金属のチリは、上面75には流出しなくなる。この場合、逃げ溝78が形成されず、クリアランスCだけが形成されていても、大きなチリの流出を防ぐことができる。また、クリアランスCを有することにより、孔付き平板70と棒鋼80との接触箇所が、摺動する箇所に限定される。したがって、通電するときの電流を、摺動する箇所に集中させることができ、通電による材料の軟化、塑性流動化、そして、接合が所定の場所で生ずる。   Here, the inner peripheral surface 74 at the upper portion of the escape groove 78 may be formed with a slightly larger diameter than the inner peripheral surface 72 and may have a slight clearance C with the outer peripheral surface 86 of the steel bar 80. Although exaggerated in FIG. 8, the slight clearance C is, for example, about 0.1 mm to 0.3 mm. With this configuration, metal dust having a diameter larger than the clearance C does not flow out to the upper surface 75. In this case, even if the clearance groove 78 is not formed and only the clearance C is formed, large dust can be prevented from flowing out. Moreover, by having the clearance C, the contact location of the flat plate 70 with a hole and the steel bar 80 is limited to the location which slides. Therefore, the current when energized can be concentrated on the sliding portion, and the material is softened, plastically fluidized, and joined by energization at a predetermined location.

また、図8(b)の部分断面図に示すように、逃げ溝78に加えてあるいは代えて段差76に逃げ溝96を形成してもよい。逃げ溝96は、他の段差76の面より窪んだ凹部であり、その周囲が他の段差76の面で囲まれる。すなわち、逃げ溝96は、段差76上で閉じた形状をしており、内周面73側に通じてはいない。逃げ溝96は、典型的には内周面73より大きな直径の同心円形状に配置され、好ましくは、内周面73より僅かに大きな同心円形状に配置されるが、逃げ溝96の配置は、これらには限られない。また、逃げ溝96の断面形状は、矩形、台形、半円形など、任意の形状でよい。段差76に逃げ溝96が形成されることにより、内周面72と外周面86とが摺動し塑性流動した金属は、段差76上を流れると逃げ溝96に捕捉されそこで滞留することにより、内周面73側には流出しなくなる。そこで、端面82が段差76に当接し、あるいは、段差76上を塑性流動した金属が流れるとすると、相対する端面82に接触するくらいに近接すると、段差76上を塑性流動した金属が流れず、逃げ溝96内で冷却され固化する。このように、端面82が段差76と当接しあるいは近接する状態を、ほぼ接するという。   Further, as shown in the partial cross-sectional view of FIG. 8B, a relief groove 96 may be formed in the step 76 in addition to or instead of the relief groove 78. The escape groove 96 is a recess recessed from the surface of the other step 76, and its periphery is surrounded by the surface of the other step 76. That is, the escape groove 96 has a closed shape on the step 76 and does not communicate with the inner peripheral surface 73 side. The escape grooves 96 are typically arranged in a concentric shape having a diameter larger than that of the inner peripheral surface 73, and are preferably arranged in a concentric shape slightly larger than the inner peripheral surface 73. It is not limited to. The sectional shape of the escape groove 96 may be any shape such as a rectangle, a trapezoid, or a semicircle. By forming the relief groove 96 in the step 76, the metal that is plastically flowed by sliding between the inner peripheral surface 72 and the outer peripheral surface 86 is captured by the escape groove 96 and stays there when flowing over the step 76. It does not flow out to the inner peripheral surface 73 side. Therefore, if the end face 82 abuts on the step 76 or the plastically flowed metal flows on the step 76, the plastically flowed metal does not flow on the step 76 when it is close enough to contact the opposite end face 82. It cools and solidifies in the escape groove 96. As described above, the state in which the end face 82 is in contact with or close to the step 76 is referred to as substantially contacting.

また、図8(c)に示すように、棒鋼80にも逃げ溝を形成してもよい。棒鋼80の外周面86に逃げ溝92を形成してもよいし、端面82に逃げ溝93を形成してもよいし、その両方を形成すれば、尚よい。外周面86の逃げ溝92は、典型的には棒鋼80が嵌入する方向に垂直な平面上に配置されるが、棒鋼80が嵌入する方向に交差する平面上、さらに平面上ではなく例えば波型など、任意な形状に配置されてもよい。ただし、棒鋼80が孔71に嵌入した後には、逃げ溝92の総てが孔71に嵌入する位置に配置する。また、逃げ溝92の断面形状は、矩形、台形、半円形など、任意の形状でよい。このような逃げ溝92を形成することにより、塑性流動した金属が、逃げ溝78にだけではなく逃げ溝92にも流れるので、逃げ溝78、92で塑性流動した金属をより捕捉し易くなり、塑性流動した金属が棒鋼80の端部に押し出され、あるいは、押しのけられて嵌入した入口箇所の棒鋼80の周囲に逃げて固化したはみ出し部が形成されなくなる。逃げ溝92は、逃げ溝78と同様に、前述の膨らみ部および拡散部が形成される部分より僅かに孔71の入口(上面75側)に形成することが好ましい。なお、逃げ溝78が形成されなくてもよい。端面82の窪んだ凹部である逃げ溝93は、端面82と段差76とが当接する位置に配置される。その形状は、逃げ溝96あるいは凹部97と同様であり、また、作用および効果も同様であるので、重複する説明は省略する。   Further, as shown in FIG. 8 (c), a relief groove may be formed in the steel bar 80. The escape groove 92 may be formed on the outer peripheral surface 86 of the steel bar 80, the escape groove 93 may be formed on the end face 82, or both may be formed. The clearance groove 92 of the outer peripheral surface 86 is typically disposed on a plane perpendicular to the direction in which the steel bar 80 is inserted. It may be arranged in an arbitrary shape. However, after the steel bar 80 is fitted into the hole 71, all the escape grooves 92 are arranged at positions where they are fitted into the hole 71. The sectional shape of the escape groove 92 may be any shape such as a rectangle, a trapezoid, or a semicircle. By forming such a relief groove 92, the plastically flowed metal flows not only in the relief groove 78 but also in the relief groove 92, so that it becomes easier to capture the plastically flowed metal in the relief grooves 78, 92. The plastic flowed metal is pushed out to the end portion of the steel bar 80, or is not formed as a protruding part solidified by escaping around the steel bar 80 at the entrance where it is pushed and fitted. Similarly to the escape groove 78, the escape groove 92 is preferably formed slightly at the inlet (upper surface 75 side) of the hole 71 from the portion where the bulge part and the diffusion part are formed. The escape groove 78 may not be formed. The escape groove 93 which is a concave portion of the end surface 82 is disposed at a position where the end surface 82 and the step 76 abut. The shape thereof is the same as that of the escape groove 96 or the recess 97, and the operation and effect are also the same, so that the overlapping description is omitted.

さらに、図9(a)に示すように、孔付き平板70に形成された逃げ溝78、96、あるいは、図9(b)に示すように、棒鋼80に形成された逃げ溝92、93に、Oリング100を挿入してもよい。挿入するOリング100は、通常のシール等に用いられる市販のOリングでよく、ニトリルゴム、スチレンブタジエンゴム、シリコンゴムなど、材質は各種ゴム材料その他の材質でよい。このように、逃げ溝78、96、92、93にOリング100を挿入することにより、塑性流動した金属をより捕捉し易くなり、はみ出し部の形成が抑えられる。特に図9(b)に示すように、逃げ溝92にOリング100を挿入すると、塑性流動した金属は、逃げ溝78に流れ込み、さらに高速の摺動により飛散した金属を逃げ溝92に挿入されたOリング100で捕捉するので、好ましい。   Further, as shown in FIG. 9A, the clearance grooves 78 and 96 formed in the flat plate 70 with holes, or the clearance grooves 92 and 93 formed in the steel bar 80 as shown in FIG. 9B. The O-ring 100 may be inserted. The O-ring 100 to be inserted may be a commercially available O-ring used for a normal seal or the like, and the material may be various rubber materials or other materials such as nitrile rubber, styrene butadiene rubber, and silicon rubber. Thus, by inserting the O-ring 100 into the escape grooves 78, 96, 92, 93, it becomes easier to capture the plastically flowed metal, and the formation of the protruding portion is suppressed. In particular, as shown in FIG. 9B, when the O-ring 100 is inserted into the escape groove 92, the plastically flowed metal flows into the escape groove 78, and the metal scattered by high-speed sliding is inserted into the escape groove 92. Since it is captured by the O-ring 100, it is preferable.

以上説明したように、チリ防止溝、チリ防止壁あるいは逃げ溝を形成することにより、はみ出し部が形成されなくなるので、外観がきれいで好ましい接合を行うことができる。なお、上述の、突起77、84、98、張り出し88、89および逃げ溝78、96、92、93ならびにOリング100は、単独で用いても、あるいは、適宜組み合わせて用いてもよい。   As described above, by forming the dust prevention groove, the dust prevention wall, or the relief groove, the protruding portion is not formed, so that the appearance is clean and preferable joining can be performed. The protrusions 77, 84, 98, the overhangs 88, 89, the escape grooves 78, 96, 92, 93, and the O-ring 100 described above may be used alone or in appropriate combination.

これまでは、アルミニウム系部材と鉄系部材との拡散接合について説明したが、接合される部材は、他の金属で形成されていてもよい。上述の拡散接合方法は、例えば、アルミニウム系材料と銅系材料、アルミニウム系材料とチタン系材料など、硬度が異なる異種金属に適用するときに特にその効果が現れる。また、明らかで断るまでもないが、鉄系材料には、ステンレス鋼などの合金鋼も含まれている。   So far, diffusion bonding between an aluminum-based member and an iron-based member has been described, but the member to be bonded may be formed of another metal. The above-described diffusion bonding method is particularly effective when applied to dissimilar metals having different hardnesses, such as aluminum-based materials and copper-based materials, and aluminum-based materials and titanium-based materials. Further, it is obvious and needless to say that the iron-based material includes alloy steel such as stainless steel.

本発明の拡散接合方法について、実施例を用いてさらに詳しく説明する。
(使用材料)
図10(a)の斜視図に示すように、アルミニウム系部材として、アルミニウム−マグネシウム−シリコン系合金A6061材(1.0%マグネシウム、0.6%シリコン、0.25%銅、0.25%クロム含有、アルミニウム合金)の厚さ20mmの平板を、直径60mmの円板とし、鉄系材料に応じた孔11を形成した。このアルミニウム系部材を、以降、孔付き平板10と称する。
図10(b)の斜視図に示すように、鉄系部材として、機械構造用炭素鋼材S10C材を外径30mm、長さ15mmの円筒形に加工し、その端部に1mmの面取りを施した。この鉄系部材を、以降、鋼棒20と称する。
そこで、孔11の直径は、重ね合わせ代Wを所定の値とするために、鋼棒20の外径30mmよりも僅かに小さく形成する。すなわち、重ね合わせ代Wを0.3mm、0.4mmおよび0.5mmとすべく、孔11の直径を、30mm−0.6mm、30mm−0.8mmおよび30mm−1.0mmとする。ここで、0.6mm、0.8mmおよび1.0mmは、重ね合わせ代0.3mm、0.4mmおよび0.5mmの2倍である。
The diffusion bonding method of the present invention will be described in more detail using examples.
(Materials used)
As shown in the perspective view of FIG. 10A, an aluminum-based member is an aluminum-magnesium-silicon alloy A6061 material (1.0% magnesium, 0.6% silicon, 0.25% copper, 0.25%). A flat plate having a thickness of 20 mm made of chromium-containing aluminum alloy was formed into a disc having a diameter of 60 mm, and the holes 11 corresponding to the iron-based material were formed. This aluminum-based member is hereinafter referred to as a holed flat plate 10.
As shown in the perspective view of FIG. 10 (b), as a steel member, a carbon steel material S10C for mechanical structure was processed into a cylindrical shape having an outer diameter of 30 mm and a length of 15 mm, and 1 mm chamfering was applied to the end portion thereof. . Hereinafter, this iron-based member is referred to as a steel bar 20.
Therefore, the diameter of the hole 11 is formed slightly smaller than the outer diameter 30 mm of the steel rod 20 in order to set the overlap margin W to a predetermined value. That is, the diameter of the hole 11 is set to 30 mm-0.6 mm, 30 mm-0.8 mm, and 30 mm-1.0 mm so that the overlap allowance W is 0.3 mm, 0.4 mm, and 0.5 mm. Here, 0.6 mm, 0.8 mm, and 1.0 mm are twice the overlap margins of 0.3 mm, 0.4 mm, and 0.5 mm.

(接合方法)
図11に、使用した接合装置50の模式的ブロック図を示す。下部電極33は、平坦な上面を有し、上部電極34は、その中心に鉄系部材としての鋼棒20を挿入する孔を有する。図11では、鋼棒20が該孔にぴったりと嵌るように示されているが、孔は鋼棒20の軸直角方向の動きを止め、かつ、接合する側と反対側の端部を下方に押し込むことができればよい。上部電極34は、不図示の駆動装置により、鋼棒20を下方に押込み力P3で押す。
(Joining method)
In FIG. 11, the schematic block diagram of the used joining apparatus 50 is shown. The lower electrode 33 has a flat upper surface, and the upper electrode 34 has a hole into which the steel rod 20 as an iron-based member is inserted. In FIG. 11, the steel rod 20 is shown to fit into the hole, but the hole stops the movement of the steel rod 20 in the direction perpendicular to the axis, and the end opposite to the joining side faces downward. It only needs to be pushed in. The upper electrode 34 pushes the steel bar 20 downward with a pushing force P3 by a driving device (not shown).

アルミニウム部材としての孔付き平板10を、下部電極33上のほぼ中心の位置に載置し、鋼棒20を上部電極34の孔に挿入する。孔付き平板10の孔11の上縁に、鋼棒20の端部が当接する。   The flat plate 10 with a hole as an aluminum member is placed at a substantially central position on the lower electrode 33, and the steel rod 20 is inserted into the hole of the upper electrode 34. The end of the steel rod 20 comes into contact with the upper edge of the hole 11 of the flat plate 10 with a hole.

電源供給装置として、直流電源41、コンデンサ42、スイッチング回路43、溶接トランス44とを備える。直流電源41は、図示しない制御型の半導体スイッチまたは整流用ダイオードなどからなる整流回路を備え、不図示の商用交流電源または交流発電機からの交流電力を直流電力に変換する。コンデンサ42は、複数の並列接続された電解コンデンサからなり、直流電源41からの直流電力を充電する。スイッチング回路43は、半導体スイッチ、インバータ回路などであり、コンデンサ42に蓄えられた電気エネルギを急峻な波形のパルスとして、溶接トランス44の1次巻線N1に選択的に放電する。溶接トランス44の1次巻線N1にパルス電流が流れると、2次巻線N2を通して、溶接トランス44の2次巻線N2に接続された上部電極34、鋼棒20、孔付き平板10、下部電極33に溶接電流が流れる。なお、溶接トランス44の2次巻線N2は、1ターンであっても2ターンであってもよい。   A DC power supply 41, a capacitor 42, a switching circuit 43, and a welding transformer 44 are provided as a power supply device. The DC power source 41 includes a rectifier circuit including a control type semiconductor switch or a rectifier diode (not shown), and converts AC power from a commercial AC power source or AC generator (not shown) into DC power. The capacitor 42 is composed of a plurality of parallel-connected electrolytic capacitors, and charges DC power from the DC power supply 41. The switching circuit 43 is a semiconductor switch, an inverter circuit, or the like, and selectively discharges the electrical energy stored in the capacitor 42 to the primary winding N1 of the welding transformer 44 as a steep waveform pulse. When a pulse current flows through the primary winding N1 of the welding transformer 44, the upper electrode 34, the steel rod 20, the flat plate 10 with a hole, and the lower part connected to the secondary winding N2 of the welding transformer 44 through the secondary winding N2. A welding current flows through the electrode 33. The secondary winding N2 of the welding transformer 44 may be one turn or two turns.

図10(c)の概略断面図に示すように、棒鋼20を下方に押し込みながらパルス電流を流すことにより、棒鋼20は孔11に嵌入する。本実施例においては、棒鋼20は孔11に総て嵌入することはない。嵌入する深さを大きくするためには、高電流を確保するための高電流トランス装置などの追加の装置が必要になることもある。孔つき平板10の厚さは、例えば平板として要求される剛性から定まり、嵌入する深さは、接合部の強度等の設計条件などにより定められる。嵌入する深さは、例えば、ストッパ(不図示)により上部電極が棒鋼20を下方に押し込みながら下方に移動する移動量を調整することにより制御してもよいし、パルス電流の電流値、時間または下方に押込み力を調節することにより、あるいは、これらを組み合わせて調節することにより制御してもよい。このように、本発明による拡散接合方法では、大きな強度が得られると共に、接合部の変形が小さく抑えられ、また、パルス電流も小さく、かつ、押込み力も小さくてよいので、装置も小さくて済む。   As shown in the schematic cross-sectional view of FIG. 10C, the bar steel 20 is fitted into the hole 11 by flowing a pulse current while pushing the steel bar 20 downward. In the present embodiment, the steel bar 20 is not completely inserted into the hole 11. In order to increase the depth of insertion, an additional device such as a high current transformer device for securing a high current may be required. The thickness of the flat plate 10 with holes is determined from, for example, the rigidity required for the flat plate, and the depth to be inserted is determined by design conditions such as the strength of the joint. The depth of insertion may be controlled, for example, by adjusting the amount of movement that the upper electrode moves downward while pushing the steel bar 20 downward by a stopper (not shown), or the current value, time or Control may be performed by adjusting the pushing force downward, or by adjusting these in combination. As described above, in the diffusion bonding method according to the present invention, high strength can be obtained, deformation of the bonding portion can be suppressed small, the pulse current can be small, and the pushing force can be small, so that the apparatus can be small.

再び実施例の説明に戻り、図10(d)に、接合した孔付き平板10と棒鋼20との接合部分の断面観察した詳細断面図を示す。接合部には、嵌入した深さ方向において、その中央より浅い箇所、すなわち、嵌入した深さのおおよそ1/4から1/5の深さの箇所に、膨らみ部Sが形成されていた。また、棒鋼20の端部、面取りした部分には、はみ出し部15が、また、嵌入した入口箇所(すなわち、孔つき平板10の表面)の棒鋼20の周囲にもはみ出し部16が形成されていた。これらのはみ出し部15、16は、重ね合わせ代Wの部分に見合う金属(孔つき平板10の素材であるA6061材および/または棒鋼20の素材であるS10C材)が接合部から押し出され除去されたもので、一部は棒鋼20の端部に押し出されて止まり、残りは棒鋼20に押しのけられて入口箇所に逃げて止まったものと考えられる。   Returning to the description of the embodiment again, FIG. 10 (d) shows a detailed cross-sectional view of the cross-section of the joined portion of the joined flat plate 10 with a hole and the steel bar 20. In the joining portion, a bulging portion S is formed at a location shallower than the center in the inserted depth direction, that is, at a depth of about 1/4 to 1/5 of the inserted depth. Moreover, the protrusion part 15 was formed in the edge part of the steel bar 20, and the chamfered part, and the protrusion part 16 was also formed in the circumference | surroundings of the steel bar 20 of the entrance location (namely, surface of the flat plate 10 with a hole). . In these protruding portions 15 and 16, the metal (A6061 material which is the material of the flat plate 10 with holes and / or the S10C material which is the material of the bar steel 20) commensurate with the overlapping portion W is pushed out and removed from the joint portion. It is considered that a part of the steel bar 20 was pushed out and stopped, and the other part was pushed away by the steel bar 20 and escaped to the entrance and stopped.

(評価方法)
本発明の接合方法の効果を確認するために、上記の方法により接合した部品の接合部の引張強度を計測する。
(Evaluation methods)
In order to confirm the effect of the joining method of the present invention, the tensile strength of the joint portion of the parts joined by the above method is measured.

(引張強さの測定方法)
上記の方法で接合した接合物を、株式会社東京試験機製作所製トーシ式自動チャック式30tfTU型多能材料引張試験機(TU−30−DE)により引張試験を行い、引張強度(破断に至るまでの最大引張力)を計測した。
(Measurement method of tensile strength)
The joint joined by the above method is subjected to a tensile test using a toshi type automatic chuck type 30tfTU type multi-functional material tensile tester (TU-30-DE) manufactured by Tokyo Tester Co., Ltd., and tensile strength (until breakage occurs). Maximum tensile force).

(測定結果)
図12に、上記使用材料で説明した鉄系材料とアルミニウム系材料を上記接合方法にて接合した部品毎に測定した破断強度をまとめて示す。図12には、重ね合わせ代毎に、パルス電流を流すための充電電圧、押込み力も併せて示す。
(Measurement result)
In FIG. 12, the breaking strength measured for every component which joined the iron-type material and aluminum-type material which were demonstrated with the said use material with the said joining method is shown collectively. FIG. 12 also shows a charging voltage and a pushing force for supplying a pulse current for each overlap allowance.

図12で明らかなように、重ね合わせ代を0.3mmから0.4mm、0.5mmと増やすことにより、大きな押込み力が必要となるが、引張強度は増加する。いずれの重ね合わせ代においても、引張強度は30kN以上であった。この値は、実用に耐える大きさであり、充分に大きな接合強度が得られたことになる。   As apparent from FIG. 12, increasing the overlap margin from 0.3 mm to 0.4 mm and 0.5 mm requires a large indentation force, but increases the tensile strength. In any overlap allowance, the tensile strength was 30 kN or more. This value is a size that can withstand practical use, and a sufficiently large bonding strength is obtained.

(高温強度の確認)
アルミニウム系材料に関する異種金属接合においては、接合する金属の材質に拘らず、温度上昇により接合面に酸化化合物が析出し、脆化により強度が低下することが指摘されている。そこで、上記の方法で接合した部品を高温下に保持した後の強度を実測した。ここでは、重ね合わせ代を0.3mmとし、150℃から350℃まで、50℃刻みの温度を設定し、各温度下で2時間保持した後に、引張強度を計測した。なお、各温度毎に、2回の計測を行い、引張強度の平均値を求めた。
(Confirmation of high temperature strength)
It has been pointed out that in dissimilar metal bonding relating to aluminum-based materials, regardless of the metal material to be bonded, an oxide compound is deposited on the bonding surface as the temperature rises, and the strength decreases due to embrittlement. Therefore, the strength after holding the parts joined by the above method at high temperature was measured. Here, the overlap margin was set to 0.3 mm, the temperature was set in increments of 50 ° C. from 150 ° C. to 350 ° C., and the tensile strength was measured after holding at each temperature for 2 hours. In addition, it measured twice for each temperature, and calculated | required the average value of tensile strength.

計測した結果を図13にまとめて示す。温度を上げるにしたがって、引張強度が低下することがわかる。ところが、例えば150℃としても、引張強度は30kN以上であり、実用に耐える充分な引張強度を維持していることがわかる。ただし、例えば、350℃とすると、常温のままの場合に比べ、引張強度は半分以下となっており、本発明の拡散接合により大きな接合強度が得られた場合においても、例えば350℃のような高温下で使用する場合には、充分な注意が必要となることが分かる。   The measurement results are summarized in FIG. It can be seen that the tensile strength decreases with increasing temperature. However, even at 150 ° C., for example, the tensile strength is 30 kN or more, and it can be seen that a sufficient tensile strength to withstand practical use is maintained. However, for example, when it is 350 ° C., the tensile strength is less than half compared with the case of maintaining the room temperature, and even when a large bonding strength is obtained by the diffusion bonding of the present invention, for example, 350 ° C. It can be seen that sufficient care is required when used at high temperatures.

本発明の実施の形態である、鉄系部材とアルミニウム系部材との拡散接合方法の概念を説明する上面図および断面図であり、(a)は接合前の鉄系部材とアルミニウム系部材との上面図、(b)は同じく接合前の断面図、そして、(c)は接合後の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the top view and sectional drawing explaining the concept of the diffusion joining method of the iron-type member and aluminum-type member which are embodiment of this invention, (a) is the iron-type member and aluminum-type member before joining. A top view, (b) is a sectional view before joining, and (c) is a sectional view after joining. 本発明の実施の形態である、鉄系部材とアルミニウム系部材との拡散接合方法において、内周面に面取り面を形成した断面を示す断面図である。It is sectional drawing which shows the cross section which formed the chamfering surface in the internal peripheral surface in the diffusion joining method of the iron-type member and aluminum-type member which is embodiment of this invention. 本発明の実施の形態である、鉄系部材とアルミニウム系部材との拡散接合方法において、複数の孔に複数の突起が嵌入する場合の概念図であり、(a)は上面図、(b)は断面図である。In the diffusion bonding method of an iron-based member and an aluminum-based member, which is an embodiment of the present invention, it is a conceptual diagram when a plurality of protrusions are inserted into a plurality of holes, (a) is a top view, (b) Is a cross-sectional view. 接合した後の鉄系部材とアルミニウム系部材との境界の様子を説明する拡大断面図である。It is an expanded sectional view explaining the mode of the boundary of the iron-type member and aluminum-type member after joining. 棒鋼の嵌入する深さを調整するストッパの例を説明する部分断面図である。(a)は、孔つき平板の孔を段差付きにした例で、(b)は、下部電極に突起を設け、突起を孔つき平板の孔に挿入した例である。It is a fragmentary sectional view explaining the example of the stopper which adjusts the depth in which a steel bar is inserted. (A) is an example in which a hole in a flat plate with a hole is provided with a step, and (b) is an example in which a protrusion is provided on the lower electrode and the protrusion is inserted into a hole in the flat plate with a hole. 図5(a)に示すストッパとしての段差付きの孔を有する孔付き平板と棒鋼との接合において、はみ出し部を形成させないようにチリ防止溝を形成した例の孔の付近の部分断面図である。(a)は段差にチリ防止溝を形成した孔付き平板の例を、(b)は段差と突起とが垂直の例を、(c)は段差と突起とが鋭角の例を示す。FIG. 6 is a partial cross-sectional view of the vicinity of a hole in an example in which a dust prevention groove is formed so as not to form a protruding portion in joining a flat plate with a hole having a stepped hole as a stopper shown in FIG. . (A) shows an example of a flat plate with a hole in which a dust prevention groove is formed in the step, (b) shows an example in which the step and the projection are perpendicular, and (c) shows an example in which the step and the projection are acute angles. 図5(a)に示すストッパとしての段差付きの孔を有する孔付き平板と棒鋼との接合において、棒鋼にチリ防止壁/溝を形成した例を示す部分断面図である。(a)は棒鋼にチリ防止壁/溝を形成した例を示し、(b)は棒鋼と孔付き平板とにチリ防止壁/溝を形成した例を示す。FIG. 6 is a partial cross-sectional view showing an example in which a dust prevention wall / groove is formed in a steel bar in joining of a steel plate with a hole having a stepped hole as a stopper shown in FIG. (A) shows an example in which a dust prevention wall / groove is formed on a steel bar, and (b) shows an example in which a dust prevention wall / groove is formed on a steel bar and a flat plate with holes. 図5(a)に示すストッパとしての段差付きの孔を有する孔付き平板と棒鋼との接合において、孔付き平板と棒鋼とが摺動する部分あるいはその近くに溝を形成した例を示す部分断面図である。(a)は、孔付き平板の内周面に、(b)は孔付き平板の内周面と段差に、(c)は棒鋼にも溝を形成した例を示す。Partial cross section showing an example in which a groove is formed in or near the portion where the flat plate with a hole and the steel bar slide in the joining of the flat plate with a hole having a stepped hole as a stopper shown in FIG. FIG. (A) is an inner peripheral surface of a flat plate with holes, (b) is an inner peripheral surface of the flat plate with holes and a step, and (c) is an example in which grooves are formed in a steel bar. 図8に示す孔付き平板と棒鋼とが摺動する部分あるいはその近くに溝を形成した例において、溝にOリングを挿入した例を示す部分断面図である。(a)は孔付き平板に形成された溝にOリングを挿入した例を、(b)は棒鋼に形成された溝にOリングを挿入した例を示す。It is a fragmentary sectional view which shows the example which inserted the O-ring in the groove | channel in the example which formed the groove | channel in the part which the flat plate with a hole and steel bar shown in FIG. 8 slide, or its vicinity. (A) shows the example which inserted the O-ring in the groove | channel formed in the flat plate with a hole, (b) shows the example which inserted the O-ring in the groove | channel formed in the steel bar. 実施例1で用いた、部材の形状と寸法を示す図である。(a)はアルミニウム系部材の孔付き平板の斜視図、(b)は鉄系部材の斜視図、(c)は接合後のアルミニウム系部材と鉄系部材との位置を説明する概略断面図、および、(d)は接合部の断面観察の詳細断面である。It is a figure which shows the shape and dimension of a member which were used in Example 1. (A) is a perspective view of a flat plate with holes of an aluminum-based member, (b) is a perspective view of an iron-based member, (c) is a schematic cross-sectional view for explaining positions of the aluminum-based member and the iron-based member after joining, And (d) is a detailed cross section of the cross section observation of a junction part. 実施例1で使用した接合装置の模式的ブロック図である。1 is a schematic block diagram of a bonding apparatus used in Example 1. FIG. 実施例1における引張強度をまとめて示す図である。It is a figure which shows collectively the tensile strength in Example 1. FIG. 実施例1において、高温強度を確認した計測結果をまとめて示す図である。In Example 1, it is a figure which shows collectively the measurement result which confirmed the high temperature intensity | strength.

符号の説明Explanation of symbols

10、70、90、110、150 アルミニウム系部材
11、71、111、151 孔
15、16 はみ出し部
20、80、120、160 鉄系部材
30、33 下部電極
31 下部電極の突起
32 下部電極の突起の先端
34 上部電極
41 直流電源
42 コンデンサ
43 スイッチング回路
44 溶接トランス
50 接合装置
72 孔の大きな径の内周面(第1の面)
73 孔の小さな径の内周面
74 溝の上部の内周面
75 孔付き平板の上面
76 段差(第2の面)
77、84、98 突起
78 逃げ溝
79 突起の溝側の面
82 端部
83 端部の溝
86 外周面
87 溝
88、89 張り出し
92、93、96 逃げ溝
100 Oリング
112、152 孔の内周面
114、124 面取り面
122、162 端部
126、166 外周面
130、140 鉄系またはアルミニウム系部材
131、132 突起
141、142 孔
155 アルミニウム系部材の上面
B 拡散部
C クリアランス
N1 1次巻線
N2 2次巻線
P1、P2、P3 押付け力
S 膨らみ部
W 重ね合わせ代
10, 70, 90, 110, 150 Aluminum members 11, 71, 111, 151 Holes 15, 16 Protruding portions 20, 80, 120, 160 Iron members 30, 33 Lower electrode 31 Lower electrode protrusion 32 Lower electrode protrusion Tip 34 upper electrode 41 DC power supply 42 capacitor 43 switching circuit 44 welding transformer 50 joining device 72 inner surface (first surface) having a large diameter of the hole
73 Inner peripheral surface 74 with a small diameter of the hole 74 Inner peripheral surface 75 at the top of the groove Upper surface 76 of the flat plate with holes Step (second surface)
77, 84, 98 Protrusion 78 Escape groove 79 Groove side surface 82 End 83 End groove 86 Outer surface 87 Groove 88, 89 Overhang 92, 93, 96 Escape groove 100 O-ring 112, 152 Inner circumference of hole Surface 114, 124 Chamfered surface 122, 162 End portion 126, 166 Outer peripheral surface 130, 140 Iron-based or aluminum-based member 131, 132 Protrusion 141, 142 Hole 155 Aluminum-based member upper surface B Diffusion portion C Clearance N1 Primary winding N2 Secondary windings P1, P2, P3 Pressing force S Swelling portion W Overlay allowance

Claims (10)

第1の金属で形成された第1の部材と、該第1の金属より硬度の高い第2の金属で形成された第2の部材との拡散接合方法であって;
前記第1の部材の接合面と、前記第2の部材の接合面とを摺動し、少なくとも一方の接合面に形成されている酸化膜を除去する工程と;
前記第1の部材と前記第2の部材とを押し付ける力を加えながら、前記第1の部材と前記第2の部材との間に通電し、前記第1の部材と前記第2の部材とを接合する工程とを備える;
金属の拡散接合方法。
A diffusion bonding method of a first member formed of a first metal and a second member formed of a second metal having a hardness higher than that of the first metal;
Sliding the bonding surface of the first member and the bonding surface of the second member to remove the oxide film formed on at least one of the bonding surfaces;
While applying a force pressing the first member and the second member, energization is performed between the first member and the second member, and the first member and the second member are Joining steps;
Metal diffusion bonding method.
前記第1の部材または第2の部材の内、いずれか一つの部材に孔が形成され、他の部材は前記孔より少なくとも一部が大きな外形を有し;
摺動する力を、前記孔を貫通する方向に加えて、前記他の部材を前記孔に嵌入する;
請求項1に記載の金属の拡散接合方法。
A hole is formed in any one member of the first member or the second member, and the other member has an outer shape that is at least partially larger than the hole;
Applying a sliding force in a direction penetrating the hole and inserting the other member into the hole;
The metal diffusion bonding method according to claim 1.
前記孔は、前記他の部材と摺動する第1の面と、該第1の面から孔の内側に延びる第2の面とを含んで形成され;
前記第2の面、あるいは、前記孔に嵌入する前記他の部材の前記第2の面と相対する第3の面に突起が形成され;
前記他の部材を、前記第2の面とほぼ接するまで嵌入する;
請求項2に記載の金属の拡散接合方法。
The hole includes a first surface that slides with the other member, and a second surface that extends from the first surface to the inside of the hole;
Protrusions are formed on the second surface, or on a third surface facing the second surface of the other member that fits into the hole;
The other member is inserted until it is substantially in contact with the second surface;
The metal diffusion bonding method according to claim 2.
前記孔の前記他の部材と摺動する面あるいは前記他の部材の前記孔の面と摺動する面の少なくともいずれか一方に、前記他の部材が嵌入する方向と交差する方向の溝が形成され;
前記他の部材を、前記溝を越えてあるいは前期溝が前記孔に嵌入するまで、前記孔に嵌入する;
請求項2に記載の金属の拡散接合方法。
At least one of the surface of the hole that slides with the other member and the surface of the other member that slides with the surface of the hole is formed with a groove that intersects the direction in which the other member is fitted. Is;
The other member is inserted into the hole beyond the groove or until the previous groove is inserted into the hole;
The metal diffusion bonding method according to claim 2.
前記孔は、前記他の部材と摺動する第1の面と、該第1の面から孔の内側に延びる第2の面とを含んで形成され;
前記第2の面、あるいは、前記孔に嵌入する前記他の部材の前記第2の面と相対する第3の面に周囲より窪んだ凹部が形成され;
前記他の部材を、前記第2の面と前記第3の面とがほぼ接するまで嵌入する;
請求項2に記載の金属の拡散接合方法。
The hole includes a first surface that slides with the other member, and a second surface that extends from the first surface to the inside of the hole;
A concave portion recessed from the periphery is formed on the second surface or a third surface facing the second surface of the other member fitted into the hole;
Inserting the other member until the second surface and the third surface are substantially in contact with each other;
The metal diffusion bonding method according to claim 2.
前記他の部材は、前記孔に嵌入しない部分を有し、該孔に嵌入しない部分の周囲に、前記孔に嵌入する部分より大きな外形の張り出しであって、前記孔に嵌入した後に前記他の部材が嵌入した前記孔の入口の周囲を、前記一つの部材と共に覆う張り出しを有し;
前記他の部材を、前記張り出しが、前記一つの部材にほぼ接するまで前記孔に嵌入する;
請求項2に記載の金属の拡散接合方法。
The other member has a portion that does not fit into the hole, and has a larger outer shape around the portion that does not fit into the hole than the portion that fits into the hole. An overhang covering the periphery of the entrance of the hole into which the member is fitted together with the one member;
Inserting the other member into the hole until the overhang substantially contacts the one member;
The metal diffusion bonding method according to claim 2.
前記孔が円形断面の孔であり;
前記他の部材の外形が円形断面である;
請求項2ないし請求項6のいずれか1項に記載の金属の拡散接合方法。
The hole is a hole of circular cross section;
The outer shape of the other member has a circular cross section;
The metal diffusion bonding method according to any one of claims 2 to 6.
前記他の部材の外形の大きな部分が前記孔の形成された部材と重なり合う重ね合わせ代が、0.2mmないし1mmである;
請求項2ないし請求項7のいずれか1項に記載の金属の拡散接合方法。
The overlap allowance where a large part of the outer shape of the other member overlaps the member in which the hole is formed is 0.2 mm to 1 mm;
The metal diffusion bonding method according to any one of claims 2 to 7.
前記接合した他の部材に、接合する前よりも接合面の法線方向に張り出し、前記孔の形成された部材に食い込む膨らみ部が形成される;
請求項2ないし請求項8のいずれか1項に記載の金属の拡散接合方法。
A bulging portion is formed on the other joined member so as to protrude in the normal direction of the joining surface than before joining, and bite into the member in which the hole is formed;
The metal diffusion bonding method according to any one of claims 2 to 8.
前記第1の金属がアルミニウム系材料であり;
前記第2の金属が鉄系材料であり;
前記酸化被膜が、少なくとも前記第2の部材の接合面に形成されている;
請求項1ないし請求項9のいずれか1項に記載の金属の拡散接合方法。
The first metal is an aluminum-based material;
The second metal is an iron-based material;
The oxide film is formed on at least the joint surface of the second member;
The metal diffusion bonding method according to any one of claims 1 to 9.
JP2005203048A 2005-02-25 2005-07-12 Metal diffusion bonding method Active JP4435040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203048A JP4435040B2 (en) 2005-02-25 2005-07-12 Metal diffusion bonding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005051652 2005-02-25
JP2005203048A JP4435040B2 (en) 2005-02-25 2005-07-12 Metal diffusion bonding method

Publications (2)

Publication Number Publication Date
JP2006263809A true JP2006263809A (en) 2006-10-05
JP4435040B2 JP4435040B2 (en) 2010-03-17

Family

ID=37200313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203048A Active JP4435040B2 (en) 2005-02-25 2005-07-12 Metal diffusion bonding method

Country Status (1)

Country Link
JP (1) JP4435040B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200702A (en) * 2007-02-19 2008-09-04 Origin Electric Co Ltd Highly conductive workpiece to be bonded, and its diffusion bonding method
JP2010227956A (en) * 2009-03-26 2010-10-14 Origin Electric Co Ltd Welding method
JP5897712B2 (en) * 2012-11-22 2016-03-30 株式会社エフ・シー・シー Manufacturing method of integral member and integral member
JP2018199165A (en) * 2018-09-26 2018-12-20 マツダ株式会社 Joining device and joining method of metal member
WO2019182005A1 (en) * 2018-03-23 2019-09-26 株式会社オリジン Fitting member, annular member, bonding agent member, and method for manufacturing bonding agent member
JP6868733B1 (en) * 2020-06-02 2021-05-12 株式会社オリジン Manufacturing method and manufacturing equipment for joined articles
US11161196B2 (en) 2016-08-26 2021-11-02 Mazda Motor Corporation Metallic member bonding device for pressing rod-shaped or cylindrical first metallic member into hole portion of annular second metallic member to bond the same and bonding method therefor
JP2021186842A (en) * 2020-06-02 2021-12-13 株式会社オリジン Manufacturing method and manufacturing apparatus for jointed article
CN114367731A (en) * 2022-02-09 2022-04-19 中国工程物理研究院材料研究所 Method for connecting tungsten and steel
WO2023013048A1 (en) * 2021-08-06 2023-02-09 富山県 Sealing structure and production method for same
JP7448435B2 (en) 2020-07-17 2024-03-12 三井金属計測機工株式会社 Strip-like member connection body and jig for connecting strip-like members

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102460753B1 (en) * 2016-03-17 2022-10-31 삼성전기주식회사 Element package and manufacturing method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263243A (en) * 1999-03-15 2000-09-26 Mazda Motor Corp Metal welding method and metal joining structure
JP2002103056A (en) * 2000-09-26 2002-04-09 Origin Electric Co Ltd Method for diffusion bonding of butted projections and welded article
JP2002235514A (en) * 2001-02-08 2002-08-23 Toyota Industries Corp Joining structure of valve seat
JP2004017048A (en) * 2002-06-12 2004-01-22 Origin Electric Co Ltd Ring mash welding method and ring mesh mechanism
JP2004114146A (en) * 2002-09-30 2004-04-15 Ohashi Technica Inc Press-fitting joining structure and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263243A (en) * 1999-03-15 2000-09-26 Mazda Motor Corp Metal welding method and metal joining structure
JP2002103056A (en) * 2000-09-26 2002-04-09 Origin Electric Co Ltd Method for diffusion bonding of butted projections and welded article
JP2002235514A (en) * 2001-02-08 2002-08-23 Toyota Industries Corp Joining structure of valve seat
JP2004017048A (en) * 2002-06-12 2004-01-22 Origin Electric Co Ltd Ring mash welding method and ring mesh mechanism
JP2004114146A (en) * 2002-09-30 2004-04-15 Ohashi Technica Inc Press-fitting joining structure and method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200702A (en) * 2007-02-19 2008-09-04 Origin Electric Co Ltd Highly conductive workpiece to be bonded, and its diffusion bonding method
JP2010227956A (en) * 2009-03-26 2010-10-14 Origin Electric Co Ltd Welding method
JP5897712B2 (en) * 2012-11-22 2016-03-30 株式会社エフ・シー・シー Manufacturing method of integral member and integral member
US9987704B2 (en) 2012-11-22 2018-06-05 Kabushiki Kaisha F.C.C. Method for manufacturing an integrated member and an integrated member
US10286478B2 (en) 2012-11-22 2019-05-14 Kabushiki Kaisha F.C.C. Method for manufacturing an integrated member and an integrated member
US11161196B2 (en) 2016-08-26 2021-11-02 Mazda Motor Corporation Metallic member bonding device for pressing rod-shaped or cylindrical first metallic member into hole portion of annular second metallic member to bond the same and bonding method therefor
US11484963B2 (en) 2018-03-23 2022-11-01 Origin Company, Limited Fitting member, annular member, joined member and method of manufacturing joined member
WO2019182005A1 (en) * 2018-03-23 2019-09-26 株式会社オリジン Fitting member, annular member, bonding agent member, and method for manufacturing bonding agent member
JP2018199165A (en) * 2018-09-26 2018-12-20 マツダ株式会社 Joining device and joining method of metal member
JP6868733B1 (en) * 2020-06-02 2021-05-12 株式会社オリジン Manufacturing method and manufacturing equipment for joined articles
JP2021186842A (en) * 2020-06-02 2021-12-13 株式会社オリジン Manufacturing method and manufacturing apparatus for jointed article
CN114599470A (en) * 2020-06-02 2022-06-07 株式会社欧利生 Method and apparatus for manufacturing bonded article
CN114599470B (en) * 2020-06-02 2023-02-28 株式会社欧利生 Method and apparatus for manufacturing bonded article
US11731217B2 (en) 2020-06-02 2023-08-22 Origin Company, Limited Method and device for manufacturing joining apparatus
JP7448435B2 (en) 2020-07-17 2024-03-12 三井金属計測機工株式会社 Strip-like member connection body and jig for connecting strip-like members
WO2023013048A1 (en) * 2021-08-06 2023-02-09 富山県 Sealing structure and production method for same
CN114367731A (en) * 2022-02-09 2022-04-19 中国工程物理研究院材料研究所 Method for connecting tungsten and steel
CN114367731B (en) * 2022-02-09 2023-05-09 中国工程物理研究院材料研究所 Tungsten and steel connecting method

Also Published As

Publication number Publication date
JP4435040B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4435040B2 (en) Metal diffusion bonding method
CN111801189B (en) Arc welding method for joining dissimilar materials
JP2006289409A (en) Method for joining laminated portion
US7367487B2 (en) Method for friction stir welding, jig therefor, member with friction stir-welded portion, and tool for friction stir welding
JP2005324251A (en) Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP2007268604A (en) Resistance spot welding method
JP2006142382A (en) Method and device for short cycle arc welding
JP5064688B2 (en) Resistance welding equipment
JP2019136748A (en) Resistance spot welding method
JP2008290129A (en) Method of welding metallic member
JP4550086B2 (en) Projection welding method for highly conductive workpieces
JP2005066627A (en) Friction stir joining method, tool therefor, and member with friction-stir-joined portion
JP7160625B2 (en) Arc Stud Welding Method for Joining Dissimilar Materials and Joining Auxiliary Member
KR102394629B1 (en) Method for welding steel sheet made by hot stamping
JP5998308B1 (en) Method for manufacturing joined article and joined article
JP4940334B2 (en) Projection welding method for highly conductive workpieces
JP2006017303A (en) Valve element
JP2018164922A (en) Joining method of metal member and joint metal member
JP2018079476A (en) Joint structure and manufacturing method of the same
JP6591952B2 (en) Junction structure and manufacturing method thereof
KR101221052B1 (en) Resistance spot welding method
JP4542795B2 (en) Friction stir welding method and its jig
WO2023140016A1 (en) Resistance welding element and resistance welding method
JP7111665B2 (en) Arc stud welding method for joining dissimilar materials
JP5037102B2 (en) Diffusion bonding method for highly conductive workpieces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4435040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250