JP6591952B2 - Junction structure and manufacturing method thereof - Google Patents

Junction structure and manufacturing method thereof Download PDF

Info

Publication number
JP6591952B2
JP6591952B2 JP2016221365A JP2016221365A JP6591952B2 JP 6591952 B2 JP6591952 B2 JP 6591952B2 JP 2016221365 A JP2016221365 A JP 2016221365A JP 2016221365 A JP2016221365 A JP 2016221365A JP 6591952 B2 JP6591952 B2 JP 6591952B2
Authority
JP
Japan
Prior art keywords
plate
thin plate
thickness
insertion member
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016221365A
Other languages
Japanese (ja)
Other versions
JP2018079475A (en
Inventor
恭兵 前田
恭兵 前田
岩瀬 哲
哲 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016221365A priority Critical patent/JP6591952B2/en
Priority to PCT/JP2017/039956 priority patent/WO2018088364A1/en
Publication of JP2018079475A publication Critical patent/JP2018079475A/en
Application granted granted Critical
Publication of JP6591952B2 publication Critical patent/JP6591952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded

Description

本発明は、接合構造体及びその製造方法に関する。   The present invention relates to a bonded structure and a manufacturing method thereof.

金属板材を重ね合わせた板組を一対の電極間に挟んで加圧通電することにより、金属板材間に溶融ナゲットを形成して溶接するスポット溶接が広く使用されている。しかし、厚板の外側面に薄板を重ね合わせた板組をスポット溶接する場合には、溶融ナゲットの形成位置が厚板側に偏り、薄板と厚板との間の溶接強度を確保することが困難になる。   Spot welding is widely used in which a plate assembly in which metal plate materials are stacked is sandwiched between a pair of electrodes and pressurized and energized to form a molten nugget between the metal plate materials for welding. However, when spot welding a set of thin plates stacked on the outer surface of the thick plate, the formation position of the molten nugget is biased toward the thick plate side, and it is possible to ensure the welding strength between the thin plate and the thick plate. It becomes difficult.

この種の不具合を解消する技術として、薄板側電極の加圧力を厚板側電極の加圧力に比べて小さくし、電極と板との間の接触抵抗値を薄板側の方が厚板側よりも大きくなるように制御する溶接方法が知られている(特許文献1)。また、スポット溶接を二段階からなる溶接とし、第一段の溶接を行った後、第一段の溶接よりも高加圧力、低電流で第二段の溶接を行う溶接方法が知られている(特許文献2)。更に、スポット溶接を、加圧力一定で多段通電する溶接とし、一段目の電流で薄板−厚板界面に溶融ナゲットを形成し、二段目以降のパルセーション電流により、厚板−厚板界面の溶融ナゲットを成長させる溶接方法が知られている(特許文献3)。   As a technique for solving this type of problem, the pressure on the thin plate side electrode is made smaller than that on the thick plate side electrode, and the contact resistance between the electrode and the plate is smaller on the thin plate side than on the thick plate side. There is known a welding method for controlling so as to be large (Patent Document 1). In addition, a welding method is known in which spot welding is made of two stages, the first stage welding is performed, and then the second stage welding is performed at a higher pressure and lower current than the first stage welding. (Patent Document 2). In addition, spot welding is a multi-stage energization with a constant applied pressure, a melt nugget is formed at the thin plate-thick plate interface by the first stage current, and the thick plate-thick plate interface is formed by the pulsation current after the second stage. A welding method for growing a molten nugget is known (Patent Document 3).

特開2003−251469号公報JP 2003-251469 A 特開2005−262259号公報JP 2005-262259 A 特開2008−93726号公報JP 2008-93726 A

上記特許文献1〜3記載の溶接方法によれば、薄板と厚板との界面でのナゲットの形成を促進し、薄板と厚板との間の溶接強度が高められる。しかし、特許文献1記載の溶接方法では、薄板側電極の加圧力を制御するためのサーボ機構及びコントローラを装備した特殊なスポット溶接装置が必要となり、溶接コストが増加する不利がある。特許文献2記載の溶接方法では、短時間で加圧力を変更可能な可変加圧制御機能を備えた特殊なスポット溶接装置が必要となる。そのため、溶接コストの増加を回避することは困難である。また、特許文献3記載の溶接方法では、パルセーション通電間にクールタイムを設ける必要があるため、タクトタイムが増加するという問題がある。   According to the welding methods described in Patent Documents 1 to 3, the formation of nuggets at the interface between the thin plate and the thick plate is promoted, and the welding strength between the thin plate and the thick plate is increased. However, the welding method described in Patent Document 1 requires a special spot welding device equipped with a servo mechanism and a controller for controlling the pressure applied to the thin plate side electrode, which has the disadvantage of increasing the welding cost. In the welding method described in Patent Document 2, a special spot welding apparatus having a variable pressurization control function capable of changing the applied pressure in a short time is required. Therefore, it is difficult to avoid an increase in welding cost. Further, in the welding method described in Patent Document 3, it is necessary to provide a cool time between pulsation energizations, which causes a problem that the tact time increases.

そこで本発明は、板厚比の大きい板組であっても、溶接装置に特殊機能を別途付加することなく、また特殊な加圧、通電制御を行うことなく、溶融ナゲットの板厚方向における形成位置を適正化して、十分な溶融ナゲット径、溶込み率を得ることが可能な高品質の接合構造体及びその製造方法を提供することを目的とする。   Therefore, the present invention is capable of forming the molten nugget in the thickness direction without adding a special function to the welding apparatus, and without performing special pressurization and energization control even for a plate set having a large thickness ratio. An object of the present invention is to provide a high-quality bonded structure capable of obtaining a sufficient melt nugget diameter and penetration rate by optimizing the position and a method for manufacturing the same.

本発明は、下記構成からなる。
(1) 複数の板材が重ね合わされた板組の少なくとも一方の外側面に、前記板材よりも薄厚で挿着部材が取り付けられた薄板材が重ねて配置され、前記薄板材と前記板組とが溶接された接合構造体であって、
前記薄板材の板厚に対する前記板組と前記薄板材との合計板厚の比が4以上であり、
前記挿着部材が、前記薄板材に前記板組へ向けて嵌入された軸部と、前記薄板材の前記板組側と反対側の外側板面から突出する頭部とを有し、
前記挿着部材の前記軸部の先端から、前記板組の前記一方の外側面と反対側に配置された前記板材の板厚内に至る範囲に、溶融ナゲットが形成され、
前記薄板材の板厚に対する前記薄板材の板厚内に存在する前記溶融ナゲットの厚みの比率が10%以上であることを特徴とする接合構造体。
(2) 複数の板材が重ね合わされた板組の少なくとも一方の外側面に、前記板材よりも薄厚で挿着部材が取り付けられた薄板材を重ねて配置して、前記薄板材と前記板組とを溶接する接合構造体の製造方法であって、
前記薄板材の板厚に対する前記板組と前記薄板材との合計板厚の比を4以上にする工程と、
頭部と軸部を有する挿着部材の前記軸部を前記薄板材に嵌入し、前記頭部を前記薄板材の前記板組側と反対側の外側板面から突出させる工程と、
前記挿着部材と前記板組とを一対の電極間に挟み込み、前記電極間に溶接電流を流すことで、前記挿着部材の前記軸部の先端から、前記板組の前記一方の外側面と反対側に配置された前記板材の板厚内に至る範囲に、溶融ナゲットを形成する工程と、
を有し、
前記薄板材の板厚に対する前記薄板材の板厚内に存在する前記溶融ナゲットの厚みの比率を10%以上にする、
ことを特徴とする接合構造体の製造方法。
The present invention has the following configuration.
(1) A thin plate material that is thinner than the plate material and has an insertion member attached thereto is placed on at least one outer surface of the plate set in which a plurality of plate materials are superimposed, and the thin plate material and the plate set are Welded joint structure,
The ratio of the total plate thickness of the plate set and the thin plate material to the plate thickness of the thin plate material is 4 or more,
The insertion member has a shaft portion fitted into the thin plate material toward the plate assembly, and a head portion protruding from an outer plate surface opposite to the plate assembly side of the thin plate material,
In the range from the tip of the shaft portion of the insertion member to the plate thickness of the plate material arranged on the opposite side of the one outer surface of the plate assembly, a melt nugget is formed,
The joint structure according to claim 1, wherein a ratio of the thickness of the molten nugget existing in the thickness of the thin plate to the thickness of the thin plate is 10% or more.
(2) At least one outer surface of a plate assembly in which a plurality of plate members are overlapped with each other, a thin plate member that is thinner than the plate member and to which an insertion member is attached is stacked, and the thin plate member and the plate assembly A method of manufacturing a joined structure for welding,
The ratio of the total plate thickness of the plate set and the thin plate material to the plate thickness of the thin plate material is 4 or more;
Inserting the shaft portion of the insertion member having a head portion and a shaft portion into the thin plate material, and projecting the head portion from the outer plate surface opposite to the plate assembly side of the thin plate material;
By sandwiching the insertion member and the plate assembly between a pair of electrodes and flowing a welding current between the electrodes, from the tip of the shaft portion of the insertion member, the one outer surface of the plate assembly Forming a molten nugget in a range reaching the thickness of the plate disposed on the opposite side; and
Have
The ratio of the thickness of the molten nugget present in the thickness of the thin plate to the thickness of the thin plate is 10% or more,
The manufacturing method of the joining structure characterized by the above-mentioned.

本発明により、板厚比の大きい板組であっても、溶接装置に特殊機能を別途付加することなく、また特殊な加圧、通電制御を行うことなく、溶融ナゲットの板厚方向における形成位置を適正化して、十分な溶融ナゲット径、溶込み率を得ることができる。これにより、高品質な接合構造体を得ることができる。   According to the present invention, the position of forming the melt nugget in the plate thickness direction without adding a special function to the welding apparatus or performing special pressurization and energization control even in a plate assembly having a large plate thickness ratio. Can be optimized to obtain a sufficient melt nugget diameter and penetration rate. Thereby, a high-quality joining structure can be obtained.

接合構造体の第1構成例の模式的な断面図である。It is typical sectional drawing of the 1st structural example of a joining structure. 図1に示す接合構造体を製造する一工程を示す工程説明図である。It is process explanatory drawing which shows 1 process of manufacturing the joining structure shown in FIG. 図2Aの工程に続く一工程を示す要部断面図である。It is principal part sectional drawing which shows 1 process following the process of FIG. 2A. 図1に示す接合構造体の溶接工程を示す工程説明図である。It is process explanatory drawing which shows the welding process of the joining structure shown in FIG. 接合構造体の第2構成例の模式的な断面図である。It is typical sectional drawing of the 2nd structural example of a joining structure. 接合構造体の第3構成例の模式的な断面図である。It is typical sectional drawing of the 3rd structural example of a joining structure. 接合構造体の変形例の模式的な一部拡大断面図である。It is a typical partial expanded sectional view of the modification of a junction structure.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
<第1構成例>
図1には、接合構造体の第1構成例が示されている。
この接合構造体100は、複数(図示例では2枚)の板材11,13が重ね合わされた板組15と、各板材11,13のいずれよりも薄厚の薄板材17と、薄板材17に取り付けられる挿着部材21とを有する。薄板材17は、板組15の一方の外側面15aに重なって配置される。これにより、板材11,13と、薄板材17からなる組立体19が構成される。以下、板材11,13を厚板材と呼称する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<First configuration example>
FIG. 1 shows a first configuration example of the bonded structure.
The joined structure 100 is attached to a plate set 15 in which a plurality (two in the illustrated example) of plate materials 11 and 13 are superposed, a thin plate material 17 that is thinner than each of the plate materials 11 and 13, and the thin plate material 17. The insertion member 21 is provided. The thin plate material 17 is disposed so as to overlap one outer surface 15 a of the plate set 15. Thus, an assembly 19 composed of the plate materials 11 and 13 and the thin plate material 17 is configured. Hereinafter, the plate members 11 and 13 are referred to as thick plate members.

なお、図1に示す接合構造体100は、その厚さ寸法や各部の長さは模式的に示しているため、実際の寸法関係と必ずしも一致していない。また、以下に説明する各図においても同様である。   In addition, since the thickness dimension and the length of each part have shown typically the joining structure body 100 shown in FIG. 1, it does not necessarily correspond with an actual dimensional relationship. The same applies to each drawing described below.

厚板材11、13は、軟鋼等の炭素鋼、低合金鋼、低温用鋼、9%Ni鋼、ステンレス鋼、インコネル等が好適に用いられ、それぞれの厚板材11,13は、互いに異種材であっても同種材であってよい。また、互いに異なる板厚であって同じ板厚であってもよい。薄板材17は、軟鋼等の炭素鋼、ステンレス鋼、低合金鋼等の鋼材が好適に用いられる。   Thick plate materials 11 and 13 are preferably carbon steel such as mild steel, low alloy steel, low temperature steel, 9% Ni steel, stainless steel, Inconel, etc., and the respective thick plate materials 11 and 13 are made of different materials. Even if it exists, it may be the same kind of material. Further, they may have different plate thicknesses and the same plate thickness. As the thin plate material 17, a steel material such as carbon steel such as mild steel, stainless steel, or low alloy steel is preferably used.

本構成の薄板材17には、挿着部材として、一端部に頭部21a、他端部に軸部21bを有するリベット21が取り付けられる。リベット21は、頭部21aが板組15と反対側の外側板面17cから突出し、且つ軸部21bが薄板材17の板厚方向に板組15へ向けて嵌入されている。このリベット21は鋼材からなる。   A rivet 21 having a head portion 21a at one end and a shaft portion 21b at the other end is attached to the thin plate member 17 of this configuration as an insertion member. The rivet 21 has a head portion 21 a protruding from the outer plate surface 17 c opposite to the plate assembly 15, and a shaft portion 21 b fitted into the plate assembly 15 in the plate thickness direction of the thin plate material 17. The rivet 21 is made of steel.

下記(1)式に示すように、薄板材17の板厚taに対する、厚板材11,13及び薄板材17の合計板厚との比をRtとすると、上記の組立体19は、比Rtが4以上になるように各板材が選定されている。
Rt=(ta+tb+tc)/ta ・・・(1)
As shown in the following formula (1), when the ratio of the total plate thickness of the thick plate members 11 and 13 and the thin plate member 17 to the plate thickness ta of the thin plate member 17 is Rt, the assembly 19 has a ratio Rt of Each plate material is selected to be 4 or more.
Rt = (ta + tb + tc) / ta (1)

以下、比Rtを板厚比Rtと呼称する。この板厚比Rtの上限値は特に制限されないが、実際の構造体のサイズからすると、例えば15程度である。なお、厚板材11,13と薄板材17の板厚は、0.5〜3.0mmの範囲から任意に選定される。また、板厚比Rtは、抵抗スポット溶接用の電極による加圧前の板厚、又は加圧部以外の部位の厚さを基準として求める値である。   Hereinafter, the ratio Rt is referred to as a plate thickness ratio Rt. The upper limit value of the plate thickness ratio Rt is not particularly limited, but is about 15 in terms of the actual size of the structure. In addition, the plate | board thickness of the thick board | plate materials 11 and 13 and the thin board | plate material 17 is arbitrarily selected from the range of 0.5-3.0 mm. Further, the plate thickness ratio Rt is a value obtained on the basis of the plate thickness before pressurization by the electrode for resistance spot welding or the thickness of a portion other than the pressurizing portion.

図1に示す接合構造体100には、抵抗スポット溶接により溶融ナゲット23が形成され、組立体19と、リベット21の軸部21bとが、溶融ナゲット23により接合される。溶融ナゲット23は、薄板材17の板厚ta内におけるリベット21の軸部21b(軸部先端の非溶融部)から、板組15の他方の外側面に配置される厚板材13の板厚tc内に至る範囲に形成される。   In the joining structure 100 shown in FIG. 1, a molten nugget 23 is formed by resistance spot welding, and the assembly 19 and the shaft portion 21 b of the rivet 21 are joined by the molten nugget 23. The molten nugget 23 has a thickness tc of the thick plate 13 disposed on the other outer surface of the plate assembly 15 from the shaft portion 21b (non-melted portion at the tip of the shaft portion) of the rivet 21 within the plate thickness ta of the thin plate material 17. It is formed in the range leading to the inside.

溶融ナゲット23は、下記の(2)式で定義される溶込み率Rm、すなわち、薄板材17の板厚taに対する薄板材17内に存在する溶融ナゲット23の厚さtnの比率である溶込み率Rmが、10%以上にされている。通常のスポット溶接では、溶接条件を変更しても溶込み率を10%以上にすることは困難であるが、上記板厚比Rtの条件にすると、溶込み率が10%以上となる溶接条件(加圧力、電流値、通電時間)が存在するようになる。すなわち、上記板厚比Rtの条件にすることにより、溶込み率10%以上である溶融ナゲットを形成することが可能となる。
Rm=tn/ta ・・・(2)
The molten nugget 23 has a penetration rate Rm defined by the following equation (2), that is, a penetration that is a ratio of the thickness tn of the molten nugget 23 existing in the thin plate material 17 to the plate thickness ta of the thin plate material 17. The rate Rm is set to 10% or more. In normal spot welding, it is difficult to increase the penetration rate to 10% or more even if the welding conditions are changed. However, if the plate thickness ratio Rt is used, the welding conditions allow the penetration rate to be 10% or more. (Pressure force, current value, energization time) come to exist. That is, by setting the plate thickness ratio Rt as described above, it is possible to form a molten nugget having a penetration rate of 10% or more.
Rm = tn / ta (2)

溶け込み率Rmは、上記した通り10%以上であるが、好ましくは20%以上がよい。また、以降の説明についても同様に、溶け込み率は20%以上が好ましい。   The penetration rate Rm is 10% or more as described above, but preferably 20% or more. In the following explanation, the penetration rate is preferably 20% or more.

溶融ナゲット23の径は、リベット21の軸径より大きい。よって、薄板材17と挿着部材が溶融ナゲット23により一体化し、高い溶接強度が得られる。なお、溶融ナゲット23の径は、例えばJIS Z3139に準拠して測定される値とすることができる。   The diameter of the molten nugget 23 is larger than the shaft diameter of the rivet 21. Therefore, the thin plate material 17 and the insertion member are integrated by the molten nugget 23, and high welding strength is obtained. In addition, the diameter of the fusion | melting nugget 23 can be made into the value measured based on JISZ3139, for example.

<リベットのかしめ固定>
図2A及び図2Bには、薄板材へのリベットの取り付け方法が例示されている。
上記した各構成例におけるリベットは、薄板材17に打ち込むことで、簡単に、且つ短時間で薄板材17に固定される。
<Riveting caulking of rivets>
2A and 2B illustrate a method for attaching a rivet to a thin plate material.
The rivets in the respective configuration examples described above are fixed to the thin plate material 17 easily and in a short time by driving into the thin plate material 17.

具体的には、図2Aに示すように、下型である円筒状のダイ41の上に薄板材17を支持させた状態で、薄板材17の上にリベット21を載置する。そして、上型であるポンチ43によりリベット21を薄板材17に打ち込む。すると、図2Bに示すように、薄板材17がリベット21の軸部21bにより打ち抜かれ、抜きかす45がダイ41内に落下する。このとき、薄板材17の打ち抜き孔周囲の材料は、リベット21の頭部21aと、ダイ41との間に挟まれて、リベット21の頭部21aに形成された環状凹溝21cに塑性流動する。その結果、薄板材17の打ち抜き孔周囲の材料が環状凹溝21cに入り込み、軸部21bの周囲に密着する。この打ち込みにより、リベット21が薄板材17にかしめ固定される。   Specifically, as shown in FIG. 2A, the rivet 21 is placed on the thin plate material 17 in a state where the thin plate material 17 is supported on a cylindrical die 41 which is a lower mold. Then, the rivet 21 is driven into the thin plate material 17 by the punch 43 that is the upper die. Then, as shown in FIG. 2B, the thin plate material 17 is punched out by the shaft portion 21 b of the rivet 21, and the scraper 45 falls into the die 41. At this time, the material around the punched hole of the thin plate material 17 is sandwiched between the head 21 a of the rivet 21 and the die 41 and plastically flows into an annular groove 21 c formed in the head 21 a of the rivet 21. . As a result, the material around the punched hole of the thin plate material 17 enters the annular groove 21c and adheres closely to the periphery of the shaft portion 21b. By this driving, the rivet 21 is caulked and fixed to the thin plate material 17.

上記のように、リベット21を薄板材17にかしめ固定することにより、形成される溶融ナゲット23の径が小さい場合でも、各部材の接合強度を安定して確保できる。   As described above, by caulking and fixing the rivet 21 to the thin plate member 17, even when the diameter of the formed melt nugget 23 is small, the bonding strength of each member can be secured stably.

また、リベット21は、薄板材17に板厚方向に貫通孔17aを形成しておき、この貫通孔17aに軸部21bを嵌入させることで取り付けてもよい。なお、かしめ固定は、リベット21の頭部21aが薄板材17にかしめられる構成に限らず、リベット21の軸部21bが薄板材17にかしめられる構成であってもよい。   The rivet 21 may be attached by forming a through hole 17a in the thin plate material 17 in the plate thickness direction and fitting the shaft portion 21b into the through hole 17a. The caulking is not limited to the configuration in which the head 21 a of the rivet 21 is caulked to the thin plate material 17, but may be the configuration in which the shaft portion 21 b of the rivet 21 is caulked to the thin plate material 17.

図3には、図1に示す接合構造体100の溶接工程が示されている。
溶接工程では、リベット21が取り付けられた薄板材17を、厚板材11,13からなる板組15に重ね合わせ、これにより得られる組立体19を、一対の電極25,27間に挟み込む。組立体19を挟んだ一対の電極25,27間に溶接電流を流すことで、リベット21の軸部21bから厚板材13の板厚内に至る領域に溶融ナゲット23が形成される。
FIG. 3 shows a welding process of the joint structure 100 shown in FIG.
In the welding process, the thin plate material 17 to which the rivets 21 are attached is superposed on the plate assembly 15 composed of the thick plate materials 11 and 13, and the assembly 19 obtained thereby is sandwiched between the pair of electrodes 25 and 27. By flowing a welding current between the pair of electrodes 25 and 27 sandwiching the assembly 19, the molten nugget 23 is formed in a region extending from the shaft portion 21 b of the rivet 21 to the thickness of the thick plate material 13.

厚板材11と厚板材13と薄板材17とは、互いに重ね合わせた際に、各板材の反り等によって板面間にギャップを生じることがある。このギャップは、3mm以下、好ましくは1mm以下であれば、上記溶接工程に何ら影響を及ぼすことはない。   When the thick plate material 11, the thick plate material 13 and the thin plate material 17 are overlapped with each other, a gap may be generated between the plate surfaces due to warpage of the respective plate materials. If this gap is 3 mm or less, preferably 1 mm or less, it will not affect the welding process.

一般に、抵抗スポット溶接用の電極25,27は、冷却媒体を流動させる図示しない冷却用管路が設けられ、電極25,27を強制冷却している。そのため、電極25,27との接触部に近い位置では、加熱温度が高くならず、溶融ナゲット23が形成されにくい傾向がある。   In general, the resistance spot welding electrodes 25 and 27 are provided with cooling pipes (not shown) through which a cooling medium flows to forcibly cool the electrodes 25 and 27. Therefore, at a position close to the contact portion with the electrodes 25 and 27, the heating temperature does not increase, and the melted nugget 23 tends not to be formed.

本構成においては、一方の電極25を、リベット21の頭部21aに当接させることで、電極25が薄板材17から離れて配置される。そのため、電極25により冷却される領域が薄板材17から離間され、薄板材17とリベット21の軸部21bの先端との間の加熱に、電極25の冷却効果が及びにくくなる。よって、薄板材17の板厚内を含む領域に溶融ナゲット23が安定して形成される。これにより、組立体19の板厚方向における溶融ナゲット23の形成位置が適正化され、薄板材17の板厚ta内にも溶融ナゲット23が形成される。よって、薄板材17の板厚ta内から、板組15の他方の外側面に配置される厚板材13の板厚tc内に至る範囲に、溶融ナゲット23が形成される。したがって、薄板材17は、板組15側の厚板材11に確実に溶接され、厚板材11,13同士も確実に溶接される。   In this configuration, the electrode 25 is disposed away from the thin plate member 17 by bringing one electrode 25 into contact with the head 21 a of the rivet 21. Therefore, the region cooled by the electrode 25 is separated from the thin plate material 17, and the cooling effect of the electrode 25 is less likely to be heated between the thin plate material 17 and the tip of the shaft portion 21 b of the rivet 21. Therefore, the molten nugget 23 is stably formed in the region including the thickness of the thin plate material 17. Thereby, the formation position of the melted nugget 23 in the plate thickness direction of the assembly 19 is optimized, and the melted nugget 23 is also formed in the plate thickness ta of the thin plate material 17. Therefore, the melted nugget 23 is formed in a range from the plate thickness ta of the thin plate member 17 to the plate thickness tc of the thick plate member 13 disposed on the other outer surface of the plate assembly 15. Therefore, the thin plate material 17 is reliably welded to the thick plate material 11 on the plate assembly 15 side, and the thick plate materials 11 and 13 are also reliably welded.

そして、上記のように、リベット21と組立体19とを一対の電極25,27間に挟み込んで溶接することにより、薄板材17の板厚taに対する薄板材17内に存在する溶融ナゲット23の溶込み率Rmが10%以上となる。溶込み率Rmが10%以上になることで、薄板材17と厚板材11との溶接強度を十分確保でき、全体的に高強度の組立体19の溶接が実現される。   As described above, the rivet 21 and the assembly 19 are sandwiched between the pair of electrodes 25 and 27 and welded, so that the melted nugget 23 existing in the thin plate member 17 with respect to the plate thickness ta of the thin plate member 17 is melted. The entrainment rate Rm is 10% or more. When the penetration rate Rm is 10% or more, the welding strength between the thin plate member 17 and the thick plate member 11 can be sufficiently secured, and the high strength assembly 19 can be welded as a whole.

なお、厚板材11,13、薄板材17の板面には、めっき、化成処理、樹脂薄膜形成等の表面処理が施されていてもよい。各板面にこれら表面処理を施すよって、防錆効果等を向上できる。表面処理された層の厚みは、スポット溶接性に影響を及ぼさない程度の実用レベルであればよい。   The plate surfaces of the thick plate materials 11 and 13 and the thin plate material 17 may be subjected to surface treatment such as plating, chemical conversion treatment, and resin thin film formation. By applying these surface treatments to each plate surface, the rust prevention effect and the like can be improved. The thickness of the surface-treated layer may be a practical level that does not affect spot weldability.

<第2構成例>
図4には、接合構造体の第2構成例が示されている。
本構成の接合構造体200は、3枚の厚板材11,13,29を板厚方向に重ね合わせてなる板組31と、板組31の一方の外側面31aに配置され、薄板材17を重ね合わせた組立体33と、挿着部材21と、を有する。その他の構成は、前述の第1構成例と同様である。以下の説明においては、図1と同一又は共通の構成要素については同一符号を付し、その説明を適宜省略する。
<Second configuration example>
FIG. 4 shows a second configuration example of the bonded structure.
The bonded structure 200 of this configuration is arranged on a plate set 31 formed by superposing three thick plate members 11, 13, and 29 in the plate thickness direction, and one outer surface 31a of the plate set 31, and the thin plate member 17 is attached to the plate set 31. The stacked assembly 33 and the insertion member 21 are provided. Other configurations are the same as those of the first configuration example described above. In the following description, the same or common components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.

本構成の場合、板厚比Rtは(3)式で表される。すなわち、板厚比Rtは、薄板材17の板厚taに対する、組立体33に含まれる全ての厚板材11,13,29及び薄板材17の合計板厚との比となる。
Rt=(ta+tb+tc+td)/ta ・・・(3)
In the case of this configuration, the plate thickness ratio Rt is expressed by equation (3). That is, the plate thickness ratio Rt is a ratio of the total plate thickness of all the thick plate materials 11, 13, 29 and the thin plate material 17 included in the assembly 33 to the plate thickness ta of the thin plate material 17.
Rt = (ta + tb + tc + td) / ta (3)

本構成において、板厚比Rtは4以上になるように各板材が選定される。また、板厚比Rtの上限は15程度とされる。   In this configuration, each plate material is selected so that the plate thickness ratio Rt is 4 or more. The upper limit of the plate thickness ratio Rt is about 15.

図4に示す接合構造体200は、図1に示す接合構造体100と同様に抵抗スポット溶接により接合される。本構成の溶融ナゲット35は、薄板材17の板厚ta内におけるリベット21の軸部21bから、板組31の他方の外側面に配置される厚板材29の板厚td内に至る範囲に形成される。また、溶融ナゲット35の薄板材17の板厚taに対する溶込み率Rmは、10%以上となる。   The joining structure 200 shown in FIG. 4 is joined by resistance spot welding similarly to the joining structure 100 shown in FIG. The molten nugget 35 of this configuration is formed in a range from the shaft portion 21b of the rivet 21 within the plate thickness ta of the thin plate member 17 to the plate thickness td of the thick plate member 29 disposed on the other outer surface of the plate set 31. Is done. Further, the penetration rate Rm of the molten nugget 35 with respect to the plate thickness ta of the thin plate member 17 is 10% or more.

上記のように、リベット21と組立体33とを一対の電極間に挟み込み、溶接することで、薄板材17の板厚ta内にも溶融ナゲット35が形成される。その結果、組立体33の板厚方向における溶融ナゲット35の形成位置が適正化され、高い溶接強度が得られる。   As described above, the molten nugget 35 is also formed within the plate thickness ta of the thin plate member 17 by sandwiching and welding the rivet 21 and the assembly 33 between the pair of electrodes. As a result, the formation position of the molten nugget 35 in the plate thickness direction of the assembly 33 is optimized, and high welding strength is obtained.

<第3構成例>
図5には、接合構造体の第3構成例が示されている。
本構成の接合構造体300は、2枚の厚板材11、13を重ね合わせてなる板組15と、厚板材11,13より薄厚の薄板材17,51とを有する。薄板材17は、板組15の一方の外側面15aとなる厚板材11の外側面に重ね合わされ、薄板材51は、板組15の他方の外側面15bとなる厚板材13の外側面に重ね合わされる。これにより、厚板材11,13と薄板材17,51からなる組立体53が構成される。
<Third configuration example>
FIG. 5 shows a third configuration example of the bonded structure.
The bonded structure 300 of this configuration includes a plate set 15 formed by superposing two thick plate members 11 and 13 and thin plate members 17 and 51 that are thinner than the thick plate members 11 and 13. The thin plate material 17 is overlaid on the outer surface of the thick plate material 11 that is one outer surface 15a of the plate assembly 15, and the thin plate material 51 is overlaid on the outer surface of the thick plate material 13 that is the other outer surface 15b of the plate assembly 15. Is done. Thereby, the assembly 53 which consists of the thick plate materials 11 and 13 and the thin plate materials 17 and 51 is comprised.

また、本構成の接合構造体300は、一対の薄板材17,51にそれぞれ同軸でリベット21,55が配置される。リベット21,55は、軸部21b,55bを薄板材17,51に打ち込まれ、この打ち込みにより形成された貫通孔17a,51aに嵌入された状態になる。その他の構成は、第1構成例と同様である。   Further, in the joined structure 300 of this configuration, the rivets 21 and 55 are arranged coaxially with the pair of thin plate members 17 and 51, respectively. In the rivets 21 and 55, the shaft portions 21b and 55b are driven into the thin plate members 17 and 51, and are inserted into the through holes 17a and 51a formed by the driving. Other configurations are the same as those of the first configuration example.

ここで、薄板材17,51は、同一の板厚taを有しており、板厚比Rtは(4)式で定義される。
Rt=(2ta+tb+tc)/ta ・・・(4)
Here, the thin plate materials 17 and 51 have the same plate thickness ta, and the plate thickness ratio Rt is defined by the equation (4).
Rt = (2ta + tb + tc) / ta (4)

上記の組立体53においては、板厚比Rtが4以上なるように各板材が選定されている。また、板厚比Rtの上限は15程度とされる。   In the assembly 53 described above, each plate material is selected so that the plate thickness ratio Rt is 4 or more. The upper limit of the plate thickness ratio Rt is about 15.

図5に示す接合構造体300は、図1に示す接合構造体100と同様に抵抗スポット溶接により接合される。この抵抗スポット溶接により、本構成の溶融ナゲット57は、薄板材17の板厚ta内におけるリベット21の軸部21bから、板組31の他方の最外側に配置される厚板材13の板厚tc内に至る範囲、及び、薄板材51の板厚ta内におけるリベット55の軸部55bから、板組15の一方の最外側に配置される厚板材11の板厚tb内に至る範囲に形成される。つまり、一方のリベット21の軸部21bから、他方のリベット55の軸部55bまでの範囲に、溶融ナゲット57が一体となって形成される。   The joint structure 300 shown in FIG. 5 is joined by resistance spot welding similarly to the joint structure 100 shown in FIG. Due to this resistance spot welding, the melt nugget 57 of this configuration causes the plate thickness tc of the thick plate material 13 disposed on the other outermost side of the plate assembly 31 from the shaft portion 21b of the rivet 21 within the plate thickness ta of the thin plate material 17. And a range extending from the shaft portion 55b of the rivet 55 in the plate thickness ta of the thin plate member 51 to the plate thickness tb of the thick plate member 11 disposed on one outermost side of the plate assembly 15. The That is, the molten nugget 57 is integrally formed in a range from the shaft portion 21 b of one rivet 21 to the shaft portion 55 b of the other rivet 55.

この場合も、薄板材17の板厚taに対する薄板材17の板厚ta内に存在する溶融ナゲット57の溶込み率Rmは10%以上となる。同様に、薄板材51の板厚taに対する薄板材51の板厚ta内に存在する溶融ナゲット57の溶込み率Rmは10%以上となる。   Also in this case, the penetration rate Rm of the molten nugget 57 existing in the plate thickness ta of the thin plate member 17 with respect to the plate thickness ta of the thin plate member 17 is 10% or more. Similarly, the penetration rate Rm of the melted nugget 57 existing in the plate thickness ta of the thin plate material 51 with respect to the plate thickness ta of the thin plate material 51 is 10% or more.

上記のように、リベット21,55と組立体53とを一対の電極間に挟み込み、溶接することで、薄板材17,51の板厚ta内にも溶融ナゲット57が形成される。その結果、組立体53の板厚方向における溶融ナゲット57の形成位置が適正化され、厚板材11,13と薄板材17,51のそれぞれが、高い溶接強度で相互に接合される。   As described above, the rivets 21 and 55 and the assembly 53 are sandwiched between a pair of electrodes and welded, whereby a molten nugget 57 is also formed within the plate thickness ta of the thin plate members 17 and 51. As a result, the formation position of the melted nugget 57 in the plate thickness direction of the assembly 53 is optimized, and the thick plate members 11 and 13 and the thin plate members 17 and 51 are joined to each other with high welding strength.

なお、上記例では薄板材17,51は同一の板厚として説明しているが、薄板材17,51の厚みは、厚板材11,13より薄厚であれば互いに異なっていてもよい。   In the above example, the thin plate members 17 and 51 are described as having the same plate thickness. However, the thin plate members 17 and 51 may be different from each other as long as they are thinner than the thick plate members 11 and 13.

<変形例>
図6には、接合構造体の変形例が示されている。
本変形例の接合構造体400は、薄板材17の外側面に凹部17bが形成される。この凹部17bに、リベット61の軸部61bが嵌入される。その他の構成は第1構成例と同様である。
<Modification>
FIG. 6 shows a modified example of the bonded structure.
In the bonded structure 400 according to this modification, a recess 17 b is formed on the outer surface of the thin plate member 17. The shaft portion 61b of the rivet 61 is fitted into the recess 17b. Other configurations are the same as those of the first configuration example.

本変形例の接合構造体400は、薄板材17に形成した凹部17bにリベット61を取り付けた後、リベット61と組立体19とを一対の電極間に挟み込み、溶接することで溶融ナゲット23が形成される。図中には形成される溶融ナゲット23の外縁を点線で示している。   In the joint structure 400 of this modification, after the rivet 61 is attached to the recess 17b formed in the thin plate member 17, the rivet 61 and the assembly 19 are sandwiched between a pair of electrodes and welded to form the molten nugget 23. Is done. In the drawing, the outer edge of the formed melt nugget 23 is indicated by a dotted line.

本変形例の接合構造体400によれば、リベット61の軸部61bを挿入する孔が貫通孔でなくても、凹部17bの底部が溶接電流印加時に溶融し、溶融ナゲット23が形成される。また、この場合でも溶融ナゲット23の薄板材17の板厚taに対する溶込み率Rmは10%以上となる。   According to the joint structure 400 of the present modification, even if the hole for inserting the shaft portion 61b of the rivet 61 is not a through hole, the bottom portion of the concave portion 17b is melted when a welding current is applied, and the molten nugget 23 is formed. Even in this case, the penetration rate Rm of the molten nugget 23 with respect to the plate thickness ta of the thin plate member 17 is 10% or more.

本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   The present invention is not limited to the above-described embodiments, and the configurations of the embodiments may be combined with each other, or may be modified or applied by those skilled in the art based on the description of the specification and well-known techniques. The invention is intended and is within the scope of seeking protection.

例えば、上記各構成例では、リベットの頭部が板組の溶接後にも残存しているが、板組の溶接工程終了後に、薄板材の外側面から突出するリベットの頭部を除去してもよい。その場合、板組の表面が平坦面とされた接合構造体にできる。   For example, in each of the above configuration examples, the rivet head remains even after the plate assembly is welded. However, after the plate assembly welding process is completed, the rivet head protruding from the outer surface of the thin plate material may be removed. Good. In that case, it can be set as the joining structure by which the surface of the board assembly was made into the flat surface.

また、挿着部材はリベットに限らない。例えば、基材の一部に、基材表面から突出するプロジェクションを形成し、このプロジェクションを薄板材に嵌入させるものであってもよい。また、薄板材上に板状の挿着部材を重ね、薄板材の下側に凹穴を有するダイ、挿着部材の上側にパンチをそれぞれ配置し、挿着部材の上側からパンチ加圧することであってもよい。これにより、薄板材と挿着部材にそれぞれ同時に凹部が形成され、この凹部同士が密着することで薄板材と挿着部材とがクリンチ締結される。この場合、板状の挿着部材が塑性変形して凹部となった部分が軸部であり、他の板状部分が頭部となる。   Further, the insertion member is not limited to a rivet. For example, a projection that protrudes from the surface of the base material may be formed on a part of the base material, and the projection may be fitted into a thin plate material. In addition, a plate-like insertion member is stacked on the thin plate material, a die having a concave hole on the lower side of the thin plate material, a punch is arranged on the upper side of the insertion member, and a punch is pressed from the upper side of the insertion member. There may be. Thereby, a recessed part is simultaneously formed in a thin plate material and an insertion member, respectively, and a thin plate material and an insertion member are clinched and fastened when this recessed part closely_contact | adheres. In this case, the portion where the plate-like insertion member is plastically deformed to form a recess is the shaft portion, and the other plate-like portion is the head.

つまり、挿着部材は、薄板材から厚板材と反対側に突出する部材であればよい。更には、溶接時に薄板材の外側面に、前述した(1),(3),(4)式のいずれかを満足する導電性のダミー板(挿着部材)を配置し、ダミー板と、厚板材及び薄板材を含む板組とを電極間に挟んで溶接して、溶接後にダミー板を板組から取り外してもよい。
いずれの方式であっても、板組の板厚方向における溶融ナゲットの形成位置が適正化され、薄板であっても確実に溶接できる。
That is, the insertion member may be a member that protrudes from the thin plate material to the opposite side to the thick plate material. Furthermore, a conductive dummy plate (insertion member) that satisfies any of the above-described formulas (1), (3), and (4) is disposed on the outer surface of the thin plate during welding, and the dummy plate, A thick plate material and a plate set including a thin plate material may be sandwiched and welded between the electrodes, and the dummy plate may be removed from the plate set after welding.
In any method, the formation position of the molten nugget in the plate thickness direction of the plate assembly is optimized, and even a thin plate can be reliably welded.

また、板組を構成する厚板材の枚数は、各構成例で示した2枚又は3枚に限らず、4枚以上であってもよい。更に、板厚比Rtの条件を満足すれば、5〜8枚、或いはそれ以上の枚数であってもよい。   Further, the number of thick plate members constituting the plate assembly is not limited to two or three as shown in each configuration example, and may be four or more. Further, the number of sheets may be 5 to 8 or more as long as the condition of the plate thickness ratio Rt is satisfied.

更に、薄板材は、厚板材の板組の片面で、2枚以上を配置してもよい。その場合でも厚板材との良好な接合が行える。   Further, two or more thin plate members may be arranged on one side of a thick plate member. Even in that case, good joining with the thick plate material can be performed.

次に、本発明の実施例と比較例とを比較して、本発明の効果を説明する。
<実施例1>
下記表1に示す板厚比の異なる3枚の板材からなる2種類の板組サンプル(板組サンプル1,2)を試験対象として、同じ溶接装置を使用して溶接を行った。板厚比は、元板厚(加圧前の厚さ、又は加圧されていない部位の厚さ)を基準としている。挿着部材(リベット)の材料にはSS400を用いた。
Next, the effect of the present invention will be described by comparing an example of the present invention with a comparative example.
<Example 1>
Two types of plate assembly samples (plate assembly samples 1 and 2) composed of three plate members having different plate thickness ratios shown in Table 1 below were used as test objects, and welding was performed using the same welding apparatus. The plate thickness ratio is based on the original plate thickness (thickness before pressurization or thickness of a portion not pressurized). SS400 was used for the material of the insertion member (rivet).

Figure 0006591952
Figure 0006591952

各板組1,2に対し、下記表2に示す実施例1〜3及び比較例1〜3の溶接条件で溶接を実施し、溶接後の上板(薄板材)と中板(厚板材)に引張力を作用させて破断するまで引張試験を行った。そして、実施例1〜3及び比較例1〜3の、溶込み率及び溶接部の破断形態(プラグ破断、界面破断)を確認した。   For each plate assembly 1 and 2, welding was performed under the welding conditions of Examples 1 to 3 and Comparative Examples 1 to 3 shown in Table 2 below, and the upper plate (thin plate material) and middle plate (thick plate material) after welding A tensile test was performed until the sample was broken by applying a tensile force. And the penetration rate and the fracture | rupture form (plug fracture, interface fracture) of Examples 1-3 and Comparative Examples 1-3 were confirmed.

Figure 0006591952
Figure 0006591952

表2に示すように、実施例1〜3では、いずれも溶込み率は10%以上、引張試験による溶接部の破断形態は「プラグ破断」であり、溶接強度の評価として良好な結果が得られた。一方、比較例1〜3では、いずれも溶込み率は5%以下、引張試験による溶接部の破断形態は「界面破断」であり、溶接強度の評価として良好な結果は得られなかった。   As shown in Table 2, in each of Examples 1 to 3, the penetration rate was 10% or more, the fracture form of the welded part by the tensile test was “plug fracture”, and good results were obtained as an evaluation of the welding strength. It was. On the other hand, in Comparative Examples 1 to 3, the penetration rate was 5% or less, the fracture form of the welded part by the tensile test was “interfacial fracture”, and good results were not obtained as an evaluation of the welding strength.

<実施例2>
下記表3に示す4枚の板材からなる板組サンプル3を試験対象として、同じ溶接装置を使用して溶接を行った。板厚比は、元板厚(加圧前の厚さ、又は加圧されていない部位の厚さ)を基準としている。挿着部材の材料にはSS400を用いた。
<Example 2>
Welding was performed using the same welding apparatus with a plate assembly sample 3 made of four plate materials shown in Table 3 below as a test object. The plate thickness ratio is based on the original plate thickness (thickness before pressurization or thickness of a portion not pressurized). SS400 was used for the material of the insertion member.

Figure 0006591952
Figure 0006591952

板組サンプル3に対し、下記表4に示す実施例4及び比較例4の溶接条件で溶接を実施した。溶接条件の項目は、実施例1と同様である。   The plate assembly sample 3 was welded under the welding conditions of Example 4 and Comparative Example 4 shown in Table 4 below. The items of the welding conditions are the same as in the first embodiment.

実施例4及び比較例4において、溶接後の上板(薄板材)と中板(厚板材)に引張力を作用させて破断するまで引張試験を行った。そして、実施例4及び比較例4において、溶込み率及び溶接部の破断形態(プラグ破断、界面破断)を確認した。   In Example 4 and Comparative Example 4, a tensile test was performed until the upper plate (thin plate material) and the middle plate (thick plate material) after welding were subjected to a tensile force to break. In Example 4 and Comparative Example 4, the penetration rate and the fracture form of the welded part (plug fracture, interface fracture) were confirmed.

Figure 0006591952
Figure 0006591952

表4に示すように、実施例4では、溶込み率は10%以上、引張試験による溶接部の破断形態は「プラグ破断」であり、溶接強度の評価として良好な結果が得られた。
一方、比較例1〜3では、溶込み率は0%、引張試験による溶接部の破断形態は「界面破断」であり、溶接強度は不十分であった。
As shown in Table 4, in Example 4, the penetration rate was 10% or more, the fracture form of the welded portion by the tensile test was “plug fracture”, and good results were obtained as an evaluation of the welding strength.
On the other hand, in Comparative Examples 1 to 3, the penetration rate was 0%, the fracture form of the welded portion by the tensile test was “interfacial fracture”, and the welding strength was insufficient.

以上の通り、本明細書には次の事項が開示されている。
(1) 複数の板材が重ね合わされた板組の少なくとも一方の外側面に、前記板材よりも薄厚で挿着部材が取り付けられた薄板材が重ねて配置され、前記薄板材と前記板組とが溶接された接合構造体であって、
前記薄板材の板厚に対する前記板組と前記薄板材との合計板厚の比が4以上であり、
前記挿着部材が、前記薄板材に前記板組へ向けて嵌入された軸部と、前記薄板材の前記板組側と反対側の外側板面から突出する頭部とを有し、
前記挿着部材の前記軸部の先端から、前記板組の前記一方の外側面と反対側に配置された前記板材の板厚内に至る範囲に、溶融ナゲットが形成され、
前記薄板材の板厚に対する前記薄板材の板厚内に存在する前記溶融ナゲットの厚みの比率が10%以上であることを特徴とする接合構造体。
この接合構造体によれば、溶接装置に特殊な機能を別途付加することなく、また特殊な加圧、通電制御を行うことなく、溶融ナゲットの板厚方向の形成位置が適正化され、薄板材の板厚内にも溶融ナゲットが確実に形成される。これにより、接合構造体を十分に高い溶接強度を有した構成にできる。
As described above, the following items are disclosed in this specification.
(1) A thin plate material that is thinner than the plate material and has an insertion member attached thereto is placed on at least one outer surface of the plate set in which a plurality of plate materials are superimposed, and the thin plate material and the plate set are Welded joint structure,
The ratio of the total plate thickness of the plate set and the thin plate material to the plate thickness of the thin plate material is 4 or more,
The insertion member has a shaft portion fitted into the thin plate material toward the plate assembly, and a head portion protruding from an outer plate surface opposite to the plate assembly side of the thin plate material,
In the range from the tip of the shaft portion of the insertion member to the plate thickness of the plate material arranged on the opposite side of the one outer surface of the plate assembly, a melt nugget is formed,
The joint structure according to claim 1, wherein a ratio of the thickness of the molten nugget existing in the thickness of the thin plate to the thickness of the thin plate is 10% or more.
According to this joint structure, the formation position in the thickness direction of the molten nugget is optimized without adding a special function to the welding apparatus, and without performing special pressurization and energization control. The molten nugget is reliably formed within the plate thickness. As a result, the bonded structure can be configured to have a sufficiently high weld strength.

(2) 前記板組の前記複数の板材及び前記薄板材が鋼材である(1)に記載の接合構造体。
この接合構造体によれば、鋼材同士を高い接合強度で確実に溶接でき、高強度な接合構造体を得ることができる。
(2) The joined structure according to (1), wherein the plurality of plate members and the thin plate member of the plate assembly are steel materials.
According to this joint structure, steel materials can be reliably welded with high joint strength, and a high-strength joint structure can be obtained.

(3) 前記挿着部材が鋼材である(2)に記載の接合構造体。
この接合構造体によれば、板組の各板材と挿着部材とを高い接合強度で確実に溶接できる。
(3) The joint structure according to (2), wherein the insertion member is a steel material.
According to this joint structure, each plate member of the plate assembly and the insertion member can be reliably welded with high joint strength.

(4) 前記挿着部材がリベットであり、
前記リベットの前記頭部と前記軸部との少なくとも一方が、前記薄板材にかしめ固定されている(1)〜(3)のいずれか一つに記載の接合構造体。
この接合構造体によれば、挿着部材を薄板材に簡単、且つ確実に固定できる。また、溶融ナゲットが小さい場合でも、安定した接合強度が得られる。
(4) The insertion member is a rivet,
The joining structure according to any one of (1) to (3), wherein at least one of the head portion and the shaft portion of the rivet is caulked and fixed to the thin plate material.
According to this bonded structure, the insertion member can be easily and reliably fixed to the thin plate material. Further, even when the molten nugget is small, a stable bonding strength can be obtained.

(5)前記溶融ナゲット径が、前記挿着部材の前記軸径より大きい(1)〜(4)のいずれか一つに記載の接合構造体。
この接合構造体によれば、溶融ナゲット径が挿着部材の軸径より大きいため、薄板材と挿着部材がナゲットにより一体化し、より高い溶接強度が得られる。
(5) The joined structure according to any one of (1) to (4), wherein the molten nugget diameter is larger than the shaft diameter of the insertion member.
According to this bonded structure, since the melt nugget diameter is larger than the shaft diameter of the insertion member, the thin plate material and the insertion member are integrated by the nugget, and higher welding strength can be obtained.

(6) 複数の板材が重ね合わされた板組の少なくとも一方の外側面に、前記板材よりも薄厚で挿着部材が取り付けられた薄板材を重ねて配置して、前記薄板材と前記板組とを溶接する接合構造体の製造方法であって、
前記薄板材の板厚に対する前記板組と前記薄板材との合計板厚の比を4以上にする工程と、
頭部と軸部を有する挿着部材の前記軸部を前記薄板材に嵌入し、前記頭部を前記薄板材の前記板組側と反対側の外側板面から突出させる工程と、
前記挿着部材と前記板組とを一対の電極間に挟み込み、前記電極間に溶接電流を流すことで、前記挿着部材の前記軸部の先端から、前記板組の前記一方の外側面と反対側に配置された前記板材の板厚内に至る範囲に、溶融ナゲットを形成する工程と、
を有し、
前記薄板材の板厚に対する前記薄板材の板厚内に存在する前記溶融ナゲットの厚みの比率を10%以上にする、
ことを特徴とする接合構造体の製造方法。
この接合構造体の製造方法によれば、溶接装置に特殊な機能を別途付加することなく、また特殊な加圧、通電制御を行うことなく、板組の板厚方向における溶融ナゲットの形成位置が適正化され、薄板材の板厚内にも溶融ナゲットが確実に形成される。これにより、簡単に高い溶接品質の接合構造体を製造できる。
(6) At least one outer surface of a plate assembly in which a plurality of plate members are overlapped, a thin plate member that is thinner than the plate member and to which an insertion member is attached is placed on top of the thin plate member and the plate assembly. A method of manufacturing a joined structure for welding,
The ratio of the total plate thickness of the plate set and the thin plate material to the plate thickness of the thin plate material is 4 or more;
Inserting the shaft portion of the insertion member having a head portion and a shaft portion into the thin plate member, and projecting the head portion from an outer plate surface on the opposite side of the thin plate member from the plate assembly side;
The insertion member and the plate assembly are sandwiched between a pair of electrodes, and a welding current is passed between the electrodes, so that the one outer side surface of the plate assembly is separated from the tip of the shaft portion of the insertion member. Forming a molten nugget in a range reaching the thickness of the plate disposed on the opposite side; and
Have
The ratio of the thickness of the molten nugget present in the thickness of the thin plate to the thickness of the thin plate is 10% or more,
The manufacturing method of the joining structure characterized by the above-mentioned.
According to this method for manufacturing a joined structure, the position of formation of the molten nugget in the plate thickness direction of the plate assembly can be performed without adding a special function to the welding apparatus and without performing special pressurization and energization control. As a result, the molten nugget is reliably formed within the thickness of the thin plate material. Thereby, it is possible to easily manufacture a bonded structure with high welding quality.

(7) 前記挿着部材がリベットである(6)に記載の接合構造体の製造方法。
この接合構造体の製造方法によれば、汎用的なリベットを用いて、低コスト、且つ簡便に、薄板材と、板組の板材とを溶接できる。
(7) The method for manufacturing a joined structure according to (6), wherein the insertion member is a rivet.
According to this method for manufacturing a joined structure, a thin plate member and a plate member of a plate assembly can be welded at low cost and easily using a general-purpose rivet.

(8) 前記挿着部材を、前記薄板材に前記頭部と前記軸部との少なくとも一方をかしめて固定する(7)の接合構造体の製造方法。
この接合構造体によれば、挿着部材を簡単、且つ確実に薄板材に固定できる。また、溶融ナゲットが小さい場合でも、安定した接合強度が得られる。更に、溶接前に挿着部材を薄板材にかしめ固定することで、溶接工程をより簡単化できる。
(8) The method for manufacturing a joint structure according to (7), wherein the insertion member is fixed to the thin plate material by caulking at least one of the head portion and the shaft portion.
According to this joint structure, the insertion member can be easily and reliably fixed to the thin plate material. Further, even when the molten nugget is small, a stable bonding strength can be obtained. Furthermore, the welding process can be further simplified by caulking and fixing the insertion member to the thin plate material before welding.

(9) 前記薄板材は貫通孔を有し、
前記挿着部材を、前記貫通孔に前記軸部を嵌入させて前記薄板材に取り付ける(6)〜(8)のいずれか一つの接合構造体の製造方法。
この接合構造体によれば、挿着部材の軸部を貫通孔に嵌入することで、挿着部材を薄板材に簡単に取り付けできる。
(9) The thin plate member has a through hole,
The method for manufacturing a joint structure according to any one of (6) to (8), wherein the insertion member is attached to the thin plate member by fitting the shaft portion into the through hole.
According to this joint structure, the insertion member can be easily attached to the thin plate member by fitting the shaft portion of the insertion member into the through hole.

(10) 前記薄板材は凹部を有し、
前記挿着部材を、前記凹部に前記軸部を嵌入して前記薄板材に取り付ける(6)〜(8)のいずれか一つの接合構造体の製造方法。
この接合構造体によれば、薄板材に凹部を形成するだけで済み、しかも、挿着部材を凹部へ簡単に取り付けできる。これにより、薄板材の加工時間やコストを低減でき、溶接工程が煩雑にならない。
(10) The thin plate member has a recess,
The method for manufacturing a joint structure according to any one of (6) to (8), wherein the insertion member is attached to the thin plate member by inserting the shaft portion into the concave portion.
According to this bonded structure, it is only necessary to form a recess in the thin plate material, and the insertion member can be easily attached to the recess. Thereby, the processing time and cost of a thin plate material can be reduced, and a welding process is not complicated.

(11)板状の前記挿着部材と前記薄板材とを重ねてパンチ加圧して、前記挿着部材と前記薄板材との双方に凹部を同時に形成し、前記挿着部材と前記薄板材とをクリンチ締結する(6)〜(8)のいずれか一つに記載の接合構造体の製造方法。
この接合構造体によれば、挿着部材と薄板材とをパンチ加圧して、双方をクリンチ締結するだけで済む。これにより、薄板材の加工時間やコストを低減でき、溶接工程が煩雑にならない。
(11) The plate-like insertion member and the thin plate material are overlapped and punch-pressed to form recesses in both the insertion member and the thin plate material at the same time, and the insertion member and the thin plate material The manufacturing method of the joined structure according to any one of (6) to (8).
According to this bonded structure, it is only necessary to punch and press the insertion member and the thin plate material and to clinch and fasten both. Thereby, the processing time and cost of a thin plate material can be reduced, and a welding process is not complicated.

11,13,29 厚板材(板材)
15,31 板組
17,51 薄板材
17a,51a 貫通孔
17b 凹部
17c 外側板面
19,33,53 組立体
21,55,61 リベット(挿着部材)
21a,55a,61a 頭部
21b,55b,61b 軸部
23,35,57 溶融ナゲット
100,200,300,400 接合構造体
11, 13, 29 Thick plate material (plate material)
15, 31 Plate assembly 17, 51 Thin plate material 17a, 51a Through-hole 17b Recessed portion 17c Outer plate surface 19, 33, 53 Assembly 21, 55, 61 Rivet (insertion member)
21a, 55a, 61a Head portion 21b, 55b, 61b Shaft portion 23, 35, 57 Molten nugget 100, 200, 300, 400 Joint structure

Claims (11)

複数の板材が重ね合わされた板組の少なくとも一方の外側面に、前記板材よりも薄厚で挿着部材が取り付けられた薄板材が重ねて配置され、前記薄板材と前記板組とが溶接された接合構造体であって、
前記薄板材の板厚に対する前記板組と前記薄板材との合計板厚の比が4以上であり、
前記挿着部材が、前記薄板材に前記板組へ向けて嵌入された軸部と、前記薄板材の前記板組側と反対側の外側板面から突出する頭部とを有し、
前記挿着部材の前記軸部の先端から、前記板組の前記一方の外側面と反対側に配置された前記板材の板厚内に至る範囲に、溶融ナゲットが形成され、
前記薄板材の板厚に対する前記薄板材の板厚内に存在する前記溶融ナゲットの厚みの比率が10%以上であることを特徴とする接合構造体。
A thin plate material having a thickness thinner than that of the plate material and having an insertion member attached thereto is placed on at least one outer surface of the plate set on which a plurality of plate materials are stacked, and the thin plate material and the plate set are welded together. A joined structure,
The ratio of the total plate thickness of the plate set and the thin plate material to the plate thickness of the thin plate material is 4 or more,
The insertion member has a shaft portion fitted into the thin plate material toward the plate assembly, and a head portion protruding from an outer plate surface opposite to the plate assembly side of the thin plate material,
In the range from the tip of the shaft portion of the insertion member to the plate thickness of the plate material arranged on the opposite side of the one outer surface of the plate assembly, a melt nugget is formed,
The joint structure according to claim 1, wherein a ratio of the thickness of the molten nugget existing in the thickness of the thin plate to the thickness of the thin plate is 10% or more.
前記板組の前記複数の板材及び前記薄板材が鋼材である請求項1に記載の接合構造体。   The joint structure according to claim 1, wherein the plurality of plate members and the thin plate member of the plate assembly are steel materials. 前記挿着部材が鋼材である請求項2に記載の接合構造体。   The joint structure according to claim 2, wherein the insertion member is a steel material. 前記挿着部材がリベットであり、
前記リベットの前記頭部と前記軸部との少なくとも一方が、前記薄板材にかしめ固定されている請求項1〜請求項3のいずれか一項に記載の接合構造体。
The insertion member is a rivet;
The joining structure according to any one of claims 1 to 3, wherein at least one of the head portion and the shaft portion of the rivet is caulked and fixed to the thin plate material.
前記溶融ナゲット径が、前記挿着部材の前記軸径より大きい請求項1〜請求項4のいずれか一項に記載の接合構造体。   The joined structure according to any one of claims 1 to 4, wherein the melt nugget diameter is larger than the shaft diameter of the insertion member. 複数の板材が重ね合わされた板組の少なくとも一方の外側面に、前記板材よりも薄厚で挿着部材が取り付けられた薄板材を重ねて配置して、前記薄板材と前記板組とを溶接する接合構造体の製造方法であって、
前記薄板材の板厚に対する前記板組と前記薄板材との合計板厚の比を4以上にする工程と、
頭部と軸部を有する挿着部材の前記軸部を前記薄板材に嵌入し、前記頭部を前記薄板材の前記板組側と反対側の外側板面から突出させる工程と、
前記挿着部材と前記板組とを一対の電極間に挟み込み、前記電極間に溶接電流を流すことで、前記挿着部材の前記軸部の先端から、前記板組の前記一方の外側面と反対側に配置された前記板材の板厚内に至る範囲に、溶融ナゲットを形成する工程と、
を有し、
前記薄板材の板厚に対する前記薄板材の板厚内に存在する前記溶融ナゲットの厚みの比率を10%以上にする、
ことを特徴とする接合構造体の製造方法。
A thin plate material that is thinner than the plate material and has an insertion member attached thereto is placed on at least one outer surface of the plate set on which a plurality of plate materials are stacked, and the thin plate material and the plate set are welded together. A method of manufacturing a joined structure,
The ratio of the total plate thickness of the plate set and the thin plate material to the plate thickness of the thin plate material is 4 or more;
Inserting the shaft portion of the insertion member having a head portion and a shaft portion into the thin plate member, and projecting the head portion from an outer plate surface on the opposite side of the thin plate member from the plate assembly side;
The insertion member and the plate assembly are sandwiched between a pair of electrodes, and a welding current is passed between the electrodes, so that the one outer side surface of the plate assembly is separated from the tip of the shaft portion of the insertion member. Forming a molten nugget in a range reaching the thickness of the plate disposed on the opposite side; and
Have
The ratio of the thickness of the molten nugget present in the thickness of the thin plate to the thickness of the thin plate is 10% or more,
The manufacturing method of the joining structure characterized by the above-mentioned.
前記挿着部材がリベットである請求項6に記載の接合構造体の製造方法。   The method for manufacturing a joint structure according to claim 6, wherein the insertion member is a rivet. 前記挿着部材を、前記薄板材に前記頭部と前記軸部との少なくとも一方をかしめて固定する請求項7に記載の接合構造体の製造方法。   The method for manufacturing a joined structure according to claim 7, wherein the insertion member is fixed to the thin plate material by caulking at least one of the head portion and the shaft portion. 前記薄板材は貫通孔を有し、
前記挿着部材を、前記貫通孔に前記軸部を嵌入させて前記薄板材に取り付ける請求項6〜請求項8のいずれか一項に記載の接合構造体の製造方法。
The thin plate material has a through hole,
The manufacturing method of the junction structure according to any one of claims 6 to 8, wherein the insertion member is attached to the thin plate member by fitting the shaft portion into the through hole.
前記薄板材は凹部を有し、
前記挿着部材を、前記凹部に前記軸部を嵌入して前記薄板材に取り付ける請求項6〜請求項8のいずれか一項に記載の接合構造体の製造方法。
The thin plate material has a recess,
The manufacturing method of the junction structure according to any one of claims 6 to 8, wherein the insertion member is attached to the thin plate member by inserting the shaft portion into the concave portion.
板状の前記挿着部材と前記薄板材とを重ねてパンチ加圧して、前記挿着部材と前記薄板材との双方に凹部を同時に形成し、前記挿着部材と前記薄板材とをクリンチ締結する請求項6〜請求項8のいずれか一項に記載の接合構造体の製造方法。   The plate-like insertion member and the thin plate material are overlapped and punched and pressed to simultaneously form a recess in both the insertion member and the thin plate material, and the insertion member and the thin plate material are clinched. The manufacturing method of the junction structure according to any one of claims 6 to 8.
JP2016221365A 2016-11-14 2016-11-14 Junction structure and manufacturing method thereof Expired - Fee Related JP6591952B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016221365A JP6591952B2 (en) 2016-11-14 2016-11-14 Junction structure and manufacturing method thereof
PCT/JP2017/039956 WO2018088364A1 (en) 2016-11-14 2017-11-06 Joined structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221365A JP6591952B2 (en) 2016-11-14 2016-11-14 Junction structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018079475A JP2018079475A (en) 2018-05-24
JP6591952B2 true JP6591952B2 (en) 2019-10-16

Family

ID=62110723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221365A Expired - Fee Related JP6591952B2 (en) 2016-11-14 2016-11-14 Junction structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6591952B2 (en)
WO (1) WO2018088364A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139742A1 (en) * 2022-09-16 2024-03-22 Gaming Engineering Spot welding process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894545B2 (en) * 2002-03-05 2007-03-22 本田技研工業株式会社 Spot welding method
JP3922263B2 (en) * 2004-03-17 2007-05-30 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
JP4728926B2 (en) * 2006-10-16 2011-07-20 新日本製鐵株式会社 Lap resistance spot welding method
JP2009285678A (en) * 2008-05-28 2009-12-10 Kobe Steel Ltd Dissimilar material joining method and dissimilar material joined body between steel and light alloy, light alloy for joining dissimilar material for steel, and dissimilar material joining rivet between steel and light alloy
JP5729429B2 (en) * 2013-07-29 2015-06-03 トヨタ自動車株式会社 Junction structure and method of manufacturing junction structure

Also Published As

Publication number Publication date
JP2018079475A (en) 2018-05-24
WO2018088364A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6148136B2 (en) Manufacturing method of dissimilar material joined body
CN106163721B (en) Resistance welding fastener, apparatus and method
US9751571B2 (en) Different materials panel structure
JP5722479B2 (en) Dissimilar material joining rivet, dissimilar material joining member, dissimilar material joining method, and dissimilar material joining
JP6009004B2 (en) Forging rivet for dissimilar material joining and dissimilar material joining method
CN111801189B (en) Arc welding method for joining dissimilar materials
JP2010207898A (en) Rivet for joining different material, method for joining different material, and joined body of different material
JP2022062728A (en) Welding method
JP2015062911A (en) Method for manufacturing dissimilar material joint body
CN108778609B (en) Joint structure
US20180361498A1 (en) Welding methods including formation of an intermediate joint using a solid state welding process
JP5261984B2 (en) Resistance spot welding method
JP2006224146A (en) Method for joining different kinds of material
JP2021079416A (en) Resistance spot welding method
WO2018088367A1 (en) Joined structure and manufacturing method thereof
JP6591952B2 (en) Junction structure and manufacturing method thereof
JP2019136748A (en) Resistance spot welding method
JP6653241B2 (en) Joint structure and manufacturing method thereof
JPWO2017169998A1 (en) Junction structure
JP2009095881A (en) Method of manufacturing welded structural member
JP6060579B2 (en) Resistance spot welding method
JP5906618B2 (en) Resistance spot welding method
WO2022045014A1 (en) Method for joining dissimilar materials, and rivet used for same
JP2017087281A (en) Joint structure and method
JP6156034B2 (en) Method for joining metal plate laminate and metal plate laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6591952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees