JP2006263489A - Microorganism carrier for water treatment - Google Patents

Microorganism carrier for water treatment Download PDF

Info

Publication number
JP2006263489A
JP2006263489A JP2005080869A JP2005080869A JP2006263489A JP 2006263489 A JP2006263489 A JP 2006263489A JP 2005080869 A JP2005080869 A JP 2005080869A JP 2005080869 A JP2005080869 A JP 2005080869A JP 2006263489 A JP2006263489 A JP 2006263489A
Authority
JP
Japan
Prior art keywords
water
carrier
polyolefin resin
water treatment
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080869A
Other languages
Japanese (ja)
Other versions
JP4722518B2 (en
Inventor
Kenji Wakikawa
賢二 脇川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2005080869A priority Critical patent/JP4722518B2/en
Publication of JP2006263489A publication Critical patent/JP2006263489A/en
Application granted granted Critical
Publication of JP4722518B2 publication Critical patent/JP4722518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism carrier for water treatment which can improve treatment capacity by suppressing the rising-up of the carrier after feeding the carrier to a biological treatment tank in a carrier flowing method for improving water treatment efficiency by rotating the microorganisms-carrying carrier together with water in the biological treatment tank. <P>SOLUTION: The microorganism carrier for water treatment is made of a polyolefin resin-crosslinked foam containing continuous foams and having a true density of 1.03-1.16 g/cm<SP>3</SP>, which facilitates entering of the carrier into water of the biological tank in a short time to enable the carrier rotate efficiently in the biological treatment tank together with water, improving the water treatment capacity of microorganisms. In the polyolefin resin-crosslinked foam forming the carrier, its true density is adjusted to 1.03-1.16 g/cm<SP>3</SP>by adding 10-50 weight parts of a filling material with a density of 1.3-6.0 g/cm<SP>3</SP>to 100 weight parts of a polyolefin resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリオレフィン系樹脂架橋発泡体からなる水処理用微生物担体に関する。   The present invention relates to a microbial carrier for water treatment comprising a polyolefin resin cross-linked foam.

従来、浄化槽などにおける水処理には、好気性バクテリア等の微生物による働きで溶存有機物を酸化分解させる方法が利用されている。また、微生物による水処理方法として、微生物を担持させた担体を、生物処理槽の中で水と共に旋回させることで微生物による処理能力を上げる担体流動方式がある。   Conventionally, water treatment in a septic tank or the like has utilized a method in which dissolved organic matter is oxidized and decomposed by the action of microorganisms such as aerobic bacteria. Moreover, as a water treatment method using microorganisms, there is a carrier flow system in which a carrier carrying microorganisms is swirled together with water in a biological treatment tank to increase the treatment ability of the microorganisms.

水処理用微生物担体としては多孔質の樹脂架橋発泡体が広く用いられている。多孔質の樹脂架橋発泡体は、表面積が大きいため微生物が樹脂架橋発泡体の表面に生物膜を効率よく形成することができ、微生物による処理能力を高めることができる。また、樹脂架橋発泡体としては、ポリオレフィン系樹脂架橋発泡体が多用されている。   As a microbial carrier for water treatment, porous resin crosslinked foams are widely used. Since the porous resin-crosslinked foam has a large surface area, microorganisms can efficiently form a biofilm on the surface of the resin-crosslinked foam, and the processing ability by the microorganisms can be enhanced. In addition, polyolefin resin cross-linked foam is frequently used as the resin cross-linked foam.

さらに、水中で担体が水と共に良好に旋回できるようにして処理能力を高めるため、担体を構成する樹脂架橋発泡体は、気泡(セル)が連通化された連通気泡構造のものが好ましいとされている。   Further, in order to improve the processing capability by allowing the carrier to swirl well with water in water, the resin cross-linked foam constituting the carrier is preferably of the open cell structure in which bubbles (cells) are connected. Yes.

しかし、ポリオレフィン系樹脂架橋発泡体からなる担体を生物処理槽に投入すると、水面に浮かんでいる期間が長く、速やかに水中に入り(潜り)込み難くなって、水と共に効果的に旋回しないため、期待する処理能力を発揮し難い問題がある。   However, when a carrier made of polyolefin resin cross-linked foam is put into a biological treatment tank, the period of floating on the water surface is long, and it becomes difficult to quickly get into the water (dive), and it does not rotate effectively with water. There is a problem that it is difficult to achieve the expected processing capacity.

ポリオレフィン系樹脂架橋発泡体からなる担体が水中に入り込み難い理由として次の理由が挙げられる。その一つとして、ポリオレフィン系樹脂架橋発泡体が撥水性を持つことにより、水面上で水をはじいて水中に入り込みにくいことが挙げられる。また、他の理由として、一般的な連続気泡構造のポリオレフィン系樹脂架橋発泡体は、その製造方法からくる気泡構造のために通水性が低く、内部に水が侵入するまでに時間を要するため、発泡体内の空気により浮力が働き、水中に入り込みにくいことが挙げられる。さらに、次の理由も挙げられる。すなわち、一般的な生物処理槽は、好気性微生物の働きを利用するため、散気管から空気を水中に送り込んで微生物を培養しており、散気管から水中に送り込まれる空気については、酸素が水に溶け込み易くなるように微細な気泡にされている。そのため、散気管から水中に送り込まれた微細な気泡は、樹脂架橋発泡体からなる担体に衝突した際に担体の気泡内に入り込んで保持(トラップ)され易く、生物処理槽に投入された担体は一旦水中に入っても、すぐに水面に浮上するようになる。   The following reasons can be given as the reason why the carrier made of the polyolefin resin crosslinked foam is difficult to enter water. One of them is that the polyolefin-based resin-crosslinked foam has water repellency, so that it hardly repels water on the water surface. In addition, as another reason, the polyolefin resin cross-linked foam having a general open cell structure has low water permeability due to the cell structure coming from the production method, and it takes time until water enters the inside. The buoyancy works by the air in the foam, and it is difficult to get into the water. Furthermore, the following reason is also mentioned. In other words, in order to utilize the action of aerobic microorganisms in general biological treatment tanks, microorganisms are cultured by sending air from the diffuser into the water. Oxygen is water in the air sent from the diffuser into the water. It is made into fine bubbles so that it can be easily dissolved. Therefore, the fine bubbles sent into the water from the diffuser tube easily enter and hold (trap) into the bubbles of the carrier when colliding with the carrier made of the resin cross-linked foam, and the carrier put into the biological treatment tank is Once in the water, it will surface immediately.

これらの問題を解決するため、ポリオレフィン系樹脂架橋発泡体に親水性を持たせたり、ポリオレフィン系樹脂架橋発泡体の中でも通気性の高いものを担体として用いたりすることが提案されている。しかし、これらの方法によっても、ポリオレフィン系樹脂架橋発泡体内に空気が保持(エアートラップ)されることによる問題を解決することができず、生物処理槽において期待する処理能力を得られない問題がある。   In order to solve these problems, it has been proposed to impart hydrophilicity to the polyolefin resin crosslinked foam or to use a highly breathable polyolefin resin crosslinked foam as a carrier. However, even these methods cannot solve the problem that air is retained (air trap) in the polyolefin resin cross-linked foam, and the treatment capacity expected in the biological treatment tank cannot be obtained. .

特開2002−199879号公報JP 2002-199879 A 特開2002−20532号公報JP 2002-20532 A

本発明は前記の点に鑑みなされたものであって、生物処理槽での担体の浮き上がりを抑えて処理能力を向上させることのできる水処理用微生物担体の提供を目的とする。   This invention is made | formed in view of the said point, Comprising: It aims at provision of the microbe support | carrier for water treatment which can suppress the float of the support | carrier in a biological treatment tank and can improve a processing capacity.

請求項1の発明は、気泡が連通化され、かつ真密度が1.03〜1.16g/cmとされたポリオレフィン系樹脂架橋発泡体からなる水処理用微生物担体に係る。 The invention of claim 1 relates to a microbial carrier for water treatment comprising a polyolefin resin cross-linked foam in which bubbles are communicated and a true density is 1.03 to 1.16 g / cm 3 .

請求項2の発明は、請求項1において、密度1.3〜6.0g/cmの充填剤がポリオレフィン系樹脂100重量部に対して10〜50重量部含まれていることを特徴とする。 The invention of claim 2 is characterized in that, in claim 1, 10 to 50 parts by weight of a filler having a density of 1.3 to 6.0 g / cm 3 is contained with respect to 100 parts by weight of the polyolefin resin. .

請求項1の発明によれば、ポリオレフィン系樹脂架橋発泡体の気泡が連通化されていることで、ポリオレフィン系樹脂架橋発泡体からなる水処理用微生物担体内に水が侵入可能となり、これにより気泡内の空気が追い出され易くなって気泡内空気による浮力を抑えることができ、水処理用微生物担体が水中に入り込み易くなる。さらに、ポリオレフィン系樹脂架橋発泡体の真密度が1.03〜1.16g/cmとされていることで、ポリオレフィン系樹脂架橋発泡体からなる水処理用微生物担体は、比重が水よりも大になり、これによっても水中に入り込み易くなる。そして、これらの相乗作用によって、水処理用微生物担体は、生物処理槽内で水中に入り込んで水と共に旋回し易くなり、水処理能力を向上させることができるようになる。 According to the first aspect of the present invention, the bubbles of the polyolefin-based resin crosslinked foam are communicated so that water can enter the microbial carrier for water treatment made of the polyolefin-based resin crosslinked foam. The air inside is easily expelled, and the buoyancy due to the air inside the bubbles can be suppressed, and the microbial carrier for water treatment can easily enter the water. Furthermore, since the true density of the polyolefin resin crosslinked foam is 1.03 to 1.16 g / cm 3 , the microbial carrier for water treatment comprising the polyolefin resin crosslinked foam has a specific gravity greater than that of water. This also makes it easier to get into the water. And by these synergistic actions, the microbial carrier for water treatment can easily enter the water in the biological treatment tank and swirl together with the water, thereby improving the water treatment capacity.

請求項2の発明によれば、密度1.3〜6.0g/cmの充填剤をポリオレフィン系樹脂100重量部に対して10〜50重量部含むことによって、ポリオレフィン系樹脂架橋発泡体を真密度1.03〜1.16g/cmに調整することが容易になるとともに、発泡状態が良好なポリオレフィン系樹脂架橋発泡体からなる水処理用微生物担体が得られるようになる。 According to the invention of claim 2, the polyolefin resin cross-linked foam is truly obtained by including 10 to 50 parts by weight of a filler having a density of 1.3 to 6.0 g / cm 3 with respect to 100 parts by weight of the polyolefin resin. It becomes easy to adjust the density to 1.03 to 1.16 g / cm 3, and a microbial carrier for water treatment made of a polyolefin resin cross-linked foam having a good foamed state can be obtained.

本発明における水処理用微生物担体を構成するポリオレフィン系樹脂架橋発泡体は、ポリオレフィン系樹脂、架橋剤、発泡剤、充填剤を少なくとも含み、さらに好ましくは界面活性剤を含み、かつその他の適宜の助剤を含む混練物を発泡したものからなり、気泡膜除去処理により気泡が連通化されたものである。   The polyolefin resin cross-linked foam constituting the microbial carrier for water treatment in the present invention contains at least a polyolefin resin, a cross-linking agent, a foaming agent and a filler, more preferably a surfactant, and other appropriate aids. The kneaded material containing the agent is made of foamed material, and the bubbles are made continuous by the bubble film removal treatment.

ポリオレフィン系樹脂は、耐水性及び非汚染性の点で水処理用微生物担体用の発泡体に好ましい樹脂である。この発明において使用されるポリオレフィン系樹脂としては、特に限定されず、エチレン酢酸ビニル共重合体(EVA)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレンとメチル、エチル、プロピル若しくはブチルの各アクリル酸エステルとの共重合体、又はこれらの塩素化物、あるいはそれらの混合物、さらにはそれらとアイソタクチックポリプロピレン若しくはアタクチックポリプロピレンの混合物等を挙げることができる。   Polyolefin resins are preferred resins for foams for microbial carriers for water treatment in terms of water resistance and non-contamination. The polyolefin resin used in the present invention is not particularly limited, and ethylene vinyl acetate copolymer (EVA), low density polyethylene (LDPE), high density polyethylene (HDPE), ethylene-propylene copolymer, ethylene- Butene copolymers, copolymers of ethylene and methyl, ethyl, propyl or butyl acrylates, or chlorinated products thereof, or a mixture thereof, and also a mixture of them with isotactic polypropylene or atactic polypropylene. Etc.

本発明において、より好ましいポリオレフィン系樹脂は、エチレン酢酸ビニル共重合体を含むものである。エチレン酢酸ビニル共重合体を含むことによって発泡体の反発弾性率(JIS K 6400準拠)が高くなり、水処理用微生物担体が長期に渡って繰り返し生物処理槽の壁にぶつかったり、担体同士でぶつかったりしても、発泡体の骨格部分が歪んだり、へたったりし難く、歪みやへたりによる寸法減少を抑えることができる。   In the present invention, a more preferred polyolefin resin includes an ethylene vinyl acetate copolymer. By including an ethylene vinyl acetate copolymer, the rebound resilience of the foam (according to JIS K 6400) is increased, and the microbial carrier for water treatment repeatedly hits the wall of the biological treatment tank over a long period of time or hits between the carriers. Even if it is, the skeleton part of the foam is difficult to be distorted or sag, and dimensional reduction due to distortion or sag can be suppressed.

さらにまた、前記ポリオレフィン系樹脂は、ポリオレフィン系樹脂の全量100重量%中、酢酸ビニル含量が12〜30重量%のものが好ましい。前記酢酸ビニル含量が12重量%未満の場合、水処理用微生物担体は反発弾性率が低くなり、長期使用の際に摩耗程度が大きくなる。それに対し、30重量%を超えると、ゴム成分たるビニル成分が多量に含まれることになって、所望の発泡倍率の発泡体が得られず、水処理用微生物担体のコストが増大する。また、ビニル成分が多いと、粘着性が増大する。前記エチレン酢酸ビニル共重合体の含量は、ポリオレフィン系樹脂の全量100重量%中、75重量%以上(最大100重量%)が好ましい。エチレン酢酸ビニル共重合体は、−70〜70℃で使用可能な熱的性質を備え、低温でも硬くならず、耐候性に優れる。しかも、引張強度や引き裂き強度の物理的強度が高い。さらにポリエチレンよりもエチレン酢酸ビニル共重合体の方が、弾性率が高く、担体同士等の衝突時における負荷を柔らかく受け流し、へたり難い。エチレン酢酸ビニル共重合体が75重量%未満の場合、反発弾性率が低くなり、得られる水処理用微生物担体が長期使用に耐えられなくなる。前記ポリオレフィン系樹脂には、ポリオレフィン系樹脂全量100重量%中、25%以下の範囲でエチレン酢酸ビニル共重合体以外の他のポリオレフィン系樹脂を含んでもよい。他のポリオレフィン系樹脂としては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレンとメチル、エチル、プロピル若しくはブチルの各アクリル酸エステルとの共重合体、又はこれらの塩素化物、あるいはそれらの混合物、さらにはそれらとアイソタクチックポリプロピレン若しくはアタクチックポリプロピレンの混合物等を挙げることができる。   Furthermore, the polyolefin resin preferably has a vinyl acetate content of 12 to 30% by weight in 100% by weight of the total amount of the polyolefin resin. When the vinyl acetate content is less than 12% by weight, the microbial carrier for water treatment has a low rebound resilience, and the degree of wear increases during long-term use. On the other hand, when it exceeds 30% by weight, a vinyl component as a rubber component is contained in a large amount, so that a foam having a desired expansion ratio cannot be obtained, and the cost of the microbial carrier for water treatment increases. Moreover, when there are many vinyl components, adhesiveness will increase. The content of the ethylene vinyl acetate copolymer is preferably 75% by weight or more (up to 100% by weight) in 100% by weight of the total amount of the polyolefin resin. The ethylene vinyl acetate copolymer has thermal properties that can be used at -70 to 70 ° C, does not become hard even at low temperatures, and has excellent weather resistance. In addition, the physical strength of tensile strength and tear strength is high. Furthermore, the ethylene vinyl acetate copolymer has a higher elastic modulus than polyethylene, and softly receives the load at the time of collision between the carriers and the like, and is difficult to sag. When the ethylene vinyl acetate copolymer is less than 75% by weight, the rebound resilience is low, and the resulting microbial carrier for water treatment cannot withstand long-term use. The polyolefin-based resin may include other polyolefin-based resins other than the ethylene-vinyl acetate copolymer within a range of 25% or less in a total amount of 100% by weight of the polyolefin-based resin. Other polyolefin resins include low density polyethylene (LDPE), high density polyethylene (HDPE), ethylene-propylene copolymer, ethylene-butene copolymer, ethylene and methyl, ethyl, propyl or butyl acrylate esters Or a chlorinated product thereof, or a mixture thereof, and a mixture of them with isotactic polypropylene or atactic polypropylene.

架橋剤としては、従来、ポリオレフィン系樹脂架橋発泡体の二段階発泡に使用されている公知のものが用いられる。例えば、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス−ターシャリーブチルパーオキシヘキサン、1,3−ビス−ターシャリーパーオキシ−イソプロピルベンゼンなどの有機過酸化物等を挙げることができる。前記架橋剤の配合量は、通常、ポリオレフィン系樹脂100重量部に対し0.50〜1.3重量部である。   As the cross-linking agent, conventionally known cross-linking agents used for two-stage foaming of polyolefin resin cross-linked foams are used. Examples thereof include organic peroxides such as dicumyl peroxide, 2,5-dimethyl-2,5-bis-tertiary butyl peroxyhexane, 1,3-bis-tertiary peroxy-isopropylbenzene, and the like. . The amount of the crosslinking agent is usually 0.50 to 1.3 parts by weight with respect to 100 parts by weight of the polyolefin resin.

発泡剤としては、加熱により分解してガスを発生するものが用いられ、特に制限されるものではない。例えばアゾジカルボンアミド、2,2’−アゾビスイソブチロニトリル、ジアゾアミノベンゼン、ベンゼンスルホニルヒドラジド、ベンゼン−1,3−スルホニルヒドラジド、ジフェニルオキシド−4,4’−ジスルフォニルヒドラジド、4,4’−オキシビスベンゼンスルフォニルヒドラジド、パラトルエンスルフォニルヒドラジド、N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジニトロソ−N,N’−ジメチルフタルアミド、テレフタルアジド、p−t−ブチルベンズアジド、重炭酸ナトリウム、重炭酸アンモニウム等の一種又は二種以上が用いられる。特にアゾジカルボンアミド、4,4’−オキシビスベンゼンスルホニルヒドラジドが好適である。添加量としては、通常、ポリオレフィン系樹脂100重量部に対して、2〜30重量部とされる。   As a foaming agent, what decomposes | disassembles by heating and generate | occur | produces gas is used, and it does not restrict | limit in particular. For example, azodicarbonamide, 2,2'-azobisisobutyronitrile, diazoaminobenzene, benzenesulfonyl hydrazide, benzene-1,3-sulfonyl hydrazide, diphenyl oxide-4,4'-disulfonyl hydrazide, 4,4 ' -Oxybisbenzenesulfonyl hydrazide, paratoluenesulfonyl hydrazide, N, N'-dinitrosopentamethylenetetramine, N, N'-dinitroso-N, N'-dimethylphthalamide, terephthalazide, pt-butylbenzazide, One or more of sodium bicarbonate, ammonium bicarbonate and the like are used. In particular, azodicarbonamide and 4,4′-oxybisbenzenesulfonyl hydrazide are preferable. The addition amount is usually 2 to 30 parts by weight with respect to 100 parts by weight of the polyolefin resin.

充填剤としては、密度1.3〜6.0g/cmのものが用いられ、特に限定されるものではない。例えば、重炭酸カルシウム、珪藻土、硫酸バリウム、酸化鉄、アルミナ(酸化アルミニウム)、水酸化アルミニウム、プラスチックパウダー等を挙げることができ、それらを単独または複数種類組み合わせて使用することができる。前記充填剤の量は、ポリオレフィン系樹脂系架橋発泡体からなる水処理用微生物担体の真密度が1.03〜1.16g/cm、好ましくは1.05〜1.13g/cmとなるように調整され、具体的には、ポリオレフィン系樹脂100重量部に対して10〜50重量部の範囲で調整される。水処理用微生物担体の真密度が1.03g/cm未満の場合、エアートラップによる浮力に抗しきれず水中での十分な旋回性が得られなくなる。一方、水処理用微生物担体の真密度が1.16g/cmを超えると、生物処理槽へ水処理用微生物担体を投入した初期の段階においては水面に存在することもあるが、数日して微生物による生物膜が水処理用微生物担体に充分形成されてくると、生物処理槽の底部に沈んだままとなり、充分な旋回性が得られなくなる。これは、生物膜が水の比重より大きいことから、この生物膜で担体内部が満たされて埋まってくると、担体にはエアートラップ自体が起こらなくなって担体が重くなり過ぎ、旋回できなくなることによる。なお、ポリオレフィン系樹脂架橋発泡体の真密度は、発泡体の空隙部分を容積としないで密度を計算したものであり、ピクノメーター法(気相置換法):JIS K5101に記載、に基づくものである。 As the filler, one having a density of 1.3 to 6.0 g / cm 3 is used and is not particularly limited. For example, calcium bicarbonate, diatomaceous earth, barium sulfate, iron oxide, alumina (aluminum oxide), aluminum hydroxide, plastic powder, and the like can be used, and these can be used alone or in combination. The amount of the filler, the true density of the microbial carrier for water treatment comprising a polyolefin resin-based crosslinked foam is 1.03~1.16g / cm 3, preferably a 1.05~1.13g / cm 3 Specifically, it is adjusted in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the polyolefin resin. When the true density of the microbial carrier for water treatment is less than 1.03 g / cm 3 , the buoyancy caused by the air trap cannot be resisted and sufficient swirlability in water cannot be obtained. On the other hand, when the true density of the microbial carrier for water treatment exceeds 1.16 g / cm 3 , it may exist on the water surface in the initial stage when the microbial carrier for water treatment is introduced into the biological treatment tank. When the biofilm of microorganisms is sufficiently formed on the microbial carrier for water treatment, the biofilm remains submerged at the bottom of the biological treatment tank, and sufficient swirlability cannot be obtained. This is because the biofilm is larger than the specific gravity of water, so if the inside of the carrier is filled with this biofilm and buried, the air trap itself will not occur in the carrier, the carrier will be too heavy, and it will not be able to swivel . In addition, the true density of the polyolefin resin cross-linked foam is a density calculated without taking the void portion of the foam as a volume, and is based on the pycnometer method (gas phase substitution method) described in JIS K5101. is there.

また、前記充填剤の密度が1.3g/cm未満の場合、充填剤の添加量が50重量部以下では水処理用微生物担体の真比重を1.03〜1.16g/cmにできなくなる。一方、充填剤の密度が6.0g/cmを超える場合には、充填剤の添加量を10重量部未満にすれば水処理用微生物担体の真比重を1.03〜1.16g/cmとすることが可能であるが、このような重い充填剤はポリオレフィン系樹脂に均一に分散させ難く、良好なポリオレフィン系樹脂架橋発泡体が得られなくなる。 Further, when the density of the filler is less than 1.3 g / cm 3, the addition amount of the filler can be a true specific gravity of the microbial carrier for water treatment in the following 50 parts by weight 1.03~1.16g / cm 3 Disappear. On the other hand, when the density of the filler exceeds 6.0 g / cm 3 , if the added amount of the filler is less than 10 parts by weight, the true specific gravity of the microbial carrier for water treatment is 1.03 to 1.16 g / cm 3. Although it is possible to 3 to such heavy fillers difficult to uniformly disperse in the polyolefin resin, not good polyolefin resin crosslinked foam is obtained.

また、前記充填剤の量をポリオレフィン系樹脂100重量部に対して10〜50重量部とするのは次の理由による。すなわち、密度の高い充填剤を用いれば、充填剤の量を10重量部より少なくしても、ポリオレフィン系樹脂架橋発泡体の真比重を1.03〜1.16g/cmにすることが可能であるが、その場合、ポリオレフィン系樹脂中に存在する充填剤が僅かになって偏在を生じ易く、その結果ポリオレフィン系樹脂架橋発泡体内での真比重のバラツキが大きくなり、ポリオレフィン系樹脂架橋発泡体を裁断等により所望サイズにした際に、裁断後の発泡体間で真比重のバラツキが大きくなり、1.03〜1.16g/cmの水処理用微生物担体を効率よく得られなくなる。一方、密度の低い充填剤を用いれば、充填剤の量を50重量部より多くしてもポリオレフィン系樹脂架橋発泡体の真比重を1.03〜1.16g/cmにすることが可能であるが、その場合には、ポリオレフィン系樹脂中に存在する充填剤が多くなりすぎて発泡工程における発泡阻害が大きくなり、発泡体が得られにくくなる。 The amount of the filler is 10 to 50 parts by weight with respect to 100 parts by weight of the polyolefin resin for the following reason. That is, if a high-density filler is used, even if the amount of the filler is less than 10 parts by weight, the true specific gravity of the polyolefin resin cross-linked foam can be 1.03 to 1.16 g / cm 3. In this case, however, the filler present in the polyolefin resin becomes small and tends to be unevenly distributed, resulting in a large variation in true specific gravity within the polyolefin resin crosslinked foam, resulting in a polyolefin resin crosslinked foam. When cutting into a desired size by cutting or the like, the variation in true specific gravity increases between the foams after cutting, and a microbial carrier for water treatment of 1.03 to 1.16 g / cm 3 cannot be obtained efficiently. On the other hand, if a filler with a low density is used, the true specific gravity of the polyolefin resin cross-linked foam can be 1.03 to 1.16 g / cm 3 even if the amount of the filler is more than 50 parts by weight. However, in that case, the amount of the filler present in the polyolefin-based resin increases so much that the inhibition of foaming in the foaming step increases, making it difficult to obtain a foam.

界面活性剤としては、特に限定されるものではなく、また、HLBについても限定されるものではなく、イオン系(陰イオン系、陽イオン系、両性イオン系)、非イオン系のいずれでもよい。陰イオン系(アニオン系)の界面活性剤としては、脂肪酸系、アルキルベンゼン系、アルコール系、アルファオレフィン系等があり、陽イオン系(カチオン系)の界面活性剤としては、アミノ塩系、アンモニウム塩系等があり、両性イオン系の界面活性剤としては、カルボン酸系、硫酸エステル系、スルフォン酸系、リン酸エステル系等があり、非イオン系(ノニオン系)の界面活性剤としては、脂肪酸系、高級アルコール系、含窒素系等がある。   The surfactant is not particularly limited, and the HLB is not limited, either ionic (anionic, cationic, zwitterionic) or nonionic. Examples of anionic (anionic) surfactants include fatty acid-based, alkylbenzene-based, alcohol-based, and alpha-olefin-based surfactants. Cationic (cationic) surfactants include amino salts and ammonium salts. Zwitterionic surfactants include carboxylic acid-based, sulfate-based, sulfonic acid-based and phosphate-based surfactants, and nonionic (nonionic) surfactants include fatty acids. Type, higher alcohol type, nitrogen-containing type and the like.

その他適宜添加される助剤としては、発泡助剤等がある。発泡助剤には、酸化亜鉛、酸化鉛等の金属酸化物、低級又は高級脂肪酸あるいはそれらの金属塩、尿素及びその誘導体等が挙げられる。   Other auxiliary agents added as appropriate include foaming auxiliary agents. Examples of the foaming aid include metal oxides such as zinc oxide and lead oxide, lower or higher fatty acids or metal salts thereof, urea and derivatives thereof.

ポリオレフィン系樹脂架橋発泡体の製造は、前記成分をニーダーやロールで混練して得た混練物を、公知のポリオレフィン系樹脂の二段発泡方法にしたがい発泡させ、その後気泡膜除去処理することにより行われる。   The polyolefin resin crosslinked foam is produced by foaming a kneaded product obtained by kneading the above components with a kneader or a roll according to a known two-stage foaming method of polyolefin resin, and then subjecting to a cell membrane removal treatment. Is called.

前記二段発泡方法は、前記混練物を密閉式の一次金型に充填し、加圧下加熱後に除圧することにより一次発泡させて一次発泡体を形成し、次に前記一次発泡体を、常圧で加熱して二次発泡させることにより得られる。発泡倍率は、10〜40倍が好ましい。気泡膜除去処理は、二次発泡体を圧縮することにより、簡単に行うことができる。気泡膜除去処理によって発泡体は気泡膜(セル膜)が破壊され、三次元網目骨格構造となる。気泡が連通化した発泡体は、水処理用微生物担体として使用された際に、発泡体内に水が侵入し易く、水中に入り込んで水と共に旋回し易くなると共に、発泡体内の中央部まで微生物を効率よく保持することができるようになって微生物の担持面積が増大し、しかも微生物と水との接触効率も増大するため、水処理能力を向上させることができる。また、連通化されたポリオレフィン系樹脂架橋発泡体は、前記のように真密度が1.03〜1.16g/cmとされている。前記連通化されたポリオレフィン系樹脂架橋発泡体は、その後裁断等により所要のサイズにされて水処理用微生物担体として使用される。 In the two-stage foaming method, the kneaded product is filled into a closed primary mold, heated under pressure and decompressed to form a primary foam, and then the primary foam is subjected to normal pressure. It is obtained by heating with a secondary foam. The expansion ratio is preferably 10 to 40 times. The bubble film removal treatment can be easily performed by compressing the secondary foam. By the bubble film removal treatment, the foam film is broken in the foam film (cell film) and becomes a three-dimensional network skeleton structure. When the foam in which bubbles are connected is used as a microbial carrier for water treatment, it is easy for water to enter the foam, and to enter the water and swirl with the water. Since it can hold | maintain efficiently and the carrying area of microorganisms increases and also the contact efficiency of microorganisms and water also increases, water treatment capability can be improved. In addition, the connected polyolefin-based resin crosslinked foam has a true density of 1.03 to 1.16 g / cm 3 as described above. The communicated polyolefin resin cross-linked foam is then made into a required size by cutting or the like and used as a microbial carrier for water treatment.

ポリオレフィン系樹脂として、酢酸ビニル含量15重量%のエチレン酢酸ビニル共重合体、品番:エバテートH2020、比重0.95、住友化学工業株式会社製を100重量部、架橋剤としてジクミルパーオキサイドを0.8重量部、発泡剤としてアゾジカルボンアミド、品番:AC#3、永和化成工業株式会社製を18重量部、界面活性剤として品番:アセチレノールE40、川研ファインケミカル株式会社製を表1〜表2に示す量、充填剤として珪藻土、重炭酸カルシウム、アルミナ、硫酸バリウム、酸化鉄、ポリエチレンテレフタレート(PET)粉を表1〜表3に示す量とした配合を、1Lニーダーで重量約800g混練し、次いで10インチミキシングロールで混練して混練物を得た。   As a polyolefin resin, ethylene vinyl acetate copolymer having a vinyl acetate content of 15% by weight, product number: Evalate H2020, specific gravity of 0.95, 100 parts by weight of Sumitomo Chemical Co., Ltd., and 0.02 of dicumyl peroxide as a crosslinking agent. 8 parts by weight, azodicarbonamide as a foaming agent, product number: AC # 3, 18 parts by weight manufactured by Eiwa Kasei Kogyo Co., Ltd., product number: acetylenol E40 as surfactant, Kawaken Fine Chemicals Co., Ltd. in Tables 1 to 2 The amount shown, kneaded with diatomaceous earth, calcium bicarbonate, alumina, barium sulfate, iron oxide, polyethylene terephthalate (PET) powder as shown in Tables 1 to 3 in a 1 L kneader, kneaded about 800 g in weight, then A kneaded product was obtained by kneading with a 10-inch mixing roll.

Figure 2006263489
Figure 2006263489

Figure 2006263489
Figure 2006263489

Figure 2006263489
Figure 2006263489

前記混練物を、150℃にした30mm×155mm×155mmの一次金型内に充填して密封し、加圧した状態で40分加熱し、その後除圧することにより一次発泡させて一次発泡体を得た。次に、前記一次発泡体を160℃で120分加熱することにより二次発泡させ、二次発泡体を得た。その後二次発泡体を、等速二軸ロールに通して元厚の1/5に圧縮しながら5往復させることにより気泡膜除去処理を行い、各実施例のポリオレフィン系樹脂架橋発泡体を得た。なお、比較のために気泡膜除去処理を行わなかったものと、ポリオレフィン系樹脂架橋発泡体の真密度が1.01g/cmのものをそれぞれ比較例として製造した。実施例及び比較例のポリオレフィン系樹脂架橋発泡体の真密度は、測定器として、株式会社セイシン企業製、型番;MAT−7000を用いて測定した。 The kneaded product is filled in a primary mold of 30 mm × 155 mm × 155 mm at 150 ° C., sealed, heated in a pressurized state for 40 minutes, and then subjected to primary foaming by depressurization to obtain a primary foam. It was. Next, the primary foam was subjected to secondary foaming by heating at 160 ° C. for 120 minutes to obtain a secondary foam. Thereafter, the secondary foam was passed through a constant-speed biaxial roll and reciprocated 5 times while being compressed to 1/5 of the original thickness, thereby removing the cell membrane and obtaining the polyolefin resin cross-linked foam of each example. . For comparison, a non-bubble film removal treatment and a polyolefin resin crosslinked foam having a true density of 1.01 g / cm 3 were produced as comparative examples. The true density of the polyolefin resin cross-linked foams of Examples and Comparative Examples was measured using a model number; MAT-7000, manufactured by Seishin Enterprise Co., Ltd., as a measuring device.

このようにして得られた実施例及び比較例のポリオレフィン系樹脂架橋発泡体を、それぞれ一辺10mmの立方体に切り出して水処理用微生物担体とし、この水処理用微生物担体の2リットル分と水10リットルを、図1に示す透明容器からなる生物処理槽10に投入し、また、生物処理槽10には150mg/LのBOD濃度に調製した人工汚水を合成下水タンク13から1L/hrで供給すると共に、エアーポンプ15により一週間エアーレーションを行った。その間、水処理用微生物担体の位置及び旋回有無について目視で判断し、また一週間後に生物処理槽10の採水口17から採取した試験水についてBODをJIS K 0102にしたがって測定した。なお、生物処理槽10には排水タンク19が接続されている。生物処理槽10に投入した人工汚水は、グルコース50g、グルタミン酸ナトリウム50g、硫酸アンモニウム50g、塩化ナトリウム1g、塩化カルシウム0.5g、硫酸マグネシウム0.3g、リン酸水素二カリウム6.4g、リン酸二水素カリウム1.6g、炭酸水素ナトリウム63gを300リットルの水に溶かして調製した。水処理用微生物担体の位置及び旋回有無及び1週間後のBODの測定結果を表1ないし表3に示す。なお、表中において「水面下浮上」とは、担体が水を含んで水面下に位置しているが、水面に接して浮かんでいる状態をいい、図1に示すような状態をいう。また下線は数値等が本発明の構成から外れて好ましくない場合を示す。   The polyolefin resin crosslinked foams of Examples and Comparative Examples thus obtained were cut into cubes each having a side of 10 mm to form a microbial carrier for water treatment, and 2 liters of this water treatment microbial carrier and 10 liters of water. 1 is supplied to the biological treatment tank 10 comprising a transparent container shown in FIG. 1, and artificial sewage adjusted to a BOD concentration of 150 mg / L is supplied to the biological treatment tank 10 from the synthetic sewage tank 13 at 1 L / hr. The air pump 15 aerated for one week. Meanwhile, the position of the microbial carrier for water treatment and the presence / absence of swirling were determined visually, and BOD was measured according to JIS K 0102 for test water collected from the water collection port 17 of the biological treatment tank 10 after one week. A drainage tank 19 is connected to the biological treatment tank 10. Artificial sewage charged into the biological treatment tank 10 is 50 g glucose, 50 g sodium glutamate, 50 g ammonium sulfate, 1 g sodium chloride, 0.5 g calcium chloride, 0.3 g magnesium sulfate, 6.4 g dipotassium hydrogen phosphate, dihydrogen phosphate. It was prepared by dissolving 1.6 g of potassium and 63 g of sodium hydrogen carbonate in 300 liters of water. Tables 1 to 3 show the position of the microbial carrier for water treatment, the presence or absence of swirling, and the BOD measurement results after one week. In the table, “floating below the water surface” means a state in which the carrier contains water and is located below the water surface, but floats in contact with the water surface, as shown in FIG. An underline indicates a case where a numerical value or the like is not preferable because it deviates from the configuration of the present invention.

表1ないし表3から理解されるように、各実施例の水処理用微生物担体は、短期間で水中に入り込んで水と共に旋回し、また、1週間後のBOD値が小さく、すなわち水処理能力が高くなっている。それに対して、充填剤の添加量が55重量部と多い比較例1においては、発泡体を形成することができなかった。また気泡膜除去処理を行わなかった比較例2については、担体が水面上に長く浮かんでいて水中に入り込み難く、1週間後のBOD値が大きく、水処理能力が劣っていた。一方、担体の真密度が1.2あるいは1.19g/cmと重い比較例3及び4については、短期間の間に担体が水中に沈降して旋回性に劣り、1週間後のBOD値が実施例よりも少し大きく、水処理能力が少し劣っていた。また、充填剤の添加量が5重量部と充填剤が少量の比較例5については、担体が水中に入り込み難く、1週間後のBOD値が大きく、水処理能力が劣っていた。また、担体の真密度1.01g/cmと軽すぎる比較例6については、担体が水面上に長く浮かんでいて水中に入り込み難く、1週間後のBOD値が大きく、水処理能力が劣っていた。 As understood from Tables 1 to 3, the microbial carrier for water treatment of each example enters into water in a short period of time and swirls with water, and has a small BOD value after one week, that is, water treatment capacity. Is high. In contrast, in Comparative Example 1 where the amount of filler added was as large as 55 parts by weight, a foam could not be formed. Moreover, about the comparative example 2 which did not perform a bubble film | membrane removal process, the support | carrier floated on the water surface long, it was difficult to enter water, the BOD value after one week was large, and the water treatment capability was inferior. On the other hand, for Comparative Examples 3 and 4 where the true density of the carrier is as high as 1.2 or 1.19 g / cm 3 , the carrier settles in water in a short period of time and is poor in swirlability, and the BOD value after one week However, the water treatment capacity was slightly inferior to that of the example. Further, in Comparative Example 5 in which the amount of filler added was 5 parts by weight and the amount of filler was small, the carrier was difficult to enter water, the BOD value after one week was large, and the water treatment capacity was inferior. Also, the true density 1.01 g / cm 3 and too Comparative Example 6 light carriers hardly enter the water carrier is floated long on the water surface, BOD value after 1 week is large, it has poor water treatment capacity It was.

担体の位置及び旋回性、試験水のBOD値を測定するのに使用した装置の概略図である。It is the schematic of the apparatus used in order to measure the position and swirlability of a support | carrier, and the BOD value of test water.

符号の説明Explanation of symbols

10 生物処理槽
13 合成下水タンク
15 エアーポンプ
17 採水口
19 排水タンク
10 biological treatment tank 13 synthetic sewage tank 15 air pump 17 sampling port 19 drainage tank

Claims (2)

気泡が連通化され、真密度が1.03〜1.16g/cmとされたポリオレフィン系樹脂架橋発泡体からなる水処理用微生物担体。 A microbial carrier for water treatment comprising a polyolefin resin cross-linked foam in which bubbles are communicated and a true density is 1.03 to 1.16 g / cm 3 . 密度1.3〜6.0g/cmの充填剤がポリオレフィン系樹脂100重量部に対して10〜50重量部含まれていることを特徴とする請求項1に記載の水処理用微生物担体。 The microbial carrier for water treatment according to claim 1, wherein a filler having a density of 1.3 to 6.0 g / cm 3 is contained in an amount of 10 to 50 parts by weight based on 100 parts by weight of the polyolefin resin.
JP2005080869A 2005-03-22 2005-03-22 Microbial carrier for water treatment and production method thereof Active JP4722518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080869A JP4722518B2 (en) 2005-03-22 2005-03-22 Microbial carrier for water treatment and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080869A JP4722518B2 (en) 2005-03-22 2005-03-22 Microbial carrier for water treatment and production method thereof

Publications (2)

Publication Number Publication Date
JP2006263489A true JP2006263489A (en) 2006-10-05
JP4722518B2 JP4722518B2 (en) 2011-07-13

Family

ID=37200019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080869A Active JP4722518B2 (en) 2005-03-22 2005-03-22 Microbial carrier for water treatment and production method thereof

Country Status (1)

Country Link
JP (1) JP4722518B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268356A (en) * 2006-03-30 2007-10-18 Inoac Corp Method for producing microbe carrier, molding die for compressing microbe carrier and apparatus for producing microbe carrier
JP2007267631A (en) * 2006-03-30 2007-10-18 Inoac Corp Method for producing carrier for microorganism
JP2008100185A (en) * 2006-10-20 2008-05-01 Inoac Corp Microorganism carrier for water treatment
JP2009220079A (en) * 2008-03-18 2009-10-01 Inoac Corp Water treatment carrier
JP2010017659A (en) * 2008-07-10 2010-01-28 Inoac Corp Polyurethane foam to be used as carrier for water treatment
JP2010119979A (en) * 2008-11-21 2010-06-03 Inoac Corp Microorganism carrier for water treatment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338299A (en) * 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
JPH07108292A (en) * 1993-10-15 1995-04-25 Fuji Clean Kogyo Kk Fluidized bed carrier and method for accelerating precipitation thereof, and carrier recovery method
JPH10257885A (en) * 1997-01-14 1998-09-29 Tsutsunaka Plast Ind Co Ltd Microorganism immobilized carrier for fluidized bed
JPH11276164A (en) * 1998-03-31 1999-10-12 Hymo Corp Microbial carrier
JP2000176477A (en) * 1998-12-18 2000-06-27 Amuzu Kk Treatment of highly contaminated sewage by using microorganism-immobilized carrier, treating device therefor, and carrier separating device
JP2001129579A (en) * 1999-11-04 2001-05-15 Nikko Co Waste water treating method and waste water treating apparatus
JP2001149965A (en) * 1999-11-25 2001-06-05 Nippon Zeon Co Ltd Septic tank
JP2001170668A (en) * 1999-12-14 2001-06-26 Kankyo Eng Co Ltd Carrier for microorganism and method for manufacturing the same
JP2002020532A (en) * 2000-07-07 2002-01-23 Sekisui Chem Co Ltd Cross-linked foamed material of continuously foaming polyolefin-based resin and carrier material for propagating microorganism
JP2004236596A (en) * 2003-02-06 2004-08-26 Fuji Photo Film Co Ltd Method for producing carrier for immobilizing microorganism
JP2004358328A (en) * 2003-06-03 2004-12-24 Denka Consult & Eng Co Ltd Microorganism carrier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338299A (en) * 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
JPH07108292A (en) * 1993-10-15 1995-04-25 Fuji Clean Kogyo Kk Fluidized bed carrier and method for accelerating precipitation thereof, and carrier recovery method
JPH10257885A (en) * 1997-01-14 1998-09-29 Tsutsunaka Plast Ind Co Ltd Microorganism immobilized carrier for fluidized bed
JPH11276164A (en) * 1998-03-31 1999-10-12 Hymo Corp Microbial carrier
JP2000176477A (en) * 1998-12-18 2000-06-27 Amuzu Kk Treatment of highly contaminated sewage by using microorganism-immobilized carrier, treating device therefor, and carrier separating device
JP2001129579A (en) * 1999-11-04 2001-05-15 Nikko Co Waste water treating method and waste water treating apparatus
JP2001149965A (en) * 1999-11-25 2001-06-05 Nippon Zeon Co Ltd Septic tank
JP2001170668A (en) * 1999-12-14 2001-06-26 Kankyo Eng Co Ltd Carrier for microorganism and method for manufacturing the same
JP2002020532A (en) * 2000-07-07 2002-01-23 Sekisui Chem Co Ltd Cross-linked foamed material of continuously foaming polyolefin-based resin and carrier material for propagating microorganism
JP2004236596A (en) * 2003-02-06 2004-08-26 Fuji Photo Film Co Ltd Method for producing carrier for immobilizing microorganism
JP2004358328A (en) * 2003-06-03 2004-12-24 Denka Consult & Eng Co Ltd Microorganism carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268356A (en) * 2006-03-30 2007-10-18 Inoac Corp Method for producing microbe carrier, molding die for compressing microbe carrier and apparatus for producing microbe carrier
JP2007267631A (en) * 2006-03-30 2007-10-18 Inoac Corp Method for producing carrier for microorganism
JP2008100185A (en) * 2006-10-20 2008-05-01 Inoac Corp Microorganism carrier for water treatment
JP2009220079A (en) * 2008-03-18 2009-10-01 Inoac Corp Water treatment carrier
JP2010017659A (en) * 2008-07-10 2010-01-28 Inoac Corp Polyurethane foam to be used as carrier for water treatment
JP2010119979A (en) * 2008-11-21 2010-06-03 Inoac Corp Microorganism carrier for water treatment

Also Published As

Publication number Publication date
JP4722518B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4722518B2 (en) Microbial carrier for water treatment and production method thereof
KR101727452B1 (en) Anaerobic treatment method
JPH0238100B2 (en)
US20130233793A1 (en) Anaerobic treatment method and apparatus
JP6869307B2 (en) Microbial carrier
JP4024706B2 (en) Hydrophilic polyolefin resin foam
JPWO2020116577A1 (en) Porous sound absorbing material, its manufacturing method, and sound absorbing method
JPH05179110A (en) Biodegradable thermoplastic resin molding
JPS61146510A (en) Manufacture of crosslinked polyolefin foam
JP2006219541A (en) Resin composition for foam and foam using the same
JP2004105099A (en) Microorganism carrier
JP4194012B2 (en) RESIN COMPOSITION FOR FOAM MOLDED BODY, FOAM MOLDED BODY, AND METHOD FOR PRODUCING THE SAME
JP2007083477A (en) Method for producing foamed crosslinked polyolefin resin
JP5691439B2 (en) Anaerobic treatment method and apparatus
JP4079256B2 (en) Microbial carrier
JP4597288B2 (en) Foam molded body and method for producing the same
JP2005171064A (en) Open-cell foam and method for producing the same
JP3609696B2 (en) Open cell polyolefin resin cross-linked foam and carrier for microbial propagation
JP4283453B2 (en) Microorganism propagation carrier
JP4229426B2 (en) Microorganism immobilization carrier and waste water treatment method using the same
JP3565815B2 (en) Conductive cross-linked polyethylene foam and method for producing the same
JPWO2009001959A1 (en) Method for producing polyolefin resin non-crosslinked foam
JP3837814B2 (en) Fiber-reinforced polyolefin resin foam and method for producing the same
WO2023181942A1 (en) Polyolefin resin foam
JP3245803U (en) Microbial carrier for food waste treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4722518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250