JP3609696B2 - Open cell polyolefin resin cross-linked foam and carrier for microbial propagation - Google Patents

Open cell polyolefin resin cross-linked foam and carrier for microbial propagation Download PDF

Info

Publication number
JP3609696B2
JP3609696B2 JP2000206933A JP2000206933A JP3609696B2 JP 3609696 B2 JP3609696 B2 JP 3609696B2 JP 2000206933 A JP2000206933 A JP 2000206933A JP 2000206933 A JP2000206933 A JP 2000206933A JP 3609696 B2 JP3609696 B2 JP 3609696B2
Authority
JP
Japan
Prior art keywords
open
cross
foam
linked foam
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000206933A
Other languages
Japanese (ja)
Other versions
JP2002020532A (en
Inventor
紳一郎 伊藤
俊二 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000206933A priority Critical patent/JP3609696B2/en
Publication of JP2002020532A publication Critical patent/JP2002020532A/en
Application granted granted Critical
Publication of JP3609696B2 publication Critical patent/JP3609696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微生物繁殖用の担持体として好適に使用できる連続気泡性ポリオレフィン系樹脂架橋発泡体及び該連続気泡性ポリオレフィン系樹脂架橋発泡体からなる微生物繁殖用担持体に関する。
【0002】
【従来の技術】
従来、連続気泡性ポリオレフィン系樹脂架橋発泡体は、緩衝材等として多くの分野で使用されている。連続気泡性ポリオレフィン系樹脂架橋発泡体の製造方法としては、例えば、特開昭56−121739号公報に、ポリオレフィン系樹脂を架橋発泡させた後に機械的変形を加えて気泡を連通する方法が記載されている。しかしながら、該製造方法は、気泡膜に微細な連通孔が部分的に形成され、気泡が連通化するものであり、得られる連続気泡性架橋発泡体は、連続気泡率が高いものであっても、通気性、吸水性等が要求される用途には通気性及び吸水性が不足し、不適であった。
【0003】
一方、生活・産業排水の下水処理槽、合併浄化槽、生ごみディスポーザ、生物脱臭装置等の処理において、従来から活性汚泥法が一般的に行われているが、大きな設備を必要とする他、赤潮の原因となる窒素、リン等の削減が不十分であるといった問題があり、近年では、設備をできる限り小型化し、さらに処理能力を向上させる為に微生物を効果的に利用する処理方法が検討されている。
【0004】
上記微生物を利用した処理方法では、微生物を繁殖させる為の担持体を使用するのが有効である。微生物繁殖用担持体としては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリウレタンなどからなる粒状ゲルや繊維を凝集、融合させた繊維体が挙げられる。しかしながら、粒状ゲルは体積あたりの水接触面積及び微生物繁殖面積が少なく、効率的でないといった問題があり、繊維体は、流動回転する水中で長期間使用した場合、解繊し易く、また、繊維間が狭い為、微生物付着時に内部が目詰まりし易く、内部の微生物繁殖効果が持続し難いといった問題があった。
上記問題を解決する方法として、ポリウレタン系樹脂、セルロール等からなる連続気泡性多孔体が提案されているが、処理槽内での水中での耐久性、耐摩耗性などが不十分であり、長期使用に耐え難いといった問題があった。
【0005】
上記問題を解決する方法として、耐摩耗性に優れたポリオレフィン系樹脂からなる連続気泡性架橋発泡体を使用する方法が挙げられるが、上記の通り、一般的な従来の製造方法で得られた連続気泡性ポリオレフィン系樹脂架橋発泡体は、微生物繁殖用担持体に使用するには通気性、吸水性等が不十分であるといった問題があった。また、例えば、特開平5−96288号公報には、ポリエチレン連通気泡体を特定の汚水浄化槽の微生物繁殖用担持体として使用することが記載されており、特開平10−193425号公報には、貫通気泡及び半貫通気泡と独立気泡とを有する押出発泡体からなる微生物繁殖用担持体が記載されているが、未だ、通気性、吸水性等は十分でないことが多く、微生物繁殖用担持体内部にまで水が浸透し難く、又は、微生物繁殖用担持体内部の水が移動変換し難く、微生物繁殖効果が効率的でないといった問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、通気性及び吸水性に優れるとともに、水中浮沈流動性及び耐摩耗性に優れ、特に、微生物繁殖用の担持体として好適に使用できる連続気泡性ポリオレフィン系樹脂架橋発泡体を提供することにある。
また、本発明の他の目的は、上記連続気泡性ポリオレフィン系樹脂架橋発泡体からなり、その表面に微生物が付着・繁殖し易い微生物繁殖用担持体を提供することにある。
【0007】
【課題を解決するための手段】
本発明の連続気泡性ポリオレフィン系樹脂架橋発泡体(以下、「連続気泡性架橋発泡体」と記す)は、面積314mm、厚さ10mmの部分を、5.56Nの空気圧を厚さ方向にかけた際に50cmの空気が透過する時間が10秒以下であり、かつ、断面における、長さ25mmの直線上にかかる平均気泡数が6〜50個であるとともに、断面での平均破膜面積割合が、20〜80%であることを特徴とする。
【0008】
本発明の連続気泡性架橋発泡体を構成するポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、エチレンを主成分とするエチレン−α−オレフィン共重合体、エチレンを主成分とするエチレン−酢酸ビニル共重合体、エチレンを主成分とするエチレン−エチルアクリレート共重合体、ポリプロピレン、プロピレンを主成分とするプロピレン−α−オレフィン共重合体、プロピレンを主成分とするエチレン−プロピレン−ブテン三元共重合体、ポリブテン等が挙げられ、これらは単独で使用しても2種以上併用してもよい。上記エチレン−α−オレフィン共重合体を構成するα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等が挙げられ、上記プロピレン−α−オレフィン共重合体を構成するα−オレフィンとしては、例えば、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等が挙げられる。
【0009】
上記ポリオレフィン系樹脂の比重は水よりも小さい場合が多く、該ポリオレフィン系樹脂から得られる連続気泡性架橋発泡体を微生物繁殖用担持体として使用した際、その内部に水が完全に浸透しても曝気条件によっては浮いてしまうことがあり、初期の水中浮沈流動性が低下するので、無機充填剤を添加するのが好ましい。
【0010】
上記無機充填剤としては、例えば、炭酸カルシウム、タルク、硫酸バリウム、水酸化アルミニウム、ゼオライト等が挙げられ、これらは単独で使用しても2種以上併用してもよい。無機充填剤の添加量は、少なくなると効果が得られず、多くなると水よりも比重が大きくなり過ぎ、水中浮沈流動性が低下し、また、発泡段階で発泡し難くなるので、上記ポリオレフィン系樹脂100重量部に対し、10〜80重量部が好ましく、より好ましくは20〜60重量部であり、無機充填剤添加後のポリオレフィン系樹脂の比重が水と同等又は水よりも若干大きくなるように調整するのが好ましい。
【0011】
本発明の連続気泡性架橋発泡体は、上記ポリオレフィン系樹脂と必要に応じて添加される上記無機充填剤からなり、その面積314mm、厚さ10mmの部分を、5.56Nの空気圧を厚さ方向にかけた際に50cmの空気が透過する時間(以下、「透気度」と記す)が、長くなると、連続気泡性架橋発泡体の通気性及び吸水性が低下し、微生物繁殖用担持体に使用した際、水中で内部の空気が抜け難く、また、内部に曝気の空気泡を保持し易く、いずれの場合も水中浮沈流動性が低下し、また、微生物繁殖用担持体内部で水が自由に移動でき難くなり、微生物繁殖用担持体内部の水が移動変換し難く、微生物繁殖効率が低下するので、10秒以下に限定され、好ましくは5秒以下である。
【0012】
上記透気度は、B型ガーレ式デンソメーター(東洋精機製作所製)を用いて測定した値である。具体的には、連続気泡性架橋発泡体の任意部分から厚さ10mmの試料を採取し、該試料を314mmの円孔を有する2つの締付板の間に、連続気泡性架橋発泡体の厚さ方向を締め付けるようにして挟み、B型ガーレ式デンソメーターにセットする。デンソメーターにセットした試料の一方は開放されており、他方は閉鎖された気密空間となっている。次に、試料に接触しないように、気密空間側から5.56Nの空気圧を試料厚さ方向にかけ、その際、50cmの空気が試料を通過するのに要した時間(透気度)を測定する。尚、連続気泡性架橋発泡体の厚さが10mmに満たない場合には積層して測定する。
【0013】
上記連続気泡性架橋発泡体の平均気泡径は、小さくなると、連続気泡性架橋発泡体の通気性及び吸水性が低下し、微生物繁殖用担持体として使用した際、水中で内部の空気が抜け難く、また、内部に曝気の空気泡を保持し易く、いずれの場合も水中浮沈流動性が低下し、さらに、微生物が付着し、繁殖した場合でも、目詰まりして微生物繁殖用担持体内部で水が自由に移動でき難くなり、酸素を含む水が連続気泡性架橋発泡体内部にまで到達せずに微生物が死滅してしまい易く、大きくなると、連続気泡性架橋発泡体を微生物繁殖用担持体として使用した際、体積あたりの連続気泡性架橋発泡体と水との接触面積が少なくなり、それにより微生物が付着する領域が減り、微生物繁殖効率が低下するので、連続気泡性架橋発泡体の断面における長さ25mmの直線上にかかる平均気泡数が6〜50個に限定され、好ましくは12〜30個であり、より好ましくは15〜25個である。
【0014】
上記連続気泡性架橋発泡体の断面における平均気泡数は、以下の方法により測定した値である。
まず、連続気泡性架橋発泡体を任意の部分で厚さ方向に切断し、さらに、前記切断面をxy面とした場合、yz面及びzx面が断面となる方向に切断し、その各断面と25mmの寸法目盛りとを、同一画面上に電子顕微鏡により写真撮影し、約10倍に拡大された写真を得る。得られた写真の任意部分に、写真内の25mmの寸法目盛りと同一長さの直線を引き、該直線にかかる気泡の個数を数え、各断面での気泡の個数を平均したものが連続気泡性架橋発泡体の断面における平均気泡数である。
尚、本発明でいう気泡とは、気泡膜の連通の有無は問わず、写真撮影断面にある気泡膜(写真撮影断面の奥にみえる気泡膜は考慮しない)で囲まれている部分を1つの気泡とする。
また、上記写真撮影の際、連続気泡性架橋発泡体の断面を、マジックインキなどの着色剤で着色した後に写真撮影を行うのが、気泡の判別がし易くなるので好ましい。
【0015】
上記連続気泡性架橋発泡体の平均破膜面積割合は、小さくなると、連続気泡性架橋発泡体の通気性及び吸水性が低下し、微生物繁殖用担持体として使用した際、水中で内部の空気が抜け難く、また、内部に曝気の空気泡を保持し易く、いずれの場合も水中浮沈流動性が低下し、大きくなると、全体の気泡膜が少なくなるので、連続気泡性架橋発泡体を微生物繁殖用担持体として使用した際、体積あたりの連続気泡性架橋発泡体と水との接触面積が少なくなり、それにより微生物が付着する領域が減り、微生物繁殖効率が低下するので、20〜80%に限定され、好ましくは30〜60%である。
【0016】
上記平均破膜面積割合は、以下の方法により測定した値である。
まず、連続気泡性架橋発泡体を任意の部分で厚さ方向に切断し、さらに、前記切断面をxy面とした場合、yz面及びzx面が断面となる方向に切断し、電子顕微鏡により約25倍に拡大して写真撮影する。得られた各断面の写真において、近接集合した気泡5個分の全面積に対する、該気泡5個のうちの気泡膜が破れて黒い空洞になっている部分の面積割合を算出し、各断面写真の面積割合を平均した値が平均破膜面積割合である。
具体的には、写真撮影断面にある近接集合した気泡5個分を透明なグラフ用紙に写し、さらに、該気泡5個において、気泡膜が破れ、写真撮影断面の奥にみえる黒い空洞になっている部分を同様の透明なグラフ用紙に写し取る。写し取ったグラフ用紙から、気泡5個分を切り取りその重量W(mg)を測定する。次に、該気泡5個のうち、気泡膜が破れて黒い空洞になっている部分をグラフ用紙から切り取り、その重量W(mg)を測定する。得られた測定値から、破膜面積割合を以下の式により算出する。
破膜面積割合(%)=(W/W)×100
各断面の写真について、各々任意部分5箇所について上記破膜面積割合を算出した後、全ての値を平均し、平均破膜面積割合(%)を算出する。
尚、上記写真撮影の際、連続気泡性架橋発泡体の断面に金を蒸着した後に写真撮影を行うのが、気泡膜及び気泡膜が破れている部分の像が鮮明になり、判別し易くなるので好ましい。
【0017】
上記連続気泡性架橋発泡体のゲル分率は、小さくなると、強度及び耐久性が低下し、大きくなると、透気度及び平均破膜面積割合が上記範囲になり難く、通気性及び吸水性が低下し、微生物繁殖用担持体として使用した際、水中で内部の空気が抜け難く、また、内部に曝気の空気泡を保持し易く、いずれの場合も水中浮沈流動性が低下するので、30〜70重量%が好ましい。
【0018】
上記ゲル分率は、以下の方法により算出した値である。
まず、連続気泡性架橋発泡体を約100mg採取して試料とし、該試料の乾燥重量W(mg)を測定する。次に、試料の気泡を潰し、120℃のキシレン50ml中に入れて24時間放置した後、200メッシュの金網を透過させ、金網上の残存物の乾燥重量W(mg)を測定し、以下の式によりゲル分率を算出する。
ゲル分率(重量%)=(W/W)×100
【0019】
上記連続気泡性架橋発泡体の見掛け密度は、小さくなると、へたり易くなり、大きくなると、連続気泡率が低くなり易く、また、気泡膜が厚くなるため、透気度及び平均破膜面積割合が上記範囲になり難く、通気性及び吸水性が低下し、微生物繁殖用担持体として使用した際、水中で内部の空気が抜け難く、また、内部に曝気の空気泡を保持し易く、いずれの場合も水中浮沈流動性が低下するので、0.01〜0.1g/cmが好ましく、より好ましくは0.02〜0.05g/cmである。
上記見掛け密度は、連続気泡性架橋発泡体の重量W(g)及び体積D(cm)を測定し、以下の式により算出した値である。
見掛け密度=W/D
【0020】
また、上記連続気泡性架橋発泡体は、その製造段階において、一般に連通していないスキン層を有するので、微生物繁殖用担持体などの用途に使用される場合は、スキン層は除去されているのが好ましい。スキン層を除去する方法としては、特には限定されず、例えば、表面をスライスして取り除く方法等の従来公知の任意の方法が採用されてよい。
【0021】
上記連続気泡性架橋発泡体の製造方法としては、例えば、必要に応じて上記無機充填剤が添加された上記ポリオレフィン系樹脂に、熱分解型発泡剤の他、必要に応じて架橋剤、発泡助剤等を添加し、熱分解型発泡剤が実質的に分解しない温度で溶融混練し、所定形状に成形した後、加熱して架橋発泡させ、得られた架橋発泡体に機械的変形を加えて気泡を連通させ、その後、さらに連通孔を拡大させる方法が挙げられる。
【0022】
上記熱分解型発泡剤としては、特には限定されず、従来公知の任意のものが使用されてよく、例えば、アゾジカルボンアミド、アゾビスイソブチロニトリル、p−トルエンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、4,4’−オキシビスベンゼンスルホニルヒドラジド等が挙げられ、これらは単独で使用しても2種以上併用してもよい。中でも、アゾジカルボンアミドが、発生ガス量、取り扱いの安全性等に優れているので好ましい。熱分解型発泡剤の添加量は、得られる連続気泡性架橋発泡体の所望の見掛け密度に応じて適宜調整されるが、一般には、上記ポリオレフィン系樹脂100重量部に対し、5〜30重量部が好ましい。
【0023】
上記架橋剤としては、特には限定されず、従来公知の任意のものが使用されてよく、例えば、ジクミルパーオキサイド、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキセン−3等の有機過酸化物が挙げられ、これらは単独で使用しても2種以上併用してもよい。架橋剤の添加量は、所望のゲル分率に応じて適宜調整されるが、一般には、上記ポリオレフィン系樹脂100重量部に対し、0.2〜1.5重量部が好ましい。
【0024】
また、上記架橋剤を添加せず、上記ポリオレフィン系樹脂にシラン化合物をグラフトし、ポリオレフィン系樹脂を予め架橋性のものにしておいてもよい。シラン化合物としては、特には限定されず、従来公知の任意のものが使用されてよく、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルジメトキシシラン、ビニルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン等が挙げられる。
【0025】
さらに、電離性放射線照射により架橋を施してもよい。電離性放射線としては、例えば、電子線、α線、β線、γ線等が挙げられ、その照射量は適宜調整してよい。
【0026】
上記発泡助剤としては、特には限定されず、従来公知の任意のものが使用されてよく、例えば、酸化亜鉛、尿素又はその誘導体、ステアリン酸マグネシウム、ステアリン酸亜鉛等が挙げられ、これらは単独で使用しても2種以上併用してもよい。発泡助剤は上記熱分解型発泡剤の分解温度、分解速度等を調整するものであり、その添加量は、製造条件や発泡剤量又は得られる連続気泡性架橋発泡体の気泡の大きさ等に応じて適宜調整される。上記ポリオレフィン系樹脂、架橋剤配合等が同一であり、また、発泡条件等が同一である場合には、発泡助剤で架橋反応に対する発泡の相対速度を変化させることにより、得られる連続気泡性架橋発泡体の気泡の大きさ等を調整するのが好ましい。
【0027】
また、上記ポリオレフィン系樹脂には、滑剤、顔料等の従来公知の任意の添加剤を、必要に応じて適宜添加してもよい。
【0028】
上記種々の添加剤が添加されたポリオレフィン系樹脂(以下、「樹脂組成物」と記す)を溶融混練し、所定形状に成形した後、加熱して架橋発泡させる方法としては、特には限定されず、従来公知の任意の方法が採用されてよく、例えば、樹脂組成物を、バンバリーミキサー、ロール等の従来公知の方法により溶融混練した後に、所定形状の凹型又はプレス型に流し込み、数分間〜数十分間保持することにより成形し、その後さらに加熱して、架橋及び発泡を略同時進行的に施す方法が挙げられる。尚、成形の際は、架橋剤の一部が分解する程度の温度に保持するのが好ましい。
【0029】
上記架橋発泡体に機械的変形を加えて気泡を連通させる方法としては、例えば、架橋発泡体よりもクリアランスの狭い1対のロール間を通過させる方法が挙げられる。ロール間のクリアランス、ロールの速比、架橋発泡体をロールに通す回数等は適宜調整してよい。
尚、上記機械的変形により架橋発泡体の気泡を連通させても、その連通孔は微細であることが多く、透気度及び平均破膜面積割合が上記範囲内にならないので、後述する方法により気泡の連通孔を拡大させる。
【0030】
上記気泡の連通孔を拡大させる方法としては、架橋発泡体を密閉容器に充填、密閉容器内を十分に脱気した後、密閉容器内に酸素ガス及び可燃ガスを注入して、酸素ガス及び可燃ガスに点火する方法が挙げられる。
【0031】
上記密閉容器としては、架橋発泡体を充填可能であり、内部を真空の状態にし得るものであれば特には限定されず、その形状、大きさ等は適宜決定してよい。尚、充填する架橋発泡体と密閉容器の内壁との間隙が大き過ぎると、可燃ガスの燃焼の際、間隙付近の架橋発泡体がへたり易くなるので、密閉容器は架橋発泡体と略同一容積、同一形状にするのが好ましい。また、架橋発泡体を密閉容器と同一容積、同一形状にするために、架橋発泡体を切断したり、積層したりしてもよい。
【0032】
上記密閉容器を脱気する方法としては、例えば、密閉容器に真空ポンプを取り付け、真空ポンプにより密閉容器内部の空気をひく方法が挙げられる。脱気が不十分であると、連通孔の拡大が不十分になるので、架橋発泡体の気泡内が真空になるまで十分に行う。
【0033】
上記密閉容器に上記酸素ガス及び可燃ガスを注入する方法としては、特には限定されず、例えば、酸素ガス及び可燃ガスを充填した高圧ボンベから、減圧弁で所望の混合比に見合う分圧に調整して、ガス混合ミキサーを通して密閉容器に注入する方法、酸素ガス及び可燃ガスを充填した高圧ボンベから、減圧弁で所望の混合比に見合う分圧に調整して、各々別の注入口から注入する方法等が挙げられる。
尚、ガス注入直後は、密閉容器内のガス分散状態が不均一なので、注入後に数分間放置しておくのが好ましい。
【0034】
上記可燃ガスとしては、酸素ガスの存在下で燃焼可能なものであれば特には限定されず、例えば、水素ガス、メタンガス、プロパンガス等が挙げられる。
【0035】
上記酸素ガス及び可燃ガスの混合比は、点火した際、燃焼可能な範囲であれば特には限定されないが、完全燃焼比前後であるのが好ましい。例えば、可燃ガスとして水素ガスを使用する場合では、酸素ガス:水素ガスが、体積比(圧力比)で1:2前後が好ましい。
【0036】
上記酸素ガス及び可燃ガスの圧力は、低くなると、点火した際、気泡の連通孔の拡大が不十分になり、得られる連続気泡性架橋発泡体の透気度及び平均破膜面積割合が上記範囲外になり易く、通気性及び吸水性が低下し、微生物繁殖用担持体として使用した際、水中で内部の空気が抜け難く、また、内部に曝気の空気泡を保持し易く、いずれの場合も水中浮沈流動性が低下し、高くなると、点火した際、架橋発泡体がへたり易くなるので、0.05〜0.3MPaが好ましく、より好ましくは0.08〜0.15MPaである。
【0037】
尚、上記酸素ガス及び可燃ガスの圧力が上記範囲内にあれば、その他の不活性ガスが混在していてもよい。不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス、炭酸ガス等が挙げられ、これらは単独で使用しても2種以上併用してもよい。
【0038】
上記酸素ガス及び可燃ガスを密閉容器に注入した後、点火する方法としては、例えば、予め密閉容器内にスパークスイッチを設置しておき、スパークさせる方法等が挙げられる。
【0039】
本発明の連続気泡性架橋発泡体は、微生物繁殖用担持体として好適に使用される。微生物繁殖用担持体に使用する際、その大きさは、小さくなると、処理水を排出する際に流出し易くなり、大きくなると、微生物繁殖用担持体内部で水が移動し難くなり、微生物繁殖効果が低下するので、1辺が0.5〜2cmの略立方体状又は略直方体状が好ましい。尚、水中での流動を必要としない脱臭用の微生物繁殖用担持体においては、この限りではない。
【0040】
【発明の実施の形態】
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0041】
(実施例1〜6、比較例1〜6)
表1に示した所定量の低密度ポリエチレン(密度0.921g/cm、メルトインデックス2g/10分)、エチレン−酢酸ビニル共重合体(酢酸ビニル含量9重量%、密度0.940g/cm)、硫酸バリウム、アゾジカルボンアミド、ジクミルパーオキサイド及びステアリン酸亜鉛を、バンバリーミキサーにより約125℃で溶融混練した後、縦160mm×横100mm×深さ25mmの凹部を有する凹型金型に充填して、約140℃で30分間保持し、所定形状に成形して成形体を得た。成形の際、ジクミルパーオキサイドの一部は分解したが、アゾジカルボンアミドは分解しなかった。その後、成形体を、約170℃に加熱された縦500mm×横500mm×深さ80mmの凹部を有する凹型金型に移し、密閉してから架橋発泡させ、該凹部と同形状の架橋発泡体を得た。
【0042】
得られた架橋発泡体を、冷却後にクリアランスが6mmの2本のロール間に数回通して圧縮し、気泡を連通させた後、その表面のスキン層を除去し、1辺が450mmの立方体状の密閉容器に入れて密閉充填した後、該密閉容器内を真空ポンプを用いて、架橋発泡体の気泡内が真空になるまで十分に脱気した。その後、酸素ガス及び水素ガスが体積比1:2で混合された混合ガスを、その圧力が表1に示した所定圧になるまで注入して3分間放置した。さらに、該充填容器内でスパークスイッチを用いてスパークさせて点火し、混合ガスを燃焼させた後、密閉容器を開放し、連続気泡性架橋発泡体を得た。
得られた連続気泡性架橋発泡体の透気度、断面における平均気泡数、平均破膜面積割合、見掛け密度は表1に示した通りであり、ゲル分率はいずれも50〜56%であった。
尚、比較例6については、発泡段階で発泡せず、架橋発泡体は得られなかった。
【0043】
実施例1〜6及び比較例1〜5で得られた連続気泡性架橋発泡体と、微生物繁殖用担持体として市販されている連続気泡性ポリウレタン系樹脂発泡体(比較例7)について、以下の評価を行い、その結果を表1に示した。
【0044】
(耐摩耗性)
連続気泡性架橋発泡体及び連続気泡性ポリウレタン系樹脂発泡体を切断し、一辺が約1cmの立方体状の試料を10個作成し、10個の試料の合計乾燥重量W(mg)を測定した。次に、縦20cm×横20cm×深さ30cmのコンクリートスラブ製の水槽を、水温約20℃の水で略満水にし、その中に試料10個を投入した。その後、攪拌機で300回転/分で攪拌し続け、60日経過後に試料を取り出し、その合計乾燥重量W(mg)を測定した。得られた測定値から、以下の式により重量減量率を算出した。
重量減量率(重量%)={(W−W)/W}×100
【0045】
(水中浮沈流動性)
連続気泡性架橋発泡体及び連続気泡性ポリウレタン系樹脂発泡体を切断し、一辺が約1cmの立方体状の試料を400個作成した。次に、縦20cm×横20cm×深さ30cmのコンクリートスラブ製の水槽を、水温約20℃のグルコース水溶液(グルコース濃度約1mg/cm)で略満水にし、その中に試料400個及び少量の微生物(活性汚泥)を投入した。その後、水槽底面より1500cm/分で曝気し続け、3日経過後に、試料の水中浮沈流動状況調査として水面を目視で観察し、以下の通り評価した。
◎;水面に浮いている試料は全くなかった(浮上率0%)
○;水面に浮いている試料が1〜40個であった(浮上率10%以下)
△;水面に浮いている試料が41〜100個であった(浮上率10超〜25%以下)
×;水面に浮いている試料が101個以上あった(浮上率25%超)
【0046】
(微生物付着性)
連続気泡性架橋発泡体及び連続気泡性ポリウレタン系樹脂発泡体を、各々一辺が約1cmの立方体状に切断して10個の試料を作成した後、該試料10個を網状袋に入れ、一般の曝気・好気型の生活排水処理槽に浸漬し、14日経過後に網状袋を取り出した。次に、網状袋から10個の試料を取り出し、取り出した10個の試料を蒸留水80cm中に入れ、ピンセットで試料を数回絞り、試料に付着した微生物を剥離した。さらに、別の蒸留水80cm中に入れ、前記と同様にして試料を絞り、試料に付着した微生物を剥離した。その後、さらに別の蒸留水80cm中に入れ、前記と同様にして試料を絞り、試料に付着した微生物を剥離した後、超音波振動を与え、微生物を試料から略完全に剥離した。微生物が剥離分散した蒸留水(80cm×3)を一つにまとめ(以下、「分散液」と記す)、該分散液の濃度を光線透過により測定し、予め検量しておいた濁度と微生物分散濃度との関係から、分散液の微生物濃度を求め、分散液中の微生物量(試料10個に付着していた微生物量)を算出し、さらに、以下の式により微生物付着割合を算出し、表1に示した。
微生物付着割合(mg/cm)=分散液中の微生物量(mg)/試料10個の体積(cm
【0047】
【表1】

Figure 0003609696
【0048】
【発明の効果】
本発明の連続気泡性ポリオレフィン系樹脂架橋発泡体は、ポリオレフィン系樹脂由来の優れた耐摩耗性を有しており、また、連続気泡率が高いだけでなく、通気性及び吸水性に優れ、水中に投入した際に内部の空気が抜け易いとともに、曝気などの空気泡を内部に長期間保持することがなく、水中浮沈流動性に優れており、さらに、目詰まりし難く、内部の水が移動変換し易く、常に酸素を含んだ水を内部に供給することが可能なので、微生物が付着、繁殖し易く、特に微生物繁殖用担持体として好適に使用することができる。
また、微生物繁殖用担持体以外にも、通気性及び吸水性が要求される用途、例えば、各種フィルター、マット類等にも好適に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an open cell polyolefin-based resin cross-linked foam that can be suitably used as a support for microbial propagation, and a microbial-propagation support composed of the open-cell polyolefin-based resin cross-linked foam.
[0002]
[Prior art]
Conventionally, an open-cell polyolefin-based resin cross-linked foam has been used in many fields as a buffer material or the like. As a method for producing an open-cell polyolefin-based resin cross-linked foam, for example, Japanese Patent Application Laid-Open No. Sho 56-121739 describes a method in which a polyolefin-based resin is cross-linked and foamed and then mechanically deformed to communicate bubbles. ing. However, the production method is such that fine communication holes are partially formed in the cell membrane and the cells communicate with each other, and the obtained open cell cross-linked foam has a high open cell rate. In applications where air permeability, water absorption, etc. are required, air permeability and water absorption are insufficient, which is inappropriate.
[0003]
On the other hand, the activated sludge method has been generally used in the treatment of sewage treatment tanks for domestic and industrial wastewater, combined septic tanks, garbage disposers, biological deodorizers, etc. In recent years, treatment methods that effectively use microorganisms have been studied in order to make equipment as small as possible and further improve its processing capacity. ing.
[0004]
In the treatment method using the microorganism, it is effective to use a support for propagating the microorganism. Examples of the carrier for microbial propagation include a granular gel made of polyethylene glycol, polyvinyl alcohol, polyurethane and the like, and a fiber body obtained by agglomerating and fusing fibers. However, the granular gel has a problem that the water contact area per unit volume and the microbial propagation area are small and is not efficient, and the fiber body is easy to defibrate when used for a long time in flowing and rotating water. Therefore, there is a problem that the inside is easily clogged when the microorganism is attached, and the effect of propagation of the inside microorganism is difficult to maintain.
As a method for solving the above problems, an open-cell porous body made of polyurethane-based resin, cellulose, etc. has been proposed, but its durability in water, abrasion resistance, etc. in the treatment tank is insufficient, and long-term There was a problem that it was unbearable to use.
[0005]
Examples of a method for solving the above problem include a method using an open-celled crosslinked foam made of a polyolefin resin having excellent wear resistance, and as described above, a continuous obtained by a general conventional manufacturing method. The cellular polyolefin resin cross-linked foam has a problem that air permeability, water absorption and the like are insufficient for use in a microorganism propagation carrier. Further, for example, Japanese Patent Laid-Open No. 5-96288 describes that a polyethylene open cell is used as a carrier for microbial propagation in a specific sewage septic tank, and Japanese Patent Laid-Open No. 10-193425 discloses a penetrating hole. Although a microorganism propagation carrier comprising an extruded foam having bubbles, semi-through bubbles and closed cells has been described, the air permeability, water absorption and the like are still often insufficient, and the microorganism propagation carrier is not sufficient. There is a problem that the water cannot easily penetrate or the water inside the carrier for microbial propagation is difficult to move and convert, and the microbial propagation effect is not efficient.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to provide an open-cell polyolefin-based resin cross-linked foam that is excellent in air permeability and water absorption, excellent in underwater buoyancy fluidity and wear resistance, and particularly suitable for use as a carrier for microbial propagation. There is to do.
Another object of the present invention is to provide a carrier for propagation of microorganisms comprising the above open-cell polyolefin-based resin cross-linked foam, which allows microorganisms to easily adhere to and propagate on the surface thereof.
[0007]
[Means for Solving the Problems]
The open-cell polyolefin-based resin cross-linked foam of the present invention (hereinafter referred to as “open-cell cross-linked cross-linked foam”) has an area of 314 mm. 2 When the air pressure of 5.56 N is applied in the thickness direction, the 10 mm thick part is 50 cm 3 The air permeation time is 10 seconds or less, and the average number of bubbles applied on a straight line having a length of 25 mm in the cross section is 6 to 50, and the average membrane breaking area ratio in the cross section is 20 to 20 mm. 80%.
[0008]
Examples of the polyolefin resin constituting the open cell crosslinked foam of the present invention include, for example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and ethylene-α-olefin mainly composed of ethylene. Copolymer, ethylene-vinyl acetate copolymer based on ethylene, ethylene-ethyl acrylate copolymer based on ethylene, polypropylene, propylene-α-olefin copolymer based on propylene, propylene And ethylene-propylene-butene terpolymer, polybutene, and the like. These may be used alone or in combination of two or more. Examples of the α-olefin constituting the ethylene-α-olefin copolymer include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like can be mentioned.
[0009]
The specific gravity of the polyolefin-based resin is often smaller than that of water. When the open-celled crosslinked foam obtained from the polyolefin-based resin is used as a support for microbial propagation, water may completely penetrate into the inside. Depending on the aeration conditions, it may float and the initial underwater floatation fluidity is lowered, so it is preferable to add an inorganic filler.
[0010]
Examples of the inorganic filler include calcium carbonate, talc, barium sulfate, aluminum hydroxide, and zeolite. These may be used alone or in combination of two or more. When the added amount of the inorganic filler is reduced, the effect cannot be obtained, and when the added amount is increased, the specific gravity is excessively larger than that of water, the fluidity in floating and sinking is lowered, and foaming is difficult in the foaming stage. 10 to 80 parts by weight is preferable with respect to 100 parts by weight, more preferably 20 to 60 parts by weight, and adjusted so that the specific gravity of the polyolefin resin after addition of the inorganic filler is equal to or slightly larger than water. It is preferable to do this.
[0011]
The open cell cross-linked foam of the present invention comprises the polyolefin resin and the inorganic filler added as necessary, and has an area of 314 mm. 2 When the air pressure of 5.56 N is applied in the thickness direction, the 10 mm thick part is 50 cm 3 When the air permeation time (hereinafter referred to as “air permeability”) becomes longer, the air permeability and water absorption of the open-celled crosslinked foam deteriorate, and when used for a microorganism propagation carrier, It is difficult for the air inside to escape, and it is easy to keep the aerated air bubbles inside, in which case the fluidity in floating and sinking is reduced, and it becomes difficult for water to move freely inside the microorganism propagation carrier, Since the water inside the carrier for microbial propagation is difficult to move and convert, and the microbial propagation efficiency is lowered, it is limited to 10 seconds or less, preferably 5 seconds or less.
[0012]
The air permeability is a value measured using a B-type Gurley type densometer (manufactured by Toyo Seiki Seisakusho). Specifically, a sample having a thickness of 10 mm was taken from an arbitrary portion of the open-celled crosslinked foam, and the sample was taken to be 314 mm. 2 Is sandwiched between two fastening plates having a circular hole so that the thickness direction of the open-celled crosslinked foam is fastened, and set in a B-type Gurley densometer. One of the samples set in the densometer is open and the other is a closed airtight space. Next, an air pressure of 5.56 N is applied in the sample thickness direction from the airtight space side so as not to contact the sample. 3 The time (air permeability) required for the air to pass through the sample is measured. When the thickness of the open cell crosslinked foam is less than 10 mm, it is measured by laminating.
[0013]
When the average cell diameter of the above-mentioned open-celled cross-linked foam becomes small, the air permeability and water absorption of the open-cell cross-linked cross-linked foam are lowered, and when used as a support for microbial propagation, the internal air is difficult to escape in water. In addition, it is easy to retain aerated air bubbles inside, and in both cases, the fluidity in floating and sinking in water is reduced, and even when microorganisms adhere and propagate, they clog and water inside the microorganism propagation carrier. However, it is difficult to move freely, and the water containing oxygen does not reach the inside of the open-celled crosslinked foam, and the microorganisms are likely to die, and when it becomes large, the open-celled crosslinked foam is used as a carrier for microbial propagation. When used, the area of contact between the open cell cross-linked foam and water per volume is reduced, thereby reducing the area to which microorganisms adhere and reducing the microbial propagation efficiency. Limited to the average cell number of 6 to 50 pieces according to the 25mm straight line, preferably a 12 to 30, more preferably from 15 to 25.
[0014]
The average number of cells in the cross section of the open cell crosslinked foam is a value measured by the following method.
First, the open-cell cross-linked crosslinked foam is cut in the thickness direction at an arbitrary portion, and further, when the cut surface is an xy plane, the yz plane and the zx plane are cut in the cross-sectional direction, A 25 mm size scale is photographed with an electron microscope on the same screen to obtain a photograph magnified about 10 times. An open cell is obtained by drawing a straight line having the same length as the 25-mm dimension scale in the photograph, counting the number of bubbles applied to the straight line, and averaging the number of bubbles in each section. It is the average number of cells in the cross-section of the crosslinked foam.
In the present invention, the term “bubble” refers to a portion surrounded by a bubble film in a photographic section (without considering a bubble film that can be seen in the back of the photographic section) regardless of whether the bubble film is connected or not. Let it be a bubble.
Further, at the time of taking a photograph, it is preferable to take a photograph after coloring the cross section of the open-celled crosslinked foamed material with a colorant such as magic ink because it is easy to distinguish the bubbles.
[0015]
When the average membrane breaking area ratio of the above-mentioned open-celled crosslinked foam is reduced, the air permeability and water absorption of the open-celled crosslinked foam are reduced, and when used as a support for microbial propagation, the internal air is submerged in water. It is difficult to escape, and it is easy to keep the aerated air bubbles inside. In both cases, the fluidity of floating and sinking in water is reduced. When used as a carrier, the contact area between the open cell crosslinked foam and water per volume is reduced, thereby reducing the area to which microorganisms adhere and reducing the microorganism propagation efficiency, so it is limited to 20 to 80%. Preferably, it is 30 to 60%.
[0016]
The average membrane tear area ratio is a value measured by the following method.
First, the open-cell cross-linked foam is cut in the thickness direction at an arbitrary portion, and further, when the cut surface is an xy plane, the yz plane and the zx plane are cut in the direction of the cross section, Magnify 25x and take a photo. In the photograph of each obtained cross-section, the area ratio of the portion where the bubble film of the five bubbles is broken and becomes a black cavity is calculated with respect to the total area of five closely-assembled bubbles. The average value of the area ratio is the average membrane tear area ratio.
Specifically, five bubbles gathered in close proximity in the photography section are copied onto a transparent graph paper, and the bubble film is broken in the five bubbles, resulting in a black cavity that can be seen in the back of the photography section. Copy the area on the same transparent graph paper. Cut out 5 bubbles from the copied graph paper and its weight W 1 (Mg) is measured. Next, of the five bubbles, a portion where the bubble film is broken to form a black cavity is cut out from the graph paper, and its weight W 2 (Mg) is measured. From the obtained measurement value, the membrane tear area ratio is calculated by the following formula.
Fracture area ratio (%) = (W 2 / W 1 ) × 100
For the photograph of each cross section, after calculating the above-mentioned tear film area ratio for five arbitrary portions, all values are averaged to calculate the average tear film area ratio (%).
In the above photography, when gold is deposited on the cross section of the open cell crosslinked foamed body, photography is performed, and the image of the bubble film and the part where the bubble film is broken becomes clear and easy to discriminate. Therefore, it is preferable.
[0017]
When the gel fraction of the open-celled crosslinked foam is small, the strength and durability are lowered. When the gel fraction is large, the air permeability and the average membrane-breaking area ratio are not easily in the above ranges, and the air permeability and water absorption are lowered. However, when used as a carrier for microbial propagation, it is difficult for air inside to escape in the water, and it is easy to hold aerated air bubbles inside, and in either case, the fluidity in floating and sinking in water is reduced. % By weight is preferred.
[0018]
The gel fraction is a value calculated by the following method.
First, about 100 mg of open-celled crosslinked foamed material was sampled and used as a sample. 3 (Mg) is measured. Next, the air bubbles in the sample were crushed, placed in 50 ml of xylene at 120 ° C. and allowed to stand for 24 hours, and then passed through a 200-mesh wire mesh, and the dry weight W of the residue on the wire mesh. 4 (Mg) is measured, and the gel fraction is calculated by the following formula.
Gel fraction (% by weight) = (W 4 / W 3 ) × 100
[0019]
When the apparent density of the open cell crosslinked foam is small, it becomes easy to sag, and when it is large, the open cell rate is likely to be low, and the bubble film is thick. In the above range, air permeability and water absorption are reduced, and when used as a carrier for microbial propagation, it is difficult for air inside to escape in water, and it is easy to keep aerated air bubbles inside. In addition, since the submergence fluidity decreases, 0.01 to 0.1 g / cm 3 Is preferable, and more preferably 0.02 to 0.05 g / cm. 3 It is.
The apparent density is the weight W of the open cell cross-linked foam. 5 (G) and volume D (cm 3 ) And calculated by the following formula.
Apparent density = W 5 / D
[0020]
Moreover, since the open-celled crosslinked foam has a skin layer that is not generally communicated in the production stage, the skin layer is removed when used for applications such as a support for propagation of microorganisms. Is preferred. The method for removing the skin layer is not particularly limited, and for example, any conventionally known method such as a method for slicing and removing the surface may be employed.
[0021]
Examples of the method for producing the open cell crosslinked foamed material include, for example, the polyolefin resin to which the inorganic filler is added, if necessary, a pyrolytic foaming agent, a crosslinking agent, a foaming aid, if necessary. Addition agent, etc., melt knead at a temperature at which the pyrolyzable foaming agent is not substantially decomposed, and after molding into a predetermined shape, it is heated and crosslinked to foam, and the resulting crosslinked foam is subjected to mechanical deformation. There is a method in which bubbles are communicated and then the communication hole is further expanded.
[0022]
The pyrolytic foaming agent is not particularly limited, and any conventionally known one may be used. For example, azodicarbonamide, azobisisobutyronitrile, p-toluenesulfonylhydrazide, dinitrosopentamethylene Examples include tetramine and 4,4′-oxybisbenzenesulfonyl hydrazide. These may be used alone or in combination of two or more. Among these, azodicarbonamide is preferable because it is excellent in the amount of generated gas, safety in handling, and the like. The amount of the pyrolytic foaming agent added is appropriately adjusted according to the desired apparent density of the obtained open cell crosslinked foamed material, but generally 5 to 30 parts by weight with respect to 100 parts by weight of the polyolefin-based resin. Is preferred.
[0023]
The crosslinking agent is not particularly limited, and any conventionally known crosslinking agent may be used. For example, dicumyl peroxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethyl Organic peroxides such as cyclohexane, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexene-3 can be mentioned, and these can be used alone. Two or more species may be used in combination. Although the addition amount of a crosslinking agent is suitably adjusted according to a desired gel fraction, generally 0.2-1.5 weight part is preferable with respect to 100 weight part of said polyolefin resin.
[0024]
Alternatively, the silane compound may be grafted to the polyolefin resin without adding the crosslinking agent, and the polyolefin resin may be previously crosslinked. The silane compound is not particularly limited, and any conventionally known silane compound may be used. For example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyldimethoxysilane, vinyldiethoxysilane, 3-methacryloxypropyltri An ethoxysilane etc. are mentioned.
[0025]
Further, crosslinking may be performed by ionizing radiation irradiation. Examples of the ionizing radiation include electron beams, α rays, β rays, γ rays and the like, and the irradiation amount may be appropriately adjusted.
[0026]
The foaming aid is not particularly limited, and any conventionally known one may be used. Examples thereof include zinc oxide, urea or a derivative thereof, magnesium stearate, zinc stearate, and the like. Or two or more of them may be used in combination. The foaming assistant adjusts the decomposition temperature, decomposition rate, etc. of the above pyrolyzable foaming agent, and the amount added is the production conditions, the amount of foaming agent, the size of the bubbles of the obtained open-cell cross-linked foam, etc. It adjusts suitably according to. When the polyolefin resin and the crosslinking agent composition are the same, and the foaming conditions are the same, the open cell crosslinking obtained by changing the relative speed of foaming with respect to the crosslinking reaction with the foaming aid. It is preferable to adjust the bubble size of the foam.
[0027]
Moreover, you may add suitably conventionally well-known arbitrary additives, such as a lubricant and a pigment, to the said polyolefin resin as needed.
[0028]
The method of melt-kneading the polyolefin resin to which the above-mentioned various additives are added (hereinafter referred to as “resin composition”), forming the resin into a predetermined shape, and then heating to cross-link and foam is not particularly limited. Any conventionally known method may be employed.For example, after the resin composition is melt-kneaded by a conventionally known method such as a Banbury mixer or roll, it is poured into a concave or press die having a predetermined shape, for several minutes to several Examples of the method include forming by holding for a sufficient time and then further heating to perform crosslinking and foaming almost simultaneously. In the molding, it is preferable to keep the temperature at such a level that a part of the crosslinking agent decomposes.
[0029]
Examples of the method of causing the bubbles to communicate by applying mechanical deformation to the crosslinked foam include a method of passing between a pair of rolls having a clearance smaller than that of the crosslinked foam. You may adjust suitably the clearance between rolls, the speed ratio of a roll, the frequency | count of passing a crosslinked foam through a roll, etc. suitably.
Even if the bubbles of the crosslinked foam are communicated by the mechanical deformation, the communicating holes are often fine, and the air permeability and the average membrane breakage area ratio do not fall within the above ranges. Enlarge the bubble communication hole.
[0030]
As a method of expanding the communication hole for the bubbles, the cross-linked foam is filled in a sealed container, and after the inside of the sealed container is sufficiently degassed, oxygen gas and combustible gas are injected into the sealed container, and oxygen gas and combustible gas are injected The method of igniting gas is mentioned.
[0031]
The closed container is not particularly limited as long as it can be filled with a crosslinked foam and can be evacuated, and the shape, size, and the like may be appropriately determined. In addition, if the gap between the cross-linked foam to be filled and the inner wall of the closed container is too large, the cross-linked foam in the vicinity of the gap tends to sag when the combustible gas burns. The same shape is preferable. Moreover, in order to make a crosslinked foam the same volume and the same shape as an airtight container, you may cut | disconnect or laminate a crosslinked foam.
[0032]
Examples of the method for degassing the sealed container include a method of attaching a vacuum pump to the sealed container and drawing air inside the sealed container with the vacuum pump. If the deaeration is insufficient, expansion of the communication hole is insufficient, and therefore, the process is sufficiently performed until the inside of the bubbles of the crosslinked foam is evacuated.
[0033]
The method for injecting the oxygen gas and the combustible gas into the sealed container is not particularly limited. For example, the pressure is adjusted from the high-pressure cylinder filled with the oxygen gas and the combustible gas to the desired mixing ratio with the pressure reducing valve. Then, a method of injecting into a closed container through a gas mixing mixer, from a high-pressure cylinder filled with oxygen gas and combustible gas, adjusting a partial pressure corresponding to a desired mixing ratio with a pressure reducing valve, and injecting from each different inlet Methods and the like.
Since the gas dispersion state in the sealed container is not uniform immediately after gas injection, it is preferable to leave it for several minutes after injection.
[0034]
The combustible gas is not particularly limited as long as it is combustible in the presence of oxygen gas, and examples thereof include hydrogen gas, methane gas, and propane gas.
[0035]
The mixing ratio of the oxygen gas and the combustible gas is not particularly limited as long as it can be combusted when ignited, but is preferably around the complete combustion ratio. For example, when hydrogen gas is used as the combustible gas, oxygen gas: hydrogen gas is preferably about 1: 2 in volume ratio (pressure ratio).
[0036]
When the pressures of the oxygen gas and the combustible gas are lowered, when the ignition is performed, the expansion of the bubble communicating holes becomes insufficient, and the air permeability and the average membrane breakage area ratio of the obtained open-celled crosslinked foam are within the above range When it is used as a carrier for microbial propagation, it is difficult for air inside to escape in water, and it is easy to keep aerated air bubbles inside. When the underwater floating / floating fluidity decreases and increases, the cross-linked foam tends to sag when ignited, so 0.05 to 0.3 MPa is preferable, and 0.08 to 0.15 MPa is more preferable.
[0037]
In addition, if the pressure of the said oxygen gas and combustible gas exists in the said range, the other inert gas may be mixed. Examples of the inert gas include nitrogen gas, helium gas, argon gas, carbon dioxide gas, etc., and these may be used alone or in combination of two or more.
[0038]
Examples of the method of igniting after injecting the oxygen gas and the combustible gas into the sealed container include a method in which a spark switch is previously installed in the sealed container and sparked.
[0039]
The open cell cross-linked foam of the present invention is suitably used as a support for microbial propagation. When used in a carrier for microbial propagation, if the size is reduced, it will be easy to flow out when the treated water is discharged, and if it is larger, it will be difficult for water to move inside the carrier for microbial growth, and the microbial propagation effect Therefore, a substantially cubic shape or a substantially rectangular parallelepiped shape having one side of 0.5 to 2 cm is preferable. However, this is not the case for a deodorizing microorganism-growing carrier that does not require flow in water.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0041]
(Examples 1-6, Comparative Examples 1-6)
A predetermined amount of low density polyethylene (density 0.921 g / cm shown in Table 1) 3 , Melt index 2 g / 10 min), ethylene-vinyl acetate copolymer (vinyl acetate content 9% by weight, density 0.940 g / cm 3 ), Barium sulfate, azodicarbonamide, dicumyl peroxide and zinc stearate were melt-kneaded at about 125 ° C. by a Banbury mixer, and then filled into a concave mold having a concave portion of 160 mm long × 100 mm wide × 25 mm deep. Then, it was held at about 140 ° C. for 30 minutes and molded into a predetermined shape to obtain a molded body. During molding, part of dicumyl peroxide was decomposed, but azodicarbonamide was not decomposed. Thereafter, the molded body was transferred to a concave mold having a recess having a length of 500 mm × width of 500 mm × depth of 80 mm heated to about 170 ° C., hermetically sealed, and then crosslinked and foamed. Obtained.
[0042]
The obtained crosslinked foam was compressed by passing several times between two rolls with a clearance of 6 mm after cooling to allow bubbles to communicate, and then the skin layer on the surface was removed to form a cube with one side of 450 mm. Then, the inside of the sealed container was sufficiently deaerated using a vacuum pump until the inside of the bubbles of the crosslinked foamed product became a vacuum. Thereafter, a mixed gas in which oxygen gas and hydrogen gas were mixed at a volume ratio of 1: 2 was injected until the pressure reached a predetermined pressure shown in Table 1, and left for 3 minutes. Furthermore, after sparking using a spark switch in the filled container and igniting, the mixed gas was burned, and then the sealed container was opened to obtain an open-celled crosslinked foam.
The obtained open cell cross-linked foam had air permeability, average number of bubbles in the cross section, average ratio of membrane breakage and apparent density as shown in Table 1, and the gel fraction was 50 to 56%. It was.
In Comparative Example 6, foaming was not performed at the foaming stage, and a crosslinked foam was not obtained.
[0043]
About the open cell crosslinked foam obtained in Examples 1 to 6 and Comparative Examples 1 to 5 and the open cell polyurethane-based resin foam (Comparative Example 7) commercially available as a support for microbial propagation, the following Evaluation was performed and the results are shown in Table 1.
[0044]
(Abrasion resistance)
The open cell crosslinked foam and the open cell polyurethane resin foam are cut to prepare 10 cubic samples each having a side of about 1 cm. The total dry weight W of the 10 samples 6 (Mg) was measured. Next, a concrete slab water tank having a length of 20 cm, a width of 20 cm, and a depth of 30 cm was substantially filled with water having a water temperature of about 20 ° C., and 10 samples were placed therein. Thereafter, stirring was continued at 300 rpm with a stirrer, and a sample was taken out after 60 days, and its total dry weight W 7 (Mg) was measured. From the obtained measured value, the weight loss rate was calculated by the following formula.
Weight loss rate (% by weight) = {(W 6 -W 7 ) / W 6 } × 100
[0045]
(Underwater fluidity)
The open cell crosslinked foam and the open cell polyurethane resin foam were cut to prepare 400 cubic samples having a side of about 1 cm. Next, a concrete slab water tank having a length of 20 cm, a width of 20 cm, and a depth of 30 cm was added to a glucose aqueous solution (glucose concentration of about 1 mg / cm2) having a water temperature of about 20 ° C. 3 ), And the sample was filled with 400 samples and a small amount of microorganisms (activated sludge). Then 1500cm from the bottom of the aquarium 3 Aeration was continued at / min, and after 3 days, the surface of the water was visually observed as an investigation of the state of flow of the sample in water, and evaluated as follows.
◎; there was no sample floating on the water surface (floating rate 0%)
○: 1 to 40 samples floating on the water surface (floating rate of 10% or less)
Δ: 41 to 100 samples floating on the water surface (floating rate of more than 10 to 25% or less)
X: There were 101 or more samples floating on the water surface (floating rate over 25%)
[0046]
(Microbe adhesion)
After the open cell crosslinked foam and the open cell polyurethane resin foam were cut into cubes each having a side of about 1 cm to prepare 10 samples, the 10 samples were put in a mesh bag, It was immersed in an aerated / aerobic domestic wastewater treatment tank, and the mesh bag was taken out after 14 days. Next, 10 samples were taken out from the mesh bag, and the 10 samples taken out were 80 cm in distilled water. 3 The sample was squeezed several times with tweezers to remove microorganisms attached to the sample. Furthermore, another 80cm of distilled water 3 The sample was squeezed in the same manner as described above, and the microorganisms adhering to the sample were peeled off. Then, another distilled water 80cm 3 Then, the sample was squeezed in the same manner as described above, and the microorganisms adhering to the sample were peeled off. Then, ultrasonic vibration was applied to remove the microorganisms from the sample almost completely. Distilled water from which microorganisms are peeled and dispersed (80 cm 3 X3) are grouped together (hereinafter referred to as “dispersion liquid”), the concentration of the dispersion liquid is measured by light transmission, and the dispersion liquid is determined based on the relationship between the turbidity and the microorganism dispersion concentration which have been measured in advance The amount of microorganisms in the dispersion was calculated (the amount of microorganisms adhering to 10 samples), and the proportion of microorganisms was calculated according to the following formula.
Microbe adhesion rate (mg / cm 3 ) = Amount of microorganisms in the dispersion (mg) / volume of 10 samples (cm 3 )
[0047]
[Table 1]
Figure 0003609696
[0048]
【The invention's effect】
The open-cell polyolefin-based resin cross-linked foam of the present invention has excellent abrasion resistance derived from a polyolefin-based resin, and has not only high open cell ratio but also excellent air permeability and water absorption, The air inside is easy to escape when it is put into the tank, and air bubbles such as aeration are not retained in the inside for a long time. Since it is easy to convert and water containing oxygen can always be supplied to the inside, it is easy for microorganisms to adhere and propagate, and it can be suitably used particularly as a support for microbial propagation.
In addition to the microorganism propagation carrier, it can also be suitably used for applications requiring air permeability and water absorption, such as various filters and mats.

Claims (4)

面積314mm、厚さ10mmの部分を、5.56Nの空気圧を厚さ方向にかけた際に50cmの空気が透過する時間が10秒以下であり、かつ、断面における、長さ25mmの直線上にかかる平均気泡数が6〜50個であるとともに、断面での平均破膜面積割合が20〜80%であることを特徴とする、連続気泡性ポリオレフィン系樹脂架橋発泡体。When an air pressure of 5.56 N is applied in the thickness direction of a portion having an area of 314 mm 2 and a thickness of 10 mm, the time for which 50 cm 3 of air passes is 10 seconds or less, and a straight line with a length of 25 mm in the cross section. An open-cell polyolefin-based resin cross-linked foam having an average cell count of 6 to 50 and an average film-breaking area ratio in a cross section of 20 to 80%. 連続気泡性ポリオレフィン系樹脂架橋発泡体が、ポリオレフィン系樹脂100重量部及び無機充填剤10〜80重量部からなることを特徴とする、請求項1に記載の連続気泡性ポリオレフィン系樹脂架橋発泡体。The open-cell polyolefin-based resin cross-linked foam according to claim 1, wherein the open-cell polyolefin-based resin cross-linked foam comprises 100 parts by weight of a polyolefin-based resin and 10 to 80 parts by weight of an inorganic filler. 連続気泡性ポリオレフィン系樹脂架橋発泡体の断面における、長さ25mmの直線上にかかる平均気泡数が15〜25個であり、かつ、断面での平均破膜面積割合が30〜60%であることを特徴とする、請求項1又は2に記載の連続気泡性ポリオレフィン系樹脂架橋発泡体。In the cross-section of the open-cell polyolefin-based resin cross-linked foam, the average number of bubbles applied on a straight line having a length of 25 mm is 15 to 25, and the average ratio of the membrane breaking area in the cross-section is 30 to 60%. The open-cell polyolefin-based resin cross-linked foam according to claim 1 or 2, wherein 請求項1〜3のいずれか1項に記載の連続気泡性ポリオレフィン系樹脂架橋発泡体からなることを特徴とする、微生物繁殖用担持体。A carrier for propagating microorganisms, comprising the open-cell polyolefin-based resin cross-linked foam according to any one of claims 1 to 3.
JP2000206933A 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation Expired - Fee Related JP3609696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206933A JP3609696B2 (en) 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206933A JP3609696B2 (en) 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation

Publications (2)

Publication Number Publication Date
JP2002020532A JP2002020532A (en) 2002-01-23
JP3609696B2 true JP3609696B2 (en) 2005-01-12

Family

ID=18703774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206933A Expired - Fee Related JP3609696B2 (en) 2000-07-07 2000-07-07 Open cell polyolefin resin cross-linked foam and carrier for microbial propagation

Country Status (1)

Country Link
JP (1) JP3609696B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239995A (en) * 2003-03-25 2005-09-08 Sekisui Chem Co Ltd Thermoplastic resin foam sheet and method for producing thermoplastic resin foam sheet
JP5005173B2 (en) * 2005-02-08 2012-08-22 ダイセルノバフォーム株式会社 Resin composition for foam and foam using the same
JP4722518B2 (en) * 2005-03-22 2011-07-13 株式会社イノアックコーポレーション Microbial carrier for water treatment and production method thereof
JP5410221B2 (en) * 2009-09-29 2014-02-05 積水化成品工業株式会社 Polypropylene resin foam

Also Published As

Publication number Publication date
JP2002020532A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
US20170349798A1 (en) Foam compositions for selective recovery of oil spills and other applications
KR910007992A (en) Process of feeding the silane crosslinker into the extruder in solid form
JPWO2006043570A1 (en) Method for producing polyolefin resin cross-linked foam sheet and polyolefin resin cross-linked foam sheet
JP3609696B2 (en) Open cell polyolefin resin cross-linked foam and carrier for microbial propagation
JP2001089574A (en) Polyvinyl alcohol-based water-containing gel, its production and drainage treating device
JP4722518B2 (en) Microbial carrier for water treatment and production method thereof
JP4283453B2 (en) Microorganism propagation carrier
WO2020116577A1 (en) Porous sound absorbing material, method for producing same and sound absorption method
JP5005173B2 (en) Resin composition for foam and foam using the same
JP2004358328A (en) Microorganism carrier
TW200842155A (en) Cellular products and process for production thereof
JP2005239995A (en) Thermoplastic resin foam sheet and method for producing thermoplastic resin foam sheet
JP2003055562A (en) Extruded molding and method for producing the same
JP2001096289A (en) Carrier for microorganism immobilization and process and equipment for purifying sewage
JP2005021831A (en) Carrier for microorganism proliferation, and its using method
JP2004105099A (en) Microorganism carrier
JP2005171064A (en) Open-cell foam and method for producing the same
JP2004066054A (en) Oil adsorbent filter
JP2004121940A (en) Phosphorus adsorbing filter
JP2002223751A (en) Microorganism-immobilized carrier
JP2007283222A (en) Biological treatment carrier
JP2003117980A (en) Method for producing polyolefin resin open-cell foam
JP4773737B2 (en) Polar liquid supplier for fuel cell, method for producing the same, and fuel cell
JP2002079288A (en) Open-cell cellular microorganism carrier
JP3629408B2 (en) Hydrophilic polyethylene resin open cell body and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R151 Written notification of patent or utility model registration

Ref document number: 3609696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees