JP2006258012A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2006258012A
JP2006258012A JP2005078294A JP2005078294A JP2006258012A JP 2006258012 A JP2006258012 A JP 2006258012A JP 2005078294 A JP2005078294 A JP 2005078294A JP 2005078294 A JP2005078294 A JP 2005078294A JP 2006258012 A JP2006258012 A JP 2006258012A
Authority
JP
Japan
Prior art keywords
fuel
cylinder
piston
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005078294A
Other languages
English (en)
Inventor
Haruhiko Saito
晴彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005078294A priority Critical patent/JP2006258012A/ja
Priority to PCT/JP2006/300796 priority patent/WO2006100821A1/en
Priority to US11/331,066 priority patent/US20060207547A1/en
Publication of JP2006258012A publication Critical patent/JP2006258012A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail
    • F02M63/029Arrangement of common rails having more than one common rail per cylinder bank, e.g. storing different fuels or fuels at different pressure levels per cylinder bank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/16Indirect injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

【課題】 筒内に燃料を噴射する筒内噴射用インジェクタを備えたエンジンであって、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現する。
【解決手段】 筒内噴射用インジェクタ110からは、上面視で点火プラグを挟む八の字形状で側面視で扇形状の噴霧が噴射される。ピストンの頂面には、この噴霧が当接すると、上面視で扇形に広がった噴霧を点火プラグの方向に向ける底面と、平面視で八の字形に広がった噴霧を点火プラグの方向に向ける最外周の側面とを有するキャビティ123Cが設けられる。上面視において、このキャビティ123Cの位置は、ピストン下部に設けられるピストンピンボス部123Bの位置と、重ならないように配置されている。
【選択図】 図7

Description

本発明は、車両の内燃機関に関し、特に、少なくとも筒内に向けて燃料を噴射する第1の燃料噴射手段(筒内噴射用インジェクタ)を有し、さらに、吸気通路または吸気ポート内に向けて燃料を噴射する第2の燃料噴射手段(吸気通路噴射用インジェクタ)を備えた内燃機関に関する。
機関吸気通路内に燃料を噴射するための吸気通路噴射用インジェクタと、機関燃焼室内に燃料を噴射するための筒内噴射用インジェクタとを具備し、機関負荷が予め定められた設定負荷よりも低いときには吸気通路噴射用インジェクタからの燃料噴射を停止するとともに機関負荷が設定負荷よりも高いときには吸気通路噴射用インジェクタから燃料を噴射するようにした内燃機関が公知である。
また、このような内燃機関の筒内噴射用インジェクタに関連する技術として、筒内に噴射された燃料の微粒化により燃焼効率の向上、排ガス浄化を図る筒内噴射式エンジンがある。たとえば、特開2003−254199号公報(特許文献1)は、内燃機関の低負荷時など、シリンダ孔内における混合気の全体の平均空燃比が大きくて、混合気が平均して希薄な場合でも、圧縮比を高く設定できるようにして、燃費をより確実に向上させるようにする筒内燃料噴射式内燃機関を開示する。この筒内燃料噴射式内燃機関は、シリンダ孔の軸心を鉛直線に一致させた場合のシリンダの側面視で、シリンダヘッドの一側部に吸気通路を形成する一方、他側部に排気通路を形成し、シリンダヘッドの一側部の端部側からシリンダ孔内に向い斜め下方に向って燃料を噴射可能とする燃料噴射弁を設け、シリンダ孔のほぼ軸心上でシリンダ孔内に放電部が臨む点火プラグを設けた筒内燃料噴射式内燃機関において、燃料噴射弁により噴射される燃料が、シリンダの平面視で、放電部を挟む八の字形状となるようにし、吸気行程で燃料噴射弁に燃料の噴射をさせる。
この筒内燃料噴射式内燃機関によると、燃料噴射弁から噴射される燃料は放電部を挟む八の字形状であり、かつ、内燃機関の吸気行程ではピストンは上死点から下降するのであってその方向と、燃料噴射弁による燃料の噴射の方向とはいずれも下方であって同じ方向である。このため、燃料噴射弁から噴射された燃料は放電部の各外側方を進行し、また、この際、ピストンの上面と勢いよく衝突するということが防止されて、噴射された方向に向って円滑に進行する。そして、噴射された左右各燃料のそれぞれ先端部がシリンダ孔の内周面やピストンの上面に達すると、これら各面に案内されて各燃料のそれぞれ一部分同士がシリンダ孔の周方向で互いに接近させられ、その一方、各燃料のそれぞれ他部分はシリンダ孔の周方向で互いに離反させられる。すると、吸気行程とこれに続く圧縮行程とで、シリンダ孔内に噴射された燃料の多くがこのシリンダ孔の内周面近傍域に集められ、かつ、その周方向ほぼ均一となるよう集められ、つまり、このシリンダ孔内では、シリンダの平面視で、シリンダ孔の軸心をほぼ中心とするドーナツ形状の濃い混合気層と、この濃い混合気層で囲まれて放電部の近傍に位置する薄い混合気層とが成形されることとなる。
また、ピストン頂面を平面としないで、キャビティとよばれる浅い窪みを設ける場合がある。特開平6−257506号公報(特許文献2)は、燃焼室内において強いスワールを発生させることにより、吸気ポートにタンジェンシャルポートの採用を可能とし、高い流量係数と強いスワールとを同時に成立させることを目的とする、内燃機関のピストンのスワール生成装置を開示する。この内燃機関のピストンのスワール生成装置は、内燃機関のピストンを上下に2分割し、2分割されたピストンの上方部分と下方部分とは、ピストンの軸線に直角な平面と平行な摺動面により相互に円周方向に摺動自在に係合し、ピストン上方部分の下面に円周方向に歯車を配設し、歯車と噛合する歯車をコネクティングロッド小端部の上側外周面に刻設し、ピストンの上下運動に伴い、コネクティングロッド小端部の歯車の運動が歯車を介してピストン上方部分に伝達され、ピストン上方部分に円周方向の往復運動を起こさせるように構成し、かつ、ピストン上方部分の頂部に凹凸または凹または凸の形状を備える。
この内燃機関のピストンのスワール生成装置によると、ピストンの上下運動に伴い、コネクティングロッド小端部のコネクティングロッドギヤの運動がピストンギヤを介してピストン上方部分に伝達され、ピストン上方部分が円周方向の往復運動を行なう。このピストン上方部分の往復運動に伴い、ピストン上方部分の頂部に設けられた凹凸の形状により、燃焼室内において混合気または空気に強いスワールを起こすことができる。
特開2003−254199号公報 特開平6−257506号公報
特許文献1には、噴霧形状および噴霧方向に特徴のある燃料噴射弁を用いて筒内に燃料を噴射する内燃機関が開示されているが、ピストンの頂面(上面)はバルブリセスは設けられているが、燃料噴霧がシリン頂面とは勢いよく衝突するということを防止して、シリンダの平面視で、シリンダ孔の軸心をほぼ中心とするドーナツ形状の濃い混合気層と、この濃い混合気層で囲まれて放電部の近傍に位置する薄い混合気層とが成形している。
しかしながら、特許文献1のような噴霧形状および噴霧方向に特徴のある燃料噴射弁を用いて、失火(ミスファイア)防止や燃焼改善による燃費向上のために、筒内に燃料を点火プラグ周りに集めて、点火プラグ周りの混合気を濃くしたい場合がある。
このような場合に、ピストン頂面に燃料噴霧を誘導するようなキャビティを設ける。特許文献2に開示されたキャビティは、主としてスワール流を形成するためのものであって、特許文献1に開示された燃料噴射弁と特許文献2に開示されたキャビティを有するピストンとを組合わせても、点火プラグ周りに濃い混合気を形成できるものではない。
また、ピストンとコネクティングロッド(コネクティングロッドのスモールエンド)とは、ピストンピンで連結される。ピストンには、このピストンピンを収めるためのピストン・ピン・ボス部が設けられる。ピストンピンやピストン・ピン・ボス部には、強大なガス力とピストンの慣性力とが直接加わる。ピストン・ピン・ボス部には、大きな応力が発生するので、ピストン・ピン・ボス部の位置や形状を工夫して応力集中によるピストンの破損の可能性を回避する必要がある。
本発明は、上述の課題を解決するためになされたものであって、その目的は、筒内に燃料を噴射する燃料噴射手段を備えた内燃機関であって、局所的に濃い混合気を形成するとともにピストンの応力緩和を実現できる、内燃機関を提供することである。
第1の発明に係る内燃機関は、筒内に燃料を噴射するための燃料噴射手段を備えた内燃機関である。この内燃機関は、シリンダ孔の軸心を鉛直線に一致させた場合のシリンダの側面視で、シリンダヘッドの一側部に形成された吸気通路と、吸気通路の他側部に形成された排気通路と、シリンダ孔を上下動するピストンとを含む。燃料噴射手段は、シリンダヘッドの一側部の端部側からシリンダ孔内に向い斜め下方に向って燃料を噴射可能とする。ピストンの頂面には、燃料噴射手段から噴射された燃料により形成された噴霧がピストン頂面と接触する位置が、最外周部となるようなキャビティが設けられる。シリンダの平面視で、キャビティの位置と、ピストンピンボスとの位置とがずれている。
第1の発明によると、たとえば、燃料噴射手段の一例である筒内噴射用インジェクタからの燃料の噴射形状が、シリンダの平面視で点火プラグを含むような八の字形に広がる形状であって、シリンダの側面視で扇形状とした。このようにすることにより、たとえば渦流を発生させるスワールコントロールバルブをなくして高流量化を図っても、筒内噴射用インジェクタから噴射された燃料と吸入空気との混合気の均質性を燃焼変動を発生させない程度にまで高めることができる。さらに、ピストンの頂面には、筒内噴射用インジェクタから噴射された八の字形状における噴霧がピストン頂面と接触する位置が最外周部となるようなキャビティを設けた。このキャビティに当たった噴霧は、最外周部から内側(すなわち、シリンダ孔のほぼ軸心上に位置する放電部)に向かう。この結果、点火プラグの放電部近傍に筒内噴射用インジェクタから噴射された燃料により形成された噴霧を集めることができる。このため、点火プラグ近傍がリッチになり、失火(ミスファイア)防止や燃焼改善による燃費向上させることができる。しかも、このキャビティは、ピストン頂面に窪みを形成するが、このキャビティの位置と、ピストンの下部に設けられるピストン・ピン・ボスとの位置とがずれているので(完全にずれている場合も、一部がずれている場合も含む)、ずれていない場合に比べて十分な強度を実現することができ、応力集中によるピストンの破損の可能性を回避することができる。なお、このような応力集中によるピストンの破損の可能性を回避することができるのであれば、それらの一部どうしが重なり合い一部がずれているのみでも構わない。その結果、筒内に燃料を噴射する燃料噴射手段を備えた内燃機関であって、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる、内燃機関を提供することができる。
第2の発明に係る内燃機関においては、第1の発明の構成に加えて、シリンダの平面視で、キャビティの位置と、ピストン・ピン・ボスとの位置とが重複しない。
第2の発明によると、ピストン頂面の窪みであるキャビティと、ピストンの下部に設けられるピストン・ピン・ボスとの位置とが重複しない(完全にずれている)ので、十分な強度を実現することができ、応力集中によるピストンの破損の可能性を回避することができる。
第3の発明に係る内燃機関は、第1または2の発明の構成に加えて、シリンダ孔内に放電部が臨む点火プラグをさらに含む。
第3の発明によると、点火プラグを有し、筒内に燃料を噴射する燃料噴射手段を備えた内燃機関において、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる。
第4の発明に係る内燃機関は、第1または2の発明の構成に加えて、シリンダ孔のほぼ軸心上でシリンダ孔内に放電部が臨む点火プラグをさらに含む。
第4の発明によると、シリンダ孔のほぼ軸心上に点火プラグを有し、筒内に燃料を噴射する燃料噴射手段を備えた内燃機関において、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる。
第5の発明に係る内燃機関においては、第3または4の発明の構成に加えて、燃料噴射手段により噴射される燃料が、シリンダの平面視で、放電部を挟む八の字形状となるものである。
第5の発明によると、燃料噴射手段から噴射された燃料により形成された噴霧形状が、シリンダの平面視で、放電部を挟む八の字形状となる内燃機関において、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる。
第6の発明に係る内燃機関においては、第3または4の発明の構成に加えて、燃料噴射手段により噴射される燃料が、シリンダの平面視で、放電部を挟む八の字形状となり、かつ、シリンダの側面視で、燃料噴射手段で噴射される燃料の形状が扇形状であるものである。
第6の発明によると、燃料噴射手段から噴射された燃料により形成された噴霧形状が、シリンダの平面視で、放電部を挟む八の字形状となり、かつ、シリンダの側面視で、燃料噴射手段で噴射される燃料の形状が扇形状である内燃機関において、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる。
第7の発明に係る内燃機関においては、第3〜6のいずれかの発明の構成に加えて、キャビティは、シリンダの平面視で、最外周部で当接した噴霧が放電部に向かう形状を有する。
第7の発明によると、シリンダの平面視で、キャビティの形状は、最外周部で当接した噴霧が放電部に向かう(中央に向かう)ような形状である。これにより、筒内噴射用インジェクタから噴射された燃料により形成された噴霧(平面視で八の字形)を放電部に向かわせて、放電部近傍にリッチな混合気を形成できる。
第8の発明に係る内燃機関においては、第3〜7のいずれかの発明の構成に加えて、キャビティは、シリンダの側面視で、キャビティの底部で当接した噴霧が放電部に向かう形状を有する。
第8の発明によると、シリンダの側面視で、キャビティの形状は、底部で当接した噴霧が放電部に向かう(上に上がる)ような形状である。これにより、筒内噴射用インジェクタから噴射された燃料により形成された噴霧(側面視で扇形)を放電部に向かわせて、放電部近傍にリッチな混合気を形成できる。
第9の発明に係る内燃機関は、第1〜8のいずれかの発明の構成に加えて、吸気通路内に燃料を噴射するための燃料噴射手段をさらに含む。
第9の発明によると、筒内噴射用インジェクタに加えて、吸気通路内に燃料を吸気通路噴射用インジェクタで噴射して、均質燃焼時の混合気の均質性を向上させることができる。
第10の発明に係る内燃機関においては、第9の発明の構成に加えて、筒内に燃料を噴射するための燃料噴射手段は、筒内噴射用インジェクタであって、吸気通路内に燃料を噴射するための燃料噴射手段は、吸気通路用インジェクタである。
第10の発明によると、筒内に燃料を噴射する燃料噴射手段である筒内噴射用インジェクタと吸気通路内に燃料を噴射する吸気通路噴射用インジェクタとを別個に設けて噴射燃料を分担する内燃機関において、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
図1に、本発明の実施の形態に係る内燃機関の制御装置であるエンジンECU(Electronic Control Unit)で制御されるエンジンシステムの概略構成図を示す。なお、図1には、エンジンとして直列4気筒ガソリンエンジンを示すが、本発明はこのような形式のエンジンに限定されるものではなく、V型6気筒、V型8気筒、直列6気筒などの形式であってもよい。また、以下においては、筒内噴射用インジェクタと吸気通路噴射用インジェクタとを有するエンジンについて説明するが、少なくとも筒内噴射用インジェクタを有するエンジンであれば、本発明は適用できる。
図1に示すように、エンジン10は、4つの気筒112を備え、各気筒112はそれぞれ対応するインテークマニホールド20を介して共通のサージタンク30に接続されている。サージタンク30は、吸気ダクト40を介してエアクリーナ50に接続され、吸気ダクト40内にはエアフローメータ42が配置されるとともに、電動モータ60によって駆動されるスロットルバルブ70が配置されている。このスロットルバルブ70は、アクセルペダル100とは独立してエンジンECU(Electronic Control Unit)300の出力
信号に基づいてその開度が制御される。一方、各気筒112は共通のエキゾーストマニホールド80に連結され、このエキゾーストマニホールド80は三元触媒コンバータ90に連結されている。
各気筒112に対しては、筒内に向けて燃料を噴射するための筒内噴射用インジェクタ110と、吸気ポートまたは/および吸気通路内に向けて燃料を噴射するための吸気通路噴射用インジェクタ120とがそれぞれ設けられている。これらインジェクタ110、120はエンジンECU300の出力信号に基づいてそれぞれ制御される。また、各気筒内噴射用インジェクタ110は共通の燃料分配管130に接続されており、この燃料分配管130は燃料分配管130に向けて流通可能な逆止弁140を介して、機関駆動式の高圧燃料ポンプ150に接続されている。なお、本実施の形態においては、2つのインジェクタが別個に設けられた内燃機関について説明するが、本発明はこのような内燃機関に限定されない。たとえば、筒内噴射機能と吸気通路噴射機能とを併せ持つような1個のインジェクタを有する内燃機関であってもよい。
図1に示すように、高圧燃料ポンプ150の吐出側は電磁スピル弁152を介して高圧燃料ポンプ150の吸入側に連結されており、この電磁スピル弁152の開度が小さいときほど、高圧燃料ポンプ150から燃料分配管130内に供給される燃料量が増大され、電磁スピル弁152が全開にされると、高圧燃料ポンプ150から燃料分配管130への燃料供給が停止されるように構成されている。なお、電磁スピル弁152はエンジンECU300の出力信号に基づいて制御される。
一方、各吸気通路噴射用インジェクタ120は、共通する低圧側の燃料分配管160に接続されており、燃料分配管160および高圧燃料ポンプ150は共通の燃料圧レギュレータ170を介して、電動モータ駆動式の低圧燃料ポンプ180に接続されている。さらに、低圧燃料ポンプ180は燃料フィルタ190を介して燃料タンク200に接続されている。燃料圧レギュレータ170は低圧燃料ポンプ180から吐出された燃料の燃料圧が予め定められた設定燃料圧よりも高くなると、低圧燃料ポンプ180から吐出された燃料の一部を燃料タンク200に戻すように構成されており、したがって吸気通路噴射用インジェクタ120に供給されている燃料圧および高圧燃料ポンプ150に供給されている燃料圧が上記設定燃料圧よりも高くなるのを阻止している。
エンジンECU300は、デジタルコンピュータから構成され、双方向性バス310を介して相互に接続されたROM(Read Only Memory)320、RAM(Random Access Memory)330、CPU(Central Processing Unit)340、入力ポート350および出力ポート360を備えている。
エアフローメータ42は吸入空気量に比例した出力電圧を発生し、このエアフローメータ42の出力電圧はA/D変換器370を介して入力ポート350に入力される。エンジン10には機関冷却水温に比例した出力電圧を発生する水温センサ380が取付けられ、この水温センサ380の出力電圧は、A/D変換器390を介して入力ポート350に入力される。
燃料分配管130には燃料分配管130内の燃料圧に比例した出力電圧を発生する燃料圧センサ400が取付けられ、この燃料圧センサ400の出力電圧は、A/D変換器410を介して入力ポート350に入力される。三元触媒コンバータ90上流のエキゾーストマニホールド80には、排気ガス中の酸素濃度に比例した出力電圧を発生する空燃比センサ420が取付けられ、この空燃比センサ420の出力電圧は、A/D変換器430を介して入力ポート350に入力される。
本実施の形態に係るエンジンシステムにおける空燃比センサ420は、エンジン10で燃焼された混合気の空燃比に比例した出力電圧を発生する全域空燃比センサ(リニア空燃比センサ)である。なお、空燃比センサ420としては、エンジン10で燃焼された混合気の空燃比が理論空燃比に対してリッチであるかリーンであるかをオン−オフ的に検出するO2センサを用いてもよい。
アクセルペダル100は、アクセルペダル100の踏込み量に比例した出力電圧を発生するアクセル開度センサ440に接続され、アクセル開度センサ440の出力電圧は、A/D変換器450を介して入力ポート350に入力される。また、入力ポート350には、機関回転数を表わす出力パルスを発生する回転数センサ460が接続されている。エンジンECU300のROM320には、上述のアクセル開度センサ440および回転数センサ460により得られる機関負荷率および機関回転数に基づき、運転状態に対応させて設定されている燃料噴射量の値や機関冷却水温に基づく補正値などが予めマップ化されて記憶されている。
図2に、図1の部分拡大図を示す。図2は、図1の各気筒112における筒内噴射用インジェクタ110および吸気通路噴射用インジェクタ120の位置関係、ならびにインテークマニホールド20、吸気バルブ122、排気バルブ121、点火プラグ119およびピストン123の位置関係を説明する図である。
インテークマニホールド20の燃焼室側には吸気バルブ122が設けられており、その吸気バルブ122の上流側に吸気通路噴射用インジェクタ120が配置されている。吸気通路噴射用インジェクタ120は、吸気通路であるインテークマニホールド20の内壁にに向けて燃料を噴射する。
この吸気通路噴射用インジェクタ120の燃料噴射方向については、一例として、以下のようにすることが考えられる。
このインテークマニホールド20の内壁には、吸気バルブ122と、排気バルブ121とのオーバーラップにより燃焼室内のPM(Particulate Matter)がインテークマニホールド20に逆流し、吸気通路噴射用インジェクタ120により噴射された燃料が噴霧され微細化された燃料が接着剤として働き、インテークマニホールド20の吸気バルブ122の近い側の内壁にデポジットとして堆積することがある。吸気通路噴射用インジェクタ120の燃料噴射方向は、このデポジットに向けられた方向になるように設けられている。これにより、吸気通路噴射用インジェクタ120から噴射された燃料により、このデポジットを洗い流すことができる。
また、このインテークマニホールド20には、スワールコントロールバルブなどであって、燃焼室内に渦流を形成するものが設けられない。このスワールコントロールバルブなどが設けられると、流量係数を低下せしめることになり、WOT時に必要十分な空気を燃焼室に流入させることができない。ところが、本実施の形態における内燃機関においては、流量係数を高くするようにして、高流量ポートを実現した。なお、高流量を実現できるのであれば、タンジェンシャル型(tangential type)の吸気ポートであってもよい。こ
のタンジェンシャル型ポートは、吸気バルブ122の周辺で渦巻状となって左右に振れた形状とはならず、真っ直ぐに伸びて上下に大きく円弧を画いた先端部を有する。したがって吸気ポート内での流れに対する抵抗が小さく、吸気ポートの流量係数はスワールポートに比しはるかに大きくなり、エンジン10の体積効率が高くなり、多量の空気が燃焼室内に吸入することができるものである。このときの吸気ポートの流量係数Cfは0.5〜0.7以上が好ましい。
図2に示すように、ピストン123の頂部には、筒内噴射用インジェクタ110に対向する位置に緩やかな曲線から形成されるくぼみであるキャビティ123Cが設けられている。このキャビティ123Cに向けて筒内噴射用インジェクタ110から燃料が噴射される。このとき、筒内噴射用インジェクタ110に対向するピストン123の頂部は角部を有しないので、筒内噴射用インジェクタ110から噴射された燃料により形成された噴霧が角部により***されることがない。このような***があると燃焼に悪影響を与えるローカルリッチ(ここでいうローカルリッチとは、点火プラグ119近傍以外でリッチな混合気が形成されることを意味する)の状態になる場合があり得るが、そのような状態になることを回避できる。なお、筒内噴射用インジェクタ110の燃料噴霧の形状の詳細については後述する。また、筒内噴射用インジェクタ110から噴射された燃料により形成された燃料噴霧がキャビティ123Cにより変化する形態についての詳細は後述する。また、図2に示すように配置された筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120との燃料分担比率の詳細については、後述する。
図2に示すように、ピストン123においては、ピストン123とコネクティングロッド(図示しない)とは、ピストンピン123Aで連結される。ピストン123には、このピストンピン123Aを収めるためのピストン・ピン・ボス部123Bが設けられる。ピストンピン123Aやピストン・ピン・ボス部123Bには、強大なガス力とピストン123の慣性力とが直接加わる。ピストン・ピン・ボス部123Bには、大きな応力が発生するので、ピストン・ピン・ボス部123Bの位置や形状を工夫して、応力集中によるピストン123の破損の可能性を回避している。特に、本実施の形態に係るエンジン10においては、ピストン・ピン・ボス部123Bの位置とキャビティ123Cの位置とをずらしている。このようにピストン・ピン・ボス部123Bの位置とキャビティ123Cの位置をずらさないと、構造的に応力集中を招く要因となる。このため、本実施の形態に係るエンジン10のピストン123においては、このようにピストン・ピン・ボス部123Bの位置とキャビティ123Cの位置とが重なり合わないようにして応力集中によるピストン123の破損の可能性を回避している。なお、応力集中によるピストン123の破損の可能性を回避することができるのであれば、ピストン・ピン・ボス部123Bの位置とキャビティ123Cの位置との一部を重ねるようにしてもよい。
図3を参照して、筒内噴射用インジェクタ110について説明する。図3は、筒内噴射用インジェクタ110の縦方向の断面図である。
図3に示すように、筒内噴射用インジェクタ110は、その本体740の下端にノズルボディ760がスペーサを介してノズルホルダによって固定される。ノズルボディ760は、その下端に噴口500Aおよび噴口500Bを形成しており、ノズルボディ760内にニードル520が上下可動に配置される。ニードル520の上端は本体740内を摺動自在なコア540に当接しており、スプリング560はコア540を介してニードル520を下向きに付勢しており、ニードル520はノズルボディ760の内周シート面522に着座され、その結果、常態では噴口500Aおよび噴口500Bを閉鎖している。
本体740の上端にはスリーブ570が挿入固定され、スリーブ570内には燃料通路580が形成され、燃料通路580の下端側は、本体740内の通路を介してノズルボディ760の内部まで連通され、ニードル520のリフト時に燃料は噴口500Aおよび噴口500Bから噴射される。燃料通路580の上端側は、フィルタ600を介して燃料導入口620に接続され、この燃料導入口620は、図1の燃料分配管130に接続される。
電磁ソレノイド640は、本体740内においてスリーブ570の下端部を包囲するように配置される。ソレノイド640の通電時においては、コア540はスプリング560に抗して上昇され、燃料圧はニードル520を押し上げ、噴口500Aおよび噴口5000Bが開放されるので燃料噴射が実行される。ソレノイド640は絶縁ハウジング650内のワイヤ660に取り出され、開弁のための電気信号を、エンジンECU300から受信することができる。この開弁のための電気信号をエンジンECU300が出力しないと、筒内噴射用インジェクタ110からの燃料噴射が行なわれない。
エンジンECU300から受信した開弁のための電気信号により、筒内噴射用インジェクタ110の燃料噴射時期および燃料噴射期間が制御される。この燃料噴射期間を制御することにより、筒内噴射用インジェクタ110からの燃料噴射量を調節できる。すなわち、この電気信号により(最小燃料噴射量以上の領域において)、少量の燃料を噴射するように制御することもできる。なお、このような制御のために、エンジンECU300と筒内噴射用インジェクタ110との間に、EDU(Electronic Driver Unit)が設けられることもある。なお、このような構造を有する筒内噴射用インジェクタ110に供給される燃料の圧力は非常に高圧(13MPa程度)である。
図4に、噴口500Aおよび噴口500Bを、筒内噴射用インジェクタ110の内部から見た状態を示す。図4に示すように、縦長のスリット形状の噴口が平行に形成されている(縦Wスリット)。このような噴口500Aおよび噴口500Bにより噴射された燃料は、図5に示すように、上面から見て八の字形に広がる。この八の字形に開いた部分に点火プラグ119が設けられている。また、噴口500Aおよび噴口500Bにより噴射された燃料は、図5に示すように、側面から見て上下の両方向に広がった扇形の形状に広がる。
上面から見た場合においては、八の字形に開いた間に点火プラグ119が設けられるので、噴霧が点火プラグ119に当たって霧化が促進されないことを回避できる。また、側面から見た場合においては、上下の両方向に広がった扇形の形状となっているが、ピストン123の頂部に緩やかな曲線から形成されたキャビティ123Cを有する。平面状のピストン頂部であると筒内噴射用インジェクタ110から噴射された燃料が平面状に付着して霧化を阻害するが、このキャビティ123Cによりこのような霧化が阻害されることもない。このキャビティ123Cについては、さらに詳しく後述する。
なお、噴霧形状については、
1)上面視(平面視)で、点火プラグ119を挟む扇形状であって、かつ、側面視で扇形状であってもよいし、
2)上面視で、点火プラグ119を挟む扇形状であって、かつ、側面視で上部のみの扇の形状であってもよいし、
3)上面視で、点火プラグ119を挟む扇形状であって、かつ、側面視で下部のみの扇の形状であってもよいし、
4)側面視で、点火プラグ119を挟む扇形状であってもよい。
さらに、このような噴霧形状を実現するための噴口は、図4に示す縦Wスリット形状に限定されない。縦S(シングル)スリットであってもよいし、T字のスリットであってもよいし、十字のスリットであってもよい。
本実施の形態に係るエンジン10においては、筒内噴射用インジェクタ110から吸気行程で燃料を気筒内に噴射して、圧縮行程末期の点火時期までに気筒内に均質混合気を形成する均質燃焼を実行する。十分に均質化された良好な均質混合気を形成するためには、気筒内に広く噴射燃料を分散させることが望ましい。そのために、本実施の形態に係るエンジン10においては、筒内噴射用インジェクタ110は、上述したように、側面から見て上下の両方向に広がった扇形の形状であって、上面から見て八の字形の燃料噴霧を形成する。
このような形状の噴霧は、円錐形状の燃料噴霧に比較して貫徹力が大きくなり、それにより、飛散中において気筒内の吸気との摩擦によって微粒化されるために容易に気化する。こうして側面から見て扇形状に広がる燃料噴霧を使用することにより、気化され易い燃焼噴霧を気筒内の全体に分散させることができ、十分に均質化された均質混合気が形成されて良好な均質燃焼を実現することができる。
ところで、エンジン10の始動時においては、排気系に設けられた三元触媒コンバータ90を早期に暖機して触媒を活性化させて、三元触媒コンバータ90により排気ガスの浄化を開始しなければならない。そのための1つの方策として点火時期を膨張行程の中期以降等に大幅に遅角して、排気ガス温度を非常に高めることが望ましい。
しかしながら、均質混合気では、このように点火時期を大幅に遅角すると、失火が発生する可能性がある。そのため、たとえば、本実施の形態に係るエンジン10においては、エンジン10の始動開始または始動直後から三元触媒コンバータ90の暖機完了までの間は、成層燃焼を行なうようにしている。成層燃焼は圧縮行程後半で燃料を噴射して、燃料を点火プラグ119近傍に集中させて可燃混合気を形成するものであり、この可燃混合気は点火時期を大幅に遅角しても確実に着火燃焼させることができる。
この成層燃焼に際して、燃料噴射から点火までの時間が比較的短いために、噴射燃料を点火までに確実に気化させるためには、ピストン123の頂面に形成されたキャビティ123C内に燃料を噴射して、噴霧中の気化に加えて、キャビティ123Cから受熱するようにすることが好ましい。本実施の形態においては、ピストン123の頂面には、そのためのキャビティ123Cが設けられている。一般的な、筒内噴射式火花点火式エンジンにおいて、キャビティはピストン頂面のインジェクタ側に偏在するように形成されるが、本実施の形態においては、気筒内において、筒内噴射用インジェクタ110から扇形状の燃料噴霧が形成される場合には、多くの燃料がキャビティ外に噴射されてしまう。
キャビティ外に噴射された燃料は、キャビティによって点火プラグ119近傍へ導かれることがないために、燃焼せず未燃燃料として排出され、排気エミッションを悪化させる。また、その分多量に燃料を噴射しなければならないので、成層燃焼時の燃費を悪化させる要因となる。本実施の形態に係るエンジン10においては、筒内噴射用インジェクタ110から噴射された扇形の燃料噴霧のほぼ全てがキャビティ123C内に収まり、かつキャビティ123Cから点火プラグ119近傍へ導かれるように形成されている。さらに、このキャビティ123Cの位置とピストン・ピン・ボス部123Bの位置とが重複しないように形成されている。
図6および図7を参照して、このキャビティ123Cの詳細を説明する。図6に側面から見た図を、図7に上面から見た図を、それぞれ示す。
図6に示すように、ピストン123をその側面側から見ると、キャビティ123Cの底面は、筒内噴射用インジェクタ110から噴射された燃料噴霧が当たって、その方向をシリンダ孔の軸心(点火プラグ119)側に向かうようになだらかな曲面を有する。さらに、図7に示すように、ピストン123をその上面側から見ると、キャビティ123Cの最外周は、筒内噴射用インジェクタ110から噴射された八の字形の燃料噴霧が当たって、その方向がシリンダ孔の軸心(点火プラグ119)側に向かうようになだらかな曲面を有する。また、図7に示すように、キャビティ123Cの位置とピストン・ピン・ボス部123Bの位置とが重複していない。
図6および図7に示すように、筒内噴射用インジェクタ110から噴射された燃料により形成される燃料噴霧がピストン123の頂面に当接する位置においては、角部を有さないキャビティ123Cが形成されている。そして、その形状は角部を有さないことに加えて、側面側も上面側も、キャビティ123Cから点火プラグ119近傍に燃料噴霧が向かうように設計されている。この燃料噴霧は、圧縮上死点において、点火プラグ119近傍に位置して、その後の膨張行程においても点火プラグ119近傍からそれほど分散することはない。こうすることにより、点火時期を大幅に遅角しても噴霧燃料を確実に着かさせることができる。
なお、三元触媒コンバータ90の早期暖機することを目的として、大幅に点火時期を遅角させるために成層燃焼を行なうべく、このようなキャビティ123Cが設けられることに限定されるものではない。点火プラグ123C近傍に濃い混合気を集めて、その周りに薄い混合気を形成して弱成層燃焼を行なう場合にも、このような形状を有するキャビティ123Cにより燃料噴霧を点火プラグ119近傍に集めて、理想的な混合気を形成できる。また、均質燃焼を行なう場合には、このようなキャビティ123Cにより、点火プラグ119近傍以外でリッチな混合気が形成されるローカルリッチになることを回避できる。
このようなキャビティ123Cの形状については上述したとおりであるが、構造的な制限から、位置について図7に示すように、キャビティ123Cの位置とピストン・ピン・ボス部123Bの位置とが重複しないように設定されている。図7に示す例は、キャビティ123Cの位置とピストン・ピン・ボス部123Bの位置とが完全に重複しない場合を示している。少なくとも応力集中等の構造上の問題が発生しない程度に重複していなければ構わない。したがって、キャビティ123Cの位置とピストン・ピン・ボス部123Bの位置との一部が重複しているものであっても構造上の問題が発生しなければ構わない。
ピストン・ピン・ボス部123Bは、ピストン123とコネクティングロッド(図示せず)とは、ピストンピン123Aで連結されるが、このピストンピン123Aを収めるためにピストン下部に形成されるものである。ピストンピン123Aやピストン・ピン・ボス部123Bには、強大なガス力とピストン123の慣性力とが直接加わり、ピストン・ピン・ボス部123Bには、大きな応力が発生する。このため、ピストン・ピン・ボス部123Bは、その強固な強度が求められるとともに、ピストン123に形成される他の形成物との関係において、応力集中によるピストン123の破損の可能性を回避する必要がある。
この応力集中を回避するために、本実施の形態においては、たとえば、肉厚を確保すべく、ピストン・ピン・ボス部123Bの位置を避けてキャビティ123Cを設けている。これは、ピストン・ピン・ボス部123Bの位置がキャビティ123Cの位置に来ると、キャビティ123Cとピストン・ピン・ボス部123Bとの間の肉厚が薄くなり応力集中を発生する可能性があるので、これを避けるようにしている。
以上のようにして、本実施の形態に係るエンジン10によると、ピストン頂面に曲面で形成される浅い窪みであるキャビティをピストン・ピン・ボス部の位置とずらして形成した。このキャビティは、筒内噴射用インジェクタから噴射された燃料により形成される燃料噴霧であって、ピストンの側面視で略扇形状であって、その平面視で略八の字形状の燃料噴霧を、点火プラグ近傍に集めることができ、失火の可能性を回避することができる。その結果、筒内に燃料を噴射する筒内噴射用インジェクタを備えたエンジンであって、点火プラグ付近に濃い混合気を形成するとともにピストンの応力緩和を実現できる。
<この制御装置が適用されるに適したエンジン(その1)>
以下、本実施の形態に係る制御装置が適用されるに適したエンジン(その1)について説明する。
図8および図9を参照して、エンジン10の運転状態に対応させた情報である、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120との噴き分け比率(以下、DI比率(r)とも記載する。)を表わすマップについて説明する。これらのマップは、エンジンECU300のROM320に記憶される。図8は、エンジン10の温間用マップであって、図9は、エンジン10の冷間用マップである。
図8および図9に示すように、これらのマップは、エンジン10の回転数を横軸にして、負荷率を縦軸にして、筒内噴射用インジェクタ110の分担比率がDI比率rとして百分率で示されている。
図8および図9に示すように、エンジン10の回転数と負荷率とに定まる運転領域ごとに、DI比率rが設定されている。「DI比率r=100%」とは、筒内噴射用インジェクタ110からのみ燃料噴射が行なわれる領域であることを意味し、「DI比率r=0%」とは、吸気通路噴射用インジェクタ120からのみ燃料噴射が行なわれる領域であることを意味する。「DI比率r≠0%」、「DI比率r≠100%」および「0%<DI比率r<100%」とは、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120とで燃料噴射が分担して行なわれる領域であることを意味する。なお、概略的には、筒内噴射用インジェクタ110は、出力性能の上昇に寄与し、吸気通路噴射用インジェクタ120は、混合気の均一性に寄与する。このような特性の異なる2種類のインジェクタを、エンジン10の回転数と負荷率とで使い分けることにより、エンジン10が通常運転状態(たとえば、アイドル時の触媒暖気時が、通常運転状態以外の非通常運転状態の一例であるといえる)である場合には、均質燃焼のみが行なわれるようにしている。
さらに、これらの図8および図9に示すように、温間時のマップと冷間時のマップとに分けて、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120のDI分担率rを規定した。エンジン10の温度が異なると、筒内噴射用インジェクタ110および吸気通路噴射用インジェクタ120の制御領域が異なるように設定されたマップを用いて、エンジン10の温度を検知して、エンジン10の温度が予め定められた温度しきい値以上であると図8の温間時のマップを選択して、そうではないと図9に示す冷間時のマップを選択する。それぞれ選択されたマップに基づいて、エンジン10の回転数と負荷率とに基づいて、筒内噴射用インジェクタ110および/または吸気通路噴射用インジェクタ120を制御する。
図8および図9に設定されるエンジン10の回転数と負荷率について説明する。図8のNE(1)は2500〜2700rpmに設定され、KL(1)は30〜50%、KL(2)は60〜90%に設定されている。また、図9のNE(3)は2900〜3100rpmに設定されている。すなわち、NE(1)<NE(3)である。その他、図8のNE(2)や、図9のKL(3)、KL(4)も適宜設定されている。
図8および図9を比較すると、図8に示す温間用マップのNE(1)よりも図9に示す冷間用マップのNE(3)の方が高い。これは、エンジン10の温度が低いほど、吸気通路噴射用インジェクタ120の制御領域が高いエンジン回転数の領域まで拡大されるということを示す。すなわち、エンジン10が冷えている状態であるので、(たとえ、筒内噴射用インジェクタ110から燃料を噴射しなくても)筒内噴射用インジェクタ110の噴口にデポジットが堆積しにくい。このため、吸気通路噴射用インジェクタ120を使って燃料を噴射する領域を拡大するように設定され、均質性を向上させることができる。
図8および図9を比較すると、エンジン10の回転数が、温間用マップにおいてはNE(1)以上の領域において、冷間用マップにおいてはNE(3)以上の領域において、「DI比率r=100%」である。また、負荷率が、温間用マップにおいてはKL(2)以上の領域において、冷間用マップにおいてはKL(4)以上の領域において、「DI比率r=100%」である。これは、予め定められた高エンジン回転数領域では筒内噴射用インジェクタ110のみが使用されること、予め定められた高エンジン負荷領域では筒内噴射用インジェクタ110のみが使用されるということを示す。すなわち、高回転領域や高負荷領域においては、筒内噴射用インジェクタ110のみで燃料を噴射しても、エンジン10の回転数や負荷が高く吸気量が多いので筒内噴射用インジェクタ110のみでも混合気を均質化しやすいためである。このようにすると、筒内噴射用インジェクタ110から噴射された燃料は燃焼室内で気化潜熱を伴い(燃焼室から熱を奪い)気化される。これにより、圧縮端での混合気の温度が下がる。これにより対ノッキング性能が向上する。また、燃焼室の温度が下がるので、吸入効率が向上し高出力が見込める。
図8に示す温間マップでは、負荷率KL(1)以下では、筒内噴射用インジェクタ110のみが用いられる。これは、エンジン10の温度が高いときであって、予め定められた低負荷領域では筒内噴射用インジェクタ110のみが使用されるということを示す。これは、温間時においてはエンジン10が暖まった状態であるので、筒内噴射用インジェクタ110の噴口にデポジットが堆積しやすい。しかしながら、筒内噴射用インジェクタ110を使って燃料を噴射することにより噴口温度を低下させることができるので、デポジットの堆積を回避することも考えられ、また、筒内噴射用インジェクタの最小燃料噴射量を確保して、筒内噴射用インジェクタ110を閉塞させないことも考えられ、このために、筒内噴射用インジェクタ110を用いた領域としている。
図8および図9を比較すると、図9の冷間用マップにのみ「DI比率r=0%」の領域が存在する。これは、エンジン10の温度が低いときであって、予め定められた低負荷領域(KL(3)以下)では吸気通路噴射用インジェクタ120のみが使用されるということを示す。これはエンジン10が冷えていてエンジン10の負荷が低く吸気量も低いため燃料が霧化しにくい。このような領域においては筒内噴射用インジェクタ110による燃料噴射では良好な燃焼が困難であるため、また、特に低負荷および低回転数の領域では筒内噴射用インジェクタ110を用いた高出力を必要としないため、筒内噴射用インジェクタ110を用いないで、吸気通路噴射用インジェクタ120のみを用いる。
また、通常運転時以外の場合、エンジン10がアイドル時の触媒暖気時の場合(非通常運転状態であるとき)、成層燃焼を行なうように筒内噴射用インジェクタ110が制御される。このような触媒暖気運転中にのみ成層燃焼させることで、触媒暖気を促進させ、排気エミッションの向上を図る。
<この制御装置が適用されるに適したエンジン(その2)>
以下、本実施の形態に係る制御装置が適用されるに適したエンジン(その2)について説明する。なお、以下のエンジン(その2)の説明において、エンジン(その1)と同じ説明については、ここでは繰り返さない。
図10および図11を参照して、エンジン10の運転状態に対応させた情報である、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120との噴き分け比率を表わすマップについて説明する。これらのマップは、エンジンECU300のROM320に記憶される。図10は、エンジン10の温間用マップであって、図11は、エンジン10の冷間用マップである。
図10および図11を比較すると、以下の点で図8および図9と異なる。エンジン10の回転数が、温間用マップにおいてはNE(1)以上の領域において、冷間用マップにおいてはNE(3)以上の領域において、「DI比率r=100%」である。また、負荷率が、温間用マップにおいては低回転数領域を除くKL(2)以上の領域において、冷間用マップにおいては低回転数領域を除くKL(4)以上の領域において、「DI比率r=100%」である。これは、予め定められた高エンジン回転数領域では筒内噴射用インジェクタ110のみが使用されること、予め定められた高エンジン負荷領域では筒内噴射用インジェクタ110のみが使用される領域が多いことを示す。しかしながら、低回転数領域の高負荷領域においては、筒内噴射用インジェクタ110から噴射された燃料により形成される混合気のミキシングが良好ではなく、燃焼室内の混合気が不均質で燃焼が不安定になる傾向を有する。このため、このような問題が発生しない高回転数領域へ移行するに伴い筒内噴射用インジェクタの噴射比率を増大させるようにしている。また、このような問題が発生する高負荷領域へ移行するに伴い筒内噴射用インジェクタ110の噴射比率を減少させるようにしている。これらのDI比率rの変化を図10および図11に十字の矢印で示す。このようにすると、燃焼が不安定であることに起因するエンジンの出力トルクの変動を抑制することができる。なお、これらのことは、予め定められた低回転数領域へ移行するに伴い筒内噴射用インジェクタ110の噴射比率を減少させることや、予め定められた低負荷領域へ移行するに伴い筒内噴射用インジェクタ110の噴射比率を増大させることと、略等価であることを確認的に記載する。また、このような領域(図10および図11で十字の矢印が記載された領域)以外の領域であって筒内噴射用インジェクタ110のみで燃料を噴射している領域(高回転側、低負荷側)においては、筒内噴射用インジェクタ110のみでも混合気を均質化しやすい。このようにすると、筒内噴射用インジェクタ110から噴射された燃料は燃焼室内で気化潜熱を伴い(燃焼室から熱を奪い)気化される。これにより、圧縮端での混合気の温度が下がる。これにより対ノッキング性能が向上する。また、燃焼室の温度が下がるので、吸入効率が向上し高出力が見込める。
なお、図8〜図11を用いて説明したこのエンジン10においては、均質燃焼は筒内噴射用インジェクタ110の燃料噴射タイミングを吸気行程とすることにより、成層燃焼は筒内噴射用インジェクタ110の燃料噴射タイミングを圧縮行程とすることにより実現できる。すなわち、筒内噴射用インジェクタ110の燃料噴射タイミングを圧縮行程とすることで、点火プラグ周りにリッチ混合気が偏在させることにより燃焼室全体としてはリーンな混合気に着火する成層燃焼を実現することができる。また、筒内噴射用インジェクタ110の燃料噴射タイミングを吸気行程としても点火プラグ周りにリッチ混合気を偏在させることができれば、吸気行程噴射であっても成層燃焼を実現できる。
また、ここでいう成層燃焼には、成層燃焼と以下に示す弱成層燃焼の双方を含むものである。弱成層燃焼とは、吸気通路噴射用インジェクタ120を吸気行程で燃料噴射して燃焼室全体にリーンで均質な混合気を生成して、さらに筒内噴射用インジェクタ110を圧縮行程で燃料噴射して点火プラグ周りにリッチな混合気を生成して、燃焼状態の向上を図るものである。このような弱成層燃焼は触媒暖気時に好ましい。これは、以下の理由による。すなわち、触媒暖気時には高温の燃焼ガスを触媒に到達させるために点火時期を大幅に遅角させ、かつ良好な燃焼状態(アイドル状態)を維持する必要がある。また、ある程度の燃料量を供給する必要がある。これを成層燃焼で行なおうとしても燃料量が少ないという問題があり、これを均質燃焼で行なおうとしても良好な燃焼を維持するために遅角量が成層燃焼に比べて小さいという問題がある。このような観点から、上述した弱成層燃焼を触媒暖気時に用いることが好ましいが、成層燃焼および弱成層燃焼のいずれであっても構わない。
また、図8〜図11を用いて説明したエンジンにおいては、筒内噴射用インジェクタ110による燃料噴射のタイミングは、以下のような理由により、圧縮行程で行なうことが好ましい。ただし、上述したエンジン10は、基本的な大部分の領域には(触媒暖気時にのみに行なわれる、吸気通路噴射用インジェクタ120を吸気行程噴射させ、筒内噴射用インジェクタ110を圧縮行程噴射させる弱成層燃焼領域以外を基本的な領域という)、筒内噴射用インジェクタ110による燃料噴射のタイミングは、吸気行程である。しかしながら、以下に示す理由があるので、燃焼安定化を目的として一時的に筒内噴射用インジェクタ110の燃料噴射タイミングを圧縮行程噴射とするようにしてもよい。
筒内噴射用インジェクタ110からの燃料噴射時期を圧縮行程中とすることで、筒内温度がより高い時期において、燃料噴射により混合気が冷却される。冷却効果が高まるので、対ノック性を改善することができる。さらに、筒内噴射用インジェクタ110からの燃料噴射時期を圧縮行程中とすると、燃料噴射から点火時期までの時間が短いことから噴霧による気流の強化を実現でき、燃焼速度を上昇させることができる。これらの対ノック性の向上と燃焼速度の上昇とから、燃焼変動を回避して、燃焼安定性を向上させることができる。
さらに、エンジン10の温度によらず(すなわち、温間時および冷間時のいずれの場合であっても)、オフアイドル時(アイドルスイッチがオフの場合、アクセルペダルが踏まれている場合)には、図8または図10に示す温間マップを用いるようにしてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態に係る制御装置で制御されるエンジンシステムの概略構成図である。 図1の部分拡大図である。 筒内噴射用インジェクタの断面図である。 筒内噴射用インジェクタの噴口の断面図である。 筒内噴射用インジェクタの噴霧形状を示す図である。 ピストン頂面のキャビティの側面視である。 ピストン頂面のキャビティの平面視である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの温間時のDI比率マップを表わす図(その1)である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの冷間時のDI比率マップを表わす図(その1)である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの温間時のDI比率マップを表わす図(その2)である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの冷間時のDI比率マップを表わす図(その2)である。
符号の説明
10 エンジン、20 インテークマニホールド、30 サージタンク、40 吸気ダクト、42 エアフローメータ、50 エアクリーナ、60 電動モータ、70 スロットルバルブ、80 エキゾーストマニホールド、90 三元触媒コンバータ、100 アクセルペダル、110 筒内噴射用インジェクタ、112 気筒、119 点火プラグ、120 吸気通路噴射用インジェクタ、121 排気バルブ、122 吸気バルブ、123 ピストン、123A ピストンピン、123B ピストン・ピン・ボス部、123C キャビティ、130 燃料分配管、140 逆止弁、150 高圧燃料ポンプ、152 電磁スピル弁、160 燃料分配管(低圧側)、170 燃料圧レギュレータ、180 低圧燃料ポンプ、190 燃料フィルタ、200 燃料タンク、300 エンジンECU、310 双方向性バス、320 ROM、330 RAM、340 CPU、350 入力ポート、360 出力ポート、370,390,410,430,450 A/D変換器、380 水温センサ、400 燃料圧センサ、420 空燃比センサ、440 アクセル開度センサ、460 回転数センサ、500A,500B 噴口。

Claims (10)

  1. 筒内に燃料を噴射するための燃料噴射手段を備えた内燃機関であって、
    前記内燃機関は、
    シリンダ孔の軸心を鉛直線に一致させた場合のシリンダの側面視で、シリンダヘッドの一側部に形成された吸気通路と、
    前記吸気通路の他側部に形成された排気通路と、
    前記シリンダ孔を上下動するピストンとを含み、
    前記燃料噴射手段は、前記シリンダヘッドの前記一側部の端部側から前記シリンダ孔内に向い斜め下方に向って燃料を噴射可能とするとともに、
    前記ピストンの頂面には、前記燃料噴射手段から噴射された燃料により形成された噴霧がピストン頂面と接触する位置が、最外周部となるようなキャビティが設けられ、
    前記シリンダの平面視で、前記キャビティの位置と、ピストンピンボスとの位置とがずれている、内燃機関。
  2. 前記シリンダの平面視で、前記キャビティの位置と、ピストンピンボスとの位置とが重複しない、請求項1に記載の内燃機関。
  3. 前記内燃機関は、前記シリンダ孔内に放電部が臨む点火プラグをさらに含む、請求項1または2に記載の内燃機関。
  4. 前記内燃機関は、前記シリンダ孔のほぼ軸心上で前記シリンダ孔内に放電部が臨む点火プラグをさらに含む、請求項1または2に記載の内燃機関。
  5. 前記燃料噴射手段により噴射される燃料が、前記シリンダの平面視で、前記放電部を挟む八の字形状となる、請求項3または4に記載の内燃機関。
  6. 前記燃料噴射手段により噴射される燃料が、前記シリンダの平面視で、前記放電部を挟む八の字形状となり、かつ、前記シリンダの側面視で、前記燃料噴射手段で噴射される燃料の形状が扇形状であって、請求項3または4に記載の内燃機関。
  7. 前記キャビティは、前記シリンダの平面視で、前記最外周部で当接した噴霧が前記放電部に向かう形状を有する、請求項3〜6のいずれかに記載の内燃機関。
  8. 前記キャビティは、前記シリンダの側面視で、前記キャビティの底部で当接した噴霧が前記放電部に向かう形状を有する、請求項3〜7のいずれかに記載の内燃機関。
  9. 前記内燃機関は、吸気通路内に燃料を噴射するための燃料噴射手段をさらに含む、請求項1〜8のいずれかに記載の内燃機関。
  10. 前記筒内に燃料を噴射するための燃料噴射手段は、筒内噴射用インジェクタであって、
    前記吸気通路内に燃料を噴射するための燃料噴射手段は、吸気通路用インジェクタである、請求項9に記載の内燃機関。
JP2005078294A 2005-03-18 2005-03-18 内燃機関 Withdrawn JP2006258012A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005078294A JP2006258012A (ja) 2005-03-18 2005-03-18 内燃機関
PCT/JP2006/300796 WO2006100821A1 (en) 2005-03-18 2006-01-13 Internal combustion engine
US11/331,066 US20060207547A1 (en) 2005-03-18 2006-01-13 Internal Combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078294A JP2006258012A (ja) 2005-03-18 2005-03-18 内燃機関

Publications (1)

Publication Number Publication Date
JP2006258012A true JP2006258012A (ja) 2006-09-28

Family

ID=36297258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078294A Withdrawn JP2006258012A (ja) 2005-03-18 2005-03-18 内燃機関

Country Status (3)

Country Link
US (1) US20060207547A1 (ja)
JP (1) JP2006258012A (ja)
WO (1) WO2006100821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113120A (ja) * 2011-11-25 2013-06-10 Honda Motor Co Ltd 内燃機関

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722285B2 (ja) * 2002-02-28 2005-11-30 ヤマハ発動機株式会社 筒内燃料噴射式内燃機関
JP4543978B2 (ja) * 2005-03-18 2010-09-15 トヨタ自動車株式会社 内燃機関の制御装置
JP4165572B2 (ja) * 2006-04-12 2008-10-15 トヨタ自動車株式会社 内燃機関の燃料供給装置
US20080041343A1 (en) 2006-07-06 2008-02-21 Parish James R Jr Fuel injection system with cross-flow nozzle for enhanced compressed natural gas jet spray
JP2017057797A (ja) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 燃料噴射制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3204617A (en) * 1963-12-09 1965-09-07 Continental Aviat & Eng Corp Piston assembly
DE4019983A1 (de) * 1990-06-22 1992-01-02 Kolbenschmidt Ag Leichtmetallkolben
JP2531322B2 (ja) * 1991-09-13 1996-09-04 トヨタ自動車株式会社 内燃機関
JPH06257506A (ja) 1993-03-09 1994-09-13 Toyota Autom Loom Works Ltd 内燃機関のピストンのスワール生成装置
JPH10299486A (ja) * 1997-04-30 1998-11-10 Yamaha Motor Co Ltd 筒内燃料噴射式エンジン
DE19836707A1 (de) * 1998-03-04 2000-02-17 Audi Ag Direkteinspritzende Brennkraftmaschine
JP4316719B2 (ja) * 1999-03-15 2009-08-19 ヤマハ発動機株式会社 筒内噴射制御装置
JP4415497B2 (ja) * 2000-03-29 2010-02-17 マツダ株式会社 火花点火式直噴エンジン
JP3812338B2 (ja) * 2001-01-05 2006-08-23 日産自動車株式会社 筒内直接燃料噴射式火花点火エンジン
JP3722285B2 (ja) 2002-02-28 2005-11-30 ヤマハ発動機株式会社 筒内燃料噴射式内燃機関
JP4052230B2 (ja) * 2003-11-12 2008-02-27 トヨタ自動車株式会社 内燃機関のノッキング判定装置
JP4039360B2 (ja) * 2003-11-26 2008-01-30 トヨタ自動車株式会社 燃料噴射装置
JP2005201097A (ja) * 2004-01-14 2005-07-28 Toyota Motor Corp 筒内噴射式内燃機関
JP2005220887A (ja) * 2004-02-09 2005-08-18 Toyota Motor Corp 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113120A (ja) * 2011-11-25 2013-06-10 Honda Motor Co Ltd 内燃機関

Also Published As

Publication number Publication date
US20060207547A1 (en) 2006-09-21
WO2006100821A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4508011B2 (ja) 内燃機関の制御装置
JP2006258021A (ja) 内燃機関の制御装置
US7992539B2 (en) Fuel injection control device of an internal combustion engine
KR100916737B1 (ko) 내연 기관의 제어 장치
JP4543978B2 (ja) 内燃機関の制御装置
JP4428293B2 (ja) 内燃機関の制御装置
JP2006258017A (ja) 内燃機関の制御装置
JP2006258007A (ja) 内燃機関の制御装置
US20100147261A1 (en) Gasoline engine
JP2010196506A (ja) 筒内噴射式内燃機関
JP2006258012A (ja) 内燃機関
JP2015021389A (ja) 燃料噴射制御装置
JP2007032326A (ja) 内燃機関の制御装置
JP2006258023A (ja) 内燃機関の制御装置
JP2006258020A (ja) 内燃機関の制御装置
JP2007051549A (ja) 燃料噴射弁及びそれを備えた筒内噴射式エンジン
US7325525B2 (en) Piston for internal combustion engine
JP2006258008A (ja) 内燃機関
JP6077272B2 (ja) エンジン制御装置
JPH1136959A (ja) 火花点火式筒内噴射型内燃機関
JP2008175187A (ja) 筒内噴射式エンジンの燃料噴射装置
JP4506525B2 (ja) 内燃機関の制御装置
JP4415843B2 (ja) 内燃機関
JP2008202406A (ja) 内燃機関の吸気バルブ制御装置及びこの制御装置を備えた内燃機関
JP4082277B2 (ja) 筒内直噴cngエンジン

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603