JP2006241595A - Sinter, sputtering target and molding die, and production process of sintered compact - Google Patents

Sinter, sputtering target and molding die, and production process of sintered compact Download PDF

Info

Publication number
JP2006241595A
JP2006241595A JP2006024494A JP2006024494A JP2006241595A JP 2006241595 A JP2006241595 A JP 2006241595A JP 2006024494 A JP2006024494 A JP 2006024494A JP 2006024494 A JP2006024494 A JP 2006024494A JP 2006241595 A JP2006241595 A JP 2006241595A
Authority
JP
Japan
Prior art keywords
mold
sintered body
molded body
molding
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006024494A
Other languages
Japanese (ja)
Other versions
JP5778372B2 (en
Inventor
Kenichi Ito
謙一 伊藤
Masami Meshida
雅実 召田
Hitoshi Nagayama
仁士 永山
Tetsuo Shibutami
哲夫 渋田見
Toshisuke Yatsutsuha
俊祐 八ツ波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006024494A priority Critical patent/JP5778372B2/en
Publication of JP2006241595A publication Critical patent/JP2006241595A/en
Application granted granted Critical
Publication of JP5778372B2 publication Critical patent/JP5778372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a large, homogeneous sinter at low cost with high efficiency, and to provide a large sputtering target that is good in discharge properties and properties of a thin film formed therefrom. <P>SOLUTION: By using a molding die having such a structure that, at the time of pressure compression, a filled raw material powder can be pressed only in a substantially monoaxial direction and, at the time of a reduction in pressure after the completion of pressing, the pressure can be released isotropically with respect to the molded product, springback upon molding is efficiently solved, and a cold isostatic press under high molding pressure is made possible. In this way, a molded product having an excellent accuracy of shape can be directly formed using raw material powder free from an organic matter-containing binder, and a large, homogeneous sinter having a low carbon content can be efficiently produced at a high yield. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミックス粉末や金属粉末およびこれらの混合粉末を、冷間静水圧プレスを用いて成形して得た成形体を焼成して得られる焼結体、それを用いたスパッタリングターゲット及び前記成形体を製造する際に使用される成形型、並びに前記焼結体の製造方法に関する。   The present invention relates to a sintered body obtained by firing a molded body obtained by molding a ceramic powder, a metal powder, and a mixed powder thereof using a cold isostatic press, a sputtering target using the same, and the above molding The present invention relates to a mold used for manufacturing a body, and a method for manufacturing the sintered body.

セラミックス粉末や金属粉末およびこれらの混合粉末を板状に成形した成形体は、成形後、焼成、加工が施されスパッタリングターゲット材や耐摩耗材として用いることが出来る。スパッタリングターゲット材はスパッタリング法により薄膜作製の材料として用いられ、LCD(液晶ディスプレイ)、EL(エレクトロフミネセンス)や半導体の製造などで使用される。最近では、これらLCDや半導体製品の大型化に伴い、ターゲット材の大型化に対する要求が強くなっている。また、ITO(Indium Tin Oxide)ターゲットでは、積算スパッタリング時間の増加と共にターゲット表面にノジュールと呼ばれる黒色の付着物が析出し、異常放電の原因となる。この異常放電が発生すると製品の歩留まりが低下することが知られており、異常放電を減少するためターゲット材の高性能化が強く要求されている。そのため、大型でかつ高密度の焼結体が強く要求されている。   A molded body obtained by molding a ceramic powder, a metal powder, or a mixed powder thereof into a plate shape is fired and processed after molding, and can be used as a sputtering target material or an abrasion resistant material. The sputtering target material is used as a material for forming a thin film by a sputtering method, and is used in the manufacture of LCD (liquid crystal display), EL (electro-humetics), semiconductors, and the like. Recently, with the increase in size of these LCDs and semiconductor products, the demand for increasing the size of the target material has increased. In addition, in an ITO (Indium Tin Oxide) target, black deposits called nodules are deposited on the target surface as the integrated sputtering time increases, causing abnormal discharge. It is known that the yield of products decreases when this abnormal discharge occurs, and there is a strong demand for higher performance of the target material in order to reduce abnormal discharge. Therefore, a large and high density sintered body is strongly required.

異常放電の発生およびノジュール生成の抑制に関しては、従来よりターゲット材の高密度化やスパッタ面の平滑化等の種々の検討がなされている。特許文献1には、ITOターゲットにおいては、ターゲット中に含まれるAl、Si等の周期律表IIIb族およびIVb族に属する元素を50ppm以下にすることが開示されているが、炭素の影響については、具体的には何ら言及されていない。また、ターゲット中の炭素の影響に関しては、特許文献2に、ITOターゲットにおいて、炭素、窒素、ホウ素のいずれかを添加することにより、得られる透明導電膜のエッチング速度の向上と安定化が得られること、炭素含有量は0.005〜3%、窒素含有量は0.1〜5%、ホウ素含有量は0.001〜10%が好ましいことが記載されている。   Conventionally, various studies have been made on the generation of abnormal discharge and the suppression of nodule generation, such as increasing the density of the target material and smoothing the sputtering surface. Patent Document 1 discloses that in an ITO target, elements belonging to groups IIIb and IVb of the periodic table such as Al and Si contained in the target are set to 50 ppm or less. No specific mention is made. In addition, regarding the influence of carbon in the target, in Patent Document 2, by adding any one of carbon, nitrogen, and boron to the ITO target, the etching rate of the transparent conductive film obtained can be improved and stabilized. The carbon content is preferably 0.005 to 3%, the nitrogen content is preferably 0.1 to 5%, and the boron content is preferably 0.001 to 10%.

一方、従来から、セラミックス粉末や金属粉末およびこれらの混合粉末を板状に成形する方法として、乾式プレス成形法、鋳込み成形法または冷間静水圧プレス法が用いられている。   On the other hand, a dry press molding method, a casting molding method, or a cold isostatic pressing method has been conventionally used as a method for molding ceramic powder, metal powder, and a mixed powder thereof into a plate shape.

乾式プレス成形法は、原料粉末にバインダーを加え、金型を用いて成形体を成形する方法であり、鋳込み成形法は原料粉末にバインダーを加え、スラリー化し、鋳込み用成形型に流し込み成形体を製造する方法である。これらの成形体(一次成形体)は高密度化を図るため、さらに冷間静水圧プレスを施して高密度の二次成形体を製造する場合もある。例として、金属インジウムおよび金属スズからなる合金ターゲット(ITターゲット)、或いは酸化インジウムと酸化スズからなる複合酸化物ターゲット(ITOターゲット)の製造が挙げられる(例えば、特許文献3、4参照)。これらの成形方法は、高密度のターゲットが得られるものの製造プロセスが複雑になる欠点があった。また、高価な乾式成形用のダイスや、鋳込み用鋳型が必要であり、大型の成形体を作製する場合には成形型コストが高くなるという欠点があった。さらに、原料粉末の造粒やスラリー化が必要となるため製造コストが高くなる欠点があった。   The dry press molding method is a method in which a binder is added to the raw material powder, and a molded body is molded using a mold. The casting molding method is a method in which the binder is added to the raw material powder to form a slurry, which is then poured into a casting mold. It is a manufacturing method. In order to increase the density of these molded bodies (primary molded bodies), a cold isostatic press may be further performed to produce a high-density secondary molded body. Examples include production of an alloy target (IT target) made of metal indium and metal tin, or a composite oxide target (ITO target) made of indium oxide and tin oxide (for example, see Patent Documents 3 and 4). These molding methods have a drawback that the manufacturing process is complicated although a high-density target can be obtained. Further, expensive dry forming dies and casting molds are required, and there is a drawback that the cost of the mold is increased when a large-sized molded body is produced. Further, since the raw material powder needs to be granulated or slurried, there is a drawback that the manufacturing cost is increased.

このような製造方法に対して、特許文献5には、1次成形なしに安価なゴム型に粉末を充填して、冷間静水圧プレスにて直接高圧成形する方法が開示されている。また、特許文献6では、ゴム型の復元による成形体の割れに関して、反発弾性値の小さいゴムを用いて、成形体の割れを防止する方法が提案されている。さらに、ゴム型への成形体の固着による成形体の割れに関して、特許文献7には、減圧時にほとんど弾性回復しない物質を介在させることで割れの解消が出来ることが報告されている。   In contrast to such a manufacturing method, Patent Document 5 discloses a method in which an inexpensive rubber mold is filled with powder without primary molding, and directly subjected to high pressure molding using a cold isostatic press. Further, Patent Document 6 proposes a method for preventing cracking of a molded body by using a rubber having a small rebound resilience value regarding cracking of the molded body due to restoration of a rubber mold. Furthermore, regarding cracking of the molded body due to the fixing of the molded body to the rubber mold, Patent Document 7 reports that the crack can be eliminated by interposing a substance that hardly recovers at the time of decompression.

また、前出の特許文献5では、形状精度の改善のために、片面を金属板で構成した型を用いて、冷間静水圧プレスにて直接高圧成形する方法を提案している。冷間静水圧プレスを用いて、さらに形状精度の良い成形体を得る方法として、特許文献8には、粉末を2枚の金属板で挟み、真空パックした後、5〜50MPaの圧力で冷間静水圧プレスで予備成形した後、再度真空パックを施し冷間静水圧プレスで本成形を行なう方法が報告されている。さらに、特許文献9では、原料粉末を充填した金型を密閉封入して冷間静水圧プレスに挿入して高圧成形する方法が提案されている。特許文献10では、樹脂製の組立式型枠及び成形パンチからなる型を用いて、冷間静水圧プレスで成形する方法が提案されている。この方法では型枠が分解できることから、型から成形体を取り出すことが容易になる。特許文献11には分割式の型枠と弾性材料の蓋からなる成形型が提案されている。特許文献12には分割式の型枠および成形パンチからなる成形型を軟質材で覆い、CIP成形することが提案されている。   Moreover, in the above-mentioned patent document 5, in order to improve the shape accuracy, a method is proposed in which a high pressure forming is directly performed by a cold isostatic press using a mold having one side made of a metal plate. As a method for obtaining a molded product with better shape accuracy using a cold isostatic press, Patent Document 8 discloses that a powder is sandwiched between two metal plates, vacuum packed, and then cold-treated at a pressure of 5 to 50 MPa. It has been reported that after preforming with an isostatic press, a vacuum pack is applied again and the main forming is performed with a cold isostatic press. Furthermore, Patent Document 9 proposes a method in which a metal mold filled with raw material powder is hermetically sealed and inserted into a cold isostatic press to perform high pressure molding. Patent Document 10 proposes a method of forming by a cold isostatic press using a mold including a resin assembling mold and a forming punch. Since the mold can be disassembled by this method, it becomes easy to take out the molded body from the mold. Patent Document 11 proposes a mold comprising a split mold and an elastic material lid. Patent Document 12 proposes to cover a molding die composed of a split mold and a molding punch with a soft material and perform CIP molding.

一方、成形体の大きさが大きくなると成形体を保持するためにその強度を高める必要がある。しかし、例えば3000cmの面を持つ大きな成形体を作製する場合、プレス成形では大きな圧力がかけられず成形体の強度を高める事ができない。そこで強度を高めるためにバインダー等の成形助剤を添加することが必要となる。そうすると焼成時に成形体中の有機物の除去を目的とした焼成工程(脱脂工程)が必要となる。バインダー等の成形助剤が燃焼、分解する際には成形体にクラックが入りやすく、割れを生じないようにするためには極めて低速度で昇温する必要があり、多大な時間を要する。例えば、特許文献13には大きさ1000cm以上の板状の焼結体を作成する場合でも歩留まりよく作製するためには2℃/hr以下の極めて低速度で昇温を行う必要があることが開示されている。 On the other hand, when the size of the molded body increases, it is necessary to increase the strength in order to hold the molded body. However, for example, when producing a large molded body having a surface of 3000 cm 2, a large pressure cannot be applied in press molding, and the strength of the molded body cannot be increased. Therefore, it is necessary to add a molding aid such as a binder in order to increase the strength. If it does so, the baking process (degreasing process) aiming at the removal of the organic substance in a molded object at the time of baking will be needed. When a molding aid such as a binder burns and decomposes, the molded body is likely to crack, and it is necessary to raise the temperature at an extremely low speed in order to prevent the crack from occurring, and it takes a lot of time. For example, in Patent Document 13, it is necessary to raise the temperature at an extremely low rate of 2 ° C./hr or less in order to produce a plate-like sintered body having a size of 1000 cm 2 or more with good yield. It is disclosed.

また、ターゲットの使用効率を高めるために、特許文献14にはターゲットのエロージョン領域を他の部分よりも厚くすることが開示されている。   Further, in order to increase the use efficiency of the target, Patent Document 14 discloses that the erosion region of the target is made thicker than other portions.

特開平08−246139号公報Japanese Patent Laid-Open No. 08-246139 特開平07−187769号公報Japanese Unexamined Patent Publication No. 07-187769 特開2000−144393号公報JP 2000-144393 A 特開平05−311428号公報Japanese Patent Laid-Open No. 05-311428 特開2003−003257号公報JP 2003-003257 A 特開平09−057495号公報JP 09-057495 A 特開平06−100903号公報Japanese Patent Laid-Open No. 06-100903 特開平09−003636号公報JP 09-003636 A 特開平05−287315号公報JP 05-287315 A 特公平08−009120号公報Japanese Patent Publication No. 08-009120 特開昭61−266204号公報JP-A-61-266204 特開2003−266198号公報JP 2003-266198 A 特開平10−330169号公報JP 10-330169 A 特開平01−290764号公報JP-A-01-290764

上記のように、スパッタリングターゲットに用いる焼結体中の不純物については、特許文献1では周期律表のIIIb族およびIVb族に属する元素の量を50ppm以下にすることで異常放電の発生やノジュールの生成を抑制することが開示されているが、IVb族に属する元素である炭素の影響については何ら具体的な開示はなされていない。この特許文献1では有機物を含むバインダー等の成形助剤を用いて成形体を作製しているが、そのような場合には、通常、焼結のための本焼成の前に、添加した有機物を取り除くため300〜600℃程度の温度で脱脂処理を行っている。しかし、このような脱脂処理では焼結体中の有機物を完全に除去することは極めて困難であり、有機物が分解して生じた炭素が成形体中に残留してしまう。実際に、バインダーを1重量%以上添加した場合には、得られる焼結体中の炭素含有量を50ppm以下にすることは困難である。さらに、成形体の厚みが厚いほど脱脂が不完全になり易く、焼結体中に残留する炭素が多くなる。   As described above, with regard to impurities in the sintered body used for the sputtering target, in Patent Document 1, the occurrence of abnormal discharge or nodule generation can be achieved by setting the amount of elements belonging to Group IIIb and IVb of the periodic table to 50 ppm or less. Although suppression of production is disclosed, no specific disclosure is made about the influence of carbon, which is an element belonging to the group IVb. In this Patent Document 1, a molded body is produced using a molding aid such as a binder containing an organic substance. In such a case, the organic substance added is usually added before the main firing for sintering. In order to remove, degreasing is performed at a temperature of about 300 to 600 ° C. However, it is extremely difficult to completely remove the organic matter in the sintered body by such degreasing treatment, and carbon generated by the decomposition of the organic matter remains in the compact. Actually, when 1% by weight or more of the binder is added, it is difficult to make the carbon content in the obtained sintered body 50 ppm or less. Furthermore, degreasing tends to be incomplete as the thickness of the molded body increases, and more carbon remains in the sintered body.

また、特許文献2に開示されているように、ITOターゲットの場合には炭素含有量が多いと、得られる薄膜のエッチング速度が早くなるため、ターゲットの品質を一定に保ち、適切なエッチング速度を維持するためには焼結体中の炭素含有量を管理する必要がある。   In addition, as disclosed in Patent Document 2, in the case of an ITO target, if the carbon content is large, the etching rate of the obtained thin film becomes faster, so the quality of the target is kept constant, and an appropriate etching rate is set. In order to maintain, it is necessary to control the carbon content in the sintered body.

一方、冷間静水圧プレスによる成形方法に関しては、前述のように、特許文献5には1次成形なしに安価なゴム型に粉末を充填して、冷間静水圧プレスにて直接高圧成形する方法が開示されている。しかし、このような方法で成形する場合、肉厚のゴム型で構成されているために、加圧時には、曲げ応力が発生して中央部が大きく変形する。このため、得られる成形体は面方向における中央部の厚みが端部よりも薄くなり、形状精度の悪い成形体しか得られない。さらに、この方法では、加圧成形後の減圧過程でゴム型は自身の弾性による復元力により、最終的に加圧前の状態にまで復元するが、成形体は収縮したままであるために、成形体とゴム型の固着などにより、成形体の一部が剥がれたり、あるいは成形体が割れる欠点がある。   On the other hand, regarding the molding method by cold isostatic pressing, as described above, in Patent Document 5, powder is filled in an inexpensive rubber mold without primary molding, and high pressure molding is directly performed by cold isostatic pressing. A method is disclosed. However, when molding by such a method, since it is constituted by a thick rubber mold, a bending stress is generated at the time of pressurization and the central portion is greatly deformed. For this reason, as for the obtained molded object, the thickness of the center part in a surface direction becomes thinner than an edge part, and only a molded object with bad shape accuracy is obtained. Furthermore, in this method, the rubber mold is finally restored to the state before pressurization by the restoring force of its own elasticity in the decompression process after press molding, but the molded body remains contracted. There is a defect that a part of the molded body is peeled off or the molded body is cracked due to adhesion between the molded body and the rubber mold.

特許文献6には、このゴム型の復元による成形体の割れに対して、反発弾性値の小さいゴム型を用いて、成形体の割れを防止する方法が提案されている。しかし、この方法は粉末の種類(成形体の強度)によって、あるいは成形体が大型化した場合には、粉末がゴム型に少しでも固着すると成形体のスプリングバックにより成形体が割れる欠点がある。したがって、大型で強度が低い成形体を製造する場合には、必ずしも十分な対策ではない。また、ゴム型と接している部分は依然として形状精度が悪いものである。   Patent Document 6 proposes a method for preventing cracking of a molded body by using a rubber mold having a small rebound resilience value against cracking of the molded body due to the restoration of the rubber mold. However, this method has a drawback in that when the powder is fixed to the rubber mold even if a small amount of the powder adheres to the rubber mold depending on the type of powder (strength of the molded body), the molded body is broken by the spring back of the molded body. Therefore, it is not always a sufficient measure when manufacturing a large and low-strength molded body. Further, the portion in contact with the rubber mold still has poor shape accuracy.

ゴム型への成形体の固着による成形体の割れに関して、特許文献7には、減圧時にほとんど弾性回復しない物質を介在させることで割れの解消が出来ることが報告されている。しかしながら、この方法でも形状精度は依然悪く、所望の製品形状に仕上げるため、研削量が増加し、その結果、必要となる原料粉末量が増加し、製造コストが高くなるという欠点がある。さらに、研削量が増えることで、研削に必要な加工時間も長くなり、加工費用も増加する欠点がある。高価な原材料を多く必要とする製品の場合、形状精度の良い成形体を得ることはコスト的にも非常に重要である。   Regarding cracking of a molded body due to fixing of the molded body to a rubber mold, Patent Document 7 reports that the crack can be eliminated by interposing a substance that hardly recovers elastically at the time of decompression. However, even in this method, the shape accuracy is still poor, and a grinding amount is increased to finish a desired product shape. As a result, a necessary amount of raw material powder is increased, resulting in an increase in manufacturing cost. Furthermore, the increase in the amount of grinding has the disadvantage that the processing time required for grinding becomes longer and the processing cost also increases. In the case of a product that requires a large amount of expensive raw materials, it is very important in terms of cost to obtain a molded body with good shape accuracy.

形状精度の改善のためには、特許文献5では片面を金属板で構成した型を用いて、冷間静水圧プレスにより直接高圧成形する方法が提案されているが、この方法においても、ゴムで構成された面は依然形状精度が悪く、さらに、前記したように、ゴム型と成形体の弾性回復の違いにより、割れや剥離が発生する欠点がある。   In order to improve the shape accuracy, Patent Document 5 proposes a method in which a high pressure molding is directly performed by a cold isostatic press using a mold having a metal plate on one side. The formed surface still has poor shape accuracy, and as described above, there is a drawback that cracking and peeling occur due to the difference in elastic recovery between the rubber mold and the molded body.

冷間静水圧プレスを用い、さらに形状精度の良い成形方法として、特許文献8には、粉末を2枚の金属板で挟み、真空パックした後、5〜50MPaの圧力で冷間静水圧プレスで予備成形した後、再度真空パックを施し冷間静水圧プレスで本成形を行なう方法が報告されている。しかし、この方法では予備成形と本成形と2回の成形が必要であり、従来の2段成形処理における1次成形を省略して工程を簡素化する効果はない。さらに、高価な静水圧プレス装置を2回使う必要があり生産性でも劣っている。   As a molding method having a better shape accuracy using a cold isostatic press, Patent Document 8 describes that a powder is sandwiched between two metal plates, vacuum packed, and then subjected to a cold isostatic press at a pressure of 5 to 50 MPa. A method has been reported in which after pre-molding, a vacuum pack is applied again and main molding is performed by a cold isostatic press. However, this method requires preliminary molding, main molding, and two moldings, and there is no effect of simplifying the process by omitting the primary molding in the conventional two-stage molding process. Furthermore, it is necessary to use an expensive hydrostatic press twice, and the productivity is also inferior.

特許文献9には、原料粉末を充填した金型を密閉封入して冷間静水圧プレスに挿入して高圧成形する方法が提案されている。この方法は、基本的に1軸プレスであり、形状精度の優れた成形体が得られるが、このような1軸プレスと同様の型を用いた場合、冷間静水圧プレスの様な高い圧力で成形される場合には、成形圧力が抜けた後の成形体のスプリングバックが大きくなる。したがって、スプリングバックによる成形体の膨張のため、成形体を型から取り出すのが難しくなるという欠点がある。特に、大型の成形や嵩高い粉末の成形の場合、スプリングバックがさらに大きくなるために、脱型の際に成形体が割れてしまう問題がある。   Patent Document 9 proposes a method in which a metal mold filled with raw material powder is hermetically sealed and inserted into a cold isostatic press to perform high pressure molding. This method is basically a uniaxial press, and a molded body with excellent shape accuracy can be obtained. However, when a mold similar to such a uniaxial press is used, a high pressure like a cold isostatic press is used. In the case of molding with, the spring back of the molded body after the molding pressure is released becomes large. Therefore, there is a drawback that it becomes difficult to take out the molded body from the mold due to the expansion of the molded body due to the spring back. In particular, in the case of large-scale molding or bulky powder molding, the springback is further increased, and thus there is a problem that the molded body is cracked during demolding.

このような問題に対して、特許文献10では、樹脂製の組立式型枠及び成形パンチからなる型を用いて、冷間静水圧プレスで成形する方法が提案されている。型枠が分解できることから、型から成形体を取り出すことが容易になる。しかしながら、この方法でもスプリングバックの完全な解消には至っておらず、減圧後、スプリングバックによる成形体の膨張のため、成形体と枠との間に応力がかかり、これによって成形体が割れる欠点がある。特に、ターゲットのような大型の成形体の場合には、スプリングバックが大きくなり、成形体と枠との間に大きな応力が発生して、その応力に成形体が耐えられずに割れるという問題がある。   In order to solve such a problem, Patent Document 10 proposes a method of forming by a cold isostatic press using a mold including a resin-made assembly form and a forming punch. Since the mold can be disassembled, it becomes easy to take out the molded body from the mold. However, even with this method, the springback has not been completely eliminated, and after the decompression, the molded body is expanded by the springback, so that a stress is applied between the molded body and the frame, which causes the molded body to break. is there. In particular, in the case of a large molded body such as a target, there is a problem that the spring back becomes large and a large stress is generated between the molded body and the frame, and the molded body can not withstand the stress and breaks. is there.

さらに、特許文献11には分割式の型枠と弾性材料の蓋からなる成形型が提案されている。この方法では分割型により、圧力伝達の方向に垂直な方向のスプリングバックによる成形体の膨張を吸収する構造となっているものの、静水圧による成形体への加圧は弾性材料である蓋を介して行われている。そのため、加圧成形後の減圧過程では、弾性材料である蓋が自身の弾性による復元力により加圧前の状態にまで復元することにより、圧力伝達の方向とその垂直な方向で成形体にかかる圧力が異なることとなる。特に成形体が大型化した場合には、これにより大きな不均一な力が成形体に働き成形体が割れる欠点がある。また、弾性材料である蓋による加圧では加圧時に成形体に加わる力が不均一になり易く、割れ易いばかりでなく、弾性体と接する面が不均一な形状となり、形状精度が悪いという欠点がある。   Further, Patent Document 11 proposes a mold comprising a split mold and an elastic material lid. In this method, the split mold is used to absorb the expansion of the molded body due to the spring back in the direction perpendicular to the direction of pressure transmission. However, the hydrostatic pressure is applied to the molded body through a lid that is an elastic material. Has been done. Therefore, in the decompression process after pressure molding, the lid, which is an elastic material, is restored to its pre-pressurization state due to its own restoring force, so that it is applied to the molded body in the direction of pressure transmission and the direction perpendicular thereto. The pressure will be different. In particular, when the molded body is enlarged, there is a disadvantage that a large non-uniform force acts on the molded body and the molded body breaks. In addition, the pressure applied by the lid, which is an elastic material, tends to cause the force applied to the molded body to be non-uniform and easily break, and the surface in contact with the elastic body has a non-uniform shape, resulting in poor shape accuracy. There is.

特許文献12には分割式の型枠および成形パンチからなる成形型を軟質材で覆い、CIP成形することが提案されている。この方法では、型枠が少なくとも二つ以上に分割され、かつ、固定されていないため、スプリングバックによる成形体の割れを避けることが可能となる。しかしながら、枠同士が固定されていないため、型全体の安定性に乏しく、型の形状を保持するために成形型をゴム媒体で覆う必要がある。この場合、高圧加圧成形後の減圧過程でゴム媒体は自身の弾性による復元力により加圧前の状態にまで復元するが、成形型の上パンチは収縮した成形体の位置に留まる。また分割された側壁はスプリングバックにより膨張した位置に移動することとなる。そのため、上パンチとゴム媒体の間には大きな空間が生じるが、側壁とゴム媒体の間には成形体が膨張しているため空間はなく、その結果、上下方向と側面方向の成形体にかかる圧力が異なることとなる。そのため、特に成形体が大型化した場合には大きな不均一な力が成形体に働き成形体が割れる欠点がある。また、側壁が上下パンチを加圧する構造となっているため、上下のパンチの摺動性が悪く、均一な加圧ができず成形体が割れるという欠点がある。加えて、型の隙間から充填粉末の洩れが発生し、部分的に充填粉末量が少なくなるため、成形体に密度むらができる。これらの現象は成形体のサイズが大きくなるほど顕著になる。   Patent Document 12 proposes to cover a molding die composed of a split mold and a molding punch with a soft material and perform CIP molding. In this method, since the mold is divided into at least two and is not fixed, it is possible to avoid cracking of the molded body due to the springback. However, since the frames are not fixed, the stability of the entire mold is poor, and it is necessary to cover the mold with a rubber medium in order to maintain the shape of the mold. In this case, the rubber medium is restored to its pre-pressurized state by a restoring force due to its own elasticity in the decompression process after the high-pressure press molding, but the upper punch of the mold remains in the contracted molded body position. The divided side walls are moved to the expanded position by the springback. Therefore, a large space is generated between the upper punch and the rubber medium, but there is no space between the side wall and the rubber medium because the molded body is inflated. The pressure will be different. For this reason, there is a drawback that a large non-uniform force acts on the molded body and breaks the molded body, especially when the molded body is enlarged. In addition, since the side walls are structured to press the upper and lower punches, the slidability of the upper and lower punches is poor, and there is a drawback that uniform pressing cannot be performed and the molded body breaks. In addition, leakage of the filling powder occurs from the gap between the molds, and the amount of the filling powder is partially reduced. These phenomena become more prominent as the size of the molded body increases.

一方、特許文献14ではターゲットのエロージョン領域を厚くすることでターゲットの使用効率を高めているが、このような形状で大型の焼結体を冷間静水圧プレスで形成する場合、加圧終了後の減圧時に焼結体の凸部がスプリングバックにより膨張するために割れが生じてしまうという問題がある。   On the other hand, in Patent Document 14, the use efficiency of the target is increased by increasing the erosion region of the target. However, when a large sintered body having such a shape is formed by cold isostatic pressing, after pressurization is completed. There is a problem that cracks occur because the convex portion of the sintered body expands due to the spring back when the pressure is reduced.

上記のように、スパッタリングターゲットのターゲット材として、大型でかつ高密度であり、また、不純物含有量の少ない焼結体が求められている。さらに、焼結体の形状も、平板形状の焼結体だけでなく、ターゲットの使用効率の向上のため、エロージョン領域の厚さを厚くした焼結体であって、大型でかつ高密度であり、不純物含有量の少ない焼結体が求められている。   As described above, a sintered body having a large size and a high density and having a small impurity content is required as a target material for a sputtering target. Furthermore, the shape of the sintered body is not only a flat plate-shaped sintered body, but also a sintered body with a thick erosion region for the purpose of improving the efficiency of use of the target. Therefore, a sintered body with a low impurity content is required.

大型の焼結体を製造するための大型の成形体の作製では、高い圧縮圧力を得るために冷間静水圧プレスにより加圧成形することが好ましいが、前述のように、成形終了後の減圧の際に、成形体に生じるスプリングバックにより成形体が割れてしまうという問題がある。このスプリングバックは成形体が大型であるほど大きく、また、成形体が均質でない場合にその影響をより強く受けることになる。したがって、原料粉末の流動性を向上させて均一に充填するために原料粉末に有機質の添加物を加えて造粒したり、成形体の相対的な強度の低下を補うためにバインダー等の成形助剤を原料粉末に添加することが行われている。しかし、そのような原料粉末を用いて作製した成形体では、バインダー等の成形助剤の有機質の添加物を加熱により除去する脱脂工程が必要であり、焼結体の製造に時間がかかるばかりでなく、得られる焼結体の密度の低下やその不均一性の増大、さらに、除去しきれない炭素が焼結体中に不純物として残留するという問題がある。   In the production of a large molded body for producing a large sintered body, it is preferable to perform pressure molding by a cold isostatic press in order to obtain a high compression pressure. In this case, there is a problem that the molded body is broken by the spring back generated in the molded body. This springback is larger as the molded body is larger, and is more strongly affected when the molded body is not homogeneous. Therefore, in order to improve the fluidity of the raw material powder and uniformly fill it, granulation is performed by adding an organic additive to the raw material powder, and in order to compensate for the decrease in the relative strength of the molded product, An agent is added to the raw material powder. However, in a molded body produced using such raw material powder, a degreasing process for removing organic additives such as binders and the like by heating is necessary, and it takes time to produce a sintered body. However, there is a problem that the density of the obtained sintered body is reduced and the non-uniformity thereof is increased, and carbon that cannot be removed remains as an impurity in the sintered body.

本発明は、厚さ10mm以上の厚い焼結体や、板面の面積が600cm以上あるいは1000cm以上さらには3000cm以上の大型で高密度の焼結体、及び大型で高密度のエロージョン領域の厚さを厚くした焼結体等を、バインダー等の成形助剤を原料粉末に添加することなく、あるいは、添加するとしても極少量に留めることができ、したがって、焼結体の製造において成形体中の有機物の除去を目的とした焼成工程が不要であり、かつ、簡便な方法で、割れやクラックが発生せず、しかも優れた形状精度で作製することが可能な焼結体の製造方法、並びに、それに使用される成形型を提供すると共に、大型で高密度の焼結体及びそれを用いた大型で高性能なスパッタリングターゲットを提供しようとするものである。 The present invention relates to a thick sintered body having a thickness of 10 mm or more, a large and high-density sintered body having an area of a plate surface of 600 cm 2 or more, or 1000 cm 2 or more, further 3000 cm 2 or more, and a large and high-density erosion region. Sintered bodies with increased thickness can be kept to a very small amount without adding a forming aid such as a binder to the raw material powder, or even if added, and therefore molded in the production of sintered bodies. A method for producing a sintered body that does not require a firing step for the purpose of removing organic substances in the body and that can be produced with a simple method without cracks or cracks and with excellent shape accuracy In addition to providing a molding die used therefor, a large and high-density sintered body and a large and high-performance sputtering target using the same are provided.

本発明者らは、スパッタリングターゲットに用いられる焼結体とスパッタリング特性について、鋭意検討を重ねた結果、構成元素として炭素を含まない焼結体において、焼結体中に不純物として含まれる炭素の含有量が0.005重量%未満であるとスパッタリングにおける放電特性や得られる薄膜特性が良好となることを見出し、本発明を完成するに至った。   As a result of intensive studies on the sintered body used for the sputtering target and the sputtering characteristics, the present inventors have found that the sintered body containing no carbon as a constituent element contains carbon contained as an impurity in the sintered body. It has been found that when the amount is less than 0.005% by weight, the discharge characteristics in sputtering and the obtained thin film characteristics are improved, and the present invention has been completed.

さらに、焼成により焼結体となる成形体の製造方法として、成形型内に原料粉末を充填し圧縮成形して成形体を製造する際に使用する成形型について、鋭意検討を重ねた結果、成形型を構成する部材の構造および材質を工夫することにより、加圧圧縮時には充填した原料粉末に対して実質的に1軸方向からのみ加圧し、加圧終了後の減圧時には、成形体に対して実質的に等方的に圧力を開放可能な構造とすることで、成形体の形状精度を向上させると共に、成形する際に発生するスプリングバックによる応力を解消して成形体の割れを防止可能な方法を見出し、本発明を完成するに至った。   Furthermore, as a method of manufacturing a molded body that becomes a sintered body by firing, as a result of earnest investigation on the mold used when manufacturing the molded body by filling the raw material powder in the mold and compression molding, molding By devising the structure and material of the members that make up the mold, the material powder that is filled is pressurized substantially only from one axial direction at the time of pressure and compression, and at the time of decompression after the pressurization, By making the structure capable of releasing pressure substantially isotropically, the shape accuracy of the molded body can be improved, and the stress caused by the springback that occurs during molding can be eliminated to prevent cracking of the molded body. The method has been found and the present invention has been completed.

すなわち、本発明の焼結体の第1の態様は、構成元素として炭素を含まない焼結体であって、焼結体中に不純物として含まれる炭素の含有量が0.005重量%以下であることを特徴とする焼結体である。なお、本発明の焼結体はその厚さを10mm以上とすることが可能であり、また、焼結体の表面を構成する少なくとも1つの平面の面積を600cm以上あるいは1000cm以上さらには3000cm以上とすることが可能である。該焼結体は、例えば単純な平板状の焼結体のように、焼結体の上面及び下面が各々1つの平面で構成されている焼結体であってもよい。また、例えば板面に凸部を設けることで特定部分の厚さを厚くした板状の焼結体のように、焼結体の上面及び下面の少なくとも1方の面に、少なくとも1つの凸部を有する焼結体であっても良い。さらに、該焼結体は、焼結体全体の焼結密度が90%以上であることが好ましく、焼結体内の焼結密度の変動が0.2%以下、すなわち、焼結密度の最も大きい部分と最も小さい部分の焼結密度の差が0.2%以下であることがさらに好ましい。 That is, the first aspect of the sintered body of the present invention is a sintered body that does not contain carbon as a constituent element, and the content of carbon contained as an impurity in the sintered body is 0.005% by weight or less. It is a sintered body characterized by being. The sintered body of the present invention can have a thickness of 10 mm or more, and the area of at least one plane constituting the surface of the sintered body is 600 cm 2 or more, 1000 cm 2 or more, and further 3000 cm. It can be 2 or more. The sintered body may be a sintered body in which the upper surface and the lower surface of the sintered body are each composed of one flat surface, such as a simple flat plate-shaped sintered body. Further, for example, at least one convex portion is provided on at least one of the upper surface and the lower surface of the sintered body, such as a plate-like sintered body in which the thickness of the specific portion is increased by providing the convex portion on the plate surface. It may be a sintered body having Further, the sintered body preferably has a sintered density of 90% or more of the entire sintered body, and the fluctuation of the sintered density in the sintered body is 0.2% or less, that is, the highest sintered density. More preferably, the difference in the sintered density between the portion and the smallest portion is 0.2% or less.

本発明の焼結体の第2の態様は、焼結体の表面を構成する面の最も広い面の面積が1000cm以上、好ましくは、3000cm以上であり、かつ、焼結体全体の焼結密度が90%以上であることを特徴とする焼結体である。該焼結体は、焼結体内の焼結密度の変動が0.2%以下、すなわち、焼結密度の最も大きい部分と最も小さい部分の焼結密度の差が0.2%以下であることが好ましい。また、該焼結体は、形状が略直方体の焼結体であって、最も長い稜と最も短い稜の長さの比が40以上であってもよく、焼結体の上面及び下面の少なくとも1方の面に、少なくとも1つの凸部を有するものであってもよい。 In the second aspect of the sintered body of the present invention, the area of the widest surface constituting the surface of the sintered body is 1000 cm 2 or more, preferably 3000 cm 2 or more, and the entire sintered body is sintered. The sintered body is characterized in that the consolidation density is 90% or more. The sintered body has a fluctuation of the sintered density within the sintered body of 0.2% or less, that is, the difference between the sintered density of the largest sintered density portion and the smallest sintered portion is 0.2% or less. Is preferred. Further, the sintered body may be a sintered body having a substantially rectangular parallelepiped shape, and the ratio of the length of the longest ridge to the shortest ridge may be 40 or more. One surface may have at least one convex portion.

また、本発明のスパッタリングターゲットは、上記の焼結体をターゲット材として用いたことを特徴とするスパッタリングターゲットである。   The sputtering target of the present invention is a sputtering target characterized by using the above sintered body as a target material.

本発明の成形型は、成形型内に原料粉末を充填し圧縮して成形体を製造するための成形型であって、加圧圧縮時には充填した原料粉末に対して実質的に1軸方向からのみ加圧し、加圧終了後の減圧時には成形体に対して実質的に等方的に圧力を開放可能な構造を有していることを特徴とする圧縮成形用成形型である。なお、成形体の板面を水平にした状態で成形を行う場合、成形体の自重や、上パンチの重量による力が成形体に作用するが、本発明の成形体では、成形体の板面の面積が大きいため、これらの力による圧力は無視することができる。   The molding die of the present invention is a molding die for filling a raw material powder in a molding die and compressing it to produce a molded body, and is substantially uniaxially with respect to the filled raw material powder during pressure compression. It is a compression molding die characterized by having a structure in which only the pressure is applied and the pressure can be released substantially isotropically when the pressure is reduced after the pressurization is completed. When molding is performed with the plate surface of the molded body being horizontal, the weight of the molded body and the force due to the weight of the upper punch act on the molded body. However, in the molded body of the present invention, the plate surface of the molded body Because of the large area, the pressure due to these forces can be ignored.

本発明の成形型を具現化する第1の態様は、成形型内に充填した原料粉末を、冷間静水圧プレスにより成形して成形体を製造するための成形型であって、複数の型枠部材からなる組立式型枠、該組立式型枠の内面に沿って移動可能に設けられた上パンチおよび前記組立式型枠に接して設けられた底板を備えるとともに、加圧終了後の減圧時に生じる成形体の膨張に併せて、前記組立式型枠を構成する型枠部材が移動可能な構造を有していることを特徴とする冷間静水圧プレス用成形型である。なお、前記底板は前記組立式型枠の内面に沿って移動することができないように構成されていることが好ましい。また、前記底板は上パンチよりも圧縮変形の少ない材料により構成されていることが好ましく、特に、底板が金属製であり、上パンチが樹脂製であることがさらに好ましい。   A first mode for embodying a molding die of the present invention is a molding die for producing a molded body by molding a raw material powder filled in a molding die by cold isostatic pressing, wherein a plurality of dies are used. An assembly type mold made of a frame member, an upper punch provided movably along the inner surface of the assembly type form, and a bottom plate provided in contact with the assembly type form, and a pressure reduction after completion of pressurization A mold for cold isostatic pressing characterized by having a structure in which a mold member constituting the assembly mold can be moved in accordance with the expansion of the molded article sometimes occurring. In addition, it is preferable that the said baseplate is comprised so that it cannot move along the inner surface of the said assembly-type formwork. Moreover, it is preferable that the said baseplate is comprised with the material with less compression deformation than an upper punch, and it is especially more preferable that a baseplate is metal and an upper punch is resin.

さらに、本発明の上記成形型では、組立式型枠を構成する型枠部材の少なくとも一部が、隣接する型枠部材の端部と係合し、成形時の加圧下において、組立式型枠が形成する原料粉末充填室の開口形状が所定の大きさ以下にならないように制限する構造を、その端部に有していることが好ましい。なお、本発明においては、原料粉末充填室は組立式型枠の内面、上パンチの底面及び底板(又は下パンチ)の上面により構成される空間を意味するが、この原料粉末充填室の上パンチの底面に平行な面での断面形状を原料粉末充填室の開口形状又は組立式型枠の開口形状と称する。   Furthermore, in the above-described mold according to the present invention, at least a part of the mold member constituting the assembly mold is engaged with the end of the adjacent mold member, and the assembly mold is under pressure during molding. It is preferable to have a structure that restricts the opening shape of the raw material powder filling chamber formed at the end portion so as not to be a predetermined size or less. In the present invention, the raw material powder filling chamber means a space constituted by the inner surface of the assembly mold, the bottom surface of the upper punch, and the upper surface of the bottom plate (or the lower punch). The cross-sectional shape in a plane parallel to the bottom surface is referred to as the opening shape of the raw material powder filling chamber or the opening shape of the assembly mold.

また、底板及び上パンチの原料粉末に接する面は各々1つの平面で構成されていても良く、また、底板が互いに移動可能な複数の底板構成部材からなり、かつ、前記底板の原料粉末に接する面に少なくとも1つの凹部を有するものであっても良い。同様に、上パンチが互いに移動可能な複数の上パンチ構成部材からなり、かつ、前記上パンチの原料粉末に接する面に少なくとも1つの凹部を有するものであっても良い。   Further, the surfaces of the bottom plate and the upper punch that are in contact with the raw material powder may each be composed of a single plane, and the bottom plate is composed of a plurality of bottom plate constituent members that are movable with respect to each other, and is in contact with the raw material powder of the bottom plate. The surface may have at least one recess. Similarly, the upper punch may be composed of a plurality of upper punch constituent members that can move with respect to each other, and may have at least one concave portion on the surface in contact with the raw powder of the upper punch.

本発明の成形型を具現化する第2の態様は、成形型内に充填した原料粉末を、冷間静水圧プレスにより成形して成形体を製造するための成形型であって、該成形型が複数の型枠部材からなる組立式型枠と該組立式型枠の内部に挿入される上パンチ及び下パンチを有し、加圧終了後の減圧時に生じる成形体の膨張に併せて前記型枠部材が移動可能な構造を備えるとともに、前記型枠部材同士を固定して前記組立式型枠の開口形状を保持する固定機構を有することを特徴とする冷間静水圧プレス用成形型である。なお、型枠部材同士を連結する連結部材としてピン状の部材を用いることが好ましい。連結部材としてピン状の部材を用いる場合、少なくとも一部の型枠部材が、その端部に、前記連結部材が挿入される連結部材挿入部を有し、かつ、加圧終了後の減圧時に生じる成形体の膨張に併せて、型枠部材が移動できるように、該連結部材挿入部が前記連結部材の可動領域を有していることが好ましい。   A second aspect embodying the molding die of the present invention is a molding die for producing a molded body by molding the raw material powder filled in the molding die by cold isostatic pressing, the molding die Has an assembling mold frame composed of a plurality of mold members and an upper punch and a lower punch inserted into the assembling mold frame. A cold isostatic pressing mold characterized by having a structure in which a frame member is movable and having a fixing mechanism for fixing the mold members to hold the opening shape of the assembly mold. . In addition, it is preferable to use a pin-shaped member as a connection member which connects formwork members. When a pin-shaped member is used as the connecting member, at least a part of the formwork member has a connecting member insertion portion into which the connecting member is inserted at an end thereof, and is generated at the time of decompression after the pressurization is finished. It is preferable that the connecting member insertion portion has a movable region of the connecting member so that the formwork member can move along with the expansion of the molded body.

また、該成形型では、下パンチが組立式型枠内に挿入される底板と組立式型枠の開口形状より大きな形状を有する台座とで構成されていることが好ましい。さらに、底板が上パンチよりも圧縮変形の少ない材料で構成されていることが好ましく、特に、底板が金属製であり、上パンチが樹脂製であることがさらに好ましい。   In the mold, the lower punch is preferably composed of a bottom plate inserted into the assembly mold and a base having a shape larger than the opening shape of the assembly mold. Furthermore, it is preferable that the bottom plate is made of a material that is less compressed and deformed than the upper punch. In particular, it is more preferable that the bottom plate is made of metal and the upper punch is made of resin.

該成形型では、上パンチ及び下パンチ(又は底板)の原料粉末に接する面は各々1つの平面で構成されていても良く、また、下パンチ(又は底板)が移動可能な複数の下パンチ構成部材(又は底板構成部材)からなり、かつ、該下パンチ(又は底板)の原料粉末に接する面に少なくとも1つの凹部を有するものであってもよい。同様に、上パンチが移動可能な複数の上パンチ構成部材からなり、かつ、前記上パンチの原料粉末に接する面に少なくとも1つの凹部を有するものであってもよい。   In the mold, the surfaces of the upper punch and the lower punch (or bottom plate) that are in contact with the raw material powder may each be constituted by a single plane, and a plurality of lower punch configurations in which the lower punch (or the bottom plate) is movable. It may be made of a member (or a bottom plate constituent member) and have at least one concave portion on the surface of the lower punch (or bottom plate) in contact with the raw material powder. Similarly, the upper punch may be composed of a plurality of upper punch constituent members that can move, and may have at least one concave portion on the surface in contact with the raw powder of the upper punch.

さらに、本発明の成形体の製造方法は、成形型内に充填した原料粉末を加圧成形して成形体とする成形体の製造方法において、加圧圧縮時には充填した原料粉末に対して実質的に1軸方向からのみ加圧し、加圧終了後の減圧時には成形体に対して実質的に等方的に圧力を開放可能な構造を有する圧縮成形用成形型を用いることを特徴とする成形体の製造方法である。   Furthermore, the manufacturing method of the molded body of the present invention is substantially the same as the raw material powder filled at the time of pressure compression in the manufacturing method of the molded body that is formed by press-molding the raw material powder filled in the mold. A molded body characterized by using a compression molding die having a structure capable of pressurizing only from one axial direction and releasing pressure substantially isotropically to the molded body at the time of pressure reduction after completion of pressurization. It is a manufacturing method.

すなわち、本発明の成形体の製造方法を具現化する第1の態様は、成形型内に充填した原料粉末を冷間静水圧プレスにより成形する成形体の製造方法において、複数の型枠部材からなる組立式型枠、該組立式型枠の内面に沿って移動可能に設けられた上パンチおよび前記組立式型枠に接して設けられた底板を備えるとともに、加圧終了後の減圧時に生じる成形体の膨張に併せて、該組立式型枠を構成する型枠部材が移動可能な構造を有している成形型を用いることを特徴とする成形体の製造方法である。   That is, a first aspect embodying the method for manufacturing a molded body of the present invention is a method for manufacturing a molded body in which a raw material powder filled in a mold is molded by cold isostatic pressing. Forming mold form, upper punch movably provided along the inner surface of the assembly mold form, and bottom plate provided in contact with the assembly form form, and molding that occurs at the time of depressurization after pressurization is completed In accordance with the expansion of the body, there is provided a method for producing a molded body characterized by using a molding die having a structure in which a mold member constituting the assembly mold is movable.

さらに、本発明の成形体の製造方法を具現化する第2態様は、成形型内に充填した原料粉末を冷間静水圧プレスにより成形する成形体の製造方法において、複数の型枠部材からなる組立式型枠、該組立式型枠の内部に挿入される上パンチ及び下パンチを有し、加圧終了後の減圧時に生じる成形体の膨張に併せて前記型枠部材が移動可能な構造を備えるとともに、前記型枠部材同士を固定して前記組立式型枠の開口形状を保持する固定機構を有する成形型を用いることを特徴とする成形体の製造方法である。   Furthermore, a second aspect of embodying the manufacturing method of the molded body of the present invention is a manufacturing method of a molded body in which the raw material powder filled in the molding die is molded by cold isostatic pressing, and includes a plurality of mold members. A structure having an assembling mold, an upper punch and a lower punch inserted into the assembling mold, and allowing the mold member to move in accordance with the expansion of the molded body that occurs at the time of depressurization after pressing. And a molding die having a fixing mechanism for holding the mold members together and holding the opening shape of the assembly mold.

なお、本発明の成形体の製造方法では、前記底板又は下パンチは前記組立式型枠の内面に沿って移動することができないように構成されていることが好ましい。また、前記底板又は下パンチは前記上パンチよりも圧縮変形の少ない材料で構成されていることが好ましく、特に、前記底板又は下パンチが金属製であり、前記上パンチが樹脂製であることが好ましい。さらに、本発明の成形体の製造方法では、原料粉末への有機物の添加量が0.6重量%以下であることが好ましく、特に、原料粉末に有機物を含む成形助剤を添加しないことがさらに好ましい。   In addition, in the manufacturing method of the molded object of this invention, it is preferable that the said baseplate or a lower punch is comprised so that it cannot move along the inner surface of the said assembly-type formwork. Further, the bottom plate or the lower punch is preferably made of a material having less compression deformation than the upper punch, and in particular, the bottom plate or the lower punch is made of metal, and the upper punch is made of resin. preferable. Furthermore, in the method for producing a molded article of the present invention, the amount of organic matter added to the raw material powder is preferably 0.6% by weight or less, and in particular, it is further preferable not to add a molding aid containing organic matter to the raw material powder. preferable.

本発明の焼結体の製造方法の第一の態様は、原料粉末を加圧成形して成形体とした後、該成形体を焼成して焼結体とする焼結体の製造方法において、原料粉末が有機物を含む成形助剤を含まないことを特徴とする焼結体の製造方法である。なお、この製造方法では原料粉末を直接冷間静水圧プレスにより成形して成形体を得ることが好ましい。そのために、原料粉末の成形を上記の成形型を用いて行うことが好ましく、上記の成形体の製造方法により製造された成形体を用いることが好ましい。   The first aspect of the method for producing a sintered body of the present invention is a method for producing a sintered body in which a raw material powder is pressure-molded to form a molded body, and then the molded body is fired to form a sintered body. It is a method for producing a sintered body, wherein the raw material powder does not contain a molding aid containing an organic substance. In this production method, it is preferable to directly form the raw material powder by cold isostatic pressing to obtain a molded body. Therefore, it is preferable to form the raw material powder using the above-described mold, and it is preferable to use a molded body manufactured by the above-described manufacturing method of the molded body.

さらに、本発明の焼結体の製造方法の第二の態様は、原料粉末を加圧成形して成形体とした後、該成形体を焼成して焼結体とする焼結体の製造方法において、成形体中の有機物の除去を目的とした焼成工程を有さないことを特徴とする焼結体の製造方法である。なお、成形体中の有機物の除去を目的とした焼成工程とは、600℃以下程度の低温領域において、低速で昇温することにより、成形体中の可燃成分を除去する工程であり、例えば、100℃から400℃に達するまでの時間を30時間以上とした焼成工程を意味する。この成形体中の有機物の除去を目的とした焼成工程を不要とするためには、有機物含有量が0.6重量%以下、さらに好ましくは0.3重量%以下の原料粉末を用いて成形体を作製することが好ましい。そのために、原料粉末の成形を上記の成形型を用いて行うことが好ましく、上記の成形体の製造方法により製造された成形体を用いることが好ましい。   Furthermore, the second aspect of the method for producing a sintered body according to the present invention is a method for producing a sintered body in which a raw material powder is pressure-molded to form a molded body, and then the molded body is fired to form a sintered body. The method for producing a sintered body characterized by not having a firing step for the purpose of removing organic substances in the molded body. In addition, the baking process aiming at the removal of organic substances in the molded body is a process of removing combustible components in the molded body by raising the temperature at a low speed in a low temperature region of about 600 ° C. or less, for example, It means a firing step in which the time required to reach 100 ° C. to 400 ° C. is 30 hours or more. In order to eliminate the need for a firing step for the purpose of removing the organic matter in the molded body, the molded body is made of a raw material powder having an organic content of 0.6% by weight or less, more preferably 0.3% by weight or less. Is preferably produced. Therefore, it is preferable to form the raw material powder using the above-described mold, and it is preferable to use a molded body manufactured by the above-described manufacturing method of the molded body.

なお、本発明は、セラミックスや金属あるいはこれらの混合物の焼結体に適用することができる。セラミックスとしては酸化物、窒化物、硫化物あるいは酸窒化物等の複化合物等、金属としては、Cr、Mo等の単体金属あるいはTiW等の合金等に適用することができる。特に、金属粉末に比べて成形体密度が低く、強度の弱い成形体となるセラミックス粉末を原料粉末とする焼結体に好適に適用することができる。また、本発明の成形型は成形の際のスプリングバックをほぼ完全に吸収することができるため、スプリングバックの大きさが0.1%以上となるセラミックス粉末、特に、ITOやAZO(Aluminum Zinc Oxide)等の酸化物粉末を原料粉末とする焼結体に特に好適に適用することができる。なお、スプリングバックの大きさは、厳密には、成形圧力解放後の成形体と成形圧力印加時の成形体の大きさの差を成形圧力印加時の成形体の大きさで除したものとして定義できるが、より簡便に、例えば、成形圧力解放後の成形体の一辺の長さ(A)から、成形圧力解放後の成形型の原料粉末充填室の対応する辺の長さ(B)を引いた長さを、この原料粉末充填室の対応する辺の長さ(B)で除した値((A−B)/B)として計算してもよい。   The present invention can be applied to a sintered body of ceramics, metal, or a mixture thereof. Ceramics can be applied to oxides, nitrides, sulfides, oxynitrides and other complex compounds, and metals can be applied to simple metals such as Cr and Mo, alloys such as TiW, and the like. In particular, the present invention can be suitably applied to a sintered body using a ceramic powder as a raw material powder, which has a molded body density lower than that of the metal powder and has a lower strength. Further, since the molding die of the present invention can absorb the spring back at the time of molding almost completely, ceramic powder having a spring back size of 0.1% or more, particularly ITO or AZO (Aluminum Zinc Oxide). It can be particularly suitably applied to a sintered body using an oxide powder such as Strictly speaking, the size of the springback is defined as the difference between the size of the molded body after releasing the molding pressure and the size of the molded body when the molding pressure is applied divided by the size of the molded body when the molding pressure is applied. However, more easily, for example, the length (B) of the corresponding side of the raw material powder filling chamber of the mold after releasing the molding pressure is subtracted from the length (A) of one side of the molded body after releasing the molding pressure. The length may be calculated as a value ((A−B) / B) obtained by dividing the corresponding length of the raw material powder filling chamber by the length (B) of the corresponding side.

また、炭素含有量を規定した焼結体以外の本発明の焼結体は、炭化物等を含む焼結体であってもよく、さらに、本発明の焼結体の製造方法やそれに用いられる成形型は炭化物等を含む焼結体の製造にも適用することができる。   In addition, the sintered body of the present invention other than the sintered body that defines the carbon content may be a sintered body containing carbide or the like, and further, the method for producing the sintered body of the present invention and the molding used for the sintered body. The mold can also be applied to the production of a sintered body containing carbide or the like.

本発明によれば、高密度で均質な大型の焼結体や、薄くて板面の面積の大きな焼結体、厚さの厚い焼結体等であって高密度で均質な焼結体を容易に得ることができる。また、本発明によれば、板厚が部分的に異なる形状の焼結体であっても、高密度で均質であり、かつ、大型の焼結体を容易に得ることができる。さらに、このような焼結体であって、焼結体中の炭素含有量が非常に少ない焼結体を容易に得ることができる。   According to the present invention, a high-density and homogeneous large-sized sintered body, a thin sintered body having a large plate surface area, a thick sintered body, etc. Can be easily obtained. Further, according to the present invention, even a sintered body having a partially different plate thickness can easily obtain a high-density, homogeneous and large-sized sintered body. Furthermore, such a sintered body having a very low carbon content in the sintered body can be easily obtained.

そして、これらの焼結体を用いることにより、異常放電の発生やノジュールの生成がなく、また、例えば低抵抗の薄膜が得られる等、優れた性能の大型のスパッタリングターゲットを提供することができる。   By using these sintered bodies, it is possible to provide a large-sized sputtering target having excellent performance such that no abnormal discharge occurs and nodules are generated, and a low-resistance thin film is obtained.

さらに本発明の成形体の製造方法によれば、大型の成形体に対しても高い圧力による成形が可能であるため、バインダー等の成形助剤を原料粉末に添加することなく、あるいは、その添加量を極少量に留めて、形状精度に優れ、かつ割れやクラックの無い大型の高密度で均質な成形体を、原料粉末を直接静水圧プレスすることで、容易に得ることが可能となる。また、高価な乾式プレス用のダイスや鋳込み成型用の鋳型が必要なく、安価な樹脂や金属の板材のみを用いて原料粉末を直接成形できるため製造プロセスが簡略化され、経済的な製造方法を提供することができる。   Furthermore, according to the method for producing a molded body of the present invention, it is possible to mold a large molded body with a high pressure, so that a molding aid such as a binder is not added to the raw material powder or the addition thereof. It is possible to easily obtain a large, high-density, homogeneous molded body excellent in shape accuracy and free from cracks and cracks by directly isostatically pressing the raw material powder while keeping the amount extremely small. In addition, there is no need for expensive dry press dies or casting molds, and raw powder can be directly molded using only inexpensive resin and metal plate materials, simplifying the manufacturing process and making it an economical manufacturing method. Can be provided.

さらに、本発明の焼結体の製造方法によれば、上記の成形体の製造方法により得られる成形体を用いること、すなわち、バインダー等の成形助剤を添加していないか、あるいは、その添加量が極少量である原料粉末を、直接静水圧プレスにより成形して成形体を得、得られた成形体を焼成して焼結体とすることにより、成形体中の有機物の除去を目的とした焼成工程を不要とすることが可能となる。そのため、焼成工程を非常に短時間で行うことができ製造効率の大幅な向上を達成することができる。   Furthermore, according to the method for producing a sintered body of the present invention, the use of a molded body obtained by the above-described method for producing a molded body, that is, a molding aid such as a binder is not added, or the addition thereof The purpose is to remove organic matter in the molded body by molding the raw material powder in an extremely small amount by direct hydrostatic pressing to obtain a molded body, and firing the obtained molded body into a sintered body. It becomes possible to dispense with the firing step. Therefore, the firing process can be performed in a very short time, and a significant improvement in production efficiency can be achieved.

また、本発明によれば、部分的に厚さが異なるような板面が平面でなく、かつ、大型で高密度の焼結体を容易に作製することができるため、エロージョン領域の厚さを厚くした大型で高密度のスパッタリングターゲットを歩留まり良く製造することができ、ターゲットの使用効率を大幅に向上させることができる。   In addition, according to the present invention, since the plate surfaces having partially different thicknesses are not flat, and a large and high-density sintered body can be easily manufactured, the thickness of the erosion region can be reduced. A thick, large, high-density sputtering target can be manufactured with a high yield, and the use efficiency of the target can be greatly improved.

以下、本発明を具体例を用いてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail using specific examples.

本発明の圧縮成形用の成形型およびそれを用いた成形体の製造方法は、スパッタリングターゲットなどに用いられる焼結体の製造に用いられる成形体を製造する際に使用することができる。   The molding die for compression molding of the present invention and the method for producing a molded body using the same can be used when a molded body used for manufacturing a sintered body used for a sputtering target or the like is manufactured.

例えば、スパッタリングターゲットの製造は、原料粉末を必要に応じて混合し、成形、焼成して得られる焼結体を用いて製造されるが、このような原料粉末の混合、成形体の焼成は通常用いられている方法により行うことができる。   For example, the sputtering target is manufactured using a sintered body obtained by mixing, molding, and firing raw material powders as required, and such mixing of raw material powders and firing of the molded body are usually performed. This can be done by the method used.

本発明に用いられる原料粉末は、特に限定されるものではないが、例えば、アルミナ、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、AZO(Aluminum Zinc Oxide)、GZO(Gallium Zinc Oxide)、BST(Barium Strontium Titanate)、STO(Strontium Titanate)等の金属酸化物粉末、Cr、Mo等の金属粉末を挙げることができる。   The raw material powder used in the present invention is not particularly limited. For example, alumina, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum Zinc Oxide), GZO (Gallium Zinc Oxide), Examples thereof include metal oxide powders such as BST (Barium Strontium Titanate) and STO (Strontium Titanate), and metal powders such as Cr and Mo.

原料粉末の混合が必要な場合は、例えば、ボールミル、ジェットミル、クロスミキサー等で行なう。原料粉末を混合する前に、原料粉末の粉砕及び/又は分級処理を施しておくことが好ましい。こうした粉砕・分級処理を施すことにより原料粉末粒径が微細化し、均一に混合しやすくなるため、焼結体内組成の不均一性によって引き起こされる焼結体の変形・割れや密度むらを防止することが可能となる。また、原料粉末として炭酸塩を用いた場合や粉末中に炭素が多い場合には、粉末を混合した後に、粉末の状態で仮焼して脱炭酸処理を施すことが好ましい。なお、原料粉末として1種類の化合物のみを用いる場合には上記のような混合操作が必要でないことは言うまでもない。   When mixing of the raw material powder is necessary, for example, a ball mill, a jet mill, or a cross mixer is used. Before mixing the raw material powder, it is preferable to pulverize and / or classify the raw material powder. By carrying out such pulverization / classification treatment, the raw material powder particle size becomes finer and it becomes easier to mix uniformly. Therefore, deformation / cracking and uneven density of the sintered body caused by non-uniformity of the composition within the sintered body are prevented. Is possible. In addition, when carbonate is used as the raw material powder or when the powder contains a large amount of carbon, it is preferable that the powder is mixed and then calcined in a powder state to be decarboxylated. Needless to say, when only one kind of compound is used as the raw material powder, the above mixing operation is not necessary.

本発明では、冷間静水圧プレスを用いた場合、高い圧力で成形され、かつスプリングバックの解消により割れの発生がないことから、通常、乾式プレス成形方法で行なわれているような造粒などの粉末処理は必ずしも必要としない。しかし、必要に応じて、造粒して得られた顆粒あるいは平均粒径が1〜10μmの粒状粉末を原料として用いても良い。本発明では、このような粉末処理を必ずしも必要としないことから、成形前の粉末処理工程を簡素化することができるとともに、焼結体への炭素の混入を防止することができる。   In the present invention, when a cold isostatic press is used, since it is molded at a high pressure and there is no cracking due to the elimination of the spring back, granulation such as is usually performed by a dry press molding method, etc. The powder treatment is not necessarily required. However, if necessary, granules obtained by granulation or granular powder having an average particle diameter of 1 to 10 μm may be used as a raw material. In the present invention, since such powder processing is not necessarily required, the powder processing step before molding can be simplified, and mixing of carbon into the sintered body can be prevented.

次に、成形型内に上記により得られた原料粉末を充填し、圧縮成形を行なう。この時、加圧圧縮時には充填した原料粉末に対して実質的に1軸方向からのみ加圧し、加圧終了後の減圧時には、成形体に対して実質的に等方的に圧力を開放することが可能な構造を有する成形型を用いる。なお、この成形型は剛性の大きな材料で構成することができるため、このようにして得られる成形体の形状精度は極めて良好である。さらに成形体に作用する圧力が成形体に対して等方的に開放されるため、成形する際に発生するスプリングバックによる応力を解消でき、割れのない成形体を得ることが可能となる。また、得られる成形体の強度と形状精度を高め、割れを発生させないためには、成形体への圧力伝達を担う成形型の摺動部材が、均一に成形体を加圧できるように、摺動抵抗が小さくスムーズに摺動可能であることが好ましい。さらに、成形体の割れを発生させないためには、減圧時に等方的に圧力を開放することが極めて重要である。すなわち、圧力の開放速度や開放度合が成形体に対して等方性を失った場合、割れを引き起こす原因となる。特に、スプリングバックが大きい大型の成形体を成形する場合や、バインダーや滑剤などの成形助剤が添加されていないかその添加量が少ない原料粉末を成形する場合には、等方的に減圧することが極めて重要である。バインダーや滑剤などの成形助剤を使用しないかその添加量が少ない場合、成形体の強度が低下するため、成形が極めて難しくなるが、本発明の成形型では前記理由により、成形助剤を使用しなくても、大型の成形体の成形が可能である。また、成形助剤を用いない場合あるいはその添加量が少ない場合、成形助剤の除去工程である脱脂工程を省略でき、主として有機物である成形助剤の分解に伴なう脱脂工程での割れの問題も解消することができるだけでなく、残留炭素が存在しないため得られる焼結体が高純度となる。特に、スパッタリングターゲットでは、高純度の焼結体が得られることからスパッタリング中の異常放電の発生が抑制され、得られる薄膜の特性が優れたものとなる。   Next, the raw material powder obtained as described above is filled in a molding die, and compression molding is performed. At this time, at the time of pressure compression, the filled raw material powder is pressurized only from one axial direction, and at the time of pressure reduction after the pressurization is completed, the pressure is released to the molded body substantially isotropically. A mold having a structure that can be used is used. In addition, since this shaping | molding die can be comprised with a material with big rigidity, the shape precision of the molded object obtained in this way is very favorable. Furthermore, since the pressure acting on the molded body is isotropically released to the molded body, the stress due to the spring back generated during molding can be eliminated, and a molded body without cracks can be obtained. In addition, in order to increase the strength and shape accuracy of the obtained molded body and prevent cracking, the sliding member of the mold that is responsible for transmitting pressure to the molded body can slide uniformly so that the molded body can be pressurized. It is preferable that the dynamic resistance is small and the sliding is smooth. Furthermore, in order not to generate cracks in the molded body, it is extremely important to release the pressure isotropically during decompression. That is, when the pressure release speed and the degree of release lose isotropy with respect to the molded body, it causes cracking. In particular, when molding a large molded body with a large spring back, or when molding a raw material powder that does not contain a molding aid such as a binder or a lubricant or has a small amount added, the pressure isotropically reduced. It is extremely important. When molding aids such as binders and lubricants are not used or when the amount added is small, the strength of the molded body is reduced, making molding extremely difficult. However, in the molding die of the present invention, molding aids are used for the above reasons. Even if it does not do, a large-sized molded object can be molded. Also, when the molding aid is not used or when the amount added is small, the degreasing step, which is a removal step of the molding aid, can be omitted, and cracking in the degreasing step accompanying the decomposition of the molding aid, which is mainly an organic substance Not only can the problem be solved, but the resulting sintered body is of high purity because there is no residual carbon. In particular, in the sputtering target, since a high-purity sintered body is obtained, the occurrence of abnormal discharge during sputtering is suppressed, and the properties of the obtained thin film are excellent.

より具体的には、例えば、上記により得られた原料粉末を成形型に充填し冷間静水圧プレスにより成形体とする。成形型は、例えば、図1に示すように、複数の型枠部材2a、2bにより構成される組立式型枠2、該組立式型枠2の内面に沿って自由に可動する上パンチ1および前記組立式型枠2に接して設けられた底板3を備え、前記型枠内の上パンチ1および底板3の間で原料粉末をプレス成形する構造体である。組立式型枠2を構成する少なくとも一部の型枠部材2bの両端には型枠部材同士を当接させて組立式型枠の開口形状が所定の形状より小さくならないように保持するための段部7が形成されている。このように、静水圧プレスを用いると、加圧軸方向とそれに垂直な方向で異なる成形体のスプリングバックによる膨張を比較的容易に等方的に制御することが可能である。しかし、印加される静水圧は成形型を介して成形体に作用するため、成形型に自発的に圧力(例えば弾性力など)を発生させる部材や構造を用いた場合、成形型へ加わる圧力は等方的であっても、成形型内の成形体へ加わる圧力は等方的に作用しないため、スプリングバックによる応力を解消することができない。したがって、静水圧プレス用の成形型は、実質的に弾性変形等のない剛性体で構成することが好ましい。なお、組立式型枠2の開口形状が所定の形状より小さくならないように保持するために型枠部材に形成する段部等の構造は、開口形状が所定の形状より小さくならないように保持できるものであればどのようなものでも良く、例えば、図1に示すように、型枠部材2a又は2bのいずれか一方の両端に形成しても良いし、型枠部材2a及び2bの一方の端部に各々形成しても良い。またその構造は、図1に示すような単純な段部7でも良いし、例えば、図13に示すような型枠部材の高さ(原料粉末充填室の深さ)方向に凸出部と切欠部を交互に形成して互いに咬み合わせたものであっても良い。   More specifically, for example, the raw material powder obtained as described above is filled in a mold and formed into a molded body by cold isostatic pressing. For example, as shown in FIG. 1, the mold includes an assembly mold 2 composed of a plurality of mold members 2 a and 2 b, an upper punch 1 that is freely movable along the inner surface of the assembly mold 2, and The structure includes a bottom plate 3 provided in contact with the assembly mold 2 and press-molds the raw material powder between the upper punch 1 and the bottom plate 3 in the mold. A stage for holding the formwork members so as not to become smaller than a predetermined shape by bringing the formwork members into contact with both ends of at least a part of the formwork members 2b constituting the formable formwork 2 Part 7 is formed. As described above, when the hydrostatic press is used, it is possible to relatively easily and isotropically control the expansion caused by the spring back of the molded body that is different in the pressing axis direction and the direction perpendicular thereto. However, since the applied hydrostatic pressure acts on the molded body through the mold, when a member or structure that spontaneously generates pressure (for example, elastic force) is used for the mold, the pressure applied to the mold is Even if isotropic, the pressure applied to the molded body in the mold does not act isotropically, so the stress due to the spring back cannot be eliminated. Therefore, it is preferable that the forming die for the hydrostatic pressure press is composed of a rigid body substantially free from elastic deformation or the like. Note that the structure of the stepped portion and the like formed on the mold member in order to hold the assembling mold 2 so that the opening shape is not smaller than the predetermined shape can be held so that the opening shape does not become smaller than the predetermined shape. Any form may be used, for example, as shown in FIG. 1, it may be formed at either end of either one of the mold members 2a or 2b, or one end of the mold members 2a and 2b. Each may be formed. The structure may be a simple stepped portion 7 as shown in FIG. 1 or, for example, a protruding portion and a notch in the height direction of the mold member (depth of the raw material powder filling chamber) as shown in FIG. The parts may be formed alternately and bitten together.

また、前記底板3は、前記組立式型枠2の内面に沿って移動することができないように構成されていることが好ましい。すなわち、図2に示すように、組立式型枠を構成する型枠部材2a、2bの底部の底板3が当接する部分に段部8を形成したり、後述のように組立式型枠の開口形状より大きな台座4を設けることが好ましい。これにより、前記底板3は組立式型枠2の内面に沿った上方向への移動が制限される。なお、型枠部材2a、2bの底部の段部8は、原料粉末の充填に際し原料粉末の型からの漏れを防止すると共に、組立式型枠の開口形状を安定に保持する機能を担う。   Moreover, it is preferable that the said baseplate 3 is comprised so that it cannot move along the inner surface of the said assembly-type formwork 2. FIG. That is, as shown in FIG. 2, a step portion 8 is formed at a portion where the bottom plate 3 of the bottom of the mold members 2a and 2b constituting the assembly mold is in contact, or an opening of the assembly mold is formed as described later. It is preferable to provide a base 4 larger than the shape. Thereby, the movement of the bottom plate 3 along the inner surface of the assembly mold 2 is restricted. The step 8 at the bottom of the mold members 2a and 2b has a function of preventing leakage of the raw material powder from the mold when filling the raw material powder and stably holding the opening shape of the assembly formwork.

組立式型枠を構成する型枠部材の前記段部の作製方法は特に限定されないが、板材を切削加工して作製しても良いし、2枚の長さの異なる板を接着剤などで張り会わせて作製しても良い。いずれの方法もプレス法のダイスや、鋳込み法の鋳込み型の加工に比べ加工方法が簡単であり、コストも安く経済的である。   The method for producing the stepped portion of the formwork member constituting the assembly formwork is not particularly limited, but it may be produced by cutting a plate material, or two sheets of different lengths are stretched with an adhesive or the like. You may make it meet. Each method is simpler in processing method than the press method die or the casting die casting method, and is inexpensive and economical.

上記成形型は、台座4に保持されても良い。台座4は組立式型枠2と底板3の下に設置され、底板3と台座4は両面テープまたは接着剤などで接合されていても良い。台座4は成形型の移動や搬送などの取り扱い作業をしやすくするばかりでなく、スプリングバックにより成形体が膨張する際、組立式型枠2を構成する型枠部材2a、2bがスムースに平行移動するためのガイドとしての機能を担うことができる。もちろん、台座4と底板3を一体で作製してもよい。   The mold may be held on the pedestal 4. The pedestal 4 may be installed under the assembly form 2 and the bottom plate 3, and the bottom plate 3 and the pedestal 4 may be joined with a double-sided tape or an adhesive. The pedestal 4 facilitates handling operations such as movement and conveyance of the mold, and when the molded body expands due to the spring back, the mold members 2a and 2b constituting the assembly mold 2 are smoothly translated. It can serve as a guide for doing this. Of course, the pedestal 4 and the bottom plate 3 may be produced integrally.

組立てられた組立式型枠2の開口形状を保持するため、組立式型枠2を構成する型枠部材2a、2bの当接箇所は粘着テープ等で仮止めしてもよい。仮止めにより原料粉末の充填の際に組立式型枠2の開口形状が安定に保持され、充填作業がしやすくなる。仮止めに用いる材料は、原料粉末を充填する際には形状が保持され、かつ成形体のスプリングバックが発生した際には、容易に、伸びたり、破れたり、剥がれたりすることで、組立式型枠2を構成する型枠部材2a、2bの移動を妨げないものであれば特に限定されないが、粘着テープなどが好ましい。また、適度な締め付け力の輪ゴム等を組立式型枠2の周囲に巻き付けることで仮止めすることもできる。   In order to maintain the opening shape of the assembled mold 2, the contact portions of the mold members 2 a and 2 b constituting the assembled mold 2 may be temporarily fixed with an adhesive tape or the like. When the raw material powder is filled by temporary fixing, the opening shape of the assembling mold 2 is stably maintained, and the filling operation is facilitated. The material used for temporary fixing is maintained in its shape when filling with raw material powder, and when the spring back of the molded body occurs, it can be easily stretched, torn, and peeled off. Although it will not specifically limit if the movement of the formwork members 2a and 2b which comprise the formwork 2 is not prevented, An adhesive tape etc. are preferable. Moreover, it can also be temporarily fixed by winding a rubber band or the like having an appropriate tightening force around the assembly mold 2.

組立式型枠2および底板3により規定された所定の大きさの開口形状を有する状態における組立式型枠2の内面と上パンチ1の側面との間の隙間は0mmより大きくなるように設計する。上パンチ1をスムーズに可動させるためには前記隙間を0.1mm以上2mm以下とすることが好ましい。さらに好ましくは0.1mm以上1mm以下とする。前記隙間を2mmより大きくした場合は、組立式型枠2と上パンチ1の隙間の部分に対応する部分の成形体強度が低下し、成形体の割れや剥離が起きる場合がある。また0.1mm以下の場合には組立式型枠が静水圧により変形した場合には上パンチと組立式型枠の隙間が減少し、上パンチの摺動を妨げる可能性がある。   The gap between the inner surface of the assembly mold 2 and the side surface of the upper punch 1 in a state having an opening shape of a predetermined size defined by the assembly mold 2 and the bottom plate 3 is designed to be larger than 0 mm. . In order to move the upper punch 1 smoothly, the gap is preferably 0.1 mm or more and 2 mm or less. More preferably, it is 0.1 mm or more and 1 mm or less. When the gap is larger than 2 mm, the strength of the molded body at the portion corresponding to the gap between the assembly mold 2 and the upper punch 1 is lowered, and the molded body may be cracked or peeled off. In the case of 0.1 mm or less, when the assembly form is deformed by hydrostatic pressure, the gap between the upper punch and the assembly form is reduced, and the upper punch may be prevented from sliding.

上パンチ1の摺動性を改善するために、組立式型枠2の内面、及び/又は上パンチ1の側面に摩擦係数の小さな材料を塗布またはコーティングしてもよい。また、そのような材料を塗布またはコーティングしたテープを貼っても良い。塗布またはコーティングする材料は摩擦係数が組立式型枠2または上パンチ1の摩擦係数よりも小さければ特に限定しないが、テフロン(登録商標)またはDLC(ダイヤモンドライクカーボン)が好ましい。   In order to improve the slidability of the upper punch 1, a material having a small coefficient of friction may be applied or coated on the inner surface of the assembly mold 2 and / or the side surface of the upper punch 1. Moreover, you may stick the tape which apply | coated or coated such a material. The material to be applied or coated is not particularly limited as long as the coefficient of friction is smaller than the coefficient of friction of the assembly mold 2 or the upper punch 1, but Teflon (registered trademark) or DLC (diamond-like carbon) is preferable.

組立式型枠2、上パンチ1、底板3の材質は冷間静水圧プレスでの加圧時に実質的に変形が少ないものであれば、特に限定はされないが、金属ではアルミニウム、ジュラルミン、超ジュラルミン、ステンレス鋼、工具鋼などが好ましい。樹脂ではMCナイロン、ABS、ベークライトなどの板材が使用可能である。本発明の成形型は、組立式型枠2および底板3により組立式型枠2の開口形状を規定する構造となっているため、上パンチ1がよりスムーズに移動するためには、底板3が上パンチ1よりも圧縮率の少ない材料で形成されていることがより好ましい。さらに好ましくは底板3が圧縮率の少ない金属であり、上パンチ1は圧縮率が金属よりも大きな樹脂であることが好ましい。これにより、静水圧加圧中に上パンチ1と組立式型枠2の隙間が十分確保され、上パンチがよりスムーズに移動可能となる。   The material of the assembly mold 2, the upper punch 1 and the bottom plate 3 is not particularly limited as long as it is substantially less deformed when pressed by the cold isostatic press, but aluminum, duralumin, super duralumin Stainless steel, tool steel and the like are preferable. As the resin, plate materials such as MC nylon, ABS, and bakelite can be used. Since the mold according to the present invention has a structure that defines the opening shape of the assembly mold 2 by the assembly mold 2 and the bottom plate 3, the bottom plate 3 is required to move the upper punch 1 more smoothly. More preferably, the upper punch 1 is made of a material having a smaller compression rate. More preferably, the bottom plate 3 is made of a metal having a small compression rate, and the upper punch 1 is made of a resin having a compression rate larger than that of the metal. As a result, a sufficient gap is secured between the upper punch 1 and the assembly mold 2 during the hydrostatic pressure application, and the upper punch can move more smoothly.

一般に、加圧圧力が200kg/cm以上となると粉末が押し固められて成形体となる。静水圧プレスでは成形体密度をさらに増加させるために圧力をさらに0.5ton/cm以上に増加させる。組立式型枠の型枠部材は両端が段部において当接されているため、静水圧により型枠部材の端部よりも中央部が押されて変形しやすい。変形量は静水圧が高ければ高いほど大きく、ある圧力に達すると、上パンチと組立式型枠の隙間以上に変形し、上パンチは型枠部材と接触し摩擦が生じて移動を妨げられる。その結果、上パンチは型枠部材と接触している端部よりも押圧面中央部がより強く押されて変形し、一度形成された成形体に不均一な力を及ぼしクラックが生じる原因となる。最初から型枠部材と上パンチの前記隙間(クリアランス)を広くすれば、この問題は解決するが、この隙間(クリアランス)を2mm以上とすると、実質的に上パンチと組立式型枠の隙間の部分の成形体が上パンチによりプレスされず、成形体強度は弱くなる。 In general, when the pressurization pressure is 200 kg / cm 2 or more, the powder is pressed into a molded body. In the hydrostatic press, the pressure is further increased to 0.5 ton / cm 2 or more in order to further increase the density of the compact. Since both ends of the formwork member of the assembly type formwork are in contact with each other at the stepped portion, the center portion is pushed more easily than the end portion of the formwork member due to the hydrostatic pressure. The higher the hydrostatic pressure, the larger the deformation amount. When a certain pressure is reached, the deformation exceeds the gap between the upper punch and the assembly formwork, and the upper punch comes into contact with the formwork member to generate friction and hinder movement. As a result, the upper punch is deformed by pressing the center part of the pressing surface more strongly than the end part in contact with the formwork member, causing a non-uniform force to the formed body once formed and causing cracks. . If the gap (clearance) between the mold member and the upper punch is widened from the beginning, this problem is solved. However, if this gap (clearance) is 2 mm or more, the gap between the upper punch and the assembly formwork is substantially reduced. Part of the molded body is not pressed by the upper punch, and the strength of the molded body is weakened.

一方、底板の圧縮率が上パンチの圧縮率よりも小さい場合は、底板が型枠部材と接して組立式型枠の開口形状を規定するため開口形状が広く保たれ、かつ、上パンチは底板以上に収縮するため、上パンチと型枠部材とのクリアランスが維持される。その結果、高圧の静水圧プレス成形においてもクラックの発生がない成形が可能となる。   On the other hand, when the compression ratio of the bottom plate is smaller than the compression ratio of the upper punch, the opening shape is kept wide because the bottom plate is in contact with the mold member and defines the opening shape of the assembly mold, and the upper punch is the bottom plate. Since it shrinks as described above, the clearance between the upper punch and the mold member is maintained. As a result, it is possible to perform molding without generation of cracks even in high pressure isostatic pressing.

組立式型枠の高さは、目的とする成形体の厚みと成形体密度および原料粉末の密度から計算して得られる値以上であれば特に限定されないが、型枠内面と底板により囲まれた空間に原料粉末を充填した後、原料粉末の上に上パンチを乗せる際に、確実に上パンチが型枠内に入ったことが確認できるように、組立式型枠の高さを前記の計算値以上とすることが好ましい。   The height of the assembly mold is not particularly limited as long as it is not less than the value obtained by calculating from the thickness and density of the target molded body and the density of the raw material powder, but is surrounded by the inner surface of the mold and the bottom plate. After filling the raw material powder into the space, when placing the upper punch on the raw material powder, the height of the assembly formwork is calculated to ensure that the upper punch has entered the formwork. It is preferable that the value be greater than or equal to the value.

また、組立式型枠を構成する型枠部材の厚さは特に限定されないが、静水圧による変形を少なくするために厚いほど良い。しかし、厚いほど成形型の重量が重くなるため取り扱いにくくなる。そのため、組立式型枠の大きさにも依存するが、その厚さは1cm以上10cm以下が好ましい。   Further, the thickness of the mold member constituting the assembly mold is not particularly limited, but it is preferable that the thickness is thicker in order to reduce deformation due to hydrostatic pressure. However, the thicker the mold, the heavier it becomes, making it difficult to handle. Therefore, the thickness is preferably 1 cm or more and 10 cm or less, although it depends on the size of the assembly mold.

底板の厚さは特に限定されないが、厚いほど組立式型枠から受ける圧力による変形が少なくなり、厚いほど重くなるため取り扱いにくくなる。そのため、組立式型枠の大きさにも依存するが、その厚さは0.5cm以上10cm以下が好ましい。   The thickness of the bottom plate is not particularly limited. However, the thicker the plate, the less the deformation caused by the pressure received from the assembly mold, and the thicker the plate, the more difficult it is to handle. Therefore, the thickness is preferably 0.5 cm or more and 10 cm or less, although it depends on the size of the assembly mold.

上パンチの厚さは、パンチが変形しなければよく特に限定されないが、組立式型枠の内面に沿って平行移動するためには厚いほど良く、組立式型枠の大きさにも依存するが、その厚さは1cm以上が好ましい。   The thickness of the upper punch is not particularly limited as long as the punch is not deformed. However, the thickness of the upper punch is better for translation along the inner surface of the assembly mold, and depends on the size of the assembly mold. The thickness is preferably 1 cm or more.

台座の厚さは、ハンドリングが容易になる厚さであればよく、特に限定されない。   The thickness of the pedestal is not particularly limited as long as it is easy to handle.

原料粉末を充填した後、原料粉末を充填した成形型をビニール袋等に入れ真空パックを行う。静水圧加圧の際に、ビニール袋が成形型の隙間に引き込まれて破れることを避けるために、成形型の周りあるいは一部に緩衝材を設置してもよい。緩衝材の材質は特に限定しないが、ゴムシート、ゴム板、樹脂シート、樹脂板、紙などが好ましい。水漏れに対する安全対策として複数回ビニール袋による真空パックを行っても良い。   After filling the raw material powder, the mold filled with the raw material powder is put into a plastic bag or the like and vacuum packed. In order to prevent the plastic bag from being pulled into the gap of the mold and being torn during the hydrostatic pressure, a cushioning material may be provided around or partially in the mold. The material of the buffer material is not particularly limited, but a rubber sheet, a rubber plate, a resin sheet, a resin plate, paper, or the like is preferable. As a safety measure against water leakage, vacuum packing with a plastic bag may be performed multiple times.

このようにして準備された成形型を冷間静水圧プレスに投入し、高圧で成形を行なうが、このときの成形圧力としては、成形体が得られる圧力であれば特に限定しない。圧力が高ければ高いほど成形体強度が増加するため、0.5ton/cm以上が好ましい。より好ましくは1ton/cm以上である。 The molding die thus prepared is put into a cold isostatic press and molding is performed at a high pressure. However, the molding pressure at this time is not particularly limited as long as the molded body is obtained. Since the strength of the molded body increases as the pressure increases, 0.5 ton / cm 2 or more is preferable. More preferably, it is 1 ton / cm 2 or more.

本発明の成形型では、組立式型枠は型枠部材が互いに固定されておらず、静水圧加圧終了後の降圧時に、成形体が組立式型枠に拘束されずに膨張することが可能となり、成形体の割れを防止することができる。本発明の成形型は、完全に成形体のスプリングバックによる応力を緩和できるため、バインダー等の成形助剤を添加していないか、あるいはその添加量が0.6重量%以下の原料粉末を用いた成形体や、大型でスプリングバックが大きな成形体でも、割れやクラックを発生させることなく、形状精度に優れた成形体の成形が可能となる。   In the mold according to the present invention, the mold members of the assembly mold are not fixed to each other, and the molded body can be expanded without being constrained by the assembly mold when the pressure is lowered after the hydrostatic pressure is applied. Thus, cracking of the molded body can be prevented. Since the molding die of the present invention can completely relieve the stress caused by the spring back of the molded body, it does not contain a molding aid such as a binder, or uses a raw material powder having an addition amount of 0.6% by weight or less. Even a molded body having a large shape and a large spring back can be molded with excellent shape accuracy without generating cracks or cracks.

すなわち、本発明の成形型は、成形体のスプリングバックによる割れがなく、1軸プレスのように形状精度の優れた高密度の成形体を得ることができる圧縮成形用の成形型である。   That is, the molding die of the present invention is a molding die for compression molding that is free from cracking due to springback of the molded body and can obtain a high-density molded body with excellent shape accuracy like a uniaxial press.

一方、厚さの厚い成形体の場合には、通常は、成形体の内部まで均一に加圧することが難しくなるため、均一な焼結体を得ることが難しくなる。また、バインダー等の焼結助剤を添加した場合には、成形体の厚さが厚いほど、脱脂工程における有機物の除去が難しくなるため、焼結体中の残留炭素を低減するためには、焼結助剤の添加は少量に留めるか、全く添加しないことが好ましい。本発明においては、静水圧プレスを用いることにより、大型の成形体に対しても大きな圧力を印加することができるので、厚さの厚い成形体に対しても、十分に均一な成形が可能となる。さらに均一な成形体を得るためには、1次成形において大きな圧力で加圧を行うことが重要で、特に凝集のある粉末や造粒された顆粒などを潰して緻密で均一な成形体を得るためには、等方加圧ではなく1軸加圧を行うことが有効である。例えば、実施例9のように1次成形を1ton/cmの圧力で1軸加圧した場合、緻密で均一な成形体となりその焼結体の密度分布(焼結密度の変動)が0.06%となるのに対し、同じ焼結密度となっても比較例2のように、1次成形を300kg/cmの低い圧力で1軸加圧したのち、2次成形として1ton/cmの圧力で等方加圧した場合、成形体に粉末の潰れ残りによる空孔が残り不均一な成形体となるため、その密度分布(焼結密度の変動)は0.18%と大きくなる。したがって、本発明においては、1軸加圧が可能な静水圧プレスを用いることで、油圧プレス機などを用いた1軸プレスに比べ、大面積の成形体でも1次成形で大きな圧力での1軸加圧が可能であり、緻密で均一な成形体を得ることが可能となる。また、このような大きな圧力で成形する場合、圧力の開放時に生じるスプリングバックも非常に大きなものとなるが、本発明によれば、このようなスプリングバックによる応力を効果的に解消することができるため、完全な脱脂が難しくなる厚さ10mm以上、さらには厚さ12mm以上の焼結体の作製においても、十分に均一な成形が可能であり、焼結密度が90%以上、あるいは95%以上、さらには99%以上で、焼結密度の変動(焼結密度の最も大きい所と最も小さい所との差)が0.2%以下の均一な焼結体を得ることができる。また、本発明においては、高い圧力で成形することが可能であり、十分な強度の成形体を得ることができるため、バインダー等の焼結助剤の添加量を少量に留めるか、あるいは全く添加しないことにより、焼結体中の残留炭素の量を0.005重量%未満、あるいは0.003重量%以下、さらには0.002重量%以下とすることができる。なお、バインダー等の焼結助剤を添加する場合は、その添加量は原料粉末の0.6重量%以下とすることが好ましく、0.3重量%以下とすることがさらに好ましい。 On the other hand, in the case of a thick molded body, it is usually difficult to uniformly pressurize the molded body, so it is difficult to obtain a uniform sintered body. In addition, when a sintering aid such as a binder is added, the thicker the molded body is, the more difficult it is to remove organic matter in the degreasing process. Therefore, in order to reduce the residual carbon in the sintered body, It is preferable to add the sintering aid in a small amount or not at all. In the present invention, since a large pressure can be applied even to a large molded body by using an isostatic press, sufficiently uniform molding can be performed even on a thick molded body. Become. In order to obtain a more uniform molded body, it is important to press with a large pressure in the primary molding, and in particular, a compact and uniform molded body is obtained by crushing agglomerated powder or granulated granules. For this purpose, it is effective to perform uniaxial pressing instead of isotropic pressing. For example, when the primary molding is uniaxially pressed at a pressure of 1 ton / cm 2 as in Example 9, the resulting compact and uniform molded body has a density distribution (sintering density fluctuation) of 0. Whereas it is 06%, the primary molding is uniaxially pressed at a low pressure of 300 kg / cm 2 as in Comparative Example 2 even at the same sintering density, and then 1 ton / cm 2 as the secondary molding. When the pressure is isotropically pressed, voids due to the remaining powder crush remain in the compact, resulting in a non-uniform compact, and the density distribution (sintering density fluctuation) is as large as 0.18%. Therefore, in the present invention, by using a hydrostatic press capable of uniaxial pressurization, even a molded body having a large area can be subjected to a large pressure in primary molding even when compared with a uniaxial press using a hydraulic press or the like. Axial pressurization is possible, and it becomes possible to obtain a compact and uniform molded body. Further, when molding with such a large pressure, the spring back generated when the pressure is released becomes very large, but according to the present invention, the stress due to such a spring back can be effectively eliminated. Therefore, even in the production of a sintered body having a thickness of 10 mm or more and further a thickness of 12 mm or more, which makes complete degreasing difficult, sufficiently uniform molding is possible, and the sintered density is 90% or more, or 95% or more. Furthermore, it is possible to obtain a uniform sintered body of 99% or more and having a sintered density variation (difference between the highest and lowest sintered density) of 0.2% or less. Further, in the present invention, it is possible to mold at a high pressure, and a molded body having sufficient strength can be obtained. Therefore, the amount of the binder such as a binder is kept small or not added at all. By not doing so, the amount of residual carbon in the sintered body can be less than 0.005% by weight, or 0.003% by weight or less, and further 0.002% by weight or less. In addition, when adding sintering aids, such as a binder, it is preferable that the addition amount shall be 0.6 weight% or less of a raw material powder, and it is more preferable to set it as 0.3 weight% or less.

なお、スパッタリングにおける異常放電の発生やノジュールの生成には、使用するスパッタリングターゲットの焼結密度が影響していることが知られているが、スパッタリングターゲットの焼結密度の変動を0.2%以下とすることにより、安定な放電を維持することができ、スパッタリングによる成膜を安定に行うことができる。   In addition, although it is known that the abnormal density in sputtering and the generation of nodules are influenced by the sintering density of the sputtering target used, the fluctuation of the sintering density of the sputtering target is 0.2% or less. By doing so, stable discharge can be maintained, and film formation by sputtering can be performed stably.

上記と同じ理由で、本発明によれば、焼結体の表面を構成する少なくとも1つの平面の面積が600cm以上、あるいは1000cm以上、さらには3000cm以上の大型の焼結体であって、かつ、焼結体全体の焼結密度が90%以上、あるいは95%以上、さらには99%以上で、焼結密度の変動(焼結密度の最も大きい所と最も小さい所との差)が0.2%以下の均一な焼結体を得ることができる。また、焼結体の表面を構成する少なくとも1つの平面の面積が600cm以上、あるいは1000cm以上、さらには3000cm以上の大型で高密度の焼結体であって、かつ、焼結体中の残留炭素の量が0.005重量%未満、あるいは0.003重量%以下、さらには0.002重量%以下の均一で残留炭素の少ない焼結体を得ることができる。 For the same reason as described above, according to the present invention, a large-sized sintered body having an area of at least one plane constituting the surface of the sintered body is 600 cm 2 or more, or 1000 cm 2 or more, and further 3000 cm 2 or more. In addition, when the sintered density of the entire sintered body is 90% or more, or 95% or more, and further 99% or more, the fluctuation of the sintering density (difference between the highest and lowest sintered density) A uniform sintered body of 0.2% or less can be obtained. Further, the sintered body is a large-scale, high-density sintered body having an area of at least one plane constituting the surface of the sintered body of 600 cm 2 or more, or 1000 cm 2 or more, and more preferably 3000 cm 2 or more, and in the sintered body Thus, it is possible to obtain a uniform sintered body with a small amount of residual carbon in which the amount of residual carbon is less than 0.005% by weight, 0.003% by weight or less, and further 0.002% by weight or less.

さらに、本発明によれば、上記と同じ理由により、形状が略直方体の焼結体で、その表面を構成する面の最も広い面の面積が1000cm以上であり、最も長い稜と最も短い稜の長さの比が40以上の焼結体に対しても、上記と同様に、焼結体全体の焼結密度が90%以上、あるいは95%以上、さらには99%以上で、焼結体内の焼結密度の変動が0.2%以下の焼結体を得ることができる。 Furthermore, according to the present invention, for the same reason as described above, the sintered body having a substantially rectangular parallelepiped shape, the area of the widest surface constituting the surface is 1000 cm 2 or more, and the longest and shortest ridges. In the same way as above, the sintered density of the entire sintered body is 90% or more, 95% or more, and even 99% or more. Thus, it is possible to obtain a sintered body having a sintered density variation of 0.2% or less.

また、本発明によれば、エロージョン領域の焼結体の厚さを厚くして、スパッタリングにおける材料の使用効率を向上させた高効率ターゲットに対しても、パンチや底板の形状を工夫することにより、上記と同じ理由で、大型で高密度の焼結体を得ることができる。   In addition, according to the present invention, the thickness of the sintered body in the erosion region is increased, and the shape of the punch and the bottom plate is devised even for a high-efficiency target in which the material use efficiency in sputtering is improved. For the same reason as described above, a large and high density sintered body can be obtained.

例えば、図6に示すように、底板部材33a、33bから構成される底板33を有する成形型を用いることにより、スパッタ面に凸部を有する大型の成形体を得ることができる。この時、本発明によれば、組立式型枠の使用に加えて、複数の底板部材に分割された底板を用いることにより、成形後の減圧時に生じるスプリングバックにより、成形体の凸部に作用する応力も有効に解消することができるため、高い圧力での成形が可能であり、大型で高密度であり、均一で残留炭素の少ない焼結体を製造することが可能となる。   For example, as shown in FIG. 6, by using a molding die having a bottom plate 33 composed of bottom plate members 33a and 33b, a large molded body having a convex portion on the sputtering surface can be obtained. At this time, according to the present invention, in addition to the use of the assembly formwork, by using the bottom plate divided into a plurality of bottom plate members, the spring back generated at the time of decompression after molding acts on the convex portion of the molded body. Therefore, it is possible to effectively eliminate the stress, so that it is possible to mold at a high pressure, and it is possible to produce a sintered body that is large and has a high density, is uniform, and has little residual carbon.

なお、スパッタ面の凸部を形成するための底板は、成形後の減圧時に、成形体の凸部の膨張に併せて移動することが可能な構造を有していれば良く、例えば、図7に示されるように2つに分割されたものの他、図8に示されるような、33c、33d、33eの3つの底板構成部材に分割されたものであっても良い。   Note that the bottom plate for forming the convex portion of the sputtered surface only needs to have a structure that can move along with the expansion of the convex portion of the molded body at the time of decompression after molding. For example, FIG. As shown in FIG. 8, it may be divided into three bottom plate constituent members 33c, 33d, and 33e as shown in FIG.

本発明の成形型の第2の態様は、例えば、図11及び図12に示される成形型であり、組立式型枠52を構成する型枠部材52a、52bの両端にピン状の連結部材(ボルト55)を挿入して固定する構造を有すものであり、それにより組立式型枠の形状を保持することが可能なものである。ここでピン状の連結部材と称している組立式型枠を結合する連結部材及び該連結部材が挿入される連結部材挿入部からなる構造は、組立式型枠部材52a、52bが所定の位置より内側に移動することを制限し、かつ、外側にある程度移動することを可能とする構造であり、連結部材55が移動することができる可動領域57bを有しているものである。例えば、組立式型枠の連結部にピンを挿入する構造を有するもの、組立て式型枠の連結部が組み木状に結合する構造を有しかつ組み木の個々に設けられた凹凸により型枠部材が外側にスライドできる構造を有しているものなどが挙げられる。但し、この部材の形状および構造に関してはこれらに限定されるものではない。また、ピンを導入する組立式型枠端部には、ピンの直径より大きな穴(ボルト導入穴57)を設けており、ピンが可動な構造をとっていることが好ましい。このような構造を採用することにより、大型の板状の成形体を製造する場合、従来の方法において成形体の割れの原因となっていた、加圧終了後の減圧時に生じるスプリングバッグによる応力を効果的に解消することが可能である。連結部材が挿入される連結部材挿入部(ボルト導入穴57)は、成形体のスプリングバッグによる膨張を緩和するためにピンの直径より2mm以上10mm以下程度大きな径を有することが好ましい。穴の形状は、楕円形に近い形状を有し、ピンを固定する領域57aではピンの径とほぼ同等の径が好ましい。但し、成形体膨張時のスプリングバッグを許容しうるクリアランスさえ確保できればよいので、穴の形状および大きさに関してはこれに限定されるものではない。またピンは、螺子式のものが好ましく、組立式型枠を保持できる強度をもつ材質のもので直径は1mm以上100mm以下が好ましく、3mm以上30mm以下がさらに好ましい。但し、ピンの形状および材質はこれに限定されるものではない。この組立式型枠は、原料粉末充填時には、このピン螺子により組立式型枠を固定し作業性の改善を促し、充填作業後、適度な締め付け力の輪ゴム等を組立式型枠の周囲に巻き付けることで組立式型枠を固定した後ピン螺子を緩めることにより、成形時のスプリングバッグにより成形体が膨張する際に型枠部材がスームスに移動する構造とすることができる。この可動式ピンを有した組立式型枠を採用することにより、粉末充填時には螺子を締めつけて組立式型枠を固定することにより原料粉末の型からの漏れを防止する機能を付加することができ、また粉末充填後ピン螺子を緩め型枠部材のスムースな移動を促し成形体のスプリングバッグを緩和し成形体の割れを防止する機能を持たせることができる。   The second aspect of the mold of the present invention is, for example, the mold shown in FIGS. 11 and 12, and pin-shaped connecting members (on both ends of the mold members 52a and 52b constituting the assembly mold 52). It has a structure for inserting and fixing bolts 55), and thereby can hold the shape of the assembly mold. Here, the structure comprising the connecting member for connecting the assembly form that is referred to as a pin-like connection member and the connection member insertion portion into which the connection member is inserted has the assembly form members 52a and 52b from a predetermined position. It has a structure that restricts movement to the inside and allows movement to the outside to some extent, and has a movable region 57b to which the connecting member 55 can move. For example, one having a structure in which a pin is inserted into a connecting part of a prefabricated formwork, or a structure having a structure in which a connecting part of a prefabricated formwork is combined in a braided pattern, and the unevenness provided for each braid The thing etc. which have a structure where a member can slide outside are mentioned. However, the shape and structure of this member are not limited to these. Further, it is preferable that a hole (bolt introduction hole 57) larger than the diameter of the pin is provided at the end of the assembly formwork for introducing the pin, and the pin has a movable structure. By adopting such a structure, when manufacturing a large plate-shaped molded body, the stress caused by the spring bag generated at the time of depressurization after the end of pressurization, which was a cause of cracking of the molded body in the conventional method, is obtained. It can be effectively eliminated. The connecting member insertion portion (bolt introduction hole 57) into which the connecting member is inserted preferably has a diameter that is 2 mm or more and 10 mm or less larger than the diameter of the pin in order to relieve expansion of the molded body due to the spring bag. The hole has a shape close to an ellipse, and in the region 57a for fixing the pin, a diameter substantially equal to the diameter of the pin is preferable. However, the clearance and shape of the hole are not limited to this as long as the clearance allowing the spring bag when the molded body is inflated is sufficient. The pin is preferably a screw type, and is made of a material having a strength capable of holding the assembly mold, and the diameter is preferably 1 mm or more and 100 mm or less, more preferably 3 mm or more and 30 mm or less. However, the shape and material of the pin are not limited to this. When assembling the raw material powder, this assembling formwork is fixed with this pin screw to promote the improvement of workability, and after filling work, a rubber band with an appropriate tightening force is wound around the assembling formwork. Thus, by loosening the pin screw after fixing the assembly mold, the mold member can move smoothly when the molded body is expanded by the spring bag at the time of molding. By adopting the assembly form with this movable pin, it is possible to add a function to prevent leakage of the raw material powder from the mold by fastening the screw and fixing the assembly form when filling the powder. Further, after the powder filling, the pin screw can be loosened to facilitate the smooth movement of the mold member, to relax the spring bag of the molded body and to prevent the molded body from cracking.

上記の成形型の具体例としては、例えば、図11及び図12に示される成形型を例示することができる。この成形型は、組立式型枠52が複数の型枠部材52a、52bからなり、加圧終了後の減圧時に生じる成形体の膨張に併せて前記型枠部材52a、52bが移動可能な構造を備えるとともに、例えば、前記型枠部材52a、52bが、その両端に連結部材導入穴(ボルト導入穴)57を備え、ボルト55を該ボルト導入穴57に挿入して、ナット56により締め付けることで組立式型枠52の開口形状を保持する固定機構を有している。このボルト導入穴は、図11(b)に示すように、挿入されるボルト55の直径より大きく形成されており、ナット56による締め付けを緩めておけば、加圧成形終了後の減圧時に生じる焼結体の膨張に併せて、型枠部材52a、52bが移動することが可能となる。   As a specific example of the above-described mold, for example, the mold shown in FIGS. 11 and 12 can be exemplified. In this mold, the assembly mold 52 is composed of a plurality of mold members 52a and 52b, and the mold members 52a and 52b can move in accordance with the expansion of the molded body that occurs when the pressure is reduced after the pressurization. For example, the mold members 52 a and 52 b are provided with connecting member introduction holes (bolt introduction holes) 57 at both ends thereof, and the bolts 55 are inserted into the bolt introduction holes 57 and tightened by the nuts 56. It has a fixing mechanism that holds the opening shape of the expression mold 52. As shown in FIG. 11 (b), the bolt introduction hole is formed larger than the diameter of the bolt 55 to be inserted. The mold members 52a and 52b can be moved along with the expansion of the combined body.

具体的な作業手順としては、組立式型枠52を組立てた後、ボルト55をボルト導入穴57に挿入し、ナット56により締め付けて固定することで、原料粉末の充填等の作業を容易に行うことが可能となる。原料粉末を充填した後、該原料粉末の上に上パンチ51を乗せ、適度な締め付け力の輪ゴム等を組立式型枠52の周囲に巻き付け、組立式型枠52を固定しているボルト55のナット56を緩め、型枠部材52a及び52bが相対的に移動可能とする。その後、上パンチ51と組立式型枠52の隙間を覆うように上パンチの上にゴムシートを緩衝材として乗せた後、ビニール袋に入れ袋内を減圧し真空パックを行い、冷間静水圧プレスに投入して成形体を作製する。   As a specific work procedure, after assembling the assembling formwork 52, the bolt 55 is inserted into the bolt introduction hole 57, and is fastened and fixed by the nut 56, so that work such as filling of raw material powder can be easily performed. It becomes possible. After filling the raw material powder, the upper punch 51 is placed on the raw material powder, a rubber band or the like having an appropriate tightening force is wound around the assembling mold 52, and the bolt 55 fixing the assembling mold 52 is fixed. The nut 56 is loosened so that the mold members 52a and 52b are relatively movable. Thereafter, a rubber sheet is placed on the upper punch as a cushioning material so as to cover the gap between the upper punch 51 and the assembling formwork 52, and then placed in a plastic bag, the inside of the bag is decompressed and vacuum packed, and cold isostatic pressure is applied. It is put into a press to produce a compact.

ここで、ボルト導入穴57は、加圧終了後の減圧時に生じる成形体の膨張に併せて、型枠部材52a、52bが自由に移動できるように、ボルト55の直径より十分大きく形成する。特に、図11(b)に示すように、組立式型枠52の開口形状の対角線方向に伸張した形状とすることが好ましい。   Here, the bolt introduction hole 57 is formed to be sufficiently larger than the diameter of the bolt 55 so that the mold members 52a and 52b can freely move in accordance with the expansion of the molded body that occurs at the time of depressurization after the pressurization. In particular, as shown in FIG. 11B, it is preferable that the shape of the opening of the assembling mold 52 is extended in the diagonal direction.

なお、このボルト導入穴57のうち、組立式型枠の開口形状が最も小さい状態の時に連結部材(ボルト)55が存在する領域57a(連結部材初期位置)の周壁にゴム等の弾性体を設けることにより、原料粉末充填後の真空パック時等には、組立式型枠52が適度な強さでその形状が保持されており、加圧終了後の減圧時には、成形体の膨張に併せて連結部材(ボルト)55が連結部材可動領域57bに移動するようにすることが好ましい。この時、図11(b)に示すように、ボルト導入穴57の連結部材初期位置57aと連結部材可動領域57bの境界に括れを形成しておくことが好ましい。この括れの大きさや弾性体の強度、その厚さ等を調整することにより、加圧終了後の減圧時に、ボルト55がスムースに連結部材可動領域57bに移動できるようにすることができ、型枠部材52a、52bの移動をよりスムースにして、割れや反りの発生をさらに抑制することができる。   An elastic body such as rubber is provided on the peripheral wall of the region 57a (connection member initial position) where the connection member (bolt) 55 exists when the opening shape of the assembly formwork is the smallest in the bolt introduction hole 57. As a result, the shape of the assembling mold 52 is maintained at an appropriate strength during vacuum packing after filling the raw material powder. The member (bolt) 55 is preferably moved to the connecting member movable region 57b. At this time, as shown in FIG. 11B, it is preferable to form a constriction at the boundary between the connecting member initial position 57a of the bolt introduction hole 57 and the connecting member movable region 57b. By adjusting the size of the constriction, the strength of the elastic body, the thickness thereof, and the like, the bolt 55 can be smoothly moved to the connecting member movable region 57b when the pressure is reduced after the pressurization is completed. The movement of the members 52a and 52b can be made smoother to further suppress the occurrence of cracks and warpage.

上記の例は、図12から分かるように、下パンチ58が組立式型枠内を上下に移動可能なものであるが、図13に示すように、組立式型枠の開口形状より大きな形状の台座64を設けることで、底板63の組立式型枠62内での上下の移動を制限するとともに、型枠部材62a、62bの移動をスムースにして、動作をより安定にすることができ、さらに割れや反りの発生を抑制することができる。さらに、この台座64を設けることにより、原料粉末の充填や成形型の搬送等の作業性を飛躍的に向上させることが可能となる。   In the above example, as can be seen from FIG. 12, the lower punch 58 can move up and down in the assembly mold, but as shown in FIG. 13, the lower punch 58 has a shape larger than the opening shape of the assembly mold. By providing the pedestal 64, it is possible to restrict the vertical movement of the bottom plate 63 in the assembly mold 62, and to make the movement of the mold members 62a and 62b smooth, thereby making the operation more stable. Generation of cracks and warpage can be suppressed. Furthermore, by providing this pedestal 64, it is possible to dramatically improve workability such as filling of the raw material powder and conveyance of the mold.

なお、この成形型を構成する材料や付加的な機能を付与するための構造等に関しては、図1にその一例を示した本発明の成形型の第一の態様について上記で述べたことは、この成形型の第2の態様についても同様に適用することができる。   Regarding the material constituting the mold and the structure for imparting an additional function, the first aspect of the mold of the present invention whose example is shown in FIG. 1 is described above. The same applies to the second aspect of the mold.

上記のようにして得られた成形体を焼成炉内で焼成して、焼結体を製造する。焼成温度、昇温速度、降温速度等の条件は、種々の材料によって異なるが、例えばITOの場合、焼成温度は、酸化スズの酸化インジウム中への固溶が促進される1400℃〜1600℃であることが好ましい。1400℃未満ではITOとしての焼結が完全でないため、焼結体強度が低く、また1600℃を超える温度ではITO焼結粒子からの酸化インジウムあるいは酸化スズの蒸発が顕著となり、組成ずれ等の問題を引き起こす要因となる。焼成温度までの昇温速度は、成形体の均一な焼結による収縮を考慮すると、20℃/hr〜200℃/hrが好ましい。焼成温度で保持した後の、室温までの降温速度は、200℃/hr以下とすることが、焼結体への熱衝撃を緩和し、割れや反りの発生を防止する点で好ましい。   The molded body obtained as described above is fired in a firing furnace to produce a sintered body. Conditions such as the firing temperature, the temperature rise rate, and the temperature fall rate vary depending on various materials. For example, in the case of ITO, the firing temperature is 1400 ° C. to 1600 ° C. at which solid solution of tin oxide in indium oxide is promoted. Preferably there is. Below 1400 ° C, sintering as ITO is not complete, so the strength of the sintered body is low, and at temperatures above 1600 ° C, evaporation of indium oxide or tin oxide from the ITO sintered particles becomes significant, causing problems such as compositional deviations. It becomes a factor causing. The temperature increase rate up to the firing temperature is preferably 20 ° C./hr to 200 ° C./hr in consideration of shrinkage due to uniform sintering of the molded body. The temperature lowering rate to room temperature after being held at the firing temperature is preferably 200 ° C./hr or less from the viewpoint of relaxing the thermal shock to the sintered body and preventing the occurrence of cracks and warpage.

前述のように、本発明では、原料粉末に添加するバインダー等の成形助剤は、必要がないか、又は、その添加量を極少量に留めることができるため、焼結を行うための焼成に際して、成形助剤の除去を目的とした焼成工程(脱脂工程)を設ける必要がない。一般に、成形体中の有機物の除去を目的とした焼成工程のような低温での低速昇温は加熱炉のヒーターの劣化を招きやすく、その寿命を短くして生産コストを増大させるばかりではなく、有機成分の燃焼又は分解により焼結体にクラックを発生させないようにするため、室温から400℃乃至600℃まで、10℃/hr以下の低速で昇温する必要があり、焼結体の製造時間を大幅に増大させるものである。したがって、成形体中の有機物の除去を目的とした焼成工程を設けない本発明によれば、焼結体の製造効率を飛躍的に向上させることができる。なお、成形体中の有機物の除去を目的とした焼成工程を不要とするためには、原料粉末にバインダー等の有機物を含む成形助剤を添加しないことが良いことはもちろんであるが、原料粉末中の有機物含有量を0.6重量%以下、さらに好ましくは0.3重量%以下とすることによっても可能となる。   As described above, in the present invention, a molding aid such as a binder to be added to the raw material powder is not necessary, or the addition amount can be kept to a very small amount. There is no need to provide a firing step (degreasing step) for the purpose of removing the molding aid. In general, a low temperature increase at a low temperature such as a firing step for the purpose of removing organic substances in the molded body tends to cause deterioration of the heater of the heating furnace, not only shortening its life and increasing production cost, In order not to generate cracks in the sintered body due to the burning or decomposition of organic components, it is necessary to raise the temperature from room temperature to 400 ° C. to 600 ° C. at a low speed of 10 ° C./hr or less. Is greatly increased. Therefore, according to the present invention in which a firing step for removing organic substances in the molded body is not provided, the manufacturing efficiency of the sintered body can be dramatically improved. In order to eliminate the need for a firing step for the purpose of removing the organic matter in the molded body, it is of course good not to add a molding aid containing an organic matter such as a binder to the raw material powder. This can also be achieved by setting the organic content in the content to 0.6% by weight or less, more preferably 0.3% by weight or less.

以上の方法により製造された焼結体は、形状精度が良好であるので容易に所望の形状に研削加工することができ、容易にスパッタリングターゲットとすることができる。   Since the sintered compact manufactured by the above method has favorable shape accuracy, it can be easily ground into a desired shape and can be easily used as a sputtering target.

一方、本発明の焼結体の第1の態様は、構成元素として炭素を含まない焼結体であって、焼結体中に不純物として含まれる炭素量が少ないことを特徴としている。炭素量が多い焼結体を用いた場合、例えば、ITOターゲットにおいては、異常放電の発生原因となるだけでなく、得られる薄膜のエッチングレートも変わってしまう。また、AZOターゲットにおいては、得られる透明導電膜の抵抗が増加する。したがって、焼結体中の炭素の含有量は、これらの特性に影響が見られない0.005重量%未満が好ましく、より好ましくは0.003重量%以下、さらに好ましくは0.002重量%以下である。   On the other hand, the first aspect of the sintered body of the present invention is a sintered body that does not contain carbon as a constituent element, and is characterized in that the amount of carbon contained as an impurity in the sintered body is small. When a sintered body with a large amount of carbon is used, for example, an ITO target not only causes abnormal discharge, but also changes the etching rate of the obtained thin film. Moreover, in the AZO target, the resistance of the transparent conductive film obtained increases. Therefore, the carbon content in the sintered body is preferably less than 0.005% by weight, in which these properties are not affected, more preferably 0.003% by weight or less, and further preferably 0.002% by weight or less. It is.

焼結体中に存在する炭素は、焼結体を製造する過程で使用するスラリー化のための分散剤や消泡剤、粉末成形におけるバインダーや滑剤などの有機物が、脱脂工程で完全に除去されず残ることが主要な要因である。このため、成形体のサイズが大きい場合や厚さが厚い場合は、特に脱脂が不完全に成り易く、焼結体中の残留炭素が多くなり易い。この影響は、焼結体の大きさとしては600cm以上のもので顕著となり、1000cm以上のものでさらに顕著となる。厚さとしては10mm以上のもので顕著となり、さらには12mm以上で特に顕著となる。また、成形体のサイズが大きい場合や厚さが厚い場合は、特に成形が難しく、スラリーを用いた粉末造粒や成形助剤を用いることが行なわれるため、残留炭素が多くなる原因となっているが、本発明の成形型を用いて原料粉末を直接冷間静水圧プレスにより成形して成形体を得ることにより、スラリーを用いた粉末造粒や成形助剤を用いることなしに、又は、有機物を含む成形助剤等の添加量の少ない原料粉末を用いて、厚さ10mm以上、あるいは、大きさ600cm以上や1000cm以上、さらには3000cm以上の大型で高密度の焼結体を製造することができる。 The carbon present in the sintered body is completely removed in the degreasing process by the degreasing process, such as slurrying dispersants and antifoaming agents used in the process of manufacturing the sintered body, and binders and lubricants in powder molding. Remaining is the main factor. For this reason, when the size of the molded body is large or thick, degreasing tends to be incomplete, and the residual carbon in the sintered body tends to increase. This effect becomes remarkable when the size of the sintered body is 600 cm 2 or more, and becomes more remarkable when the size is 1000 cm 2 or more. The thickness becomes remarkable when the thickness is 10 mm or more, and is particularly remarkable when the thickness is 12 mm or more. In addition, when the size of the molded body is large or thick, it is particularly difficult to mold, and powder granulation using a slurry or a molding aid is used, which causes a large amount of residual carbon. However, by using the molding die of the present invention to directly mold the raw material powder by cold isostatic pressing, to obtain a molded body, without using the powder granulation and molding aid using the slurry, or Using a raw material powder with a small amount of addition of a molding aid containing an organic substance, a large and high-density sintered body having a thickness of 10 mm or more, or a size of 600 cm 2 or more, 1000 cm 2 or more, and further 3000 cm 2 or more. Can be manufactured.

特に、本発明では、前述のように、冷間静水圧プレスを用いることにより、大型の焼結体においても大きな圧力で成形することが可能であり、かつ、加圧成形終了後の減圧時に発生する成形体のスプリングバックによる応力を効果的に開放できることから、原料粉末に添加する有機物を含むバインダー等の成形助剤を全く使用しなくても、あるいは、原料粉末に対して0.6重量%以下あるいは0.3重量%以下という僅かな量の添加によっても、十分な強度を有する成形体を作製することが可能であり、大型で高密度、かつ、残留炭素の少ない均一な焼結体を得ることができる。そして、得られた焼結体を、所望の形状に整形し、必要に応じて焼結体表面を研削又は研磨した後、必要に応じてバッキングプレートに接合してスパッタリングターゲットを作製することにより、低抵抗の透明導電膜を高速で形成することができ、かつ、スパッタリング中の異常放電やノジュールの発生の少ないスパッタリングターゲットを提供することができる。   In particular, in the present invention, as described above, by using a cold isostatic press, even a large sintered body can be molded with a large pressure, and is generated at the time of depressurization after completion of pressure molding. Since the stress due to the spring back of the molded product can be effectively released, it is possible to use a molding aid such as a binder containing an organic substance to be added to the raw material powder, or 0.6% by weight based on the raw material powder. It is possible to produce a molded body having sufficient strength by adding a small amount of 0.3% by weight or less, or a large, high density, and uniform sintered body with little residual carbon. Obtainable. Then, after shaping the obtained sintered body into a desired shape, grinding or polishing the surface of the sintered body as necessary, and then bonding to a backing plate as necessary to produce a sputtering target, A low-resistance transparent conductive film can be formed at high speed, and a sputtering target with less occurrence of abnormal discharge and nodules during sputtering can be provided.

なお、特許文献1には、ITOターゲットにおいて、ターゲット中に含まれる周期律表のIIIb族およびIVb族に属する元素を50ppm以下にすることにより、スパッタ時の異常放電やノジュールの発生を低減できることが記載されているが、炭素の影響については具体的には何ら言及されていない。事実、この特許文献1は、バインダーを添加し成形したITO成形体をITO焼結板の上で焼成した実施例と、同じ成形体を低純度アルミナ板(SiOを7%含む)の上で焼成した比較例とを比較していることから、実質的に焼成時にセッタから拡散して混入するAl及びSiの不純物を低減させることを目的としたものである。すなわち、この特許文献1には、炭素の存在がスパッタ時の異常放電やノジュールの発生と関係があることを示す具体的なデータは全く記載されておらず、また、どのような作用により炭素の存在がスパッタ時の異常放電やノジュールの発生と関係するかについても全く記載されていない。さらに、特許文献1の実施例では、成形に際して1重量%のPVAをバインダーとして原料粉末に添加しており、得られた焼結体は50ppm程度の炭素を含んでいたものと考えられる。なお、本発明者らの検討結果によれば、この特許文献1のように有機物を含むバインダー等の成形助剤を用いた場合には、300〜600℃程度の温度に加熱する通常の脱脂処理では、焼結体中に残留する炭素を必ずしも完全に除去することができないことが認められているが、この特許文献1には、このことについては何らの考慮もされていない。 In Patent Document 1, in the ITO target, the generation of abnormal discharge and nodules during sputtering can be reduced by setting the elements belonging to IIIb group and IVb group of the periodic table contained in the target to 50 ppm or less. Although described, there is no specific mention of the effects of carbon. In fact, this patent document 1 describes an example in which an ITO molded body formed by adding a binder is fired on an ITO sintered plate, and the same molded body on a low-purity alumina plate (containing 7% of SiO 2 ). Since the comparison with the fired comparative example is made, the object is to substantially reduce the impurities of Al and Si which are diffused from the setter and mixed during firing. That is, this Patent Document 1 does not describe any specific data indicating that the presence of carbon is related to the occurrence of abnormal discharge or nodules during sputtering, and what action causes the carbon There is no mention of whether the existence is related to the occurrence of abnormal discharge or nodules during sputtering. Furthermore, in the Example of patent document 1, it is thought that 1 weight% PVA was added to the raw material powder as a binder at the time of shaping | molding, and the obtained sintered compact contained about 50 ppm of carbon. In addition, according to the examination results of the present inventors, when a molding aid such as a binder containing an organic substance is used as in Patent Document 1, a normal degreasing treatment that heats to a temperature of about 300 to 600 ° C. However, although it is recognized that carbon remaining in the sintered body cannot be completely removed, Patent Document 1 does not take any consideration into this.

本発明の焼結体の第2の態様は、焼結体の表面を構成する面の最も広い面の面積が1000cm以上、かつ、焼結密度が焼結体全体で90%以上、あるいは95%以上、さらには99%以上であることを特徴とする焼結体であり、好ましくは、焼結体内の焼結密度の変動が0.2%以下の焼結体である。該焼結体も、本発明の成形型を用いて冷間静水圧プレスにより成形を行うことにより、その製造が可能となるものである。すなわち、原料粉末に添加する有機物を含むバインダーや滑材等の成形助剤を全く使用しなくても、あるいは、原料粉末中の有機物含有量が0.6重量%以下、さらには0.3重量%以下という僅かな量を添加しただけのものによっても、十分な強度を有する成形体を作製することができ、それにより上記のような大型で高密度、かつ、焼結体内での密度の変動が少なく、残留炭素の少ない焼結体を製造することができる。これにより、表示装置等の大型化で要求されている大型で高性能のスパッタリングターゲットを提供することが可能となる。 In the second aspect of the sintered body of the present invention, the area of the widest surface constituting the surface of the sintered body is 1000 cm 2 or more and the sintered density is 90% or more of the entire sintered body, or 95 %, More preferably 99% or more, and preferably a sintered body having a sintered density variation of 0.2% or less in the sintered body. The sintered body can also be manufactured by molding by cold isostatic pressing using the mold of the present invention. In other words, the organic powder content in the raw material powder is 0.6% by weight or less, and further 0.3 wt. Even with the addition of a small amount of not more than%, it is possible to produce a molded body having sufficient strength, and as a result, large and high density as described above, and fluctuation in density within the sintered body. Therefore, a sintered body with less residual carbon can be produced. Thereby, it is possible to provide a large and high-performance sputtering target that is required for increasing the size of a display device or the like.

本発明の焼結体の第3の態様は、焼結体のスパッタ面に凸部を形成することによりエロージョン領域の厚さを厚くして、ターゲット材の使用効率を向上させたものである。このような形状のスパッタリングターゲットは、凹部を有する底板を、複数の底板構成部材により構成するとともに、本発明の成形型を用いることにより、大型で高密度、かつ、焼結体内での密度の変動が少なく、残留炭素の少ない焼結体を製造することができる。これにより、ITOターゲット等では、高価なターゲット材料の使用効率を飛躍的に向上させることができるとともに、低抵抗の薄膜が得られ、異常放電やノジュールの発生も少ない優れた大型のターゲットを提供することができる。   According to the third aspect of the sintered body of the present invention, the convex portion is formed on the sputter surface of the sintered body to increase the thickness of the erosion region, thereby improving the usage efficiency of the target material. In the sputtering target having such a shape, the bottom plate having the recesses is constituted by a plurality of bottom plate constituent members, and by using the molding die of the present invention, large-scale and high-density fluctuations in the sintered body. Therefore, a sintered body with less residual carbon can be produced. This makes it possible to dramatically improve the use efficiency of expensive target materials, and to provide an excellent large target with a low resistance and a low occurrence of abnormal discharge and nodules. be able to.

以下、本発明を実施例を示して詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

(実施例1)
図1〜3に示すように、本実施例で使用した成形型は上パンチ1、型枠部材2a及び型枠部材2bからなる組立式型枠2、底板3並びに台座4から成る。上パンチ1はMCナイロン製、組立式型枠2および底板3はSUS製、台座4はMCナイロン製とした。組立式型枠2は型枠部材2aと型枠部材2bとからなり、型枠部材2bの両端には型枠部材2aと当接させて組み合わせるための段部7が形成されている。型枠部材2aおよび型枠部材2bの底部には底板3が当接する段部8が形成されており、これにより、底板3は組立式型枠2の側面に沿った移動ができないように構成されている。
Example 1
As shown in FIGS. 1-3, the shaping | molding die used by the present Example consists of the assembly punching form 2 which consists of the top punch 1, the formwork member 2a, and the formwork member 2b, the baseplate 3, and the base 4. FIG. The upper punch 1 was made of MC nylon, the assembling mold 2 and the bottom plate 3 were made of SUS, and the base 4 was made of MC nylon. The assembly-type mold frame 2 includes a mold frame member 2a and a mold frame member 2b. At both ends of the mold frame member 2b, stepped portions 7 are formed to be brought into contact with and combined with the mold frame member 2a. A step portion 8 with which the bottom plate 3 abuts is formed at the bottom of the mold member 2a and the mold member 2b, so that the bottom plate 3 cannot be moved along the side surface of the assembly mold 2. ing.

組立式型枠2と上パンチ1の隙間は0.5mm(上パンチ1の幅及び長さが開口形状の幅及び長さより各々1.0mm小さい)とし、さらに、組立式型枠2の内側面および上パンチ1の側面には摩擦低減のためにテフロン(登録商標)テープを接着した。   The gap between the assembling mold 2 and the upper punch 1 is 0.5 mm (the width and length of the upper punch 1 are each 1.0 mm smaller than the width and length of the opening), and the inner surface of the assembling mold 2 Teflon (registered trademark) tape was adhered to the side surfaces of the upper punch 1 to reduce friction.

組立式型枠2と底板3を台座4の上に置き、台座4と底板3は両面テープにより強固に接着した。組立式型枠2の型枠部材2aおよび型枠部材2bの当接部分は幅1cmの粘着テープ(スコッチテープ(登録商標))を貼着することにより固定して組立式型枠2を組み立てた。   The assembly mold 2 and the bottom plate 3 were placed on a pedestal 4, and the pedestal 4 and the bottom plate 3 were firmly bonded with a double-sided tape. The assembling mold 2 was assembled by affixing an adhesive tape (Scotch tape (registered trademark)) having a width of 1 cm to the contact portion between the mold member 2a and the mold member 2b of the assembling mold 2. .

Al粉末2wt%とZnO粉末98wt%を乾式ボールミル混合し作製した原料粉末5を底板3および組立式型枠2により囲まれた空間(開口形状:390mm×770mmの矩形)に9.6kg充填し、この原料粉末5の上に上パンチ1を乗せた。特に、造粒やバインダーの添加などの粉末処理は実施しなかった。上パンチ1と組立式型枠2の隙間を覆うように上パンチの上にゴムシートを緩衝材6として乗せた後、ビニール袋に入れ袋内を減圧し真空パックを行なった。 9.6 kg of raw material powder 5 produced by dry ball mill mixing of 2 wt% of Al 2 O 3 powder and 98 wt% of ZnO powder in a space (opening shape: 390 mm × 770 mm rectangle) surrounded by the bottom plate 3 and the assembly mold 2 The upper punch 1 was placed on the raw material powder 5 after filling. In particular, powder processing such as granulation and addition of a binder was not performed. A rubber sheet was placed on the upper punch as a cushioning material 6 so as to cover the gap between the upper punch 1 and the assembling mold 2, and then put in a plastic bag to decompress the inside of the bag and vacuum pack.

このようにして準備した成形型を冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×9.5mmの成形体を得た。 The mold thus prepared was put into a cold isostatic press and molded at a pressure of 1 ton / cm 2 . The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no cracking or warping, and a molded body of 391 mm × 773 mm × 9.5 mm was obtained.

上記成形体を焼成炉内に設置し、以下の条件で焼成を実施し、焼結体を作製した。   The molded body was placed in a firing furnace and fired under the following conditions to produce a sintered body.

焼成条件
焼成雰囲気:大気雰囲気
昇温速度:100℃/hr、焼成温度:1500℃、焼成時間:5hr
降温速度:100℃/hr
得られた焼結体は、約328mm×649mm×8mmの大きさで、焼結体中の炭素含有量は、0.003wt%であった。また、焼結密度は全体で99.45%、焼結密度の最も大きい部分と最も小さい部分との差は0.09%であった。なお、焼結体の真密度は5.632g/cmとした。
Firing conditions Firing atmosphere: Air atmosphere Temperature rising rate: 100 ° C./hr, Firing temperature: 1500 ° C., Firing time: 5 hr
Temperature drop rate: 100 ° C / hr
The obtained sintered body was about 328 mm × 649 mm × 8 mm in size, and the carbon content in the sintered body was 0.003 wt%. The sintered density was 99.45% as a whole, and the difference between the largest and smallest sintered density was 0.09%. The true density of the sintered body was 5.632 g / cm 3 .

(実施例2)
上パンチ1、組立式型枠2及び底板3をMCナイロン製とした以外は実施例1と同様の成形型を用い、実施例1と同様に冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×9.5mmの成形体を得た。但し、成形体の角から2mm以下の部分の強度が実施例1で得られた成形体の強度よりも弱く、強く握ると剥離した。
(Example 2)
A mold similar to that of Example 1 was used except that the upper punch 1, the assembly form 2 and the bottom plate 3 were made of MC nylon, and the same as in Example 1 was put into a cold isostatic press and 1 ton / cm. Molding was performed at a pressure of 2 . The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no cracking or warping, and a molded body of 391 mm × 773 mm × 9.5 mm was obtained. However, the strength of the portion of 2 mm or less from the corner of the molded body was weaker than the strength of the molded body obtained in Example 1, and peeled when gripped strongly.

得られた成形体を実施例1と同様の方法で焼成し、約328mm×649mm×8mmの大きさの焼結体を得た。焼結体中の炭素含有量は、0.004wt%であった。また、焼結密度は全体で99.14%、焼結密度の最も大きい部分と最も小さい部分との差は0.18%であった。   The obtained molded body was fired in the same manner as in Example 1 to obtain a sintered body having a size of about 328 mm × 649 mm × 8 mm. The carbon content in the sintered body was 0.004 wt%. Moreover, the sintered density as a whole was 99.14%, and the difference between the portion with the highest sintered density and the portion with the lowest sintered density was 0.18%.

(実施例3)
上パンチ1をベークライト製、組立式型枠2および底板3を超ジュラルミン製とし、充填する粉末量を14.5kgにした以外は実施例1と同様の成形型を用い、実施例1と同様に冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×14mmの成形体を得た。
(Example 3)
The same as in Example 1, except that the upper punch 1 was made of bakelite, the assembly form 2 and the bottom plate 3 were made of super duralumin, and the amount of powder to be filled was 14.5 kg. It put into the cold isostatic press and it shape | molded with the pressure of 1 ton / cm < 2 >. The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no cracking or warping, and a molded body of 391 mm × 773 mm × 14 mm was obtained.

得られた成形体を実施例1と同様の方法で焼成し、約328mm×649mm×12mmの大きさの焼結体を得た。焼結体中の炭素含有量は、0.003wt%であった。また、焼結密度は全体で99.38%、焼結密度の最も大きい部分と最も小さい部分との差は0.10%であった。   The obtained molded body was fired in the same manner as in Example 1 to obtain a sintered body having a size of about 328 mm × 649 mm × 12 mm. The carbon content in the sintered body was 0.003 wt%. Moreover, the sintered density as a whole was 99.38%, and the difference between the portion with the highest sintered density and the portion with the lowest sintered density was 0.10%.

(実施例4)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末とし、成形型に17kg充填した以外は実施例1と同様の成形型を用い、実施例1と同様の条件にて冷間静水圧プレスに投入した。特に、造粒やバインダーの添加などの粉末処理は実施しなかった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×16mmの成形体を得た。
Example 4
The raw material powder was a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and the mold was the same as in Example 1 except that 17 kg was filled in the mold. It was put into an isostatic press. In particular, powder processing such as granulation and addition of a binder was not performed. The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no crack or warpage, and a molded body of 391 mm × 773 mm × 16 mm was obtained.

上記成形体を焼成炉内に設置し、以下の条件で焼成を実施し、焼結体を作製した。   The molded body was placed in a firing furnace and fired under the following conditions to produce a sintered body.

焼成条件
焼成雰囲気:酸素フロー雰囲気
昇温速度:100℃/hr、焼成温度:1600℃、焼成時間:5hr
降温速度:100℃/hr
得られた焼結体は、約307mm×607mm×13mmの大きさで、焼結体中の炭素含有量は、0.002wt%であった。また、焼結密度は全体で99.79%、焼結密度の最も大きい部分と最も小さい部分との差は0.04%であった。なお、焼結体の真密度は7.156g/cmとした。
Firing conditions Firing atmosphere: Oxygen flow atmosphere Temperature rising rate: 100 ° C./hr, Firing temperature: 1600 ° C., Firing time: 5 hr
Temperature drop rate: 100 ° C / hr
The obtained sintered body was approximately 307 mm × 607 mm × 13 mm in size, and the carbon content in the sintered body was 0.002 wt%. The sintered density was 99.79% as a whole, and the difference between the highest and lowest sintered density parts was 0.04%. The true density of the sintered body was 7.156 g / cm 3 .

(実施例5)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末を焼成・粉砕して得たITO粉末とし、成形型に17kg充填した以外は、実施例1と同様の成形型を用い、実施例1と同様の条件にて冷間静水圧プレスに投入した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×15mmの成形体を得た。
(Example 5)
The raw material powder was an ITO powder obtained by firing and pulverizing a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and the same mold as in Example 1 was used except that 17 kg was filled in the mold. The mixture was put into a cold isostatic press under the same conditions as in Example 1. The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no cracking or warping, and a molded body of 391 mm × 773 mm × 15 mm was obtained.

(実施例6)
上パンチ1をベークライト製、組立式型枠2および底板3を超ジュラルミン製とし、原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末を焼成・粉砕して得たITO粉末とし、成形型に14.5kg充填した以外は、実施例1と同様の成形型を用い、実施例1と同様の条件にて冷間静水圧プレスに投入した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×13mmの成形体を得た。
(Example 6)
ITO powder obtained by baking the upper punch 1 made of bakelite, the assembly form 2 and the bottom plate 3 made of super duralumin, and firing and pulverizing a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt% The same mold as in Example 1 was used except that 14.5 kg was filled in the mold, and the cold isostatic press was charged under the same conditions as in Example 1. The obtained molded body was taken out from the mold and the shape was confirmed. As a result, there was no crack or warp, and a molded body of 391 mm × 773 mm × 13 mm was obtained.

得られた成形体を実施例4と同様の方法で焼成し、約320mm×630mm×10mmの大きさの焼結体を得た。焼結体中の炭素含有量は、0.001wt%以下であった。また、焼結密度は全体で99.80%、焼結密度の最も大きい部分と最も小さい部分との差は0.05%であった。   The obtained molded body was fired in the same manner as in Example 4 to obtain a sintered body having a size of about 320 mm × 630 mm × 10 mm. The carbon content in the sintered body was 0.001 wt% or less. The overall sintered density was 99.80%, and the difference between the largest and smallest sintered density was 0.05%.

(実施例7)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末とし、成形型に17kg充填したこと、及び、型枠部材の当接箇所に粘着テープ(スコッチテープ(登録商標))を貼着するかわりに、輪ゴムにより型枠部材を束ねることで組立式型枠を組み立てたこと以外は実施例1と同様にして成形体を作製した。得られた成形体の形状を確認したところ、割れや反りはなく、その大きさは391mm×773mm×16mmであった。
(Example 7)
The raw material powder was a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and 17 kg was filled in the mold, and an adhesive tape (Scotch tape (registered trademark)) was placed at the contact point of the mold member A molded body was produced in the same manner as in Example 1 except that the assembly formwork was assembled by bundling the formwork members with rubber bands instead of sticking. When the shape of the obtained molded body was confirmed, there was no crack or warp, and the size was 391 mm × 773 mm × 16 mm.

(実施例8)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末とし、成形型に11kg充填したこと、上パンチ1をベークライト製、組立式型枠2および底板3を超ジュラルミン製としたこと、及び、型枠部材の当接箇所に粘着テープ(スコッチテープ(登録商標))を貼着するかわりに、輪ゴムにより型枠部材を束ねることで組立式型枠を組み立てたこと以外は実施例1と同様にして成形体を作製した。特に、造粒やバインダーの添加などの粉末処理は実施しなかった。得られた成形体の形状を確認したところ、割れや反りはなく、その大きさは391mm×773mm×10mmであった。
(Example 8)
The raw material powder was a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and 11 kg was filled in the mold, the upper punch 1 was made of Bakelite, the assembly mold 2 and the bottom plate 3 were made of super duralumin. In addition to attaching an adhesive tape (Scotch tape (registered trademark)) to the contact point of the formwork member, the assembly formwork was assembled by bundling the formwork members with rubber bands. A molded body was produced in the same manner as in Example 1. In particular, powder processing such as granulation and addition of a binder was not performed. When the shape of the obtained molded body was confirmed, there was no crack or warp, and the size was 391 mm × 773 mm × 10 mm.

得られた成形体を実施例4と同様の方法で焼成し、約307mm×607mm×8mmの大きさの焼結体を得た。焼結体中の炭素含有量は、0.001wt%であった。また、焼結密度は全体で99.82%、焼結密度の最も大きい部分と最も小さい部分との差は0.04%であった。   The obtained molded body was fired in the same manner as in Example 4 to obtain a sintered body having a size of about 307 mm × 607 mm × 8 mm. The carbon content in the sintered body was 0.001 wt%. Moreover, the sintered density as a whole was 99.82%, and the difference between the portion with the highest sintered density and the portion with the lowest sintered density was 0.04%.

(実施例9)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末とし、大きさが異なるが実施例1の成形型と類似の構造を有する成形型(開口形状:265mm×390mmの矩形)を用い、原料粉末7.4kgを充填したこと以外は実施例1と同様にして成形体を作製した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、265mm×391mm×20mmの成形体を得た。
Example 9
The raw material powder is a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and a mold having a structure similar to that of the mold of Example 1 (opening shape: 265 mm × 390 mm rectangle) Was used in the same manner as in Example 1 except that 7.4 kg of raw material powder was filled. The obtained molded body was taken out from the mold and the shape was confirmed. As a result, there was no crack or warp, and a molded body of 265 mm × 391 mm × 20 mm was obtained.

得られた成形体を実施例4と同様の条件で焼成して得られた焼結体は、約208mm×307mm×16mmの大きさで、焼結体中の炭素含有量は、0.003wt%であった。また、焼結密度は全体で99.74%、焼結密度の最も大きい部分と最も小さい部分との差は0.06%であった。   The sintered body obtained by firing the obtained molded body under the same conditions as in Example 4 has a size of about 208 mm × 307 mm × 16 mm, and the carbon content in the sintered body is 0.003 wt%. Met. Moreover, the sintered density as a whole was 99.74%, and the difference between the portion with the highest sintered density and the portion with the lowest sintered density was 0.06%.

(実施例10)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末とし、大きさが異なるが実施例1の成形型と類似の構造を有する成形型(開口形状:330mm×5200mmの矩形)を用い、原料粉末9.2kgを充填したこと以外は実施例1と同様にして成形体を作製した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、331mm×522mm×15mmの成形体を得た。
(Example 10)
The raw material powder is a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and a mold having a structure similar to that of the mold of Example 1 (opening shape: rectangle of 330 mm × 5200 mm). Was used in the same manner as in Example 1 except that 9.2 kg of raw material powder was filled. The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no cracking or warping, and a molded body of 331 mm × 522 mm × 15 mm was obtained.

得られた成形体を実施例4と同様の条件で焼成して得られた焼結体は、約260mm×410mm×12mmの大きさで、焼結体中の炭素含有量は、0.002wt%であった。また、焼結密度は全体で99.77%、焼結密度の最も大きい部分と最も小さい部分との差は0.05%であった。   The sintered body obtained by firing the obtained molded body under the same conditions as in Example 4 has a size of about 260 mm × 410 mm × 12 mm, and the carbon content in the sintered body is 0.002 wt%. Met. The sintered density was 99.77% as a whole, and the difference between the highest and lowest sintered density parts was 0.05%.

(実施例11)
図4に示すように、型枠部材12bの端部に段部を形成していないこと以外は実施例1と同様の成形型を用い、原料粉末としてSnO粉末10wt%とIn粉末90wt%の混合粉末17kgを充填したこと以外は実施例1と同様の条件にて冷間静水圧プレスに投入した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×16mmの成形体を得た。
(Example 11)
As shown in FIG. 4, a mold similar to that of Example 1 was used except that no step was formed at the end of the mold member 12b, and SnO 2 powder 10 wt% and In 2 O 3 powder were used as raw powders. It was put into a cold isostatic press under the same conditions as in Example 1 except that 17 kg of 90 wt% mixed powder was filled. The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no crack or warpage, and a molded body of 391 mm × 773 mm × 16 mm was obtained.

(比較例1)
Al粉末2wt%とZnO粉末98wt%を乾式ボールミル混合した混合粉末に、パラフィンバインダー2.0wt%添加し、原料粉末を作製した。この原料粉末7.2kgを260mm×850mmの金型に充填し、300kg/cmの成形圧力によりプレス成形を行ない成形体を得た。さらに、1ton/cmの圧力でCIP処理した。この後、成形体に残存するバインダーを除去するために、上記成形体を焼成炉内に設置し、以下の条件で脱脂を実施した。なお、CIP処理後の成形体の大きさは250mm×815mm×10mmであった。
(Comparative Example 1)
A paraffin binder of 2.0 wt% was added to a mixed powder obtained by mixing 2 wt% of Al 2 O 3 powder and 98 wt% of ZnO powder in a dry ball mill to prepare a raw material powder. 7.2 kg of this raw material powder was filled in a 260 mm × 850 mm mold and press-molded with a molding pressure of 300 kg / cm 2 to obtain a molded body. Further, CIP treatment was performed at a pressure of 1 ton / cm 2 . Thereafter, in order to remove the binder remaining in the molded body, the molded body was placed in a firing furnace and degreased under the following conditions. Note that the size of the molded body after the CIP treatment was 250 mm × 815 mm × 10 mm.

脱脂条件
脱脂雰囲気:大気フロー雰囲気
脱脂温度:450℃、昇温速度:3℃/hr、保持時間:2hr
得られた成形体を実施例1と同様の方法で焼成し、約220mm×309mm×8mmサイズの焼結体を得た。焼結体中の炭素含有量は、0.010wt%であった。また、焼結体の密度(焼結密度)は焼結体全体で99.33%、焼結体各部の焼結密度の最大値と最小値の差は0.24%であった。なお、焼結体の真密度は5.632g/cmとした。
Degreasing conditions Degreasing atmosphere: air flow atmosphere Degreasing temperature: 450 ° C., temperature rising rate: 3 ° C./hr, holding time: 2 hr
The obtained molded body was fired in the same manner as in Example 1 to obtain a sintered body having a size of about 220 mm × 309 mm × 8 mm. The carbon content in the sintered body was 0.010 wt%. Further, the density of the sintered body (sintered density) was 99.33% in the entire sintered body, and the difference between the maximum value and the minimum value of the sintered density of each part of the sintered body was 0.24%. The true density of the sintered body was 5.632 g / cm 3 .

(比較例2)
SnO粉末10wt%とIn粉末90wt%の混合粉末に、ポリビニールアルコールバインダー1.0wt%、イオン交換水を混合し湿式ボールミル混合しスラリーを作製し、スプレードライ乾燥により造粒粉を得た。この造粒粉末4.2kgを185mm×415mmの金型に充填し、300kg/cmの成形圧力によりプレス成形を行ない成形体を得た。さらに、1ton/cmの圧力でCIP処理した。この後、成形体に残存するバインダーを除去するために、上記成形体を焼成炉内に設置し、比較例1と同様の方法で脱脂を実施した。なお、CIP処理後の成形体の大きさは168mm×377mm×17mmであった。
(Comparative Example 2)
A mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt% is mixed with a polyvinyl alcohol binder 1.0 wt% and ion-exchanged water, mixed with a wet ball mill to produce a slurry, and granulated powder is obtained by spray drying. Obtained. This granulated powder (4.2 kg) was filled in a 185 mm × 415 mm mold, and press molded with a molding pressure of 300 kg / cm 2 to obtain a molded body. Further, CIP treatment was performed at a pressure of 1 ton / cm 2 . Then, in order to remove the binder remaining in the molded body, the molded body was placed in a firing furnace, and degreasing was performed in the same manner as in Comparative Example 1. In addition, the size of the molded body after the CIP process was 168 mm × 377 mm × 17 mm.

得られた成形体を実施例4と同様の方法で焼成を実施し、約137mm×309mm×13mmの大きさの焼結体を得た。焼結体中の炭素含有量は、0.008wt%であった。また、焼結体の密度(焼結密度)は焼結体全体で99.74%、焼結体各部の焼結密度の最大値と最小値の差は0.18%であった。なお、焼結体の真密度は7.156g/cmとした。 The obtained molded body was fired in the same manner as in Example 4 to obtain a sintered body having a size of about 137 mm × 309 mm × 13 mm. The carbon content in the sintered body was 0.008 wt%. Further, the density of the sintered body (sintered density) was 99.74% for the entire sintered body, and the difference between the maximum value and the minimum value of the sintered density of each part of the sintered body was 0.18%. The true density of the sintered body was 7.156 g / cm 3 .

(比較例3)
SnO粉末10wt%とIn粉末90wt%の混合粉末に、ポリビニールアルコールバインダー1.0wt%、イオン交換水を加え湿式ボールミル混合しスラリーを作製した。得られたスラリーにポリアルキレングリコール系消泡剤0.1wt%を添加し、真空中で脱泡処理を実施した。これを420mm×960mm×11mmの鋳込み成形用鋳型に注入し20kg/cmの成形圧力により鋳込み成形を行ない成形体を得た。この成形体を乾燥後、1ton/cmの圧力でCIP処理した。この後、成形体に残存する分散剤およびバインダーを除去するために、上記成形体を焼成炉内に設置し、比較例1と同様の方法で脱脂を実施した。なお、CIP処理後の成形体の大きさは380mm×870mm×10mmであった。
(Comparative Example 3)
To a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, a polyvinyl alcohol binder 1.0 wt% and ion exchange water were added and wet ball mill mixed to prepare a slurry. A polyalkylene glycol-based antifoaming agent (0.1 wt%) was added to the resulting slurry, and defoaming treatment was performed in vacuum. This was poured into a mold for casting molding of 420 mm × 960 mm × 11 mm, and cast molding was performed with a molding pressure of 20 kg / cm 2 to obtain a molded body. The molded body was dried and subjected to CIP treatment at a pressure of 1 ton / cm 2 . Thereafter, in order to remove the dispersant and binder remaining in the molded body, the molded body was placed in a firing furnace, and degreasing was performed in the same manner as in Comparative Example 1. Note that the size of the molded body after the CIP treatment was 380 mm × 870 mm × 10 mm.

得られた成形体を実施例4と同様の方法で焼成し、約310mm×710mm×8mmの大きさの焼結体を得た。焼結体中の炭素含有量は、0.007wt%であった。また、焼結体の密度(焼結密度)は焼結体全体で99.76%、焼結体各部の焼結密度の最大値と最小値の差は0.21%であった。   The obtained molded body was fired in the same manner as in Example 4 to obtain a sintered body having a size of about 310 mm × 710 mm × 8 mm. The carbon content in the sintered body was 0.007 wt%. The density of the sintered body (sintered density) was 99.76% for the entire sintered body, and the difference between the maximum value and the minimum value of the sintered density of each part of the sintered body was 0.21%.

(比較例4)
図5に示すように、ウレタンゴム型(硬度70°)25内に4つに分割されたSUS製の型枠部材22a、22bからなる組立式型枠22とSUS製の上パンチ21、下パンチ28を配置し、その空間(開口形状:390mm×770mmの矩形)にSnO粉末10wt%とIn粉末90wt%の混合粉末を充填した。この成形型をビニール袋に入れ袋内を減圧し真空パックを行なった後、実施例1と同様に静水圧プレス成形を行った。プレス後、ウレタンゴム型25と上パンチ21の間に空間が発生しており、成形体には縦方向に大きな割れが発生していた。
(Comparative Example 4)
As shown in FIG. 5, an assembling mold 22 comprising SUS mold members 22a and 22b divided into four in a urethane rubber mold (hardness 70 °) 25, an upper punch 21 and a lower punch made of SUS. 28 was placed, and the space (opening shape: 390 mm × 770 mm rectangle) was filled with a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%. The mold was placed in a plastic bag, the inside of the bag was depressurized and vacuum packed, and then hydrostatic press molding was performed in the same manner as in Example 1. After pressing, a space was generated between the urethane rubber mold 25 and the upper punch 21, and a large crack was generated in the vertical direction in the molded body.

(成膜確認)
実施例1と比較例1で得られた焼結体を研削加工して4インチφ×6mm(厚さ)のターゲット材を作製し、無酸素銅製のバッキングプレートにインジウム半田により接合してスパッタリングターゲットを作製した。こうして作製されたスパッタリングターゲットを用いて以下のスパッタリング条件で成膜を行った。得られた薄膜の抵抗率を4端子法で測定したところ、実施例1のターゲットで得られた薄膜は9.6×10−4Ωcmで、比較例1のターゲットでは1.3×10−3Ωcmであった。
(Deposition confirmation)
The sintered bodies obtained in Example 1 and Comparative Example 1 were ground to produce a target material of 4 inches φ × 6 mm (thickness), and joined to an oxygen-free copper backing plate with indium solder to form a sputtering target. Was made. Using the sputtering target thus prepared, film formation was performed under the following sputtering conditions. When the resistivity of the obtained thin film was measured by the 4-terminal method, the thin film obtained with the target of Example 1 was 9.6 × 10 −4 Ωcm, and the target of Comparative Example 1 was 1.3 × 10 −3. It was Ωcm.

スパッタ条件
DC電力 :300W
スパッタガス:Ar
ガス圧 :0.5Pa
基板温度 :200℃
膜厚 :100nm
ガラス基板 :コーニング#1737
(放電確認)
実施例8と比較例2で得られた焼結体を研削加工して101.6mm×177.8mm×6mmのターゲット材を作製し、無酸素銅製のバッキングプレートにインジウム半田により接合してスパッタリングターゲットを作製した。こうして作製されたスパッタリングターゲットを以下のスパッタリング条件で20kWhスパッタリングを行い、異常放電の発生回数を測定した。異常放電の発生回数の測定は、マイクロアークモニター(ランドマークテクノロジ社製)を用いて以下の測定条件で行った。アークの回数は、実施例8のターゲットでは283回で、比較例2のターゲットでは364回であった。
Sputtering conditions DC power: 300W
Sputtering gas: Ar
Gas pressure: 0.5 Pa
Substrate temperature: 200 ° C
Film thickness: 100 nm
Glass substrate: Corning # 1737
(Discharge confirmation)
The sintered bodies obtained in Example 8 and Comparative Example 2 were ground to produce a target material of 101.6 mm × 177.8 mm × 6 mm, joined to an oxygen-free copper backing plate with indium solder, and a sputtering target Was made. The sputtering target thus produced was subjected to 20 kWh sputtering under the following sputtering conditions, and the number of occurrences of abnormal discharge was measured. The number of occurrences of abnormal discharge was measured using a micro arc monitor (manufactured by Landmark Technology) under the following measurement conditions. The number of arcs was 283 for the target of Example 8 and 364 for the target of Comparative Example 2.

スパッタ条件
DC電力 :300W
スパッタガス:Ar+O
ガス圧 :0.5Pa
アーク測定条件
検出電圧 :200V
検出時間 :50μsec
(実施例12)
図6に示すように、本実施例で使用した成形型は上パンチ31、型枠部材32a、32bからなる組立式型枠32、凹部を有する底板33及び台座34から成る。型枠部材32aの両端には、型枠部材32bの端部が当接し組立式型枠の開口形状を規定するための段部が形成されている。凹部を有する底板33は図7に示されるように底板構成部材33a、33bからなる。上パンチ31はベークライト製、型枠部材32a、32bおよび底板33は超ジュラルミン製、台座34はベークライト製とした。
Sputtering conditions DC power: 300W
Sputtering gas: Ar + O 2
Gas pressure: 0.5 Pa
Arc measurement conditions Detection voltage: 200V
Detection time: 50 μsec
(Example 12)
As shown in FIG. 6, the mold used in the present embodiment is composed of an upper punch 31, an assembling mold 32 comprising mold members 32a and 32b, a bottom plate 33 having a recess, and a pedestal 34. At both ends of the formwork member 32a, stepped portions are formed for the ends of the formwork member 32b to come into contact with each other to define the opening shape of the assembly formwork. As shown in FIG. 7, the bottom plate 33 having the concave portion includes bottom plate constituting members 33 a and 33 b. The upper punch 31 was made of bakelite, the mold members 32a and 32b and the bottom plate 33 were made of super duralumin, and the base 34 was made of bakelite.

組立式型枠32と上パンチ31の隙間は0.5mmとした。すなわち、上パンチ31の幅及び長さを組立式型枠32の開口形状の幅及び長さより各々1.0mm小さく形成した。   The gap between the assembly mold 32 and the upper punch 31 was 0.5 mm. That is, the width and length of the upper punch 31 were formed to be 1.0 mm smaller than the width and length of the opening shape of the assembly mold 32, respectively.

組立式型枠32と底板33を台座34の上に置くことで、成形型を安定化した。すなわち、組立式型枠を台座34の上に置くことで、加圧終了後の減圧時に生じる成形体の膨張に伴い、型枠部材32a、32bが台座34上を滑らかに移動することを可能にするとともに、成形時の加圧下では、組立式型枠との接触により動きが不均一となる底板33が上下方向に移動しないようにすることにより、割れや反りの発生をさらに低減することができる。さらに、底板33を台座34上に載置した2つの底板構成部材33a、33bで構成することにより、加圧終了後の減圧時には成形体の凸部の膨張に伴い、2つの底板構成部材33a、33bが互いに分離する方向に台座34上を滑らかに移動することを可能とした。   The mold was stabilized by placing the assembly mold 32 and the bottom plate 33 on the pedestal 34. That is, by placing the assembling formwork on the pedestal 34, the formwork members 32a and 32b can smoothly move on the pedestal 34 as the molded body expands during decompression after completion of pressurization. In addition, the generation of cracks and warpage can be further reduced by preventing the bottom plate 33, which moves non-uniformly due to contact with the assembly mold, from moving in the vertical direction under pressure during molding. . Further, by configuring the bottom plate 33 with the two bottom plate constituent members 33a and 33b placed on the pedestal 34, the two bottom plate constituent members 33a, It was possible to move smoothly on the pedestal 34 in the direction in which the 33b separated from each other.

凹部を有する底板33および組立式型枠32により囲まれた空間(130mm×250mm×30mm、底板の凹部の深さ5mm)に原料粉末としてSnO粉末10wt%とIn粉末90wt%の混合粉末を充填し、この原料粉末の上に上パンチ31を乗せた。上パンチ31と組立式型枠32の隙間を覆うように上パンチの上にゴムシートを緩衝材として乗せた後、ビニール袋に入れ袋内を減圧し真空パックを行なった。 Mixing of 10 wt% SnO 2 powder and 90 wt% In 2 O 3 powder as raw material powder in a space (130 mm × 250 mm × 30 mm, depth of recess of bottom plate 5 mm) surrounded by bottom plate 33 having recesses and assembling mold 32 The powder was filled, and the upper punch 31 was placed on this raw material powder. A rubber sheet was placed on the upper punch as a cushioning material so as to cover the gap between the upper punch 31 and the assembly formwork 32, and then placed in a plastic bag to decompress the inside of the bag and vacuum pack.

このようにして準備した成形型を冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りのない、一方の板面に凸部を有する板状の成形体を得た。 The mold thus prepared was put into a cold isostatic press and molded at a pressure of 1 ton / cm 2 . The obtained molded body was taken out from the mold and the shape was confirmed. As a result, a plate-shaped molded body having a convex portion on one plate surface without cracking or warping was obtained.

(実施例13)
凹部を有する底板33として図8に示すように3つの底板構成部材33c、33d、33eからなる底板を用いた以外は実施例12と同様の成形型を用い、実施例12と同様に冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りのない、一方の板面に凸部を有する板状の成形体を得た。
(Example 13)
As shown in FIG. 8, as the bottom plate 33 having a recess, a mold similar to that in Example 12 was used except that a bottom plate composed of three bottom plate constituting members 33c, 33d, and 33e was used. It put into the hydraulic press and shape | molded by the pressure of 1 ton / cm < 2 >. The obtained molded body was taken out from the mold and the shape was confirmed. As a result, a plate-shaped molded body having a convex portion on one plate surface without cracking or warping was obtained.

(実施例14)
底板33および組立式型枠32により囲まれた空間が250mm×600mm×30mm、底板に設けられた凹部の深さが5mmである他は実施例12と同様の成形型を用い、実施例12と同様に冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りのない、一方の板面に凸部を有する板状の成形体を得た。
(Example 14)
Using the same mold as in Example 12, except that the space surrounded by the bottom plate 33 and the assembly mold 32 is 250 mm × 600 mm × 30 mm, and the depth of the recess provided in the bottom plate is 5 mm. Similarly, it was put into a cold isostatic press and molded at a pressure of 1 ton / cm 2 . The obtained molded body was taken out from the mold and the shape was confirmed. As a result, a plate-shaped molded body having a convex portion on one plate surface without cracking or warping was obtained.

(実施例15)
凹部を有する底板33として図9に示すような一体型の底板33fを用いた以外は実施例12と同様の成形型を用い、実施例12と同様に冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、板状の成形体の板面に形成された凸部の先端の稜線部に欠けが認められた。
(Example 15)
9 is used as the bottom plate 33 having a concave portion as shown in FIG. 9, and the same mold as in Example 12 is used. Molding was performed at a pressure of / cm 2 . The obtained molded body was taken out from the mold and the shape was confirmed. As a result, chipping was recognized at the ridge line portion at the tip of the convex portion formed on the plate surface of the plate-shaped molded body.

(実施例16)
図10に示すように、本実施例で使用した成形型は上パンチ41、型枠部材42a、42bからなる組立式型枠42、底板43及び台座44から成る。型枠部材42aの両端には、型枠部材42bの端部が当接し組立式型枠42の開口形状を規定するための段部が形成されている。上パンチ41はベークライト製、型枠部材42a、42bおよび底板43は超ジュラルミン製、台座44はベークライト製とした。また、組立式型枠42と上パンチ51の隙間は0.5mmとした。すなわち、上パンチ41の幅及び長さを組立式型枠42の開口形状の幅及び長さより各々1.0mm小さく形成した。
(Example 16)
As shown in FIG. 10, the mold used in the present embodiment is composed of an upper punch 41, an assembling mold frame 42 including mold frame members 42a and 42b, a bottom plate 43, and a pedestal 44. At both ends of the mold member 42a, stepped portions for defining the opening shape of the assembling mold 42 are formed by contacting the end of the mold member 42b. The upper punch 41 was made of bakelite, the mold members 42a and 42b and the bottom plate 43 were made of super duralumin, and the base 44 was made of bakelite. Further, the gap between the assembly mold 42 and the upper punch 51 was set to 0.5 mm. That is, the width and length of the upper punch 41 were each made 1.0 mm smaller than the width and length of the opening shape of the assembly mold 42.

組立式型枠42と底板43を台座44の上に置くことで型全体を安定化した。すなわち、組立式型枠42を台座44の上に置くことで、加圧終了後の減圧時に生じる成形体の膨張に伴い、型枠部材42a、42bが台座44上を滑らかに移動することを可能にするとともに、成形時の加圧下では、組立式型枠42との接触により動きが不均一となる底板43が上下方向に移動しないようにすることにより、割れや反りの発生をさらに低減することができる。   The entire mold was stabilized by placing the assembly mold 42 and the bottom plate 43 on the pedestal 44. That is, by placing the assembly formwork 42 on the pedestal 44, the formwork members 42a and 42b can smoothly move on the pedestal 44 as the molded body expands during decompression after completion of pressurization. In addition, the generation of cracks and warpage can be further reduced by preventing the bottom plate 43, which moves non-uniformly due to contact with the assembly mold 42, from moving in the vertical direction under pressure during molding. Can do.

底板43および組立式型枠42により囲まれた空間(開口形状:400mm×1300mmの矩形)に原料粉末としてSnO粉末10wt%とIn粉末90wt%の混合粉末18.4kgを充填し、この原料粉末の上に上パンチ41を乗せた。上パンチ41と組立式型枠42の隙間を覆うように上パンチの上にゴムシートを緩衝材として乗せた後、ビニール袋に入れ袋内を減圧し真空パックを行った。 A space surrounded by the bottom plate 43 and the assembly mold 42 (opening shape: 400 mm × 1300 mm rectangle) is filled with 18.4 kg of a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt% as a raw material powder, An upper punch 41 was placed on this raw material powder. A rubber sheet was placed on the upper punch as a cushioning material so as to cover the gap between the upper punch 41 and the assembling formwork 42, and then placed in a plastic bag, and the inside of the bag was decompressed and vacuum packed.

このようにして準備した成形型を冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行った。得られた成形体を型から取り出し、状態を確認したところ、割れや反りはなく、401mm×1305mm×10mmの成形体を得た。 The mold thus prepared was put into a cold isostatic press and molded at a pressure of 1 ton / cm 2 . When the obtained molded body was taken out from the mold and the state was confirmed, there was no crack or warp, and a molded body of 401 mm × 1305 mm × 10 mm was obtained.

その後その成形体を酸素雰囲気下にて以下の焼成パターンにて焼結を行った。室温から800℃まで100℃/hr、1600℃までは50℃/hrで昇温し、1600℃にて3時間保持した後に室温まで100℃/hrにて降温した。焼結体を取り出したところ、315mm×1025mm×8mmの焼結体が得られ、割れ、クラックなどは見られなかった。得られた焼結体の焼結密度は全体で99.80%であり、焼結密度の最も大きな所と最も小さな所との差は0.05%であった。なお、焼結体の真密度は7.156g/cmとした。 Thereafter, the compact was sintered in an oxygen atmosphere with the following firing pattern. The temperature was raised from room temperature to 800 ° C. at 100 ° C./hr, up to 1600 ° C. at 50 ° C./hr, held at 1600 ° C. for 3 hours, and then lowered to room temperature at 100 ° C./hr. When the sintered body was taken out, a sintered body of 315 mm × 1025 mm × 8 mm was obtained, and no cracks or cracks were observed. The sintered density of the obtained sintered body was 99.80% as a whole, and the difference between the largest and smallest sintered density was 0.05%. The true density of the sintered body was 7.156 g / cm 3 .

(実施例17)
本実施例で使用した成形型は、組立式型枠52、上パンチ51、下パンチ58を有するが、その平面図を図11(a)に、側面図を図12に示す。図12に示すように、組立式型枠52は型枠部材52a、52bからなり、互いに組み合わされて型枠を形成する。型枠部材52a、52bは組み合わされた部分にボルト(螺子式のピン)55を貫通することにより連結され、ナット56で締付けることにより固定できるように構成されている。図11(a)、(b)に示すように、型枠部材52a、52bの両端部には連結部材であるボルト(螺子式のピン)55を挿入するボルト導入穴57が設けられている。このボルト導入穴57の大きさは、ボルト55の直径よりも5mm程度大きくしてあり、ボルト55・ナット56による締め付けを緩めれば、型枠部材52a、52bが組立式型枠の開口形状の幅及び長さが増大する方向に移動可能なように構成されている。具体的には、図12に示すように、ボルト導入穴として組立式型枠の開口形状の対角線の方向に伸長した形状の穴を形成している。
(Example 17)
The mold used in this example has an assembly mold 52, an upper punch 51, and a lower punch 58. FIG. 11 (a) is a plan view and FIG. 12 is a side view. As shown in FIG. 12, the assembly formwork 52 includes formwork members 52a and 52b, which are combined with each other to form a formwork. The formwork members 52a and 52b are connected to the combined portion by passing through bolts (screw type pins) 55, and can be fixed by tightening with nuts 56. As shown in FIGS. 11 (a) and 11 (b), bolt introduction holes 57 for inserting bolts (screw type pins) 55, which are connecting members, are provided at both ends of the mold members 52a and 52b. The size of the bolt introduction hole 57 is about 5 mm larger than the diameter of the bolt 55. If the tightening by the bolt 55 and the nut 56 is loosened, the mold members 52a and 52b have the shape of the opening of the assembly mold. It is configured to be movable in the direction in which the width and length increase. Specifically, as shown in FIG. 12, a hole having a shape extending in a diagonal direction of the opening shape of the assembly formwork is formed as the bolt introduction hole.

図12に示すように、上パンチ51及び下パンチ58は、組立式型枠52の内部に挿入される。この上パンチ51および型枠部材52a、52bはベークライト製、下パンチ58はジュラルミン製とした。組立式型枠52と上パンチ51の隙間は0.5mmとし、さらに、組立式型枠52の内側面および上パンチ51の側面には摩擦低減のためにテフロン(登録商標)テープを接着した。   As shown in FIG. 12, the upper punch 51 and the lower punch 58 are inserted into the assembly formwork 52. The upper punch 51 and the mold members 52a and 52b were made of bakelite, and the lower punch 58 was made of duralumin. The gap between the assembly mold 52 and the upper punch 51 was 0.5 mm, and Teflon (registered trademark) tape was bonded to the inner surface of the assembly mold 52 and the side of the upper punch 51 to reduce friction.

この組立式型枠52を組み立て、ボルト55を挿入してナット56を用いて締め付け、原料粉末が漏れないように固定した。   This assembling mold 52 was assembled, bolts 55 were inserted and tightened with nuts 56, and fixed so that the raw material powder did not leak.

下パンチ58および組立式型枠52により囲まれた空間(開口形状:390mm×770mmの矩形)に原料粉末としてAlを2wt%添加したZnO粉末9.6kgを充填し、この原料粉末の上に上パンチ51を乗せた。適度な締め付け力の輪ゴム等を組立式型枠52の周囲に巻き付け、組立式型枠52を固定しているボルト55のナット56を緩めた。上下のパンチ51、58と組立式型枠52の隙間を覆うように上パンチの上及び下パンチの下にゴムシートを緩衝材として設けた後、ビニール袋に入れ袋内を減圧し真空パックを行なった。 A space surrounded by the lower punch 58 and the assembly mold 52 (opening shape: 390 mm × 770 mm rectangle) was filled with 9.6 kg of ZnO powder added with 2 wt% of Al 2 O 3 as a raw material powder. The upper punch 51 was put on the top. A rubber band or the like having an appropriate tightening force was wound around the assembly mold 52 and the nut 56 of the bolt 55 fixing the assembly mold 52 was loosened. A rubber sheet is provided as a cushioning material above the upper punch and below the lower punch so as to cover the gap between the upper and lower punches 51, 58 and the assembly formwork 52, and then put in a plastic bag to decompress the inside of the bag and remove the vacuum pack. I did it.

このようにして準備した成形型を冷間静水圧プレスに投入して、1ton/cmの圧力で成形を行なった。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×9.5mmの成形体を得た。 The mold thus prepared was put into a cold isostatic press and molded at a pressure of 1 ton / cm 2 . The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no cracking or warping, and a molded body of 391 mm × 773 mm × 9.5 mm was obtained.

(実施例18)
原料粉末をSnO粉末10wt%とIn粉末90wt%の混合粉末とし、成形型に17kg充填した以外は実施例17と同様の条件にて冷間静水圧プレスに投入した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×13mmの成形体を得た。
(Example 18)
The raw material powder was a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%, and charged into a cold isostatic press under the same conditions as in Example 17 except that 17 kg was filled in the mold. The obtained molded body was taken out from the mold and the shape was confirmed. As a result, there was no crack or warp, and a molded body of 391 mm × 773 mm × 13 mm was obtained.

(実施例19)
図13に示すように下パンチではなく、底板63と台座64を有すること以外は実施例17と同様の成形型を用い、実施例18と同様の粉末17kgを充填して、実施例17と同様の条件で冷間静水圧プレスを行った。組立式型枠62を台座64の上に置くことで、加圧成形後の減圧時に生じる成形体の膨張に伴い、型枠部材62a、62bが台座64上を滑らかに移動することを可能にするとともに、成形時の加圧下では、組立式型枠との接触により動きが不均一となる底板63が上下方向に移動しないようにすることにより、割れや反りの発生をさらに低減することができる。
(Example 19)
As shown in FIG. 13, the same mold as in Example 17 is used except that it has a bottom plate 63 and a pedestal 64 instead of the lower punch, and the same powder as in Example 18 is filled with 17 kg of powder. Cold isostatic pressing was performed under the conditions of By placing the assembly mold 62 on the pedestal 64, the mold members 62a and 62b can smoothly move on the pedestal 64 as the molded body expands during pressure reduction after pressure molding. At the same time, the occurrence of cracks and warpage can be further reduced by preventing the bottom plate 63, which moves non-uniformly due to contact with the assembly mold, from moving in the vertical direction under pressure during molding.

得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×13mmの成形体を得た。   The obtained molded body was taken out from the mold and the shape was confirmed. As a result, there was no crack or warp, and a molded body of 391 mm × 773 mm × 13 mm was obtained.

(比較例5)
ボルト導入穴の形状が円形であり、その直径と挿入するボルトの直径との差が1mm以下であること以外は実施例17と同様の成形型を用い、粉末充填後もボルト・ナットを締め付けたまま加圧したこと以外は実施例17と同様にして静水圧プレスを行い成形体を作成した。プレス後、成形体を成形型から取り出し、形状を確認したところ、縦方向に大きな割れが発生していた。
(Comparative Example 5)
The shape of the bolt introduction hole was circular, and the difference between the diameter of the bolt to be inserted and the diameter of the bolt to be inserted was 1 mm or less. The same mold as in Example 17 was used, and the bolt and nut were tightened even after powder filling. A molded body was prepared by performing isostatic pressing in the same manner as in Example 17 except that the pressure was applied as it was. After pressing, the molded body was taken out of the mold and the shape was confirmed. As a result, large cracks occurred in the vertical direction.

(実施例20)
SnO粉末10wt%とIn粉末90wt%の混合粉末に、パラフィンバインダーを0.6wt%添加し、原料粉末を作製した。この原料粉末を成形型に17kg充填した以外は実施例1と同様の成形型を用い、実施例1と同様の条件にて冷間静水圧プレスに投入した。得られた成形体を型から取り出し、形状を確認したところ、割れや反りはなく、391mm×773mm×16mmの成形体を得た。
(Example 20)
A raw material powder was prepared by adding 0.6 wt% of paraffin binder to a mixed powder of SnO 2 powder 10 wt% and In 2 O 3 powder 90 wt%. A mold similar to that in Example 1 was used except that 17 kg of this raw material powder was filled in the mold, and the cold isostatic press was charged under the same conditions as in Example 1. The obtained molded body was taken out of the mold and the shape was confirmed. As a result, there was no crack or warpage, and a molded body of 391 mm × 773 mm × 16 mm was obtained.

得られた成形体を焼成炉内に設置し、450℃までの昇温速度を50℃/hrとしたい以外は実施例4と同様の方法で焼成を実施し、割れのない約307mm×607mm×13mmの大きさの焼結体を得た。   The obtained molded body was placed in a firing furnace and fired in the same manner as in Example 4 except that the temperature rising rate up to 450 ° C. was set to 50 ° C./hr. About 307 mm × 607 mm × A sintered body having a size of 13 mm was obtained.

(比較例6)
パラフィンバインダーの添加量を0.8wt%とした以外は実施例20と同様の方法で、割れや反りのない成形体を得た。
(Comparative Example 6)
A molded body free from cracks and warpage was obtained in the same manner as in Example 20 except that the addition amount of the paraffin binder was changed to 0.8 wt%.

得られた成形体を実施例20と同様の方法で焼成を行ったが、焼結体表面に多数の亀裂が発生し、さらに縦方向に割れが発生していた。   The obtained molded body was fired in the same manner as in Example 20, but many cracks occurred on the surface of the sintered body, and further cracks occurred in the vertical direction.

本発明の成形型の一例を模式的に分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows an example of the shaping | molding die of this invention typically. 本発明の成形型の一例を分解して示す断面図(側面図)である。It is sectional drawing (side view) which decomposes | disassembles and shows an example of the shaping | molding die of this invention. 本発明の成形型の一例を示す断面図(側面図)である。It is sectional drawing (side view) which shows an example of the shaping | molding die of this invention. 本発明の成形型の他の例を模式的に分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the other example of the shaping | molding die of this invention typically. 比較例4で用いた成形型を示す断面図である。(a)平面図、(b)側面図10 is a cross-sectional view showing a mold used in Comparative Example 4. FIG. (A) Top view, (b) Side view 本発明の成形型の他の例を模式的に分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the other example of the shaping | molding die of this invention typically. 本発明の成形型の底板の例を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the example of the baseplate of the shaping | molding die of this invention. 本発明の成形型の底板の他の例を示す斜視図である。It is a perspective view which shows the other example of the baseplate of the shaping | molding die of this invention. 本発明の成形型の底板のさらに他の例を示す斜視図である。It is a perspective view which shows the other example of the baseplate of the shaping | molding die of this invention. 本発明の成形型の他の例を模式的に分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the other example of the shaping | molding die of this invention typically. 本発明の成形型の他の例を示す平面図である。(a)組立式型枠を示す平面図、(b)組立式型枠の角部のボルト導入穴の形状を示す拡大図It is a top view which shows the other example of the shaping | molding die of this invention. (A) Plan view showing the assembly formwork, (b) Enlarged view showing the shape of the bolt introduction hole at the corner of the assembly formwork 本発明の成形型の他の例の側面図である。It is a side view of the other example of the shaping | molding die of this invention. 本発明の成形型のさらに他の例の側面図である。It is a side view of the further another example of the shaping | molding die of this invention.

符号の説明Explanation of symbols

1、11、21、31、41、51、61 上パンチ
2、12、22、32、42、52、62 組立式型枠
2a、12a、22a、32a、42a、52a、62a 型枠部材
2b、12b、22b、32b、42b、52b、62b 型枠部材
3、13、33、43,63 底板
33a、33b、33c、33d、33e、33f 底板構成部材
4、14、34、44、64 台座
5 原料粉末
6 緩衝材
7、8 段部
25 ウレタンゴム型
28、58 下パンチ
55、65 ボルト
56、66 ナット
57 ボルト導入穴
57a 連結部材初期位置
57b 連結部材可動領域
1, 11, 21, 31, 41, 51, 61 Upper punch 2, 12, 22, 32, 42, 52, 62 Assembling formwork 2a, 12a, 22a, 32a, 42a, 52a, 62a Formwork member 2b, 12b, 22b, 32b, 42b, 52b, 62b Formwork member 3, 13, 33, 43, 63 Bottom plate 33a, 33b, 33c, 33d, 33e, 33f Bottom plate component member 4, 14, 34, 44, 64 Base 5 Raw material Powder 6 Buffer material 7, 8 Step 25 Urethane rubber mold 28, 58 Lower punch 55, 65 Bolt 56, 66 Nut 57 Bolt introduction hole 57a Connecting member initial position 57b Connecting member movable region

Claims (33)

構成元素として炭素を含まない焼結体であって、焼結体中に不純物として含まれる炭素の含有量が0.005重量%未満であることを特徴とする焼結体。 A sintered body containing no carbon as a constituent element, wherein the content of carbon contained as an impurity in the sintered body is less than 0.005% by weight. 焼結体の厚さが10mm以上であることを特徴とする請求項1記載の焼結体。 2. The sintered body according to claim 1, wherein the thickness of the sintered body is 10 mm or more. 焼結体の表面を構成する少なくとも1つの平面の面積が600cm以上であることを特徴とする請求項1記載の焼結体。 The sintered body according to claim 1, wherein an area of at least one plane constituting the surface of the sintered body is 600 cm 2 or more. 焼結体全体の焼結密度が90%以上であり、かつ、焼結体内の焼結密度の変動が0.2%以下であることを特徴とする請求項1記載の焼結体。 2. The sintered body according to claim 1, wherein the sintered density of the entire sintered body is 90% or more, and the fluctuation of the sintered density in the sintered body is 0.2% or less. 焼結体の上面及び下面の少なくとも1方の面に、少なくとも1つの凸部を有することを特徴とする請求項1記載の焼結体。 The sintered body according to claim 1, wherein at least one convex portion is provided on at least one of the upper surface and the lower surface of the sintered body. 焼結体の表面を構成する面の最も広い面の面積が1000cm以上であり、焼結体全体の焼結密度が90%以上、かつ、焼結体内の焼結密度の変動が0.2%以下であることを特徴とする焼結体。 The area of the widest surface constituting the surface of the sintered body is 1000 cm 2 or more, the sintered density of the entire sintered body is 90% or more, and the fluctuation of the sintered density in the sintered body is 0.2. % Or less. 形状が略直方体の焼結体であって、最も長い稜と最も短い稜の長さの比が40以上であることを特徴とする請求項6記載の焼結体。 The sintered body according to claim 6, wherein the sintered body has a substantially rectangular parallelepiped shape, and a ratio of the length of the longest ridge to the shortest ridge is 40 or more. 焼結体の上面及び下面の少なくとも1方の面に、少なくとも1つの凸部を有することを特徴とする請求項6記載の焼結体。 The sintered body according to claim 6, wherein the sintered body has at least one convex portion on at least one of an upper surface and a lower surface of the sintered body. 請求項1〜8のいずれか1項に記載の焼結体をターゲット材として用いたことを特徴とするスパッタリングターゲット。 A sputtering target comprising the sintered body according to claim 1 as a target material. 成形型内に原料粉末を充填し圧縮して成形体を製造するための成形型であって、加圧圧縮時には充填した原料粉末に対して実質的に1軸方向からのみ加圧し、加圧終了後の減圧時には成形体に対して実質的に等方的に圧力を開放可能な構造を有していることを特徴とする圧縮成形用成形型。 A molding die for filling a raw material powder in a molding die and compressing it to produce a molded body. At the time of pressure compression, the raw material powder filled is pressurized substantially only from one axial direction, and pressurization is completed. A molding die for compression molding having a structure capable of releasing pressure substantially isotropically to a molded body at the time of subsequent decompression. 成形型内に充填した原料粉末を、冷間静水圧プレスにより成形して成形体を製造するための成形型であって、複数の型枠部材からなる組立式型枠、該組立式型枠の内面に沿って移動可能に設けられた上パンチおよび前記組立式型枠に接して設けられた底板を備えるとともに、加圧終了後の減圧時に生じる成形体の膨張に併せて、前記組立式型枠を構成する型枠部材が移動可能な構造を有していることを特徴とする冷間静水圧プレス用成形型。 A molding die for producing a molded body by molding raw material powder filled in a molding die by cold isostatic pressing, comprising an assembling mold frame composed of a plurality of mold members, The assembly formwork is provided with an upper punch movably provided along the inner surface and a bottom plate provided in contact with the assembly formwork, and in addition to the expansion of the molded body occurring at the time of decompression after the pressurization is completed. A mold for cold isostatic pressing characterized by having a structure in which a formwork member constituting the structure is movable. 組立式型枠に接して設けられた底板が、前記組立式型枠の内面に沿って移動することができないように構成されていることを特徴とする請求項11記載の冷間静水圧プレス用成形型。 The cold isostatic press for a cold isostatic press according to claim 11, wherein a bottom plate provided in contact with the assembly mold is configured so as not to move along an inner surface of the assembly mold. Mold. 底板が上パンチよりも圧縮変形の少ない材料により構成されていることを特徴とする請求項11記載の冷間静水圧プレス用成形型。 The mold for cold isostatic pressing according to claim 11, wherein the bottom plate is made of a material having less compressive deformation than the upper punch. 底板が金属製であり、上パンチが樹脂製であることを特徴とする請求項11記載の冷間静水圧プレス用成形型。 The mold for cold isostatic pressing according to claim 11, wherein the bottom plate is made of metal and the upper punch is made of resin. 組立式型枠を構成する型枠部材の少なくとも一部が、隣接する型枠部材の端部と係合し、成形時の加圧下において、組立式型枠が形成する原料粉末充填室の開口形状が所定の大きさ以下にならないように制限する構造を、その端部に有していることを特徴とする請求項11記載の冷間静水圧プレス用成形型。 Opening shape of the raw material powder filling chamber formed by the assembly mold when at least a part of the mold member constituting the assembly mold is engaged with the end of the adjacent mold member and is pressurized during molding The mold for cold isostatic pressing according to claim 11, wherein the mold has a structure that restricts so as not to be less than a predetermined size. 底板及び上パンチの原料粉末に接する面が各々1つの平面で構成されていることを特徴とする請求項11記載の冷間静水圧プレス用成形型。 12. The mold for cold isostatic pressing according to claim 11, wherein the surfaces of the bottom plate and the upper punch that are in contact with the raw material powder are each composed of one plane. 底板が移動可能な複数の底板構成部材からなり、該底板の原料粉末に接する面に、少なくとも1つの凹部を有することを特徴とする請求項11記載の冷間静水圧プレス用成形型。 12. The mold for cold isostatic pressing according to claim 11, wherein the bottom plate is composed of a plurality of movable bottom plate components, and has at least one concave portion on a surface of the bottom plate in contact with the raw material powder. 上パンチが移動可能な複数の上パンチ構成部材からなり、該上パンチの原料粉末に接する面に、少なくとも1つの凹部を有することを特徴とする請求項11記載の冷間静水圧プレス用成形型。 12. The mold for cold isostatic pressing according to claim 11, wherein the upper punch comprises a plurality of upper punch constituent members that can move, and has at least one recess on a surface that contacts the raw powder of the upper punch. . 成形型内に充填した原料粉末を、冷間静水圧プレスにより成形して成形体を製造するための成形型であって、該成形型が複数の型枠部材からなる組立式型枠と該組立式型枠の内部に挿入される上パンチ及び下パンチを有し、加圧終了後の減圧時に生じる成形体の膨張に併せて前記型枠部材が移動可能な構造を備えるとともに、前記型枠部材同士を固定して前記組立式型枠の開口形状を保持する固定機構を有することを特徴とする冷間静水圧プレス用成形型。 A mold for producing a molded body by molding raw material powder filled in a mold by cold isostatic pressing, wherein the mold comprises a plurality of mold members and the assembly The mold member has an upper punch and a lower punch that are inserted into the mold, and has a structure in which the mold member can move in accordance with the expansion of the molded body that occurs when the pressure is reduced after the pressurization is completed. A mold for cold isostatic pressing characterized by having a fixing mechanism for fixing each other and holding the opening shape of the assembly mold. 型枠部材同士を連結する連結部材としてピン状の部材を用いることを特徴とする請求項19記載の冷間静水圧プレス用成形型。 20. The cold isostatic pressing mold according to claim 19, wherein a pin-shaped member is used as a connecting member for connecting the formwork members. 少なくとも一部の型枠部材が、その端部に、連結部材が挿入される連結部材挿入部を有し、かつ、加圧終了後の減圧時に生じる成形体の膨張に併せて、型枠部材が移動できるように、該連結部材挿入部が前記連結部材の可動領域を有していることを特徴とする請求項20記載の冷間静水圧プレス用成形型。 At least a part of the formwork member has a connecting member insertion portion into which the connecting member is inserted at the end thereof, and the formwork member The mold for cold isostatic pressing according to claim 20, wherein the connecting member insertion portion has a movable region of the connecting member so as to be movable. 下パンチが組立式型枠内に挿入される底板と組立式型枠の開口形状より大きな形状を有する台座とで構成されていることを特徴とする請求項19記載の冷間静水圧プレス用成形型。 20. The cold isostatic pressing molding according to claim 19, wherein the lower punch is composed of a bottom plate inserted into the assembly mold and a base having a shape larger than the opening shape of the assembly mold. Type. 底板が上パンチよりも圧縮変形の少ない材料により構成されていることを特徴とする請求項19記載の冷間静水圧プレス用成形型。 The mold for cold isostatic pressing according to claim 19, wherein the bottom plate is made of a material having less compressive deformation than the upper punch. 底板が金属製であり、上パンチが樹脂製であることを特徴とする請求項19記載の冷間静水圧プレス用成形型。 The mold for cold isostatic pressing according to claim 19, wherein the bottom plate is made of metal and the upper punch is made of resin. 上パンチ及び下パンチの原料粉末に接する面が各々1つの平面で構成されていることを特徴とする請求項19記載の冷間静水圧プレス用成形型。 The die for cold isostatic pressing according to claim 19, wherein the surfaces of the upper punch and the lower punch which are in contact with the raw material powder are each constituted by one plane. 下パンチが移動可能な複数の下パンチ構成部材からなり、該下パンチの原料粉末に接する面に少なくとも1つの凹部を有することを特徴とする請求項19記載の冷間静水圧プレス用成形型。 The die for cold isostatic pressing according to claim 19, wherein the lower punch is composed of a plurality of movable lower punch constituent members, and has at least one concave portion on a surface in contact with the raw powder of the lower punch. 上パンチが移動可能な複数の上パンチ構成部材からなり、該上パンチの原料粉末に接する面に少なくとも1つの凹部を有することを特徴とする請求項19記載の冷間静水圧プレス用成形型。 The die for cold isostatic pressing according to claim 19, wherein the upper punch is composed of a plurality of upper punch constituent members that can move, and has at least one concave portion on a surface that contacts the raw powder of the upper punch. 原料粉末を加圧成形して成形体とした後、該成形体を焼成して焼結体とする焼結体の製造方法において、原料粉末が有機物を含む成形助剤を含まないことを特徴とする焼結体の製造方法。 In a method for producing a sintered body, which is obtained by pressure-molding a raw material powder to form a molded body, and firing the molded body to form a sintered body, the raw material powder does not contain a molding aid containing an organic substance. A method for manufacturing a sintered body. 原料粉末を直接冷間静水圧プレスにより成形して成形体を得ることを特徴とする請求項28記載の焼結体の製造方法。 29. The method for producing a sintered body according to claim 28, wherein the raw material powder is directly molded by cold isostatic pressing to obtain a molded body. 請求項10〜27のいずれか1項に記載の成形型を用いることを特徴とする請求項29記載の焼結体の製造方法。 30. The method for producing a sintered body according to claim 29, wherein the molding die according to any one of claims 10 to 27 is used. 原料粉末を加圧成形して成形体とした後、該成形体を焼成して焼結体とする焼結体の製造方法において、成形体中の有機物の除去を目的とした焼成工程を有さないことを特徴とする焼結体の製造方法。 After the raw material powder is pressure-molded into a molded body, the method for producing a sintered body by firing the molded body to have a sintered body has a firing step for the purpose of removing organic substances in the molded body. There is no manufacturing method of the sintered compact characterized by the above-mentioned. 有機物含有量が0.6重量%以下の原料粉末を用いることを特徴とする請求項31記載の焼結体の製造方法。 32. The method for producing a sintered body according to claim 31, wherein a raw material powder having an organic content of 0.6% by weight or less is used. 請求項10〜27のいずれか1項に記載の成形型を用いることを特徴とする請求項31記載の焼結体の製造方法。
32. The method for producing a sintered body according to claim 31, wherein the molding die according to any one of claims 10 to 27 is used.
JP2006024494A 2005-02-01 2006-02-01 Sintered body, sputtering target, mold and method for producing sintered body Active JP5778372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024494A JP5778372B2 (en) 2005-02-01 2006-02-01 Sintered body, sputtering target, mold and method for producing sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005025655 2005-02-01
JP2005025655 2005-02-01
JP2006024494A JP5778372B2 (en) 2005-02-01 2006-02-01 Sintered body, sputtering target, mold and method for producing sintered body

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012286146A Division JP5664643B2 (en) 2005-02-01 2012-12-27 Sintered body, sputtering target, mold and method for producing sintered body
JP2014035688A Division JP5804109B2 (en) 2005-02-01 2014-02-26 Sintered body and sputtering target

Publications (2)

Publication Number Publication Date
JP2006241595A true JP2006241595A (en) 2006-09-14
JP5778372B2 JP5778372B2 (en) 2015-09-16

Family

ID=37048282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024494A Active JP5778372B2 (en) 2005-02-01 2006-02-01 Sintered body, sputtering target, mold and method for producing sintered body

Country Status (1)

Country Link
JP (1) JP5778372B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102698A (en) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp Sputtering target for forming transparent conductive film, and transparent conductive film formed by using the target
JP2010060839A (en) * 2008-09-03 2010-03-18 Ricoh Co Ltd Method for manufacturing image carrier protective agent, the image carrier protective agent, protective layer forming apparatus, image forming method, and image forming apparatus
JP2011187720A (en) * 2010-03-09 2011-09-22 Tdk Corp Method for manufacturing laminated electronic component and pressing jig
WO2012127883A1 (en) * 2011-03-24 2012-09-27 出光興産株式会社 Sintered material, and process for producing same
US8419400B2 (en) 2005-02-01 2013-04-16 Tosoh Corporation Sintered body, sputtering target and molding die, and process for producing sintered body employing the same
JP2015030858A (en) * 2013-07-31 2015-02-16 株式会社アルバック Production method of sputtering target
WO2020104334A1 (en) * 2018-11-20 2020-05-28 Samson Ag Method for producing a component from metal or technical ceramics materials
CN114309609A (en) * 2021-12-13 2022-04-12 先导薄膜材料有限公司 Preparation method of tungsten-titanium alloy target material

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337478A (en) * 1989-07-05 1991-02-18 Riken Corp Rubbing member
JPH05287315A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Powder molding method by isostatic molding using metallic mold
JPH06182732A (en) * 1992-12-21 1994-07-05 Tosoh Corp Manufacture of ceramic target
JPH07278607A (en) * 1994-04-14 1995-10-24 Nippon Steel Corp Powder molding method using segmental die
JPH093636A (en) * 1995-06-26 1997-01-07 Kobe Steel Ltd Manufacture of large sputtering target
JPH09302462A (en) * 1996-05-09 1997-11-25 Mitsubishi Materials Corp Sputtering target for forming ferroelectric film, and its manufacture
JP2000233299A (en) * 1999-02-12 2000-08-29 Dowa Mining Co Ltd Structure for press molding, and molding method
JP2000319775A (en) * 1999-05-07 2000-11-21 Tosoh Corp Production of sputtering target
JP2001002471A (en) * 1999-06-21 2001-01-09 Mitsubishi Materials Corp High-density sputtering sintered target material not cracked even in high-speed film forming condition
JP2003002737A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Mining Co Ltd Ito sintered compact, production method therefor and ito sputtering target using the sintered compact
JP2003003257A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Mining Co Ltd High-density sputtering target for transparent conductive film, its manufacturing method, and mold for manufacturing sputtering target
JP2003055049A (en) * 2001-08-22 2003-02-26 Sumitomo Metal Mining Co Ltd Indium oxide sintered compact, production method therefor and sputtering target using the same
JP2003055760A (en) * 2001-08-10 2003-02-26 Tosoh Corp Ito sputtering target and its manufacturing method
JP2003266198A (en) * 1998-11-16 2003-09-24 Allied Material Corp Isostatic pressing method, and heat radiating substrate manufacturing method
JP2004359984A (en) * 2003-06-03 2004-12-24 Nikko Materials Co Ltd Method of producing powder molding for sintering, and method of producing sputtering target using the molding

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337478A (en) * 1989-07-05 1991-02-18 Riken Corp Rubbing member
JPH05287315A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Powder molding method by isostatic molding using metallic mold
JPH06182732A (en) * 1992-12-21 1994-07-05 Tosoh Corp Manufacture of ceramic target
JPH07278607A (en) * 1994-04-14 1995-10-24 Nippon Steel Corp Powder molding method using segmental die
JPH093636A (en) * 1995-06-26 1997-01-07 Kobe Steel Ltd Manufacture of large sputtering target
JPH09302462A (en) * 1996-05-09 1997-11-25 Mitsubishi Materials Corp Sputtering target for forming ferroelectric film, and its manufacture
JP2003266198A (en) * 1998-11-16 2003-09-24 Allied Material Corp Isostatic pressing method, and heat radiating substrate manufacturing method
JP2000233299A (en) * 1999-02-12 2000-08-29 Dowa Mining Co Ltd Structure for press molding, and molding method
JP2000319775A (en) * 1999-05-07 2000-11-21 Tosoh Corp Production of sputtering target
JP2001002471A (en) * 1999-06-21 2001-01-09 Mitsubishi Materials Corp High-density sputtering sintered target material not cracked even in high-speed film forming condition
JP2003002737A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Mining Co Ltd Ito sintered compact, production method therefor and ito sputtering target using the sintered compact
JP2003003257A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Mining Co Ltd High-density sputtering target for transparent conductive film, its manufacturing method, and mold for manufacturing sputtering target
JP2003055760A (en) * 2001-08-10 2003-02-26 Tosoh Corp Ito sputtering target and its manufacturing method
JP2003055049A (en) * 2001-08-22 2003-02-26 Sumitomo Metal Mining Co Ltd Indium oxide sintered compact, production method therefor and sputtering target using the same
JP2004359984A (en) * 2003-06-03 2004-12-24 Nikko Materials Co Ltd Method of producing powder molding for sintering, and method of producing sputtering target using the molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920420B2 (en) 2005-02-01 2018-03-20 Tosoh Corporation Sintered body, sputtering target and molding die, and process for producing sintered body employing the same
US8419400B2 (en) 2005-02-01 2013-04-16 Tosoh Corporation Sintered body, sputtering target and molding die, and process for producing sintered body employing the same
JP2009102698A (en) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp Sputtering target for forming transparent conductive film, and transparent conductive film formed by using the target
JP2010060839A (en) * 2008-09-03 2010-03-18 Ricoh Co Ltd Method for manufacturing image carrier protective agent, the image carrier protective agent, protective layer forming apparatus, image forming method, and image forming apparatus
JP2011187720A (en) * 2010-03-09 2011-09-22 Tdk Corp Method for manufacturing laminated electronic component and pressing jig
WO2012127883A1 (en) * 2011-03-24 2012-09-27 出光興産株式会社 Sintered material, and process for producing same
US9243318B2 (en) 2011-03-24 2016-01-26 Idemitsu Kosan Co., Ltd. Sintered material, and process for producing same
JP5997690B2 (en) * 2011-03-24 2016-09-28 出光興産株式会社 Sintered body and manufacturing method thereof
JPWO2012127883A1 (en) * 2011-03-24 2014-07-24 出光興産株式会社 Sintered body and manufacturing method thereof
JP2015030858A (en) * 2013-07-31 2015-02-16 株式会社アルバック Production method of sputtering target
WO2020104334A1 (en) * 2018-11-20 2020-05-28 Samson Ag Method for producing a component from metal or technical ceramics materials
CN114309609A (en) * 2021-12-13 2022-04-12 先导薄膜材料有限公司 Preparation method of tungsten-titanium alloy target material
CN114309609B (en) * 2021-12-13 2023-05-30 先导薄膜材料有限公司 Preparation method of tungsten-titanium alloy target

Also Published As

Publication number Publication date
JP5778372B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5804109B2 (en) Sintered body and sputtering target
JP5778372B2 (en) Sintered body, sputtering target, mold and method for producing sintered body
KR102336966B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP2005240160A (en) METHOD OF PRODUCING Mo-BASED TARGET MATERIAL
TW200948743A (en) Polycrystalline mgo sintered compact, process for producing the polycrystalline mgo sintered compact, and mgo target for sputtering
JP4729253B2 (en) Silicon monoxide sintered body and silicon monoxide sintered target
JP6447422B2 (en) Cylindrical forming mold, cylindrical ceramic molded body and manufacturing method thereof
CN113443919A (en) Amorphous alloy nozzle material and preparation method thereof
JP4830276B2 (en) Mold, molded body using the same, method for producing sputtering target, and sputtering target
JP2003268479A (en) Hard metal and manufacturing method therefor
KR20200045095A (en) Method for manufacturing a ceramic plate, and an apparatus for manufacturing a ceramic plate
JP4706980B2 (en) Manufacturing method of Mo target material
WO2021106533A1 (en) Oxide-containing ceramic sintered body production method and release sheet
JP2008251675A (en) Manufacturing method of magnet, and forming body
JP2023069670A (en) Molded body production method, molded body and sputtering target
JP2002210717A (en) Method for manufacturing ceramic molding
JP2022142810A (en) Method for manufacturing molding
JP2022159633A (en) Igzo sintered body, manufacturing method thereof, and sputtering target
JP2023077507A (en) Sintered compact production method, pre-sintering molded body and sintered compact
JP5278099B2 (en) Target manufacturing method
KR101673976B1 (en) Method for manufacturing alumina plate using CIP complex mold
JP2010070397A (en) Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R151 Written notification of patent or utility model registration

Ref document number: 5778372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151