JP2006241249A - Phosphor mixture and light-emitting device - Google Patents

Phosphor mixture and light-emitting device Download PDF

Info

Publication number
JP2006241249A
JP2006241249A JP2005056418A JP2005056418A JP2006241249A JP 2006241249 A JP2006241249 A JP 2006241249A JP 2005056418 A JP2005056418 A JP 2005056418A JP 2005056418 A JP2005056418 A JP 2005056418A JP 2006241249 A JP2006241249 A JP 2006241249A
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting device
phosphor mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005056418A
Other languages
Japanese (ja)
Other versions
JP4892193B2 (en
Inventor
Akira Nagatomi
晶 永富
Masahiro Goto
昌大 後藤
Katayuki Sakane
堅之 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2005056418A priority Critical patent/JP4892193B2/en
Priority to US11/198,281 priority patent/US7477009B2/en
Publication of JP2006241249A publication Critical patent/JP2006241249A/en
Application granted granted Critical
Publication of JP4892193B2 publication Critical patent/JP4892193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor mixture realizing a light-emitting device which has a phosphor and a light-emitting element and emits light which is excellent in color-rendering property and shows little color shift caused by a flowing current etc. <P>SOLUTION: The phosphor mixture is obtained by producing CaAlSiN<SB>3</SB>:Eu as a red phosphor and YAG:Ce as a yellow phosphor, measuring the emission spectra of these phosphors, obtaining the emission spectrum of an exciting light emitted by a light-emitting part, obtaining a relative mixing ratio of the phosphors which yields the correlation color temperature of the light-emitting device by simulation based on the emission spectra, weighing each phosphor based on the obtained relative mixing ratio and mixing the phosphors. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光ダイオード(LED)、蛍光表示管、蛍光ランプなどの照明装置等に使用される蛍光体混合物、および当該蛍光体混合物を用いた発光装置に関するものである。   The present invention relates to a phosphor mixture used in lighting devices such as a light emitting diode (LED), a fluorescent display tube, and a fluorescent lamp, and a light emitting device using the phosphor mixture.

従来から照明装置として用いられている発光装置としては放電式蛍光灯、白熱電球などが挙げられるが、近年になり白色光を発する発光ダイオード(以下、LEDと記載する場合がある。)を用いた白色LED照明の開発が進んでいる。この白色LED照明は、従来の照明用光源に比べ、熱の発生が少なく発光効率がよく低消費電力であること、LED素子のみ、またはLED素子と蛍光体とから構成されているため、白熱電球のようにフィラメントが切れることがなく長寿命であり、蛍光灯のように環境に影響を与える水銀などの有害な物質を要することがない、といった利点がある理想的な照明装置である。   Conventionally used light-emitting devices as lighting devices include discharge fluorescent lamps and incandescent bulbs. Recently, light-emitting diodes that emit white light (hereinafter sometimes referred to as LEDs) are used. Development of white LED lighting is progressing. This white LED lighting has less heat generation and better light emission efficiency and lower power consumption than conventional light sources for lighting, and is composed of only LED elements or LED elements and phosphors. It is an ideal lighting device that has the advantage that the filament does not break and has a long life and does not require harmful substances such as mercury that affect the environment like a fluorescent lamp.

上述の白色LED照明に求められる一般照明用の光源として必要な要素として、明るさの要素と共に演色性の要素が上げられる。演色性とは当該光源による色の再現性を表す値であり、一般的には、演色性評価方法としてJIS Z 8726(1990)が規定されている。そこで、当該演色性評価については、以降JIS Z 8726の評価方法を用いて説明する。
JIS Z 8726によれば、光源の演色性は、平均演色評価数(Ra)によって数値的に表される。これは、演色評価用の基準試料を、試料光源で照明したときの色と、自然光を近似した基準光により照射したときの色との違いを評価した値であり、それらに差が無く、全く同一であれば演色評価数は100となる。一方、光源の有する相関色温度が同一であっても、演色評価数が異なれば色の見え方が異なり、演色評価数が低ければ、色がくすんで暗く見えてしまう。従って、可視光全域にわたり均一な光の強度を持った光源であるほど基準光に近いものであり、演色性の良い光源といえる。
As a necessary element as a light source for general illumination required for the above-mentioned white LED illumination, an element of color rendering property is given together with an element of brightness. The color rendering property is a value representing the color reproducibility by the light source, and generally, JIS Z 8726 (1990) is defined as a color rendering property evaluation method. Therefore, the color rendering property evaluation will be described below using the evaluation method of JIS Z 8726.
According to JIS Z 8726, the color rendering properties of the light source are expressed numerically by the average color rendering index (Ra). This is a value that evaluates the difference between the color when the reference sample for color rendering evaluation is illuminated with the sample light source and the color when illuminated with the reference light that approximates natural light, and there is no difference between them. If they are the same, the color rendering index is 100. On the other hand, even if the correlated color temperatures of the light sources are the same, the color appearance is different if the color rendering index is different, and the color is dull and dark if the color rendering index is low. Therefore, a light source having a uniform light intensity over the entire visible light region is closer to the reference light, and can be said to be a light source with good color rendering properties.

現在、一般照明用として開発が進んでいる白色LED照明の1種は、青色発光するLEDと当該青色発光を受けて励起され黄色発光する蛍光体とを組み合わせ、当該青色発光と黄色発光との合成により、人間の目で見た際に白色に見える発光を得るものである。しかしながら、この方式の白色LED照明では、発光が青色と黄色との光で構成されているため、緑色、赤色部分の光が非常に不足している問題がある。特に、可視光領域の長波長側、即ち赤色の色成分が不足しているため、白色とはいうものの、若干青みを帯びた白色の発光となってしまう。このため、当該白色LED照明を一般照明として用いた場合、赤色の物体は、非常にくすんだ赤色に見えてしまい、一般照明用としては不適切なものである。   Currently, one type of white LED lighting that is being developed for general lighting is a combination of a blue light emitting LED and a phosphor that emits yellow light when excited by receiving the blue light, and combines the blue light and yellow light. Thus, light emission that looks white when viewed with human eyes is obtained. However, this type of white LED illumination has a problem that the light in the green and red portions is very short because the light emission is composed of blue and yellow light. In particular, since the long wavelength side of the visible light region, that is, the red color component is insufficient, although it is white, the light emission is slightly bluish white. For this reason, when the white LED illumination is used as general illumination, a red object looks very dull red and is inappropriate for general illumination.

上述の青色発光と黄色発光とを合成した白色LED照明の演色性を改善するため、青色を発光するLEDと、当該LEDが発光する青色光を受けて励起され黄色発光する蛍光体と、赤色発光する蛍光体とを組み合わせ、当該青色発光と黄色発光と赤色発光とを組み合わせて白色発光を得るという、演色性を改善した白色LED照明が開発されている。このような青色発光するLEDと複数の蛍光体とを組み合わせて白色発光を得る白色LED照明は、蛍光体の組み合せや混合比などにより、白色光以外にも任意の発光色を得ることが可能である。   In order to improve the color rendering of white LED lighting, which combines the above-mentioned blue light emission and yellow light emission, an LED that emits blue light, a phosphor that emits yellow light when excited by the blue light emitted by the LED, and a red light emission White LED lighting with improved color rendering properties has been developed, in which white light emission is obtained by combining the blue light emission, yellow light emission, and red light emission. White LED lighting that produces white light by combining LEDs emitting blue light and multiple phosphors can obtain any emission color other than white light, depending on the combination and mixing ratio of the phosphors. is there.

例えば、特許文献1には、長波長側に良好な励起帯を持ち、半値幅の広い発光ピークが得られる赤色蛍光体として、(Ca,Sr,Ba)2Si5N8:Euをはじめとするシリコンナイトライド系などの窒素を含有した蛍光体等が報告されている。そして、青色発光するLEDと、当該LEDが発光する青色光を受けて励起され赤色発光する当該赤色蛍光体と、黄色発光するYAG:Ce等とを組み合わせ、演色性を改善した発光装置が提案されている。ところが、当該白色LED照明の発光強度を上げようとすると、目的の発光色を得ることができなくなる、所謂「色ズレ」の現象がおきてきた。そして、特許文献2には、この色ズレの現象を解決するため、温度上昇に対する発光特性の低下が、ほぼ等しい蛍光体を混合して用いることが提案されていた。 For example, Patent Document 1 discloses (Ca, Sr, Ba) 2 Si 5 N 8 : Eu as a red phosphor that has a good excitation band on the long wavelength side and can obtain an emission peak with a wide half-value width. A nitrogen-containing phosphor such as silicon nitride is reported. Then, a light emitting device with improved color rendering is proposed by combining a blue light emitting LED, a red phosphor that is excited by receiving blue light emitted from the LED and emitting red light, and YAG: Ce that emits yellow light. ing. However, when trying to increase the emission intensity of the white LED illumination, a so-called “color shift” phenomenon has occurred, in which the intended emission color cannot be obtained. In order to solve this color shift phenomenon, Patent Document 2 proposes to use a mixture of phosphors having substantially the same decrease in light emission characteristics with respect to a temperature increase.

国際公開第WO2004/039915 A1号パンフレットInternational Publication No. WO2004 / 039915 A1 Pamphlet 特開2004-235598JP2004-235598

しかしながら、本発明者らの検討によると、緑色から橙色の蛍光体と、特許文献2に示されるシリコンナイトライド系などの窒素を含有した赤色蛍光体とを混合し、発光素子(LED)と組み合わせて発光装置を作製し、当該発光装置に通電して低い相関色温度を有する白色光を得ても、色ズレの程度がまだ大きく、しかも高い演色性の光が得られないことが判明した。   However, according to the study by the present inventors, a green to orange phosphor and a red phosphor containing nitrogen such as silicon nitride shown in Patent Document 2 are mixed and combined with a light emitting element (LED). It was found that even when a light emitting device is manufactured and white light having a low correlated color temperature is obtained by energizing the light emitting device, the degree of color misregistration is still large and light with high color rendering properties cannot be obtained.

本発明は、上述の事情を基に成されたものであり、白色LED照明等の発光装置に用いられる蛍光体混合物であって、当該白色LED照明等に用いられるLEDを強く発光させる際にも、色度のズレを起こし難い蛍光体混合物、および当該蛍光体混合物と発光部とを有する「色ズレ」を起こし難い発光装置を提供することを目的とする。   The present invention is based on the above circumstances, and is a phosphor mixture used in a light emitting device such as a white LED illumination, and also when strongly emitting an LED used in the white LED illumination or the like Another object of the present invention is to provide a phosphor mixture that hardly causes a chromaticity shift, and a light-emitting device that does not easily cause a “color shift” including the phosphor mixture and a light-emitting portion.

上述の課題を解決するため、本発明者らは、当該色ズレの原因を追求し以下のことが判明した。
即ち、上述の窒素を含有した赤色蛍光体の温度特性は、50℃以下の温度において、発光効率の低下は比較的少なく、緑色から橙色の蛍光体として用いられた付活剤にCeを用いたガーネット系の蛍光体と、ほぼ同様の発光特性を示す。しかし、100℃以上の温度においては、発光効率の低下が顕著になり発光強度が落ちるために、緑色から橙色ガーネット系の蛍光体との、発光効率の相違が顕著になり、色度のズレが大きくなっていたのである。
In order to solve the above-described problems, the present inventors have sought the cause of the color shift and found the following.
That is, the temperature characteristics of the above-mentioned nitrogen-containing red phosphor showed a relatively low decrease in luminous efficiency at temperatures of 50 ° C. or less, and Ce was used as an activator used as a green to orange phosphor. It has almost the same light emission characteristics as a garnet phosphor. However, at temperatures of 100 ° C or higher, the emission efficiency decreases significantly and the emission intensity decreases, so the difference in emission efficiency between green and orange garnet phosphors becomes significant, and chromaticity shifts occur. It was getting bigger.

ここで本発明者らがLEDの発熱温度について調査を行ったところ、小型の発光装置においては通常は50〜100℃程度であるが、より強い発光を得るために、LEDへの通電量を増加させると伴に樹脂によるLEDの封止やリードフレームの構造改良等を施すと、発熱温度も発熱量も増加し、樹脂または蛍光体混合物部分の温度が100℃を越える場合もあることが判明した。この結果、各蛍光体における相対発光強度のピーク値が変動して、白色LED照明において「色ズレ」の現象がおき、青色LEDと、緑色から橙色の蛍光体と、上述のシリコンナイトライド系などの窒素を含有した赤色蛍光体とを組み合わせた白色の発光装置において色度のズレがおきていたものである。更に、今後、発光装置に対し、より強い発光が求められることから、実用面の信頼性も考慮して、蛍光体混合物部分の温度が室温から200℃の範囲で変化するとき、相対発光強度のピーク値の変動が25%以内であれば良い。   Here, when the present inventors investigated the heat generation temperature of the LED, it is usually about 50 to 100 ° C. in a small light emitting device, but in order to obtain stronger light emission, the amount of electricity to the LED is increased. At the same time, it became clear that when the LED was sealed with resin or the lead frame structure was improved, the heat generation temperature and the heat generation amount increased, and the temperature of the resin or phosphor mixture part could exceed 100 ° C. . As a result, the peak value of the relative light emission intensity in each phosphor fluctuates, and a phenomenon of “color shift” occurs in white LED illumination, such as a blue LED, a green to orange phosphor, and the silicon nitride system described above. In the white light emitting device in combination with the red phosphor containing nitrogen, chromaticity deviation occurred. Furthermore, since stronger light emission is required for the light emitting device in the future, considering the reliability in practical use, when the temperature of the phosphor mixture part changes from room temperature to 200 ° C, the relative light emission intensity It suffices if the fluctuation of the peak value is within 25%.

即ち、上述の課題を解決するための第1の構成は、
紫外から緑色の励起光により励起され、可視光を発光する蛍光体混合物であって、
波長430nmから500nmの範囲のいずれかの励起光により励起されたときの温度25℃における相対発光強度のピーク値をP25とし、温度T℃における相対発光強度のピーク値をPとし、Tが25℃から200℃の範囲で変化するとき、
(100×(P25−PT)/P25)の値が±25以内であることを特徴とする蛍光体混合物である。
That is, the first configuration for solving the above-described problem is:
A phosphor mixture excited by ultraviolet to green excitation light and emitting visible light,
The peak value of the relative emission intensity at a temperature of 25 ° C. when excited by any excitation light in the wavelength range of 430 nm to 500 nm is P 25 , the peak value of the relative emission intensity at a temperature T ° C. is P T, and T is When changing in the range of 25 ℃ to 200 ℃,
The phosphor mixture is characterized in that the value of (100 × (P 25 −P T ) / P 25 ) is within ± 25.

第2の構成は、
組成式MmAaBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、A元素はIII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は、前記蛍光体中において付活剤として作用する1種以上の元素であり、m=a=b=1 ,o<0.5, n = 3−2/3o である。)で表記される蛍光体と、
紫外から緑色の励起光により励起され、波長500nmから630nmの範囲内に発光ピークが存在する発光スペクトルを有する蛍光体の1種以上とを、含むことを特徴とする第1の構成に記載の蛍光体混合物である。
The second configuration is
Composition formula MmAaBbOoNn: Z (where M element is one or more elements having a valence of II, A element is one or more elements having a valence of III, and B element is an IV valence) One or more elements having a valence, O is oxygen, N is nitrogen, Z element is one or more elements that act as activators in the phosphor, and m = a = b = 1, o <0.5, n = 3−2 / 3o)),
1. One or more phosphors having an emission spectrum that is excited by ultraviolet to green excitation light and has an emission peak in a wavelength range of 500 nm to 630 nm. It is a body mixture.

第3の構成は、
前記M元素は、Ca、Mg、Sr、Ba、Znから選択される1種以上の元素であり、
前記A元素は、Al、Gaから選択される1種以上の元素であり、
前記B元素は、Si、Geから選択される1種以上の元素であり、
前記Z元素は、希土類元素、遷移金属元素から選択される1種以上の元素であることを特徴とする第2の構成に記載の蛍光体混合物である。
The third configuration is
The M element is at least one element selected from Ca, Mg, Sr, Ba, Zn,
The A element is one or more elements selected from Al and Ga,
The B element is one or more elements selected from Si and Ge,
The phosphor mixture according to the second configuration, wherein the Z element is one or more elements selected from rare earth elements and transition metal elements.

第4の構成は、
前記Z元素は、Euであることを特徴とする第3の構成に記載の蛍光体混合物である。
The fourth configuration is
The phosphor mixture according to the third configuration, wherein the Z element is Eu.

第5の構成は、
前記組成式MmAaBbOoNn:Zで表記される蛍光体は、組成式CaAlSiN3:Euを有する蛍光体であることを特徴とする第2から第4の構成のいずれかに記載の蛍光体混合物である。
The fifth configuration is
The phosphor represented by the composition formula MmAaBbOoNn: Z is a phosphor mixture according to any one of the second to fourth configurations, wherein the phosphor has the composition formula CaAlSiN 3 : Eu.

第6の構成は、
前記紫外から緑色の励起光により励起され、波長500nmから630nmの範囲内に発光ピークが存在する発光スペクトルを有する蛍光体とは、Ceを付活剤とし、ガーネット系の結晶構造を持つ蛍光体であることを特徴とする第2から第5の構成のいずれかに記載の蛍光体混合物である。
The sixth configuration is
The phosphor having an emission spectrum excited by ultraviolet to green excitation light and having an emission peak in the wavelength range of 500 nm to 630 nm is a phosphor having Ce as an activator and a garnet crystal structure. The phosphor mixture according to any one of the second to fifth configurations, which is characterized in that it is present.

第7の構成は、
前記Ceを付活剤とし、ガーネット系の結晶構造を持つ蛍光体は、Yおよび/またはTbを含むAlガーネット系蛍光体であることを特徴とする第6の構成に記載の蛍光体混合物である。
The seventh configuration is
The phosphor mixture according to the sixth configuration, wherein the phosphor having Ce as an activator and having a garnet crystal structure is an Al garnet phosphor containing Y and / or Tb. .

第8の構成は、
前記Ceを付活剤とし、ガーネット系の結晶構造を持つ蛍光体は、Scを含むSiガーネット系蛍光体であることを特徴とする第6の構成に記載の蛍光体混合物である。
The eighth configuration is
The phosphor mixture according to the sixth configuration, wherein the phosphor having Ce as an activator and having a garnet-based crystal structure is an Si garnet-based phosphor containing Sc.

第9の構成は、
前記各蛍光体は、いずれも平均粒径(D50)が1〜20μmの粒子であることを特徴とする第1から第8の構成のいずれかに記載の蛍光体混合物である。
The ninth configuration is
Each of the phosphors is a phosphor mixture according to any one of the first to eighth configurations, wherein the phosphor has an average particle diameter (D50) of 1 to 20 μm.

第10の構成は、
前記各蛍光体は、いずれも発光スペクトルの半値幅が50nm以上であることを特徴とする第1から第9の構成のいずれかに記載の蛍光体混合物である。
The tenth configuration is
Each of the phosphors is the phosphor mixture according to any one of the first to ninth configurations, wherein a half width of an emission spectrum is 50 nm or more.

第11の構成は、
波長430nmから500nmの範囲にある励起光により励起されたときの発光スペクトルにおいて、
波長500nmから780nmの範囲に2つ以上の発光ピークを有し、且つ波長500nmから780nmの範囲に途切れることない連続的スペクトルを有することを特徴とする第1から第10の構成のいずれかに記載の蛍光体混合物である。
The eleventh configuration is
In the emission spectrum when excited by excitation light in the wavelength range of 430 nm to 500 nm,
Any one of the first to tenth aspects has a continuous spectrum having two or more emission peaks in a wavelength range of 500 nm to 780 nm and a continuous spectrum in a wavelength range of 500 nm to 780 nm. The phosphor mixture.

第12の構成は、
波長430nmから500nmの範囲にある励起光により励起されたときの発光スペクトルにおいて、
当該発光スペクトルの色度が、x>0.2 y>0.2であることを特徴とする第1から第11の構成のいずれかに記載の蛍光体混合物である。
The twelfth configuration is
In the emission spectrum when excited by excitation light in the wavelength range of 430 nm to 500 nm,
The phosphor mixture according to any one of the first to eleventh configurations, wherein the chromaticity of the emission spectrum is x> 0.2 y> 0.2.

第13の構成は、
第1から第12の構成のいずれかに記載の蛍光体混合物と、
波長430nmから500nmの範囲のいずれかの発光をおこなう発光部とを有することを特徴とする発光装置である。
The thirteenth configuration is
The phosphor mixture according to any one of the first to twelfth configurations;
And a light emitting unit that emits light in a wavelength range of 430 nm to 500 nm.

第14の構成は、
前記発光部が発光ダイオード(LED)であることを特徴とする第13の構成に記載の発光装置である。
The fourteenth configuration is
The light emitting device according to the thirteenth structure, wherein the light emitting unit is a light emitting diode (LED).

第15の構成は、
前記発光部がGaを含む材料から構成される発光ダイオード(LED)であることを特徴とす第14の構成に記載の発光装置である。
The fifteenth configuration is
The light emitting device according to the fourteenth structure, wherein the light emitting part is a light emitting diode (LED) made of a material containing Ga.

第16の構成は、
前記発光装置の平均演色評価数Raが、80以上であることを特徴とする第13から第15の構成のいずれかに記載の発光装置である。
The sixteenth configuration is
The light emitting device according to any one of the thirteenth to fifteenth configurations, wherein an average color rendering index Ra of the light emitting device is 80 or more.

第17の構成は、
前記発光装置の特殊演色評価数R9が、60以上であることを特徴とする第13から第16の構成のいずれかに記載の発光装置である。
The seventeenth configuration is
The light emitting device according to any one of the thirteenth to sixteenth configurations, wherein the special color rendering index R9 of the light emitting device is 60 or more.

第18の構成は、
前記発光装置の特殊演色評価数R15が、80以上であることを特徴とする第13から第17の構成のいずれかに記載の発光装置である。
第19の構成は、
前記発光装置の相関色温度が、7000Kから2500Kの範囲にあることを特徴とする第13から第18の構成のいずれかに記載の発光装置である。
The eighteenth configuration is
The light emitting device according to any one of the thirteenth to seventeenth configurations, wherein the special color rendering index R15 of the light emitting device is 80 or more.
The nineteenth configuration is
The light emitting device according to any one of the thirteenth to eighteenth configurations, wherein the correlated color temperature of the light emitting device is in a range of 7000K to 2500K.

第1の構成に係る蛍光体混合物は、周囲温度の変化による相対発光強度のピーク値の変化量が少ないので、当該蛍光体混合物を用いた発光装置において、当該蛍光体化合物の加熱に起因する「色ズレ」を抑えることが出来る。   Since the phosphor mixture according to the first configuration has a small amount of change in the peak value of the relative emission intensity due to a change in the ambient temperature, in the light-emitting device using the phosphor mixture, the phosphor compound is caused by heating. Color misregistration can be suppressed.

第2から第12の構成のいずれかに係る蛍光体混合物は、周囲温度の変化による相対発光強度のピーク値の変化量が少ないため、所定の励起光を照射されたとき、当該励起光と合成されて演色性に優れ、周囲温度の影響による色度のズレが少ない白色を始めとする光を発光することが出来る。   Since the phosphor mixture according to any one of the second to twelfth configurations has a small amount of change in the peak value of the relative emission intensity due to a change in the ambient temperature, it is synthesized with the excitation light when irradiated with predetermined excitation light. As a result, it is possible to emit light such as white, which has excellent color rendering properties and little chromaticity shift due to the influence of ambient temperature.

第13から第19の構成のいずれかに係る発光装置は、演色性に優れ、周囲温度の影響による「色ズレ」が少ない白色を始めとする光を発光する装置である。
The light-emitting device according to any one of the thirteenth to nineteenth configurations is a device that emits light such as white light that has excellent color rendering properties and little “color shift” due to the influence of ambient temperature.

(本発明に係る蛍光体混合物)
本発明に係る蛍光体混合物は、波長430nmから500nmの範囲にある紫外から緑色の励起光により励起され、可視光を発光する。そして当該波長430nmから500nmの範囲のいずれかの励起光により励起されたときの温度25℃における相対発光強度のピーク値をP25とし、温度T℃における相対発光強度のピーク値をPとし、Tが25℃から200℃の範囲で変化するとき、(100×(P25−PT)/P25)の値が±25以内であることを特徴とする蛍光体混合物である。
(Phosphor mixture according to the present invention)
The phosphor mixture according to the present invention is excited by ultraviolet to green excitation light in the wavelength range of 430 nm to 500 nm and emits visible light. The peak value of the relative emission intensity at a temperature of 25 ° C. when excited by any excitation light in the wavelength range of 430 nm to 500 nm is P 25, and the peak value of the relative emission intensity at the temperature T ° C. is P T , When T varies in the range of 25 ° C. to 200 ° C., the phosphor mixture is characterized in that the value of (100 × (P 25 −P T ) / P 25 ) is within ± 25.

当該構成を有する結果、本発明に係る蛍光体混合物は、周囲温度の変化による発光ピークの変化がわずかであるため、当該蛍光体混合物を用いた発光装置において、混合した各蛍光体の熱に起因する発光強度の変化を少なくすることが出来、特に100℃以上の高温においても発光強度の変化を抑えることが出来るため、当該変化により生じる「色ズレ」を抑えることが出来る。この結果、上述した白色LED照明を始めとする発光装置において、強い発光強度を得るために当該LEDに大きな電流を流した場合に、当該蛍光体混合物の温度が100℃を超えることがあっても、相対発光強度のピーク値の変化の値:(100×(P25−PT)/P25)が±25以内に留まるため、用いた蛍光体混合物の色度のズレが抑えられ、その結果、発光装置の「色ズレ」を抑えることが出来るのだと考えられる。即ち、当該蛍光体混合物は、外部からの熱により蛍光体混合物が高温となった場合においても蛍光体混合物の発光特性の劣化が少ないため、周囲温度の変化による発光特性の低下が起こりにくい。このため、当該蛍光体混合物と発光部とを組み合わせた発光装置において、強い発光強度を得るために発光部に大きな電流を流し、発光部が発熱を起こしたときでも色ズレが少なく、高輝度な発光装置を得ることができる。特に前記蛍光体混合物の温度が200℃まで上昇しても、発光強度の低下が20%以内に留まるので、例えば、発光部として発光素子や紫外放電灯等を用いた場合でも、人間の視覚において顕著な光強度の低下による「色ズレ」が感じられず、照明用に設置される光源に用いられる蛍光体として適したものである。 As a result of having such a configuration, the phosphor mixture according to the present invention has a slight change in emission peak due to a change in ambient temperature, so in the light emitting device using the phosphor mixture, the phosphor mixture is caused by the heat of each phosphor mixed. The change in the emitted light intensity can be reduced, and particularly the change in the emitted light intensity can be suppressed even at a high temperature of 100 ° C. or higher, so that “color shift” caused by the change can be suppressed. As a result, in a light emitting device such as the white LED illumination described above, when a large current is passed through the LED in order to obtain strong emission intensity, the temperature of the phosphor mixture may exceed 100 ° C. Since the value of the change in the peak value of the relative emission intensity: (100 × (P 25 −P T ) / P 25 ) remains within ± 25, the chromaticity shift of the phosphor mixture used is suppressed, and as a result It is considered that the “color shift” of the light emitting device can be suppressed. That is, in the phosphor mixture, even when the phosphor mixture reaches a high temperature due to heat from the outside, the emission characteristics of the phosphor mixture are hardly deteriorated, so that the emission characteristics are not easily lowered due to changes in the ambient temperature. For this reason, in a light emitting device combining the phosphor mixture and the light emitting part, a large current is passed through the light emitting part in order to obtain strong light emission intensity, and even when the light emitting part generates heat, there is little color shift and high brightness. A light emitting device can be obtained. In particular, even when the temperature of the phosphor mixture is increased to 200 ° C., the decrease in emission intensity remains within 20%. For example, even when a light emitting element or an ultraviolet discharge lamp is used as the light emitting unit, The “color shift” due to a significant decrease in light intensity is not felt, and it is suitable as a phosphor used for a light source installed for illumination.

本発明に係る蛍光体混合物は、後述する、組成式MmAaBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、A元素はIII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は、前記蛍光体中において付活剤として作用する1種以上の元素であり、m=a=b=1 ,o<0.5, n = 3−2/3o である。)で表記される蛍光体と、波長500nmから630nmの範囲内に発光スペクトルの最大ピークを有するCeを付活剤とするガーネット系の結晶構造を持つ蛍光体とを混合することで製造することができる。そして、当該構成を有する蛍光体混合物は、可視光全域にわたり均一な光の強度を持った発光スペクトルを有し、演色性に優れる発光をおこなう蛍光体混合物である。   The phosphor mixture according to the present invention has a composition formula MmAaBbOoNn: Z (wherein the M element is one or more elements having a valence of II, and the A element is one of a valence of III). Among these elements, the B element is one or more elements having a valence of IV, O is oxygen, N is nitrogen, and the Z element acts as an activator in the phosphor. A phosphor expressed by m = a = b = 1, o <0.5, n = 3−2 / 3o), and an emission spectrum within a wavelength range of 500 nm to 630 nm. It can be manufactured by mixing with a phosphor having a garnet-type crystal structure using Ce having the largest peak as an activator. And the fluorescent substance mixture which has the said structure is a fluorescent substance mixture which has light emission spectrum with the intensity | strength of uniform light over the visible light whole region, and performs light emission excellent in color rendering property.

(本発明に係る蛍光体混合物に含まれる赤色蛍光体)
まず、本発明に係る蛍光体混合物に含まれる赤色蛍光体であって、組成式MmAaBbOoNn:Zと表記される蛍光体について説明する。当該赤色蛍光体の組成式において、M元素は、II価の価数をとる1種以上の元素であるが、好ましくはCa・Mg・Sr・Ba・Znから選択される1種以上の元素である。これらの元素は原料の入手が容易で、環境負荷も小さいからである。更に、当該観点からCaが最も好ましい。A元素はIII価の価数をとる1種以上の元素であるが、好ましくはAl・Gaから選択される1種以上の元素である。これらの元素も原料の入手が容易で、環境負荷も小さいからである。更に、当該観点からAlが最も好ましい。B元素はIV価の価数をとる1種以上の元素であるが、好ましくはSi・Geから選択される1種以上の元素である。これらの元素も原料の入手が容易で、環境負荷も小さいからである。更に、当該観点からSiが最も好ましい。Z元素は付活剤として作用する元素であるが、希土類元素または遷移金属元素から選択される少なくとも1種以上の元素であることが好ましい。これらの元素も原料の入手が容易で、環境負荷も小さいからである。更に、当該観点からEuが最も好ましい。また、Oは、少量であることが好ましい。したがって、本発明に係る最も好ましい赤色蛍光体の組成式はCaAlSiN3:Euである。
(Red phosphor contained in the phosphor mixture according to the present invention)
First, a phosphor represented by the composition formula MmAaBbOoNn: Z, which is a red phosphor contained in the phosphor mixture according to the present invention, will be described. In the composition formula of the red phosphor, M element is one or more elements having a valence of II, preferably one or more elements selected from Ca, Mg, Sr, Ba, and Zn. is there. This is because these elements are readily available as raw materials and have a low environmental impact. Further, Ca is most preferable from this viewpoint. The element A is one or more elements having a valence of III, but preferably one or more elements selected from Al · Ga. This is because these elements are readily available as raw materials and have a low environmental impact. Furthermore, Al is most preferable from this viewpoint. The B element is one or more elements having a valence of IV, but is preferably one or more elements selected from Si · Ge. This is because these elements are readily available as raw materials and have a low environmental impact. Further, Si is most preferable from this viewpoint. The Z element is an element that acts as an activator, but is preferably at least one element selected from rare earth elements or transition metal elements. This is because these elements are readily available as raw materials and have a low environmental impact. Furthermore, Eu is most preferable from this viewpoint. O is preferably a small amount. Therefore, the most preferable composition formula of the red phosphor according to the present invention is CaAlSiN 3 : Eu.

当該構成を有する当該赤色蛍光体は、励起光として波長域250nm〜550nmの範囲の光が照射されたとき高い効率をもって、波長630nmから700nmの範囲内に発光スペクトルの発光ピークを有する高輝度な赤色発光をおこなう。更に、当該赤色蛍光体の発光スペクトルの半値幅は50nm以上である。
尚、前記組成式中のOは、当該赤色蛍光体の製造時に当該赤色蛍光体の原料中に含まれる酸素に由来するが、上述したように当該赤色蛍光体の発光効率の観点からは少量であることが好ましく、当該赤色蛍光体中における存在量も、無視できる少量としていることから、以後の当該赤色蛍光体の組成式において、Oの表記を省略する場合がある。
The red phosphor having the configuration is a high-intensity red color having an emission peak of an emission spectrum in a wavelength range of 630 nm to 700 nm with high efficiency when irradiated with light in a wavelength range of 250 nm to 550 nm as excitation light. Emits light. Furthermore, the half width of the emission spectrum of the red phosphor is 50 nm or more.
Note that O in the composition formula is derived from oxygen contained in the raw material of the red phosphor during the production of the red phosphor, but as described above, it is a small amount from the viewpoint of the luminous efficiency of the red phosphor. It is preferable that the abundance in the red phosphor is set to a negligible small amount, and therefore, O may be omitted in the composition formula of the red phosphor thereafter.

(本発明に係る蛍光体混合物に含まれる赤色蛍光体の製造方法)
ここで、本発明に係る赤色蛍光体の製造方法例について、組成式CaAlSiN3:Eu (但し、モル比でEu/(Ca+Eu) = 0.020である。)で示される蛍光体の製造を例として説明する。
(Method for producing red phosphor contained in phosphor mixture according to the present invention)
Here, with respect to an example of a method for producing a red phosphor according to the present invention, an example of producing a phosphor represented by the composition formula CaAlSiN 3 : Eu (where Eu / (Ca + Eu) = 0.020 in molar ratio) is given. Will be described.

M元素、A元素、B元素の各窒化物原料は市販の原料でよいが、純度は高い方が好ましいことから、好ましくは2N以上、更に好ましくは3N以上のものを準備する。各原料粒子の粒径は、一般的には、反応を促進させる観点から微粒子の方が好ましいが、原料の粒径、形状により、得られる蛍光体の粒径、形状も変化する。このため、最終的に得られる蛍光体に求められる粒径に合わせて、近似の粒径を有する窒化物原料を準備すればよい。Z元素の原料は市販の窒化物原料、もしくは単体金属が好ましいが、添加量が少量であるため酸化物を用いても問題はない。やはり純度は高い方が好ましく、好ましくは2N以上、更に好ましくは3N以上のものを準備する。   Each nitride raw material of M element, A element, and B element may be a commercially available raw material, but preferably has a purity of 2N or higher, and more preferably 3N or higher. In general, the particle diameter of each raw material particle is preferably a fine particle from the viewpoint of promoting the reaction, but the particle diameter and shape of the obtained phosphor also vary depending on the particle diameter and shape of the raw material. For this reason, a nitride material having an approximate particle size may be prepared in accordance with the particle size required for the finally obtained phosphor. The raw material for the element Z is preferably a commercially available nitride raw material or a simple metal. However, since the addition amount is small, there is no problem even if an oxide is used. It is also preferable that the purity is higher, preferably 2N or more, more preferably 3N or more.

Ca0.980AlSiN3:Eu0.020の製造であれば、例えばM元素、A元素、B元素の窒化物として、それぞれCa3N2(2N)、AlN(3N)、Si3N4(3N)を準備し、Z元素としては、Eu2O3(3N)を準備するとよい。これらの原料を、各元素のモル比がCa : Al : Si : Eu = 0.980 : 1 : 1 : 0.020となるように、各原料の混合比を、それぞれ、Ca3N2は0.980/3 mol、AlNは1 mol、Si3N4は1/3 mol、Eu2O3は0.020/2 molとして秤量し混合する。当該秤量・混合は、Ca3N2が酸化し易いために不活性雰囲気下のグローブボックス内での操作が便宜である。また、各原料元素の窒化物は水分の影響を受けやすいため、不活性ガスは水分を十分取り除いたものを使用するのが良い。混合方式は湿式、乾式どちらでも構わないが、湿式混合の溶媒として純水を用いると原料が分解するため、適当な有機溶媒を選定する必要がある。装置としてはボールミルや乳鉢等を用いる通常の方法でもよい。 For the production of Ca 0.980 AlSiN 3 : Eu 0.020 , prepare Ca 3 N 2 (2N), AlN (3N), Si 3 N 4 (3N) as nitrides of M element, A element, and B element, respectively. However, Eu 2 O 3 (3N) is preferably prepared as the Z element. These raw materials were mixed at a mixing ratio of each raw material such that the molar ratio of each element was Ca: Al: Si: Eu = 0.980: 1: 1: 0.020, and Ca 3 N 2 was 0.980 / 3 mol, Weigh and mix AlN 1 mol, Si 3 N 4 1/3 mol, and Eu 2 O 3 0.020 / 2 mol. The weighing and mixing are convenient to operate in a glove box under an inert atmosphere because Ca 3 N 2 is easily oxidized. Moreover, since the nitride of each raw material element is easily affected by moisture, it is preferable to use an inert gas from which moisture has been sufficiently removed. The mixing method may be either wet or dry. However, when pure water is used as a solvent for wet mixing, the raw material is decomposed, and therefore, an appropriate organic solvent must be selected. The apparatus may be a normal method using a ball mill or a mortar.

混合が完了した原料をるつぼに入れ、窒素等の不活性雰囲気中で1000℃以上、好ましくは1400℃以上、更に好ましくは1500℃以上で30分以上、好ましくは3時間保持して焼成する。保持時間は、焼成温度が高いほど焼成が迅速に進むため短縮できる。一方、焼成温度が低い場合でも、当該温度を長時間保持することにより目的の発光特性を得ることができる。しかし、焼成時間が長いほど粒子成長が進み、粒子サイズが大きくなるため、目的とする粒子サイズに応じて焼成時間を設定すればよい。不活性雰囲気の焼成中の圧力は0.5MPa以下として焼成することが好ましく、これ以上の圧力で焼成すると粒子間の焼結が進みすぎるため、焼成後の粉砕時に好ましくない。
尚、るつぼとしては不純物を含まない高純度のAl2O3るつぼ、Si3N4るつぼ、AlNるつぼ、サイアロンるつぼ、C(カーボン)るつぼ、BN(窒化ホウ素)るつぼ等の、不活性雰囲気中で使用可能なるつぼを用いれば良いが、BNるつぼを用いると、るつぼからの不純物混入を回避することができ好ましい。
The mixed raw material is placed in a crucible and fired in an inert atmosphere such as nitrogen at 1000 ° C. or higher, preferably 1400 ° C. or higher, more preferably 1500 ° C. or higher for 30 minutes or longer, preferably 3 hours. The holding time can be shortened because the firing proceeds more rapidly as the firing temperature is higher. On the other hand, even when the firing temperature is low, the desired light emission characteristics can be obtained by maintaining the temperature for a long time. However, as the firing time is longer, particle growth proceeds and the particle size becomes larger. Therefore, the firing time may be set according to the target particle size. The pressure during firing in an inert atmosphere is preferably set to 0.5 MPa or less, and firing at a pressure higher than this is not preferable at the time of pulverization after firing because sintering between particles proceeds excessively.
In addition, high purity Al 2 O 3 crucibles, Si 3 N 4 crucibles, AlN crucibles, sialon crucibles, C (carbon) crucibles, BN (boron nitride) crucibles, etc., are used in an inert atmosphere. Although a usable crucible may be used, it is preferable to use a BN crucible because it can avoid mixing impurities from the crucible.

焼成が完了した後、焼成物をるつぼから取り出し、乳鉢、ボールミル等の粉砕手段を用いて、所定の平均粒径となるように粉砕して組成式Ca0.980AlSiN3:Eu0.020で示される蛍光体を製造することができる。ここで、Eu原料としてEu2O3を使用した場合には、少量ではあるが酸素が添加されてしまうことにより、組成式はCa0.980AlSiO0.03N2.96:Eu0.020となるが、酸素量が少量なので特に問題はない。尚、酸素量を更に削減したい場合は、Eu原料としてEu金属またはEu窒化物などを用いれば良い。 After the firing is completed, the fired product is taken out from the crucible, and pulverized using a mortar, ball mill, or other pulverizing means, and pulverized to a predetermined average particle size, and the phosphor represented by the composition formula Ca 0.980 AlSiN 3 : Eu 0.020 Can be manufactured. Here, when Eu 2 O 3 is used as the Eu raw material, the composition formula becomes Ca 0.980 AlSiO 0.03 N 2.96 : Eu 0.020 due to the addition of oxygen, although in a small amount, but the amount of oxygen is small. So there is no problem. In order to further reduce the amount of oxygen, Eu metal or Eu nitride may be used as the Eu raw material.

M元素、A元素、B元素、Z元素として、他の元素を用いた場合、および付活剤であるEuの付活量を変更した場合も、各原料の仕込み時の配合量を所定の組成比に合わせることで、上述と同様な製造方法により蛍光体を製造することができる。   When other elements are used as M element, A element, B element, and Z element, and when the activation amount of Eu as an activator is changed, the blending amount at the time of charging each raw material is a predetermined composition By adjusting to the ratio, the phosphor can be manufactured by the same manufacturing method as described above.

本発明に係る蛍光体混合物を粉体の形で用いる場合は、混合する各蛍光体粉体の平均粒径が、それぞれ20μm以下であることが好ましい。これは、蛍光体粉体における発光は主に粉体粒子表面で起こると考えられるため、平均粒径(D50)が20μm以下であれば、粉体単位重量あたりの表面積を確保でき、輝度の低下を回避できるからである。更に、当該蛍光体混合物粉体を用いた照明装置の製造において、当該蛍光体混合物粉体をペースト状とし、例えば、発光体素子等に塗布する場合に当該粉体の密度を高めることができ、この観点からも輝度の低下を回避することができる。また、本発明者らの検討によると、詳細な理由は不明であるが、蛍光体粉体の発光効率の観点からは、平均粒径が1μmより大きいことが好ましいことも判明した。以上のことより、係る蛍光体粉体の平均粒径は、1μm〜20μmであることが好ましい。   When the phosphor mixture according to the present invention is used in the form of powder, the average particle size of each phosphor powder to be mixed is preferably 20 μm or less. This is because the light emission in the phosphor powder is considered to occur mainly on the surface of the powder particles, so if the average particle size (D50) is 20 μm or less, the surface area per unit weight of the powder can be secured, and the luminance decreases. This is because it can be avoided. Furthermore, in the manufacture of an illuminating device using the phosphor mixture powder, the phosphor mixture powder can be made into a paste, for example, when applied to a phosphor element or the like, the density of the powder can be increased, Also from this viewpoint, it is possible to avoid a decrease in luminance. Further, according to the study by the present inventors, although the detailed reason is unknown, it has been found that the average particle diameter is preferably larger than 1 μm from the viewpoint of the luminous efficiency of the phosphor powder. From the above, the average particle diameter of the phosphor powder is preferably 1 μm to 20 μm.

(本発明に係る蛍光体混合物の発光特性)
次に、本発明に係る蛍光体混合物に含まれる波長500から630nmの範囲にブロードな発光ピークを有する蛍光体について説明する。
当該波長500nmから630nmの範囲内に発光スペクトルの最大ピークを有する蛍光体が好ましく、発光スペクトルの半値幅は50nm以上であることが好ましい、特にCeを付活剤とするガーネット系の結晶構造を持つ蛍光体が好ましいが、これはガーネット系結晶にCeを付活することによって、青色光で励起させた際の発光効率が高く、発光スペクトルの半値幅も広くなるため、より演色性の向上した発光スペクトルを得ることが出来るからである。特に、YまたはTbを含むAlガーネット系蛍光体で有ることを特徴とする蛍光体、または、Scを含むSiガーネット系蛍光体で有ることを特徴ととする蛍光体も好ましい。当該蛍光体の例として、Y3Al5O12:Ce、Tb3Al5O12:Ce、Ca3Sc2Si3O12:Ceなどのガーネット構造をもつ蛍光体があるが、上記条件を満たせばこの限りではない。
(Luminescent characteristics of the phosphor mixture according to the present invention)
Next, a phosphor having a broad emission peak in the wavelength range of 500 to 630 nm contained in the phosphor mixture according to the present invention will be described.
A phosphor having a maximum peak of the emission spectrum within the wavelength range of 500 nm to 630 nm is preferable, and the half width of the emission spectrum is preferably 50 nm or more, and particularly has a garnet-based crystal structure using Ce as an activator. Phosphors are preferred, but this is because luminescence is enhanced by exciting Ce with garnet crystals, resulting in high emission efficiency when excited with blue light and a wide half-value width of the emission spectrum. This is because a spectrum can be obtained. In particular, a phosphor characterized by being an Al garnet-based phosphor containing Y or Tb or a phosphor characterized by being a Si garnet-based phosphor containing Sc is also preferable. Examples of the phosphor include phosphors having a garnet structure such as Y 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, and Ca 3 Sc 2 Si 3 O 12 : Ce. This does not apply if you meet.

以上説明したように、本発明に係る蛍光体混合物に含まれるすべての蛍光体の発光スペクトルにおいては50nm以上の半値幅を持つことが好ましい。この結果、当該蛍光体混合物の発光スペクトルは、緑色〜赤色の可視光全域にわたるスペクトルとなり、当該蛍光体混合物に、波長430nm〜500nmの範囲のいずれかの励起光を照射した際、当該蛍光体の発光スペクトルと、励起光が有する発光スペクトルとが合成されることで、優れた演色性を発揮する発光スペクトルを得ることができる。   As described above, it is preferable that the emission spectra of all the phosphors contained in the phosphor mixture according to the present invention have a half width of 50 nm or more. As a result, the emission spectrum of the phosphor mixture becomes a spectrum covering the entire visible light range of green to red, and when the phosphor mixture is irradiated with any excitation light in the wavelength range of 430 nm to 500 nm, By synthesizing the emission spectrum and the emission spectrum of the excitation light, an emission spectrum exhibiting excellent color rendering can be obtained.

次に、上述の蛍光体を混合して、本発明に係る蛍光体混合物を得る方法について説明する。前記蛍光体混合物を混合する際、これらの蛍光体の混合比を設定することで、上記蛍光体混合物は、波長430nm〜500nmの範囲のいずれかの励起光が照射された際、得られる発光スペクトルの相関色温度を7000Kから2500Kの間における所望の値とすることができる。具体的には、発光部(例えばLEDなど)が発光する波長430nmから500nmの励起光の発光スペクトル、および上述の各蛍光体を前記励起光と同じ波長の光で励起して際に得られる発光スペクトルを測定し、得られた発光スペクトルをシミュレーションにて合成し、所望の相関色温度を得るための各蛍光体の混合比率を求めればよい。更に、当該相関色温度に加え、演色評価数、色度座標などの特性も求められるため、目的とする特性に合わせて、蛍光体の混合比率の調整をおこなえばよい。上述の各蛍光体が50nm以上の半値幅を持つので、当該蛍光体混合物の発光においては、互いの発光スペクトルと発光部の発光スペクトルとが重なり合い、波長420nmから780nmの範囲に、急激に変動せず且つ途切れることのない連続的な、所謂ブロードな発光スペクトルを得ることができる。   Next, a method for obtaining the phosphor mixture according to the present invention by mixing the above-described phosphors will be described. When mixing the phosphor mixture, by setting the mixing ratio of these phosphors, the phosphor mixture is obtained when the excitation light in the wavelength range of 430 nm to 500 nm is irradiated. The correlated color temperature can be set to a desired value between 7000K and 2500K. Specifically, the emission spectrum of excitation light with a wavelength of 430 nm to 500 nm emitted by the light emitting unit (for example, LED), and the light emission obtained when each of the phosphors is excited with light having the same wavelength as the excitation light The spectrum is measured, and the obtained emission spectrum is synthesized by simulation, and the mixing ratio of each phosphor for obtaining a desired correlated color temperature may be obtained. Furthermore, in addition to the correlated color temperature, characteristics such as the color rendering index and chromaticity coordinates are also required. Therefore, the phosphor mixing ratio may be adjusted in accordance with the target characteristics. Since each of the phosphors described above has a half-value width of 50 nm or more, in the emission of the phosphor mixture, the emission spectrum of each other and the emission spectrum of the light emitting part overlap, and the wavelength varies rapidly from 420 nm to 780 nm. A so-called broad emission spectrum that is continuous and uninterrupted can be obtained.

さらに、当該蛍光体を組み合わせることにより、相関色温度7000Kから2500K程度の白色光において高い演色性をもつ照明用光源を作製することが出来る。当該相関色温度の範囲を外れても、例えば、屋外照明装置等としてなら問題はないが、相関色温度が高いと青み成分が高くなり、逆に相関色温度が低すぎると赤み成分が多くなるため、屋内などの高い演色性が必要とされる光源については適さない光源となる。したがって、当該蛍光体を組み合わせ得られる光源については相関色温度7000Kから2500K程度の白色光が好ましい。   Further, by combining the phosphors, an illumination light source having high color rendering properties in white light having a correlated color temperature of about 7000K to 2500K can be manufactured. Even if the correlated color temperature is out of the range, for example, as an outdoor lighting device, there is no problem. However, if the correlated color temperature is high, the bluish component increases. Conversely, if the correlated color temperature is too low, the reddish component increases. Therefore, the light source is not suitable for a light source that requires high color rendering such as indoors. Accordingly, white light having a correlated color temperature of about 7000K to 2500K is preferable for the light source obtained by combining the phosphors.

さらに、波長430nmから500nmの範囲にある励起光により励起されたときの発光スペクトルにおいて、蛍光体混合物の発光スペクトルの色度がx>0.2 、y>0.2(但し、x,yは、JIS Z8701に規定する算出方法によりを求めた色度(x,y)のことである。)であることにより、発光色としても赤色成分が増えるため、より効率の良い赤色蛍光体を用いることになり、発光色が青色や緑色などの単色に近いものとなることを回避できることから、より効率の良い白色LED照明を作成でき、ディスプレイ用バックライト光源としても適したものとなる。   Further, in the emission spectrum when excited by excitation light in the wavelength range of 430 nm to 500 nm, the chromaticity of the emission spectrum of the phosphor mixture is x> 0.2, y> 0.2 (however, x and y are JIS Z8701 The chromaticity (x, y) obtained by the specified calculation method.), The red component increases as the luminescent color, so a more efficient red phosphor is used, and the luminescence Since it can be avoided that the color is close to a single color such as blue or green, a more efficient white LED illumination can be created and it is also suitable as a backlight light source for a display.

(本発明に係る蛍光体混合物の温度による発光強度変化)
本発明に係る蛍光体混合物の温度25℃、T℃における発光強度P25、Pおよび当該発光強度の変化の測定について説明する。
当該発光強度P25とは、当該蛍光体を25℃の環境に置き、後述する所定波長の励起光を照射した際に当該蛍光体混合物が発する光のスペクトルを測定し、当該測定スペクトル中で最大の強度を有するピークを最大ピークと定め、そのピークの相対強度の値をP25としたものである。次に、発光強度Pとは、当該蛍光体混合物をT℃の環境に置き、25℃測定の時に照射したものと同様の励起光を照射した際の発光スペクトルを測定する。当該発光スペクトル中において、25℃測定の時に最大ピークと定めたピークに相当するピークの相対強度を求め、その値をPとしたものである。このようにして求められたP25と、Pとから(100×(P25−PT)/P25)の値を算出する。
(Light emission intensity change with temperature of the phosphor mixture according to the present invention)
The measurement of the emission intensity P 25 , P T at the temperature of 25 ° C. and T ° C. of the phosphor mixture according to the present invention and the change in the emission intensity will be described.
The emission intensity P 25 is a value obtained by measuring a spectrum of light emitted from the phosphor mixture when the phosphor is placed in an environment of 25 ° C. and irradiated with excitation light having a predetermined wavelength, which will be described later. defined as the maximum peak a peak having an intensity of, the value of the relative intensity of the peak is obtained by the P 25. Next, as the emission intensity PT , an emission spectrum is measured when the phosphor mixture is placed in a T ° C environment and irradiated with excitation light similar to that irradiated at the time of 25 ° C measurement. In the emission spectrum, the relative intensity of the peak corresponding to the peak determined as the maximum peak at the time of measurement at 25 ° C. is obtained, and the value is designated as PT . A value of (100 × (P 25 −P T ) / P 25 ) is calculated from P 25 and PT thus obtained.

照射する励起光は、波長430nmから500nmの範囲において、所定の波長を必要に応じ、必要点数定めれば良い。励起光の波長域を定めるポイントとしては、当該蛍光体混合物に、励起光源として組み合わされる紫外放電灯、LED等の発光波長領域に合わせることが好ましい。   The excitation light to be radiated may have a predetermined wavelength as required within a wavelength range of 430 nm to 500 nm. As a point for determining the wavelength range of the excitation light, it is preferable to match the emission wavelength range of an ultraviolet discharge lamp, LED, or the like combined with the phosphor mixture as an excitation light source.

粉末状となった本発明に係る蛍光体混合物を、波長域430nmから500nm、好ましくは波長域440nmから480nmのいずれかの光を発光する発光部と組み合わせることで、各種の照明装置等を製造することができる。
発光部として、例えば、青色発光するLED発光素子、または青色を発光する放電灯が考えられる。そして、本発明に係る蛍光体混合物を上記LED発光素子と組み合わせた場合には、各種の照明装置等を製造することができる。また、本発明に係る蛍光体混合物を上記放電灯と組み合わせた場合には、各種蛍光灯や照明装置等を製造することができる。
By combining the phosphor mixture according to the present invention in a powder form with a light emitting part that emits light in any wavelength range of 430 nm to 500 nm, preferably 440 nm to 480 nm, various lighting devices and the like are manufactured. be able to.
As the light emitting unit, for example, an LED light emitting element that emits blue light or a discharge lamp that emits blue light can be considered. And when the fluorescent substance mixture which concerns on this invention is combined with the said LED light emitting element, various illuminating devices etc. can be manufactured. In addition, when the phosphor mixture according to the present invention is combined with the discharge lamp, various fluorescent lamps, lighting devices, and the like can be manufactured.

(本発明に係る蛍光体混合物と発光部との組み合わせ)
本発明に係る蛍光体混合物と発光部との組み合わせの方法は、公知の方法で行っても良いが、発光部にLEDを用いた発光装置の場合には、下記のようにして発光装置を作製することができる。
以下、図面を参照しながら、発光部にLEDを用いた発光装置について説明する。
図5(A)〜(C)は、砲弾型LED発光装置の模式的な断面図であり、図6(A)〜(E)は、反射型LED発光装置の模式的な断面図である。尚、各図面において、相当する部分については同様の符号を付し、説明を省略する場合がある。
(Combination of phosphor mixture and light emitting part according to the present invention)
The method of combining the phosphor mixture and the light emitting unit according to the present invention may be performed by a known method, but in the case of a light emitting device using an LED for the light emitting unit, a light emitting device is manufactured as follows. can do.
Hereinafter, a light-emitting device using LEDs in a light-emitting unit will be described with reference to the drawings.
5A to 5C are schematic cross-sectional views of a bullet-type LED light-emitting device, and FIGS. 6A to 6E are schematic cross-sectional views of a reflective LED light-emitting device. In addition, in each drawing, the same code | symbol is attached | subjected about the corresponding part and description may be abbreviate | omitted.

まず、図5(A)を用いて、発光部にLEDを用い、本発明に係る蛍光体混合物と組み合わせた発光装置の1例について説明する。
砲弾型LED発光装置においては、リードフレーム3の先端に設けられたカップ状の容器5内に、LED発光素子2が設置される。当該実施の形態では、本発明に係る蛍光体混合物または当該蛍光体混合物をシリコンやエポキシ等の透光性のある樹脂に分散させた混合物(以下、蛍光体混合物1と記載する。)を、カップ状の容器5内の全てに充填してLED発光素子2を埋め込み、この蛍光体混合物1がリードフレーム3の一部及びカップ状の容器5とともに、透光性の樹脂4にてモールドされている。
First, with reference to FIG. 5A, an example of a light-emitting device using an LED as a light-emitting portion and combined with the phosphor mixture according to the present invention will be described.
In the cannonball type LED light emitting device, the LED light emitting element 2 is installed in a cup-shaped container 5 provided at the tip of the lead frame 3. In this embodiment, the phosphor mixture according to the present invention or a mixture in which the phosphor mixture is dispersed in a light-transmitting resin such as silicon or epoxy (hereinafter referred to as phosphor mixture 1) is used as a cup. The LED light-emitting element 2 is embedded by filling all of the inside of the container 5, and the phosphor mixture 1 is molded with a part of the lead frame 3 and the cup-shaped container 5 with a light-transmitting resin 4. .

次に、図5(B)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体混合物1を、カップ状の容器5上およびLED発光素子2上面に塗布したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor mixture 1 is applied on the cup-shaped container 5 and the upper surface of the LED light-emitting element 2.

次に、図5(C)を用いて、更に異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体混合物1をLED発光素子2の上部に設置したものである。
Next, another example of a light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor mixture 1 is installed on the LED light emitting element 2.

以上、図5(A)〜(C)を用いて説明した砲弾型LED発光装置では、LED発光素子2からは光が上方向に放出されるが、光の放出方向が下方向でも同様の方法で発光装置の作成は可能である。例えば、LED発光素子の光の放出方向に反射面、反射板を設け、当該素子から放出される光を反射面に反射させて外部に発光させるものが反射型LED発光装置である。そこで図6(A)〜(E)を用い、反射型LED発光装置に本発明に係る蛍光体混合物を適用した発光装置の例について説明する。   As described above, in the bullet-type LED light emitting device described with reference to FIGS. 5A to 5C, light is emitted upward from the LED light emitting element 2, but the same method is used even when the light emission direction is downward. It is possible to create a light emitting device. For example, a reflective LED light-emitting device is a device in which a reflective surface and a reflective plate are provided in the light emission direction of an LED light-emitting element, and light emitted from the element is reflected on the reflective surface and emitted to the outside. 6A to 6E, an example of a light emitting device in which the phosphor mixture according to the present invention is applied to a reflective LED light emitting device will be described.

まず、図6(A)を用いて、発光部にLEDを用い、本発明に係る蛍光体混合物と組み合わせた発光装置の1例について説明する。
反射型LED発光装置においては、片方のリードフレーム3の先端にLED発光素子2が設置され、このLED発光素子からの発光は、下方に向かい反射面8により反射されて上方より放出される。当該実施の形態では、蛍光体混合物1を反射面8上に塗布するものである。尚、反射面8が形成する凹部内には、LED発光素子2を保護するため透明モールド材9が充填される場合もある。
First, with reference to FIG. 6A, an example of a light-emitting device using an LED as a light-emitting portion and combined with the phosphor mixture according to the present invention will be described.
In the reflective LED light emitting device, an LED light emitting element 2 is installed at the tip of one lead frame 3, and light emitted from the LED light emitting element is reflected downward by the reflecting surface 8 and emitted from above. In this embodiment, the phosphor mixture 1 is applied on the reflecting surface 8. The concave portion formed by the reflecting surface 8 may be filled with a transparent molding material 9 to protect the LED light emitting element 2.

次に、図6(B)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体混合物1をLED発光素子2の下部に設置したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor mixture 1 is installed below the LED light emitting element 2.

次に、図6(C)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体混合物1を、反射面8が形成する凹部内に充填したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor mixture 1 is filled in the recess formed by the reflecting surface 8.

次に、図6(D)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体混合物1を、LED発光素子2を保護するための前記透明モールド材9の上部に塗布したものである。
次に、図6(E)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体混合物1を、LED発光素子2の表面に塗布したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor mixture 1 is applied to the upper part of the transparent mold material 9 for protecting the LED light emitting element 2.
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor mixture 1 is applied to the surface of the LED light emitting element 2.

砲弾型LED発光装置と反射型LED発光装置とは、用途に応じて使い分ければよいが、反射型LED発光装置には、薄くできる、光の発光面積を大きくできる、光の利用効率を高められる等のメリットがある。   The bullet-type LED light-emitting device and the reflection-type LED light-emitting device may be properly used depending on the application, but the reflective LED light-emitting device can be made thin, the light emission area can be increased, and the light utilization efficiency can be increased. There are merits such as.

以上説明した発光装置を一般照明用光源として使用する場合には、演色性に優れる発光スペクトルを有していることが必要であるので、JIS Z 8726の評価方法を用いて、本発明に係る蛍光体混合物を組み込んだ発光装置の演色性を評価する。当該発光装置は、JIS Z 8726の評価において、平均演色評価数Raが80以上であれば、優れた光源といえる。また、当該発光装置は、好ましくは、赤色成分を示す指標である特殊演色評価数R9が60以上であり、更に好ましくは、日本人女性の肌色の成分を示す指標である特殊演色評価数R15が80以上であれば、非常に優れた光源といえる。   When the light-emitting device described above is used as a light source for general illumination, it is necessary to have an emission spectrum with excellent color rendering properties. Therefore, using the evaluation method of JIS Z 8726, the fluorescence according to the present invention is used. Evaluate the color rendering properties of a light-emitting device incorporating a body mixture. In the evaluation of JIS Z 8726, the light emitting device can be said to be an excellent light source if the average color rendering index Ra is 80 or more. The light emitting device preferably has a special color rendering index R9, which is an index indicating a red component, of 60 or more, and more preferably a special color rendering index R15, which is an index indicating a skin color component of a Japanese woman. If it is 80 or more, it can be said that it is a very excellent light source.

そこで、波長430nmから500nmの範囲のいずれかの発光をおこなう発光部からの光が本発明に係る蛍光体混合物へ照射され、当該蛍光体混合物が発光をおこなう発光装置を作製した。尚、発光部としては、Gaを含む材料から構成された青色発光する発光ダイオード(LED)を用いた。
当該発光装置が発光する光の演色性を評価した。その結果、本発明に係る蛍光体混合物を組み込んだ発光装置は、発光スペクトルの色度がx>0.2、y>0.2を示し、相関色温度7000Kから2500Kの範囲において、Raが80以上、R9が60以上、R15が80以上の演色性を容易に示すことができ、非常に優れた光源であることが判明した。
更に、本発明に係る蛍光体混合物において、それぞれの蛍光体の配合量を適宜変更することにより、これまで得られなかった種々の色味の発光色も得られた。
Accordingly, a light emitting device was produced in which light from the light emitting portion emitting light in the wavelength range of 430 nm to 500 nm was irradiated to the phosphor mixture according to the present invention, and the phosphor mixture emitted light. As the light emitting part, a blue light emitting diode (LED) made of a material containing Ga was used.
The color rendering properties of light emitted from the light emitting device were evaluated. As a result, the light-emitting device incorporating the phosphor mixture according to the present invention has an emission spectrum chromaticity of x> 0.2 and y> 0.2, Ra is 80 or more, and R9 is in the range of correlated color temperature 7000K to 2500K. It was found that the color rendering property of 60 or more and R15 of 80 or more can be easily shown, and it is a very excellent light source.
Furthermore, in the phosphor mixture according to the present invention, various luminescent colors that were not obtained so far were also obtained by appropriately changing the blending amount of each phosphor.

以下、実施例に基づいて、本発明をより具体的に説明する。
(実施例1)
1)蛍光体の製造、および当該蛍光体の温度特性評価
実施の形態で説明した方法により、Ca3N2が0.980/3 mol、AlNが1 mol、Si3N4が1/3 mol、Eu2O3が0.020/2 molとなるよう各原料を秤量した後、窒素ガスを満たしたグローブボックス内で混合した。そして当該混合物を1600℃で3時間、0.05MPaの窒素雰囲気中で焼成し、本発明に係る赤色蛍光体であるCaAlSiN3:Eu(試料1)を製造した。製造した試料1に対し、波長467nmの光で励起した場合の25℃における発光強度を測定してP25とし、次に、同波長467nmの光で励起した場合のT℃における発光強度を測定してPとし、発光強度変化の温度特性(100×(P25-PT)/ P25)について表1に示した。さらに、当該温度特性評価結果を図1に示した。図1は、縦軸に、試料の発光強度を相対強度で表し、25℃のときの発光強度を1と規格化した値を採り、横軸に試料の温度を採り、各温度における試料のPT/P25の値を■でプロットし、当該プロット点を太実線で結んだグラフである。
Hereinafter, based on an Example, this invention is demonstrated more concretely.
(Example 1)
1) Manufacture of phosphor and evaluation of temperature characteristics of the phosphor By the method described in the embodiment, Ca 3 N 2 is 0.980 / 3 mol, AlN is 1 mol, Si 3 N 4 is 1/3 mol, Eu Each raw material was weighed so that 2 O 3 was 0.020 / 2 mol, and then mixed in a glove box filled with nitrogen gas. The mixture was calcined at 1600 ° C. for 3 hours in a 0.05 MPa nitrogen atmosphere to produce CaAlSiN 3 : Eu (sample 1), which is a red phosphor according to the present invention. For the manufactured sample 1, the emission intensity at 25 ° C. when excited with light at a wavelength of 467 nm is measured as P 25, and then the emission intensity at T ° C. when excited with light at the same wavelength of 467 nm is measured. and P T Te, as shown in Table 1 for the temperature characteristics of the light-emitting intensity variation (100 × (P 25 -P T ) / P 25). Further, the temperature characteristic evaluation results are shown in FIG. In FIG. 1, the vertical axis represents the emission intensity of the sample in terms of relative intensity, the emission intensity at 25 ° C. is normalized to 1, the horizontal axis represents the sample temperature, and the sample P at each temperature. This is a graph in which the value of T / P 25 is plotted with ■ and the plotted points are connected with a bold solid line.

次に公知の黄色蛍光体であるY3Al5O12:Ce(試料2)を、以下のようにして製造した。
Y2O3を2.94/2 mol、Al2O3を5/2 mol、CeO2を0.06 molとなるよう各原料を秤量した後、乳鉢で混合し、当該混合物をるつぼに入れ、窒素雰囲気中で1400℃で3時間保持して焼成しY3Al5O12:Ce(試料2)を製造した。
製造された試料2は、一般的にYAG:Ce蛍光体と呼ばれ、波長500nmから630nmの範囲内に発光スペクトルの最大ピークを有するCeを付活剤とするガーネット系の結晶構造を持つ蛍光体である。当該YAG:Ce蛍光体には、YをGd、AlをGaでわずかに置換したものも含まれる。但し、本実施例においては、GaやGdを含まないY3Al5O12:Ceを試料2として準備した。(以下、当該Y3Al5O12:CeをYAG:Ceと記載する場合がある。)
さらに、CaCO3が2.94 mol、Sc2O3が2/2 mol、SiO2が3mol、CeO2が0.06molとなるよう各原料を秤量した後、試料2と同様の製造方法により、窒素雰囲気中で1400℃で3時間保持して焼成し、公知の緑色蛍光体であるCa3Sc2Si3O12:Ce(試料3)を製造した。
Next, Y 3 Al 5 O 12 : Ce (Sample 2), which is a known yellow phosphor, was produced as follows.
After weighing each raw material so that Y 2 O 3 is 2.94 / 2 mol, Al 2 O 3 is 5/2 mol, and CeO 2 is 0.06 mol, they are mixed in a mortar, and the mixture is put in a crucible and placed in a nitrogen atmosphere. And kept at 1400 ° C. for 3 hours and fired to produce Y 3 Al 5 O 12 : Ce (Sample 2).
The manufactured sample 2 is generally called a YAG: Ce phosphor, and has a garnet crystal structure with Ce as an activator having a maximum emission spectrum peak within a wavelength range of 500 nm to 630 nm. It is. The YAG: Ce phosphor includes those in which Y is slightly substituted with Gd and Al is slightly substituted with Ga. However, in this example, Y 3 Al 5 O 12 : Ce not containing Ga or Gd was prepared as Sample 2. (Hereinafter, Y 3 Al 5 O 12 : Ce may be referred to as YAG: Ce.)
Furthermore, after each raw material was weighed so that CaCO 3 was 2.94 mol, Sc 2 O 3 was 2/2 mol, SiO 2 was 3 mol, and CeO 2 was 0.06 mol, the same production method as for sample 2 was used, and in a nitrogen atmosphere And calcining at 1400 ° C. for 3 hours to produce a known green phosphor Ca 3 Sc 2 Si 3 O 12 : Ce (Sample 3).

製造した試料2、3について、試料1と同様に、発光強度変化の温度特性(100×(P25-PT)/ P25)を測定し、表1に示した。さらに図1へ、試料1と同様に各試料温度におけるPT/P25の値を、試料2は◆、試料3は○でプロットし、当該プロットを、試料2は短破線、試料3は細実線で結んだものである。 For the produced Samples 2 and 3, the temperature characteristics of the change in emission intensity (100 × (P 25 -P T ) / P 25 ) were measured in the same manner as Sample 1, and are shown in Table 1. Further, in FIG. 1, the value of P T / P 25 at each sample temperature is plotted in the same manner as in sample 1, sample 2 is plotted with ◆, sample 3 is plotted with ○, and the plot is plotted with a short dashed line and sample 3 is fine. It is connected with a solid line.

2)蛍光体混合物の調製方法
赤色蛍光体CaAlSiN3:Eu(試料1)と、YAG:Ce(試料2)とを含む蛍光体混合物の作製方法について説明する。
まず、CaAlSiN3:Eu(試料1)と、YAG:Ce(試料2)とを、波長467nmの励起光で励起させた場合の発光スペクトルをそれぞれ測定し、更に、上記励起光の発光スペクトル(発光部の発光スペクトル)を測定し、これらの発光スペクトルから蛍光体混合物が示す相関色温度が4500Kとなる各蛍光体の相対混合比を、シミュレーションにより求めた。このシミュレーションの結果に基づき各蛍光体を秤量し混合して蛍光体混合物を得た。因みに、本実施例1においては、各蛍光体の混合比はYAG:Ce(試料2):CaAlSiN3:Eu(試料1)=95:5の割合で混合した。
但し、発光部の発光波長(蛍光体混合物の励起波長)や、当該発光波長における蛍光体の発光効率により、実際の好ましい混合比が、シミュレーションの結果得られる混合比からズレる場合がある。また、樹脂との混合比率、発光装置への塗布方法、塗布膜厚によっても実際の好ましい混合比が、シミュレーションの結果得られる混合比からズレる場合がある。このような場合は、蛍光体の配合比を適宜調整して、実際の発光スペクトル形状を調整すればよい。
ここで、波長467nmの励起光で励起させた場合、CaAlSiN3:Eu(試料1)の発光スペクトルの半値幅は86.7nmであり、YAG:Ce(試料2)の発光スペクトルの半値幅は114.7nmであり、全て50nm以上であった。
2) Method for preparing phosphor mixture A method for producing a phosphor mixture containing red phosphor CaAlSiN 3 : Eu (sample 1) and YAG: Ce (sample 2) will be described.
First, the emission spectra when CaAlSiN 3 : Eu (sample 1) and YAG: Ce (sample 2) were excited with excitation light having a wavelength of 467 nm were measured, respectively, and the emission spectrum of the excitation light (emission) The emission ratio of each phosphor) was measured, and the relative mixing ratio of each phosphor having a correlated color temperature of 4500 K indicated by the phosphor mixture was determined from these emission spectra by simulation. Based on the result of this simulation, each phosphor was weighed and mixed to obtain a phosphor mixture. Incidentally, in the present Example 1, the mixing ratio of each phosphor was mixed at a ratio of YAG: Ce (sample 2): CaAlSiN 3 : Eu (sample 1) = 95: 5.
However, the actual preferred mixing ratio may deviate from the mixing ratio obtained as a result of simulation, depending on the emission wavelength of the light emitting part (excitation wavelength of the phosphor mixture) and the luminous efficiency of the phosphor at the emission wavelength. In addition, the actual preferable mixing ratio may deviate from the mixing ratio obtained as a result of simulation depending on the mixing ratio with the resin, the coating method to the light emitting device, and the coating thickness. In such a case, the actual emission spectrum shape may be adjusted by appropriately adjusting the blending ratio of the phosphors.
Here, when excited with excitation light having a wavelength of 467 nm, the half width of the emission spectrum of CaAlSiN 3 : Eu (sample 1) is 86.7 nm, and the half width of the emission spectrum of YAG: Ce (sample 2) is 114.7 nm. And all were 50 nm or more.

3)蛍光体混合物の温度特性評価
前記試料1および2を混合した蛍光体混合物に対し、波長467nmの光で励起した場合の温度特性を評価した。
まず、各温度における、蛍光体混合物の発光スペクトルにおける色度の変化について評価を行った。その結果を表2に示し、図2に記載する。図2は、縦軸に色度y、横軸に色度xを採ったグラフであり、ここへ蛍光体混合物の50℃〜250℃における色度(x,y)の値を、■を用いてプロットし、当該プロットを実線で結んだものである。
3) Evaluation of temperature characteristics of phosphor mixture The phosphor mixture obtained by mixing the samples 1 and 2 was evaluated for temperature characteristics when excited with light having a wavelength of 467 nm.
First, the change in chromaticity in the emission spectrum of the phosphor mixture at each temperature was evaluated. The results are shown in Table 2 and described in FIG. FIG. 2 is a graph in which the ordinate indicates chromaticity y and the abscissa indicates chromaticity x. Here, the value of chromaticity (x, y) of the phosphor mixture at 50 ° C. to 250 ° C. is represented by ■ The plot is connected by a solid line.

4)発光装置における発光特性評価
前記試料1および2を混合した蛍光体混合物とシリコン樹脂を混合し、波長467nmの光を放つLED上に塗布厚みが均一になるように塗布し、白色の光を放つ発光装置を作製した。樹脂と蛍光体混合物の比率や塗布量により、発光強度や色度が異なるため、適時調整して目的の色度に合わせればよい。本実施例では樹脂:蛍光体の重量比を10:3の割合で混合したものをLED素子上に塗布した。
4) Evaluation of light emission characteristics in light emitting device The phosphor mixture obtained by mixing the samples 1 and 2 and a silicon resin are mixed, and the light is emitted at a wavelength of 467 nm. A emitting light emitting device was manufactured. Since the light emission intensity and chromaticity differ depending on the ratio of the resin and the phosphor mixture and the coating amount, it may be adjusted as appropriate to match the target chromaticity. In this example, a resin: phosphor weight ratio mixed at a ratio of 10: 3 was applied on the LED element.

LEDにDC20.0mAの電流を流し、当該発光装置の発光スペクトルの相関色温度を測定したところ4367Kであり、ほぼねらいの相関色温度を有していることが判明した。更に、当該発光スペクトルの色度を測定したところx=0.3648、y=0.3638であった。得られた発光スペクトルを図4において実線で示す。尚、図4は、縦軸に発光強度を相対強度で採り、横軸に光の波長を採ったグラフである。   When a current of 20.0 mA DC was passed through the LED and the correlated color temperature of the emission spectrum of the light emitting device was measured, it was 4367K, and it was found that the LED had a substantially aimed correlated color temperature. Further, when the chromaticity of the emission spectrum was measured, it was x = 0.3648, y = 0.3638. The obtained emission spectrum is shown by a solid line in FIG. FIG. 4 is a graph in which the vertical axis represents the emission intensity in terms of relative intensity and the horizontal axis represents the wavelength of light.

5)発光装置における演色性評価
JIS Z 8726に準拠して、当該発光装置の発光における演色性の評価を行った。平均演色評価数Raは91、特殊演色評価数R9は92、R10は95、R11は84、R12は67、R13は98、R14は98、R15は92であった。
5) Color rendering property evaluation in light emitting device In accordance with JIS Z 8726, the color rendering property in light emission of the light emitting device was evaluated. The average color rendering index Ra was 91, the special color rendering index R9 was 92, R10 was 95, R11 was 84, R12 was 67, R13 was 98, R14 was 98, and R15 was 92.

6)発光装置への通電電流による色ズレ評価
作製した発光装置のLEDへDC2.0mA〜24.0mAの電流を通電させ通電電流に対する色度のズレについて評価し、当該評価結果を表3に示し、図3に記載した。図3は、縦軸に色度 x、横軸に色度yを採ったグラフであり、ここへ作製した発光装置のLEDへDC2.0mA、5.0mA、10.0mA、15.0mA、20.0mA、24.0mAの電流を通電させたときの、発光の色度の値を■を用いてプロットし、当該プロットを実線で結んだものである。
6) Evaluation of color shift due to current applied to the light emitting device Current of DC2.0mA to 24.0mA was applied to the LED of the manufactured light emitting device to evaluate the color shift relative to the current applied. The evaluation results are shown in Table 3, It was described in FIG. FIG. 3 is a graph in which the ordinate indicates chromaticity x and the abscissa indicates chromaticity y. The LEDs of the light emitting device manufactured here are DC 2.0 mA, 5.0 mA, 10.0 mA, 15.0 mA, 20.0 mA, 24.0. The value of chromaticity of light emission when a current of mA is applied is plotted using ■, and the plot is connected by a solid line.

(比較例1)
1)蛍光体の製造、および当該蛍光体の温度特性評価
試料1と同様に、原料の仕込み組成比を、Ca3N2が0.585/3 mol、Sr3N2が1.365/3 mol、Si3N4が5/3 mol、Eu2O3が0.050/2 molとして各原料を秤量し、不活性ガス中のグローブ中で混合した原料混合物をるつぼに入れ、窒素等の不活性雰囲気中で1500℃で3時間保持して焼成し、赤色蛍光体(Ca0.3Sr0.7)2Si5N8:Eu(試料4)を製造した。
ここで、比較例に係る(Ca0.3Sr0.7)2Si5N8:Euの赤色蛍光体(試料4)は、特許文献1および2に記載された赤色蛍光体である。
また参考のため、試料4においてCaとSrのモル比を変化させた試料を、原料となるCa3N2およびSr3N2の配合組成比を変化させ、試料4と同様の製造条件にて製造し、組成式Ca2Si5N8:Eu(試料5)、Sr2Si5N8:Eu(試料6)を有する試料を製造した。
(Comparative Example 1)
1) Production of phosphor and evaluation of temperature characteristics of the phosphor As in Sample 1, the composition ratio of raw materials was 0.585 / 3 mol for Ca 3 N 2 , 1.365 / 3 mol for Sr 3 N 2 , Si 3 Each raw material is weighed so that N 4 is 5/3 mol and Eu 2 O 3 is 0.050 / 2 mol, and the raw material mixture mixed in a glove in an inert gas is put in a crucible, and 1500 in an inert atmosphere such as nitrogen. The red phosphor (Ca 0.3 Sr 0.7 ) 2 Si 5 N 8 : Eu (sample 4) was produced by holding at 5 ° C. for 3 hours and firing.
Here, the red phosphor (sample 4) of (Ca 0.3 Sr 0.7 ) 2 Si 5 N 8 : Eu according to the comparative example is the red phosphor described in Patent Documents 1 and 2.
For reference, the sample in which the molar ratio of Ca and Sr is changed in sample 4 is changed under the same production conditions as sample 4 by changing the composition ratio of Ca 3 N 2 and Sr 3 N 2 as raw materials. A sample having the composition formula Ca 2 Si 5 N 8 : Eu (sample 5) and Sr 2 Si 5 N 8 : Eu (sample 6) was produced.

製造した試料に対し、実施例1と同様に、波長467nmの光で励起した場合の25℃における発光強度P25から、T℃における発光強度Pを測定し、さらに、当該発光強度の変化の割合(100×(P25-PT)/ P25)を算出し、結果を表1に示した。さらに図1へ、試料1と同様に各試料温度におけるPT/P25の値を、試料4は▲、試料5は×、試料6は△を用いてプロットし、当該プロットを、試料4は実線、試料5は長破線、試料6は一点鎖線で結んだものを記載した。 To manufacture samples, in the same manner as in Example 1, from the emission intensity P 25 at 25 ° C. when excited by light with a wavelength of 467 nm, and measuring the emission intensity P T at T ° C., further of the emission intensity of the change The ratio (100 × (P 25 -P T ) / P 25 ) was calculated, and the results are shown in Table 1. Further, in FIG. 1, the value of P T / P 25 at each sample temperature is plotted in the same manner as in sample 1, sample 4 is plotted using ▲, sample 5 is x, and sample 6 is Δ. A solid line, sample 5 is shown by a long broken line, and sample 6 is shown by a one-dot chain line.

2)蛍光体混合物の調製方法
試料4から6の温度特性を比較すると、試料4に係る(Ca0.3Sr0.7)2Si5N8:Euが最も良い温度特性を示したため、前記実施例1との比較評価に用いることにした。試料4の発光スペクトルの半値幅は82.3nmであり、50nm以上であった。
まず、実施例1と同様にして、(Ca0.3Sr0.7)2Si5N8:Eu試料4と、YAG:Ce試料2とを、波長467nmの励起光で励起させた場合の発光スペクトルをそれぞれ測定し、更に、励起光の発光スペクトルを測定し、これらの発光スペクトルから蛍光体混合物の相関色温度が4500Kとなる試料4と試料2との相対混合比を、シミュレーションにより求めた。当該結果に基づき各蛍光体を秤量し混合して蛍光体混合物を得た。因みに、本比較例1においては、各蛍光体の混合比はYAG:Ce(試料2):(Ca0.3Sr0.7)2Si5N8:Eu(試料4)= 90:10の割合で混合した。
2) Preparation method of phosphor mixture When comparing the temperature characteristics of Samples 4 to 6, (Ca 0.3 Sr 0.7 ) 2 Si 5 N 8 : Eu related to Sample 4 showed the best temperature characteristics. We decided to use it for comparative evaluation. The half width of the emission spectrum of Sample 4 was 82.3 nm, which was 50 nm or more.
First, in the same manner as in Example 1, the emission spectra when the (Ca 0.3 Sr 0.7 ) 2 Si 5 N 8 : Eu sample 4 and the YAG: Ce sample 2 were excited with excitation light having a wavelength of 467 nm were respectively shown. Then, the emission spectrum of the excitation light was measured, and the relative mixing ratio between the sample 4 and the sample 2 at which the correlated color temperature of the phosphor mixture was 4500 K was obtained from these emission spectra by simulation. Based on the results, each phosphor was weighed and mixed to obtain a phosphor mixture. Incidentally, in this comparative example 1, the mixing ratio of each phosphor was mixed at the ratio of YAG: Ce (sample 2) :( Ca 0.3 Sr 0.7 ) 2 Si 5 N 8 : Eu (sample 4) = 90: 10. .

3)蛍光体混合物の温度特性評価
混合した蛍光体混合物に対し、波長467nmの光で励起した場合の温度特性を評価した。
実施例1と同様にして各温度における、蛍光体混合物の発光スペクトルにおける色度の変化について評価を行った。その結果を表2に示し、図2に記載した。図2において、蛍光体混合物の室温50℃〜250℃における色度(x,y)の値を、△を用いてプロットし、当該プロットを破線で結んだ。
3) Evaluation of temperature characteristics of phosphor mixture Temperature characteristics of the mixed phosphor mixture when excited with light having a wavelength of 467 nm were evaluated.
In the same manner as in Example 1, the change in chromaticity in the emission spectrum of the phosphor mixture at each temperature was evaluated. The results are shown in Table 2 and described in FIG. In FIG. 2, the values of chromaticity (x, y) at room temperature of 50 ° C. to 250 ° C. of the phosphor mixture are plotted using Δ, and the plot is connected by a broken line.

4)発光装置における発光特性評価
前記試料4および2を混合した蛍光体混合物とシリコン樹脂を混合し、実施例1と同様にして白色の光を放つ発光装置を作製した。
4) Evaluation of light emission characteristics in light-emitting device A phosphor mixture obtained by mixing the samples 4 and 2 and a silicon resin were mixed, and a light-emitting device emitting white light was produced in the same manner as in Example 1.

LEDにDC20.0mAの電流を流し、当該発光装置の発光スペクトルの相関色温度を測定したところ4420Kであり、ほぼねらいの相関色温度を有していることが判明した。更に、当該発光スペクトルの色度を測定したところx=0.3616、y=0.3606であった。得られた発光スペクトルを図4において破線で示す。尚、図4は、縦軸に発光強度を相対強度で採り、横軸に光の波長を採ったグラフである。   When a current of 20.0 mA DC was passed through the LED and the correlated color temperature of the emission spectrum of the light emitting device was measured, it was found to be 4420 K, and it was found to have a substantially aimed correlated color temperature. Further, when the chromaticity of the emission spectrum was measured, they were x = 0.3616 and y = 0.3606. The obtained emission spectrum is shown by a broken line in FIG. FIG. 4 is a graph in which the vertical axis represents the emission intensity in terms of relative intensity and the horizontal axis represents the wavelength of light.

5)発光装置における演色性の評価
JIS Z 8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った。平均演色評価数Raは85、特殊演色評価数R9は41、R10は91、R11は70、R12は57、R13は91、R14は97、R15は83であった。
5) Evaluation of color rendering properties in light emitting device In accordance with JIS Z 8726, the color rendering properties in light emission of the phosphor mixture were evaluated. The average color rendering index Ra was 85, the special color rendering index R9 was 41, R10 was 91, R11 was 70, R12 was 57, R13 was 91, R14 was 97, and R15 was 83.

6)発光装置への通電電流による色ズレ評価
作製した発光装置にDC2.0mA〜24.0mAの電流を通電させ、電流に対する色度のズレについて評価した。この評価結果を表4に示し、図3へ△を用いてプロットし当該プロットを破線で結んだものを記載した。
6) Evaluation of color shift due to energization current to light-emitting device A current of DC 2.0 mA to 24.0 mA was passed through the manufactured light-emitting device, and the chromaticity shift with respect to the current was evaluated. The evaluation results are shown in Table 4, and are plotted in FIG. 3 using Δ and the plots connected by broken lines.

Figure 2006241249
Figure 2006241249
Figure 2006241249
Figure 2006241249
Figure 2006241249
Figure 2006241249
Figure 2006241249
Figure 2006241249

(実施例1と比較例1との比較)
1)蛍光体の温度特性比較
蛍光体混合物の外部温度における色度のズレについて比較すると、図2から明らかなように、実施例1においては温度の上昇と伴に、y方向に色度のズレが生じているがわずかである。一方、比較例1では150℃以上となると、色度xのマイナス方向に関する変動が大きくなる。この原因として、図1に示したように試料4の温度に対する発光強度が150℃以上では大きく低下しているため、赤み成分が不足し黄色や緑色の方向に色度のズレが生じているためと考えられる。
(Comparison between Example 1 and Comparative Example 1)
1) Comparison of temperature characteristics of phosphors When comparing the chromaticity shift at the external temperature of the phosphor mixture, as is apparent from FIG. 2, in Example 1, the chromaticity shift in the y direction as the temperature increases. Is occurring but slight. On the other hand, in Comparative Example 1, when the temperature is 150 ° C. or higher, the variation in the minus direction of chromaticity x increases. This is because, as shown in FIG. 1, the emission intensity with respect to the temperature of the sample 4 is greatly reduced when the temperature is 150 ° C. or higher, so that the red component is insufficient and the chromaticity shift occurs in the yellow or green direction. it is conceivable that.

2.演色性に関する比較
また実施例1に示す蛍光体混合物と、比較例1に記載した蛍光体混合物を用いた発光装置との演色性を比較すると、実施例1に示す蛍光体混合物を用いた発光装置は、赤色の演色性を示すR9の値が向上していることが判明した。従って、相関色温度が同じであっても演色性が、より良好な白色光源を得ることが出来る。
2. Comparison of color rendering properties Further, when the color rendering properties of the phosphor mixture shown in Example 1 and the light emitting device using the phosphor mixture described in Comparative Example 1 are compared, the light emitting device using the phosphor mixture shown in Example 1 It was found that the value of R9 showing red color rendering was improved. Therefore, a white light source with better color rendering can be obtained even if the correlated color temperatures are the same.

3.相対発光輝度による比較
実施例1に係る蛍光体混合物と、比較例1に係る蛍光体混合物とは、色度、相関色温度がほぼ一致していることから、輝度を両者の比較のパラメータとして採り、発光素子による輝度の差をキャンセルするため青色光により規格化して、実施例1に係る発光装置と比較例1に係る発光装置との相対発光輝度による比較を行った。すると、実施例1に係る発光装置は、比較例1に係る発光装置よりも輝度が15%も高いことが判明した。即ち、従来の発光装置よりも15%程度も発光効率が良く、明るく感じられる発光装置が得られた。
3. Comparison by Relative Luminance Luminance Since the phosphor mixture according to Example 1 and the phosphor mixture according to Comparative Example 1 have substantially the same chromaticity and correlated color temperature, the luminance is used as a parameter for comparison between the two. In order to cancel the difference in luminance due to the light emitting elements, normalization was performed with blue light, and the light emitting device according to Example 1 and the light emitting device according to Comparative Example 1 were compared by relative light emission luminance. Then, it was found that the light emitting device according to Example 1 had a brightness 15% higher than that of the light emitting device according to Comparative Example 1. That is, a light-emitting device having a luminous efficiency that is about 15% better than the conventional light-emitting device and that feels bright is obtained.

4.発光装置への通電電流による色ズレの比較
実施例1および比較例1に係る発光装置に組み込まれた発光素子(LED)への通電電流に依存する、当該発光装置の発光の色ズレについては図3から明らかなように、実施例1、比較例1とも通電電流の増加と共に、色度x、色度yともマイナス方向にシフトする。これは発光素子の発熱により、蛍光体混合物の温度が上がり発光強度の低下が起こるため、相対的に励起波長である青色発光が強くなり、青色側に変化しているためと考えられる。ここで、実施例1は比較例1よりも色度のズレが小さい。そして、発光素子周辺の放熱構造にもよるが、当該蛍光体混合物自体の蛍光体温度による色度のズレ、および蛍光体混合物が組み込まれた発光装置の電流依存による色ズレ結果から考えると、発光装置中の発光素子温度がより高くなるほど、蛍光体混合物さらには発光装置における色度のズレの変化が大きくなると考えられる。そして実施例1に係る発光装置は比較例1に係る発光装置よりも色度ズレが小さく、良好であることが判明した。
4). Comparison of color shift due to current applied to light emitting device Example of color shift of light emission of the light emitting device depending on the current applied to the light emitting element (LED) incorporated in the light emitting device according to Example 1 and Comparative Example 1 As is clear from FIG. 3, both the chromaticity x and chromaticity y shift in the negative direction as the energization current increases in both Example 1 and Comparative Example 1. This is presumably because the blue light emission, which is the excitation wavelength, is relatively strong and changes to the blue side because the temperature of the phosphor mixture increases and the light emission intensity decreases due to heat generation of the light emitting element. Here, Example 1 has a smaller chromaticity shift than Comparative Example 1. Depending on the heat dissipation structure around the light emitting element, the chromaticity shift due to the phosphor temperature of the phosphor mixture itself and the color shift result due to the current dependency of the light emitting device incorporating the phosphor mixture It is considered that as the temperature of the light emitting element in the device becomes higher, the change in chromaticity shift in the phosphor mixture and further in the light emitting device becomes larger. And it turned out that the light-emitting device which concerns on Example 1 has a small chromaticity shift compared with the light-emitting device which concerns on the comparative example 1, and is favorable.

(実施例2)
1)蛍光体混合物の調製方法
赤色蛍光体CaAlSiN3:Eu(試料1)と波長500nmから630nmの範囲内に発光スペクトルの最大ピークを有するCeを付活剤とするガーネット系の結晶構造を持つ蛍光体Ca3Sc2Si3O12:Ce(試料3)とを用いた蛍光体混合物の作製方法について説明する。
前記CaAlSiN3:Eu(試料1)と、Ca3Sc2Si3O12:Ceの蛍光体(試料3)とを、波長467nmの励起光で励起させた場合の発光スペクトルをそれぞれ測定し、更に、上記励起光の発光スペクトル(発光部の発光スペクトル)を測定し、これらの2種の発光スペクトルから蛍光体混合物が示す発光スペクトルの相関色温度が4500Kとなる各蛍光体の相対混合比を、シミュレーションにより求めた。このシミュレーションの結果に基づき各蛍光体を秤量し混合して蛍光体混合物を得た。因みに、本実施例2においては、各蛍光体の混合比はCa3Sc2Si3O12:Ce(試料3):CaAlSiN3:Eu(試料1)=93:7の割合で混合した。
但し、発光部の発光波長(蛍光体混合物の励起波長)や、当該発光波長における蛍光体の発光効率により、実際の好ましい混合比が、シミュレーションの結果得られる混合比からズレる場合がある。また、樹脂との混合比率、発光装置への塗布方法、塗布膜厚によっても実際の好ましい混合比が、シミュレーションの結果得られる混合比からズレる場合がある。このような場合は、蛍光体の配合比を適宜調整して、実際の発光スペクトル形状を調整すればよい。
ここで、波長467nmの励起光で励起させた場合、Ca3Sc2Si3O12:Ce(試料3)の発光スペクトルの半値幅は99.3nmであり、全て50nm以上であった。
(Example 2)
1) Preparation method of phosphor mixture Fluorescence having a garnet crystal structure with red phosphor CaAlSiN 3 : Eu (sample 1) and Ce having an emission spectrum maximum peak in the wavelength range of 500 nm to 630 nm as an activator A method for producing a phosphor mixture using the body Ca 3 Sc 2 Si 3 O 12 : Ce (sample 3) will be described.
Measure the emission spectra when the CaAlSiN 3 : Eu (sample 1) and the Ca 3 Sc 2 Si 3 O 12 : Ce phosphor (sample 3) are excited with excitation light having a wavelength of 467 nm, respectively. The emission spectrum of the excitation light (the emission spectrum of the light emitting part) is measured, and the relative mixing ratio of each phosphor at which the correlated color temperature of the emission spectrum indicated by the phosphor mixture is 4500K from these two types of emission spectra is Obtained by simulation. Based on the result of this simulation, each phosphor was weighed and mixed to obtain a phosphor mixture. Incidentally, in the present Example 2, the mixing ratio of each phosphor was mixed at a ratio of Ca 3 Sc 2 Si 3 O 12 : Ce (sample 3): CaAlSiN 3 : Eu (sample 1) = 93: 7.
However, the actual preferred mixing ratio may deviate from the mixing ratio obtained as a result of simulation, depending on the emission wavelength of the light emitting part (excitation wavelength of the phosphor mixture) and the luminous efficiency of the phosphor at the emission wavelength. In addition, the actual preferable mixing ratio may deviate from the mixing ratio obtained as a result of simulation depending on the mixing ratio with the resin, the coating method to the light emitting device, and the coating film thickness. In such a case, the actual emission spectrum shape may be adjusted by appropriately adjusting the blending ratio of the phosphors.
Here, when excited with excitation light having a wavelength of 467 nm, the half width of the emission spectrum of Ca 3 Sc 2 Si 3 O 12 : Ce (sample 3) was 99.3 nm, and all were 50 nm or more.

2)発光装置における発光特性評価
前記試料1および3を混合した蛍光体混合物とシリコン樹脂とを、実施例1と同様にして混合調整し、波長467nmの光を放つ素子上に塗布し、白色の光を放つ発光装置を作成した。発光素子にDC20.0mAの電流を流し、当該発光装置の発光スペクトルの相関色温度を測定したところ4188Kであり、ほぼねらいの相関色温度を有していることが判明した。更に、当該発光スペクトルの色度を測定したところx= 0.3723、y= 0.3706であった。
得られた発光スペクトルを図4において一点鎖線で示す。
2) Evaluation of light emission characteristics in light emitting device The phosphor mixture obtained by mixing the samples 1 and 3 and the silicon resin were mixed and adjusted in the same manner as in Example 1, and applied onto the element that emits light having a wavelength of 467 nm. A light emitting device that emits light was created. When a current of 20.0 mA DC was passed through the light-emitting element and the correlated color temperature of the emission spectrum of the light-emitting device was measured, it was 4188 K, and it was found that the target correlated color temperature was obtained. Further, when the chromaticity of the emission spectrum was measured, it was x = 0.3723, and y = 0.3706.
The obtained emission spectrum is shown by a one-dot chain line in FIG.

3)発光装置における演色性の評価
JIS Z 8726に準拠して、当該発光装置の発光における演色性の評価を行った。平均演色評価数Raは85、特殊演色評価数R9は80、R10は72、R11は86、R12は67、R13は90、R14は91、R15は87であった。
3) Evaluation of color rendering property in light emitting device In accordance with JIS Z 8726, the color rendering property in light emission of the light emitting device was evaluated. The average color rendering index Ra was 85, the special color rendering index R9 was 80, R10 was 72, R11 was 86, R12 was 67, R13 was 90, R14 was 91, and R15 was 87.

4)発光装置への通電電流による色ズレ評価
作製した発光装置にDC2.0mA〜24.0mAの電流を通電させ、電流に対する色度のズレについて評価し、当該評価結果を表5に示し、図3に記載した。図3は、縦軸に色度 x、横軸にy色度を採ったグラフであり、ここへ作製した発光装置にDC2.0mA、5.0mA、10.0mA、15.0mA、20.0mA、24.0mAの電流を通電させたときの発光における色度の値を、□を用いてプロットし、当該プロットを実線で結んだものである。
4) Evaluation of color shift due to energization current to light-emitting device A current of DC 2.0 mA to 24.0 mA was passed through the manufactured light-emitting device to evaluate the chromaticity shift with respect to the current, and the evaluation results are shown in Table 5, and FIG. It was described in. Fig. 3 is a graph in which the ordinate represents chromaticity x and the abscissa represents y chromaticity. The light emitting devices manufactured here have DC 2.0 mA, 5.0 mA, 10.0 mA, 15.0 mA, 20.0 mA, and 24.0 mA. The value of chromaticity in light emission when a current is applied is plotted using □, and the plot is connected by a solid line.

Figure 2006241249
Figure 2006241249

蛍光体試料の発光強度の温度特性評価結果である。It is a temperature characteristic evaluation result of the emitted light intensity of a fluorescent substance sample. 蛍光体混合物の発光スペクトルにおける色度変化の温度特性である。It is a temperature characteristic of the chromaticity change in the emission spectrum of a fluorescent substance mixture. 蛍光体混合物が組み込まれた発光装置の発光スペクトルにおける色度変化の電流依存特性である。It is an electric current dependence characteristic of the chromaticity change in the emission spectrum of the light-emitting device incorporating the fluorescent substance mixture. 蛍光体混合物が組み込まれた発光装置の発光スペクトルである。It is an emission spectrum of the light-emitting device in which the phosphor mixture is incorporated. 実施例に係る砲弾型LED発光装置を示す断面図である。It is sectional drawing which shows the bullet-type LED light-emitting device based on an Example. 実施例に係る反射型LED発光装置を示す断面図である。It is sectional drawing which shows the reflection type LED light-emitting device based on an Example.

符号の説明Explanation of symbols

1.蛍光体混合物
2.LED発光素子
3.リードフレーム
4.樹脂
5.カップ状の容器
8.反射面
9.透明モールド材
1. 1. Phosphor mixture 2. LED light emitting element 3. Lead frame Resin 5. 7. Cup-shaped container Reflective surface 9. Transparent mold material

Claims (19)

紫外から緑色の励起光により励起され、可視光を発光する蛍光体混合物であって、
波長430nmから500nmの範囲のいずれかの励起光により励起されたときの温度25℃における相対発光強度のピーク値をP25とし、温度T℃における相対発光強度のピーク値をPとし、Tが25℃から200℃の範囲で変化するとき、
(100×(P25−PT)/P25)の値が±25以内であることを特徴とする蛍光体混合物。
A phosphor mixture excited by ultraviolet to green excitation light and emitting visible light,
When excited by any excitation light in the wavelength range of 430 nm to 500 nm, the peak value of relative emission intensity at a temperature of 25 ° C. is P 25 , the peak value of relative emission intensity at a temperature of T ° C. is P T, and T is When changing from 25 ℃ to 200 ℃,
A phosphor mixture having a value of (100 × (P 25 −P T ) / P 25 ) within ± 25.
組成式MmAaBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、A元素はIII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は、前記蛍光体中において付活剤として作用する1種以上の元素であり、m=a=b=1 ,o<0.5, n = 3−2/3o である。)で表記される蛍光体と、
紫外から緑色の励起光により励起され、波長500nmから630nmの範囲内に発光ピークが存在する発光スペクトルを有する蛍光体の1種以上とを、含むことを特徴とする請求項1に記載の蛍光体混合物。
Composition formula MmAaBbOoNn: Z (where M element is one or more elements having a valence of II, A element is one or more elements having a valence of III, and B element is an IV valence) One or more elements having a valence, O is oxygen, N is nitrogen, Z element is one or more elements that act as activators in the phosphor, and m = a = b = 1, o <0.5, n = 3−2 / 3o)),
The phosphor according to claim 1, comprising at least one phosphor having an emission spectrum excited by ultraviolet to green excitation light and having an emission peak in a wavelength range of 500 nm to 630 nm. blend.
前記M元素は、Ca、Mg、Sr、Ba、Znから選択される1種以上の元素であり、
前記A元素は、Al、Gaから選択される1種以上の元素であり、
前記B元素は、Si、Geから選択される1種以上の元素であり、
前記Z元素は、希土類元素、遷移金属元素から選択される1種以上の元素であることを特徴とする請求項2に記載の蛍光体混合物。
The M element is at least one element selected from Ca, Mg, Sr, Ba, Zn,
The A element is one or more elements selected from Al and Ga,
The B element is one or more elements selected from Si and Ge,
The phosphor mixture according to claim 2, wherein the Z element is one or more elements selected from rare earth elements and transition metal elements.
前記Z元素は、Euであることを特徴とする請求項3に記載の蛍光体混合物。   The phosphor mixture according to claim 3, wherein the Z element is Eu. 前記組成式MmAaBbOoNn:Zで表記される蛍光体は、組成式CaAlSiN3:Euを有する蛍光体であることを特徴とする請求項2から4のいずれかに記載の蛍光体混合物。 The phosphor mixture according to any one of claims 2 to 4, wherein the phosphor represented by the composition formula MmAaBbOoNn: Z is a phosphor having the composition formula CaAlSiN 3 : Eu. 前記紫外から緑色の励起光により励起され、波長500nmから630nmの範囲内に発光ピークが存在する発光スペクトルを有する蛍光体とは、Ceを付活剤とし、ガーネット系の結晶構造を持つ蛍光体であることを特徴とする請求項2から5のいずれかに記載の蛍光体混合物。   The phosphor having an emission spectrum excited by ultraviolet to green excitation light and having an emission peak in the wavelength range of 500 nm to 630 nm is a phosphor having Ce as an activator and a garnet crystal structure. The phosphor mixture according to claim 2, wherein the phosphor mixture is present. 前記Ceを付活剤とし、ガーネット系の結晶構造を持つ蛍光体は、Yおよび/またはTbを含むAlガーネット系蛍光体であることを特徴とする請求項6に記載の蛍光体混合物。   The phosphor mixture according to claim 6, wherein the phosphor having Ce as an activator and having a garnet crystal structure is an Al garnet phosphor containing Y and / or Tb. 前記Ceを付活剤とし、ガーネット系の結晶構造を持つ蛍光体は、Scを含むSiガーネット系蛍光体であることを特徴とする請求項6に記載の蛍光体混合物。   The phosphor mixture according to claim 6, wherein the phosphor having Ce as an activator and having a garnet crystal structure is a Si garnet phosphor containing Sc. 前記各蛍光体は、いずれも平均粒径(D50)が1〜20μmの粒子であることを特徴とする請求項1から8のいずれかに記載の蛍光体混合物。   The phosphor mixture according to any one of claims 1 to 8, wherein each of the phosphors is a particle having an average particle diameter (D50) of 1 to 20 µm. 前記各蛍光体は、いずれも発光スペクトルの半値幅が50nm以上であることを特徴とする請求項1から9のいずれかに記載の蛍光体混合物。   The phosphor mixture according to any one of claims 1 to 9, wherein each of the phosphors has a half-value width of an emission spectrum of 50 nm or more. 波長430nmから500nmの範囲にある励起光により励起されたときの発光スペクトルにおいて、
波長500nmから780nmの範囲に2つ以上の発光ピークを有し、且つ波長500nmから780nmの範囲に途切れることない連続的スペクトルを有することを特徴とする請求項1から10のいずれかに記載の蛍光体混合物。
In the emission spectrum when excited by excitation light in the wavelength range of 430 nm to 500 nm,
The fluorescence according to any one of claims 1 to 10, having a continuous spectrum having two or more emission peaks in a wavelength range of 500 nm to 780 nm and uninterrupted in a wavelength range of 500 nm to 780 nm. Body mixture.
波長430nmから500nmの範囲にある励起光により励起されたときの発光スペクトルにおいて、
当該発光スペクトルの色度が、x>0.2 y>0.2であることを特徴とする請求項1から11のいずれかに記載の蛍光体混合物。
In the emission spectrum when excited by excitation light in the wavelength range of 430 nm to 500 nm,
The phosphor mixture according to any one of claims 1 to 11, wherein the chromaticity of the emission spectrum is x> 0.2 y> 0.2.
請求項1から12のいずれかに記載の蛍光体混合物と、
波長430nmから500nmの範囲のいずれかの発光をおこなう発光部とを有することを特徴とする発光装置。
The phosphor mixture according to any one of claims 1 to 12,
And a light emitting unit that emits light in any wavelength range of 430 nm to 500 nm.
前記発光部が発光ダイオード(LED)であることを特徴とする請求項13に記載の発光装置。   The light emitting device according to claim 13, wherein the light emitting unit is a light emitting diode (LED). 前記発光部がGaを含む材料から構成される発光ダイオード(LED)であることを特徴とする請求項14に記載の発光装置。   The light emitting device according to claim 14, wherein the light emitting unit is a light emitting diode (LED) made of a material containing Ga. 前記発光装置の平均演色評価数Raが、80以上であることを特徴とする請求項13から15のいずれかに記載の発光装置。   16. The light emitting device according to claim 13, wherein an average color rendering index Ra of the light emitting device is 80 or more. 前記発光装置の特殊演色評価数R9が、60以上であることを特徴とする請求項13から16のいずれかに記載の発光装置。   The light emitting device according to any one of claims 13 to 16, wherein the special color rendering index R9 of the light emitting device is 60 or more. 前記発光装置の特殊演色評価数R15が、80以上であることを特徴とする請求項13から17のいずれかに記載の発光装置。   18. The light emitting device according to claim 13, wherein the special color rendering index R15 of the light emitting device is 80 or more. 前記発光装置の相関色温度が、7000Kから2500Kの範囲にあることを特徴とする請求項13から18のいずれかに記載の発光装置。   The light emitting device according to any one of claims 13 to 18, wherein a correlated color temperature of the light emitting device is in a range of 7000K to 2500K.
JP2005056418A 2005-03-01 2005-03-01 Phosphor mixture and light emitting device Active JP4892193B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005056418A JP4892193B2 (en) 2005-03-01 2005-03-01 Phosphor mixture and light emitting device
US11/198,281 US7477009B2 (en) 2005-03-01 2005-08-08 Phosphor mixture and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056418A JP4892193B2 (en) 2005-03-01 2005-03-01 Phosphor mixture and light emitting device

Publications (2)

Publication Number Publication Date
JP2006241249A true JP2006241249A (en) 2006-09-14
JP4892193B2 JP4892193B2 (en) 2012-03-07

Family

ID=36943480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056418A Active JP4892193B2 (en) 2005-03-01 2005-03-01 Phosphor mixture and light emitting device

Country Status (2)

Country Link
US (1) US7477009B2 (en)
JP (1) JP4892193B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111035A (en) * 2006-10-30 2008-05-15 Sony Corp Phosphor, light source equipment and display device
JP2008111036A (en) * 2006-10-30 2008-05-15 Sony Corp Luminescent composition, light source equipment, display device and method for producing luminescent composition
JP2008147190A (en) * 2006-12-05 2008-06-26 Samsung Electro-Mechanics Co Ltd White light emitting device and white light source module using same
JP2008218998A (en) * 2007-02-09 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
WO2012165032A1 (en) * 2011-05-31 2012-12-06 シャープ株式会社 Light-emitting device
JP2013511811A (en) * 2009-11-18 2013-04-04 ランバス・インターナショナル・リミテッド Internal condensing reflector optics for LEDs
JPWO2012014702A1 (en) * 2010-07-26 2013-09-12 シャープ株式会社 Light emitting device
US9291340B2 (en) 2013-10-23 2016-03-22 Rambus Delaware Llc Lighting assembly having n-fold rotational symmetry
US9738829B2 (en) 2003-11-26 2017-08-22 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568894B2 (en) 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system
JP3931239B2 (en) 2004-02-18 2007-06-13 独立行政法人物質・材料研究機構 Light emitting device and lighting apparatus
JP4511849B2 (en) * 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor and its manufacturing method, light source, and LED
JP4524468B2 (en) 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, light source using the phosphor, and LED
JP4491585B2 (en) * 2004-05-28 2010-06-30 Dowaエレクトロニクス株式会社 Method for producing metal paste
JP4414821B2 (en) * 2004-06-25 2010-02-10 Dowaエレクトロニクス株式会社 Phosphor, light source and LED
JP5226929B2 (en) 2004-06-30 2013-07-03 三菱化学株式会社 LIGHT EMITTING ELEMENT, LIGHTING DEVICE USING SAME, AND IMAGE DISPLAY DEVICE
JP4511885B2 (en) 2004-07-09 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor, LED and light source
US7476337B2 (en) * 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP4933739B2 (en) * 2004-08-02 2012-05-16 Dowaホールディングス株式会社 Phosphor and phosphor film for electron beam excitation, and color display device using them
US8017035B2 (en) * 2004-08-04 2011-09-13 Intematix Corporation Silicate-based yellow-green phosphors
JP4524470B2 (en) 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light source using the phosphor
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4543250B2 (en) * 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
JP4543253B2 (en) * 2004-10-28 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
JP4892193B2 (en) 2005-03-01 2012-03-07 Dowaホールディングス株式会社 Phosphor mixture and light emitting device
US7524437B2 (en) * 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP4679183B2 (en) * 2005-03-07 2011-04-27 シチズン電子株式会社 Light emitting device and lighting device
TWI413274B (en) 2005-03-18 2013-10-21 Mitsubishi Chem Corp Light-emitting device, white light-emitting device, lighting device and image display device
US7445730B2 (en) * 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) * 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP4975269B2 (en) * 2005-04-28 2012-07-11 Dowaホールディングス株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor
TWI475093B (en) 2005-05-24 2015-03-01 Mitsubishi Chem Corp Fluorescent material and its use
US7262439B2 (en) * 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US8119028B2 (en) * 2007-11-14 2012-02-21 Cree, Inc. Cerium and europium doped single crystal phosphors
TW201011942A (en) * 2008-09-11 2010-03-16 Advanced Optoelectronic Tech Method and system for configuring high CRI LED
DE102010021341A1 (en) * 2010-05-22 2011-11-24 Merck Patent Gmbh phosphors
US8654064B2 (en) * 2010-10-18 2014-02-18 Samsung Display Co., Ltd. Backlight having blue light emitting diodes and method of driving same
KR101107851B1 (en) 2010-11-12 2012-02-07 삼성엘이디 주식회사 Apparatus and method for automatically mixing phosphor
CN104335367A (en) * 2012-05-21 2015-02-04 株式会社Del Light emitting device comprising chip-on-board package substrate and method for manufacturing same
EP3557635B1 (en) * 2013-10-02 2020-05-27 Glbtech Co. Ltd. White light emitting device having high color rendering
TWI645579B (en) * 2014-08-11 2018-12-21 佰鴻工業股份有限公司 Light-emitting diode module with reduced blue light energy
US9974138B2 (en) 2015-04-21 2018-05-15 GE Lighting Solutions, LLC Multi-channel lamp system and method with mixed spectrum
US10236425B2 (en) * 2016-03-08 2019-03-19 Glbtech Co., Ltd. White light emitting device having high color rendering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235598A (en) * 2002-06-27 2004-08-19 Nichia Chem Ind Ltd Light-emitting device
JP2005235934A (en) * 2004-02-18 2005-09-02 National Institute For Materials Science Light-emitting device and lighting apparatus
JP2006019419A (en) * 2004-06-30 2006-01-19 Mitsubishi Chemicals Corp Light emitting element as well as illuminating device and image display device employing the element
JP2006124501A (en) * 2004-10-28 2006-05-18 Dowa Mining Co Ltd Phosphor mixture and light-emitting device
WO2006077740A1 (en) * 2004-12-28 2006-07-27 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US18985A (en) * 1857-12-29 Island
US2121275A (en) * 1935-05-03 1938-06-21 Zober Benjamin Colloid mill
US3527595A (en) * 1963-10-01 1970-09-08 Arthur Adler Homogeneous metal-containing solid mixtures
US3697301A (en) * 1971-04-05 1972-10-10 Gte Sylvania Inc Process of forming cathode ray tube screens to utilize the luminous efficiency of the phosphor material
JPS585222U (en) * 1981-07-02 1983-01-13 三菱電機株式会社 Current relay device for superconducting equipment
US4576736A (en) * 1984-03-19 1986-03-18 International Business Machines Corporation Method of predicting and controlling the viscosity of conductive pastes
DE4017553C1 (en) 1990-05-31 1991-09-19 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
JPH0515655A (en) 1991-07-10 1993-01-26 Ace Denken:Kk Ic card for game machine
JP3142934B2 (en) 1992-01-20 2001-03-07 株式会社東芝 Superconducting current lead connection structure
US5290638A (en) * 1992-07-24 1994-03-01 Massachusetts Institute Of Technology Superconducting joint with niobium-tin
US5447291A (en) * 1993-10-08 1995-09-05 The Ohio State University Processes for fabricating structural ceramic bodies and structural ceramic-bearing composite bodies
JP3425465B2 (en) * 1994-03-03 2003-07-14 化成オプトニクス株式会社 Green light emitting phosphor and cathode ray tube using the same
DE69834559T3 (en) * 1997-02-24 2011-05-05 Cabot Corp., Boston Oxygenated phosphorus powder, process for the preparation of phosphorus powder and device hereby
JPH11144938A (en) 1997-11-10 1999-05-28 Mitsubishi Electric Corp Current lead device and refrigerator-cooled superconducting magnet
US6330884B1 (en) * 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
JPH11277527A (en) 1998-03-30 1999-10-12 Toshiba Chem Corp Kneading apparatus
JP2000073053A (en) 1998-09-01 2000-03-07 Hitachi Ltd Phosphor and cathode-ray tube using the same
JP3998353B2 (en) 1998-11-20 2007-10-24 大日本塗料株式会社 Colloid mill
KR100342044B1 (en) * 1999-04-14 2002-06-27 김순택 Green Emitting Phosphor Composition and Cathod-Ray Tube manufactured using the same
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
JP3763719B2 (en) 2000-02-02 2006-04-05 独立行政法人科学技術振興機構 Phosphors based on oxynitride glass
EP1879140A1 (en) * 2000-03-30 2008-01-16 Sony Corporation Contribution processing device and method, contribution accepting device and method, program storage media, and contribution processing system
DE10036940A1 (en) 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminescence conversion LED
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
CN1241208C (en) * 2001-01-16 2006-02-08 新日本制铁株式会社 Low resistance conductor, method of producing same and electric component using same
US6632379B2 (en) * 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
JP3726131B2 (en) 2002-05-23 2005-12-14 独立行政法人物質・材料研究機構 Sialon phosphor
JP3668770B2 (en) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 Oxynitride phosphor activated with rare earth elements
JP2003013059A (en) 2001-06-27 2003-01-15 Hitachi Ltd Color cathode ray tube and red phosphor to be used therein
DE10133352A1 (en) * 2001-07-16 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP3643868B2 (en) 2001-09-21 2005-04-27 独立行政法人物質・材料研究機構 Lanthanum silicon nitride phosphor activated by cerium ion
DE10147040A1 (en) * 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP2005509081A (en) * 2001-11-14 2005-04-07 サーノフ・コーポレーション Photo-excited luminescent red phosphor
JP2003238953A (en) * 2002-02-13 2003-08-27 Tdk Corp Phosphor and el panel
JP4009828B2 (en) 2002-03-22 2007-11-21 日亜化学工業株式会社 Nitride phosphor and method of manufacturing the same
JP4177172B2 (en) 2002-05-29 2008-11-05 株式会社豊田中央研究所 Dye-sensitized solar cell
JP4356915B2 (en) 2002-07-22 2009-11-04 東京エレクトロン株式会社 Probe information, probe card channel information creation program, and probe card channel information creation device
JP4207489B2 (en) 2002-08-06 2009-01-14 株式会社豊田中央研究所 α-sialon phosphor
EP1413618A1 (en) 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
JP4415548B2 (en) 2002-10-16 2010-02-17 日亜化学工業株式会社 Light emitting device using oxynitride phosphor
MY149573A (en) * 2002-10-16 2013-09-13 Nichia Corp Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
JP2004145718A (en) 2002-10-25 2004-05-20 Ishikawajima Harima Heavy Ind Co Ltd Structural analysis model generation device and method
JP2004166058A (en) 2002-11-14 2004-06-10 Seiko Epson Corp Image reading mechanism in scanner, scanner device, and image reading method
JP4072632B2 (en) 2002-11-29 2008-04-09 豊田合成株式会社 Light emitting device and light emitting method
AU2003283731A1 (en) 2002-12-13 2004-07-09 Koninklijke Philips Electronics N.V. Illumination system comprising a radiation source and a fluorescent material
JP2004207271A (en) 2002-12-20 2004-07-22 Nec Electronics Corp Soi substrate and semiconductor integrated circuit device
US7074346B2 (en) * 2003-02-06 2006-07-11 Ube Industries, Ltd. Sialon-based oxynitride phosphor, process for its production, and use thereof
JP2004248405A (en) 2003-02-13 2004-09-02 Fuji Heavy Ind Ltd Battery managing device of vehicle
JP4244653B2 (en) 2003-02-17 2009-03-25 日亜化学工業株式会社 Silicon nitride phosphor and light emitting device using the same
JP3706111B2 (en) 2003-02-19 2005-10-12 トヨタ車体株式会社 Opening and closing device for vehicle sliding door
JP2004253312A (en) 2003-02-21 2004-09-09 Hataya Seisakusho:Kk Power outlet
US7923918B2 (en) * 2003-03-13 2011-04-12 Nichia Corporation Light emitting film, luminescent device, method for manufacturing light emitting film and method for manufacturing luminescent device
US7462983B2 (en) * 2003-06-27 2008-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. White light emitting device
JP2005075854A (en) 2003-08-28 2005-03-24 Kansai Paint Co Ltd Coating composition and method for forming coated film
JP2005105126A (en) 2003-09-30 2005-04-21 Pentel Corp Oil-based ink composition
JP2005103429A (en) 2003-09-30 2005-04-21 Hitachi Constr Mach Co Ltd Arsenic-containing sludge treatment system and arsenic-containing sludge treatment method
JP3837588B2 (en) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP4568894B2 (en) * 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system
JP2005192691A (en) 2004-01-05 2005-07-21 Symbolic Atorii:Kk Bedclothes of attachable/detachable side cloth bag type
JP4511849B2 (en) * 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor and its manufacturing method, light source, and LED
JP5016187B2 (en) 2004-07-14 2012-09-05 Dowaエレクトロニクス株式会社 Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor
JP4524468B2 (en) * 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, light source using the phosphor, and LED
JP4491585B2 (en) * 2004-05-28 2010-06-30 Dowaエレクトロニクス株式会社 Method for producing metal paste
JP4524469B2 (en) 2004-06-03 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor particles, method for producing the same, plasma display panel, illumination device, and LED
JP4414821B2 (en) * 2004-06-25 2010-02-10 Dowaエレクトロニクス株式会社 Phosphor, light source and LED
JP4511885B2 (en) * 2004-07-09 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor, LED and light source
US7476337B2 (en) * 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7138756B2 (en) * 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP4933739B2 (en) * 2004-08-02 2012-05-16 Dowaホールディングス株式会社 Phosphor and phosphor film for electron beam excitation, and color display device using them
JP4524470B2 (en) * 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light source using the phosphor
JP4543250B2 (en) * 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
JP2006282872A (en) 2005-03-31 2006-10-19 Dowa Mining Co Ltd Nitride phosphor or oxynitride phosphor and manufacturing method for the same, and light-emitting device using the same
JP2006063214A (en) 2004-08-27 2006-03-09 Dowa Mining Co Ltd Fluorophor and method for producing the same and light source
US7476338B2 (en) * 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4729278B2 (en) 2004-08-30 2011-07-20 Dowaエレクトロニクス株式会社 Phosphor and light emitting device
JP4543251B2 (en) 2004-08-31 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor and light source
JP4798335B2 (en) 2004-12-20 2011-10-19 Dowaエレクトロニクス株式会社 Phosphor and light source using phosphor
JP4892193B2 (en) 2005-03-01 2012-03-07 Dowaホールディングス株式会社 Phosphor mixture and light emitting device
US7524437B2 (en) * 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7887718B2 (en) 2005-03-04 2011-02-15 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light emission device using the phosphor
US7445730B2 (en) * 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) * 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP5036975B2 (en) 2005-03-31 2012-09-26 Dowaホールディングス株式会社 Nitrogen-containing phosphor, method for producing the same, and light-emitting device
JP4975269B2 (en) * 2005-04-28 2012-07-11 Dowaホールディングス株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235598A (en) * 2002-06-27 2004-08-19 Nichia Chem Ind Ltd Light-emitting device
JP2005235934A (en) * 2004-02-18 2005-09-02 National Institute For Materials Science Light-emitting device and lighting apparatus
JP2006019419A (en) * 2004-06-30 2006-01-19 Mitsubishi Chemicals Corp Light emitting element as well as illuminating device and image display device employing the element
JP2006124501A (en) * 2004-10-28 2006-05-18 Dowa Mining Co Ltd Phosphor mixture and light-emitting device
WO2006077740A1 (en) * 2004-12-28 2006-07-27 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697765B2 (en) 2003-11-26 2023-07-11 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
US9738829B2 (en) 2003-11-26 2017-08-22 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
US10072207B2 (en) 2003-11-26 2018-09-11 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
US11084980B2 (en) 2003-11-26 2021-08-10 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
JP2008111036A (en) * 2006-10-30 2008-05-15 Sony Corp Luminescent composition, light source equipment, display device and method for producing luminescent composition
JP2008111035A (en) * 2006-10-30 2008-05-15 Sony Corp Phosphor, light source equipment and display device
JP2008187195A (en) * 2006-12-05 2008-08-14 Samsung Electro-Mechanics Co Ltd White led and white light source module using the same
US8317348B2 (en) 2006-12-05 2012-11-27 Samsung Led Co., Ltd. White light emitting device and white light source module using the same
US7964885B2 (en) 2006-12-05 2011-06-21 Samsung Led Co., Ltd. White light emitting device and white light source module using the same
US7959312B2 (en) 2006-12-05 2011-06-14 Samsung Led Co., Ltd. White light emitting device and white light source module using the same
US9392670B2 (en) 2006-12-05 2016-07-12 Samsung Electronics Co., Ltd. White light emitting device and white light source module using the same
JP2008147190A (en) * 2006-12-05 2008-06-26 Samsung Electro-Mechanics Co Ltd White light emitting device and white light source module using same
JP2008218998A (en) * 2007-02-09 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
JP2013511811A (en) * 2009-11-18 2013-04-04 ランバス・インターナショナル・リミテッド Internal condensing reflector optics for LEDs
US8733982B2 (en) 2009-11-18 2014-05-27 Rambus Delaware Llc Internal collecting reflector optics for LEDs
JP5777032B2 (en) * 2010-07-26 2015-09-09 シャープ株式会社 Light emitting device
JPWO2012014702A1 (en) * 2010-07-26 2013-09-12 シャープ株式会社 Light emitting device
US9322529B2 (en) 2011-05-31 2016-04-26 Sharp Kabushiki Kaisha Light emitting device
JP2012246462A (en) * 2011-05-31 2012-12-13 Sharp Corp Light-emitting device
WO2012165032A1 (en) * 2011-05-31 2012-12-06 シャープ株式会社 Light-emitting device
US9291340B2 (en) 2013-10-23 2016-03-22 Rambus Delaware Llc Lighting assembly having n-fold rotational symmetry

Also Published As

Publication number Publication date
US7477009B2 (en) 2009-01-13
US20060197432A1 (en) 2006-09-07
JP4892193B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4892193B2 (en) Phosphor mixture and light emitting device
JP4543253B2 (en) Phosphor mixture and light emitting device
JP4543250B2 (en) Phosphor mixture and light emitting device
JP3931239B2 (en) Light emitting device and lighting apparatus
KR100841676B1 (en) Fluorescent substance and light bulb color light emitting diode lamp using the fluorescent substance and emitting light bulb color light
JP5446066B2 (en) Nitride phosphor and light emitting device using the same
JP6528418B2 (en) Phosphor and light emitting device using the same
JP5832713B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
TW201713750A (en) Phosphors and uses thereof
JP5412710B2 (en) Nitride-based phosphor or oxynitride-based phosphor
JP6287268B2 (en) Light emitting device
JP6323177B2 (en) Semiconductor light emitting device
JP5194672B2 (en) Carbonitride phosphor, light-emitting device using the same, and method for producing carbonitride phosphor
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP4234161B2 (en) Light emitting device and lighting apparatus
JP5194395B2 (en) Oxynitride phosphor and light-emitting device using the same
JP6036951B2 (en) Method for manufacturing phosphor
JP4070219B2 (en) LIGHTING DEVICE USING LIGHT EMITTING ELEMENT
JP2008013674A (en) Wavelength conversion material, its manufacturing method, and light emitting device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4892193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250