WO2006087928A1 - Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same - Google Patents

Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same Download PDF

Info

Publication number
WO2006087928A1
WO2006087928A1 PCT/JP2006/301924 JP2006301924W WO2006087928A1 WO 2006087928 A1 WO2006087928 A1 WO 2006087928A1 JP 2006301924 W JP2006301924 W JP 2006301924W WO 2006087928 A1 WO2006087928 A1 WO 2006087928A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
carbon composite
carbon
nanosheet
producing
Prior art date
Application number
PCT/JP2006/301924
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Kijima
Go Sakai
Original Assignee
University Of Miyazaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Miyazaki filed Critical University Of Miyazaki
Publication of WO2006087928A1 publication Critical patent/WO2006087928A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/58
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Platinum-carbon composite comprising sponge-like platinum nanosheets supported on carbon and method for producing the same
  • the present invention relates to an electrode catalyst for fuel cells utilizing the chemical and electrochemical characteristics of metal platinum, a catalyst for automobile exhaust gas treatment, etc., a catalyst for various chemical reactions, a gas diffusion electrode for fuel cells, and a metal-air battery.
  • the present invention relates to a novel form of platinum-carbon composite comprising platinum nanosheets supported on carbon and a method for producing the same. Background art
  • electrocatalysts and gas diffusion electrodes for fuel cells, energy conversion and material conversion are generally impregnated, ion-exchanged using an aqueous solution of metal salt or a colloidal dispersion system on a conductive carrier such as carbon. It is prepared by introducing metal components by coprecipitation method, etc., and then performing treatments such as calcination and hydrogen reduction.
  • the electrocatalyst is subjected to the reaction in the form of composite particles in which metal particles are supported on the surface of a solid support, and its activity is not only the metal species but also the size of the supported metal fine particles, the type of crystal plane, the support
  • the control of the shape and size of the metal fine particles is particularly important as an element that has a great influence on the activity.
  • the particle size and shape of the supported metal depend on the preparation conditions. For example, the average particle size of platinum fine particles supported on zeolite using tetraammine dike mouth platinum as the raw material is 6 nm for air firing and 1 for vacuum firing. It has been reported to be below nm (Non-patent Document 2).
  • Non-Patent Document 4 a protective agent such as polyvinylpyrrolidone to produce a noble metal colloid.
  • a protective agent such as polyvinylpyrrolidone to produce a noble metal colloid.
  • Methods (Non-Patent Document 4) have also been developed. More recently, chloroplatinic acid introduced into the pores of mesoporous silica is reduced or photoreduced to obtain platinum particles and platinum wires each having a diameter of 2.5 nm. Has also been reported to exhibit activity several tens of times higher than that of the former (Non-patent Document 5).
  • Patent Document 1 Patent Document 2
  • non-graphitizable carbon as an electrode catalyst and gas diffusion electrode for fuel cells
  • a fuel cell electrode catalyst in which noble metal particles are supported on a carbon material mainly composed of elemental elements and having a disordered layer structure in a part of the structure Patent Document 3
  • An electrode catalyst focusing on gas diffusivity and a method for producing the same have been proposed, such as an electrode (patent document 4) characterized in that it is 2.3 nm and platinum particles are 60 to 80 wt%.
  • the shape of platinum which is a reaction active center, is controlled on the nanosize and supported on a carbon support.
  • the catalyst layer is a composite particle composed of a catalyst metal, carbon particles and a hydrogen ion conductive polymer electrolyte, and the surface layer portion of the composite particle contains the catalyst metal at a higher concentration than the inside.
  • Patent Document 5 platinum nanoparticle
  • Patent Document 6 platinum nanoparticle consisting of a conductive polymer layer and a water-soluble polymer protective layer on the surface of the gold particles as catalyst particles are proposed. However, all of these are functionalized by attaching a polymer or the like on platinum particles, and the shape of platinum itself is not controlled.
  • platinum containing alloy particles finely dispersed on a powdery electrically conductive carrier material characterized in that the alloy particles have an average crystal size of 0.5-2 nm Z-ruthenium alloy catalyst (Patent Document 7) and two noble metals are not alloyed with each other and exist in a highly dispersed form on the support material.
  • the size of platinum crystallite is 2
  • the ruthenium crystallite is less than lnm (Patent Document 8).
  • the shape is controlled only by alloying or using two kinds of elements. Do n’t! /.
  • the gas diffusion electrode is a composite catalyst of silver fine particles and rare earth oxide fine particles supported on a conductive carrier.
  • the oxygen reduction activity is achieved by solid solution of alkaline earth metal in the rare earth oxide fine particles. That has realized a high electrode catalyst (Patent Document 9), and after oxidizing the carbon surface by treating the carbon sheet treated with water repellency, it is immersed in a solution containing platinum complex cations as dissolved species.
  • Gas diffusion electrodes (Patent Document 10), which are characterized by ion exchange and then reduced by a reducing agent have been proposed. However, the shape of the noble metal catalyst as an active center is also controlled. I don't know.
  • Non-Patent Document 1 Hiroo Tominaga, 1 outside, Chemical Review “Catalyst Design”, The Chemical Society of Japan
  • Non-patent literature 2 Masayuki Uchida 2 outside, catalyst, 22, 310 (1977)
  • Non-patent literature 3 Hiromichi Arai outside, 1 “Chemistry and function of ultrafine particles”, Asakura Shoten,
  • Non-Patent Document 4 N. To shi ma and one other, Bu l l. Ch em. S'o c. Jp n., 65, 400 (1992)
  • Non-Patent Document 5 A. Fuk u o ka, 7 others, Catal y s i s To d a y,
  • Patent Document 1 Kijima Oka IJ, Japanese Patent Laid-Open No. 2004-033428
  • Patent Document 2 Kijima i outside 1 person, Japanese Patent Application 2004-223809
  • Patent Document 3 Junichi Ozaki, 2 people, JP 2005-019332 Patent Literature 4: Tomoaki Terada, 4 people, JP 2004-335252 Patent Literature 5: Makoto Uchida, 4 people, JP 2004-139789 Gazette
  • Patent Document 6 Tadashi Nihonmoto, JP 2003-282078
  • Patent Document 7 3 persons outside Emanuel Auer, JP-A-11-250918 Patent Document 8: 5 persons outside Emmanuel Auer, JP-A-10-334925 Patent Document 9: Toshinori Hachiya, 1 person, JP2004-209468 Patent Document 10: Kazuaki Yasuda and three others, Japanese Patent Laid-Open No. 8-162124 Disclosure of Invention
  • the present invention is to provide a platinum-based electrode catalyst whose shape is controlled to meet this expectation. Means for solving the problem
  • the inventors of the present invention have previously proposed the platinum-based catalyst having a shape controlled, which is based on the conventional technology introduced above, and having a form different from that of the conventional technology.
  • a specific reaction mixture containing a platinum salt was prepared, and carbon powder was mixed with the reaction mixture in advance.
  • a sponge-like platinum nanosheet having a specific structure was successfully deposited on the carbon powder by a reduction reaction, thereby providing a new form of platinum-carbon composite.
  • the present invention has been made on the basis of this finding, and the configuration thereof is as described in the following (1) to (15).
  • the skeleton is formed by platinum (P t), which is a noble metal element, and the bent rod skeleton having a diameter of 1.5 to 4 nm is three-dimensionally connected.
  • Platinum having a sponge-like shape with a net-like gap composed of slit-like pores having a width of 0.3 to 2 nm, which is a sheet shape in which single crystals and microcrystals having an outer diameter of 20 to 100 nm are connected.
  • a platinum-carbon composite comprising nanosheets supported on carbon.
  • P t platinum
  • the third to eighth inventions are aspect inventions of the second invention.
  • Nonaethylene glycol monohexadecyl ether or the like is used as the polyoxyethylene alkyl ether
  • Sodium dodecyl sulfate or dodecyl is used as the organic sulfur salt
  • Hexadecyltrimethylammonium bromide or the like is used as the alkyl ammonium salt
  • Polyoxyethylene sonolebitan ester is used as the polyoxyethylene.
  • platinum complex compound at least one kind of platinum complex compound selected from hexachloroplatinate, dinitrodiammine platinum salt, tetraammine platinum salt and the like is used, and (8) as the reducing agent, An embodiment of the method for producing a platinum-carbon composite described in (2), in which sodium borohydride or the like is used, is presented.
  • ionic surfactant sodium dodecyl sulfate, hexadecyl trimethyl ammonium promide, or the like can be used, and as the carbon, carbon black such as furnace black can be used.
  • the ninth to fifteenth inventions present inventions of applications of the sponge-like platinum nanosheet-supporting carbon of the first invention.
  • a functional material that uses a platinum-carbon composite formed by supporting a platinum nanosheet having the sponge-like form of (1) on a carbon for various uses according to the property is presented.
  • a catalyst material comprising a platinum-carbon composite, wherein the functional material of (9) is a catalyst material.
  • the catalyst material comprising a platinum-carbon composite according to (1 0), wherein the catalyst material is a fuel cell catalyst material.
  • a gas diffusion electrode material comprising a platinum-carbon composite, wherein the functional material of (9) is a gas diffusion electrode material.
  • a gas diffusion electrode material comprising a platinum-carbon composite described in (12), characterized in that the gas diffusion electrode material is a gas diffusion electrode material for a fuel cell.
  • microreactor constituent material composed of a platinum-carbon composite, wherein the functional material of (9) is a microreactor constituent material.
  • a material storage material comprising a platinum-carbon composite, wherein the functional material of (9) is a material storage material.
  • the functional material is not limited to the above-mentioned catalyst material, gas diffusion electrode material, mic port reactor constituent material, and substance storage material, but it corresponds to the properties of the sponge-like platinum nanosheet-supported carbon (platinum-carbon composite). Including those used for various purposes.
  • the invention's effect is not limited to the above-mentioned catalyst material, gas diffusion electrode material, mic port reactor constituent material, and substance storage material, but it corresponds to the properties of the sponge-like platinum nanosheet-supported carbon (platinum-carbon composite). Including those used for various purposes. The invention's effect
  • the platinum nanosheet supported on carbon is sponge-like platinum having the sponge-like form as described above, the following effects are expected.
  • FIG. 1 is an observation view of the sponge-like platinum nanosheet-supported carbon obtained in Example 1 using a transmission electron microscope.
  • FIG. 2 is a transmission electron microscope observation of the sponge-like platinum nanosheet-supported carbon obtained in Example 1 (enlarged view of FIG. 1).
  • FIG. 3 is an observation view of the sponge-like platinum nanosheet-supported carbon obtained in Example 2 with a transmission electron microscope. .
  • FIG. 4 is a transmission electron microscope observation of the sponge-like platinum nanosheet-supported carbon obtained in Example 2 (enlarged view of FIG. 3).
  • FIG. 5 is an X-ray diffraction pattern of the sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 of the present invention.
  • FIG. 6 is a graph showing oxygen reduction characteristics of a sponge based on the sponge-like platinum nanosheets obtained in Examples 1 and 2 (supporting platinum that was prepared without using a surfactant and whose morphology was not controlled).
  • FIG. 2 is a diagram showing a comparison with the oxygen reduction activity of the obtained carbon.
  • the outline of the manufacturing method can be obtained by mixing at least two types of surfactants, an aqueous solution of platinum salt (platinum complex) and carbon under appropriate conditions to obtain a saddle shape with a specific structure.
  • platinum salt platinum complex
  • carbon By reducing the platinum salt in the saddle mold, platinum nanoparticles of a specific size are induced on the carbon, and the type of platinum salt that also covers the optimum temperature and mixing conditions for building the saddle mold is used. It varies depending on the characteristics of the surfactant, the characteristics of the carbon used, and the type of reducing agent.
  • the examples merely show one example of the embodiment of the present invention, and the materials and manufacturing methods constituting the present invention should not be limited by the examples.
  • FIG. 1 to 4 are transmission electron microscope observation photographs of each sponge-like platinum nanosheet carrying force obtained in Examples 1 to 2 of the present invention described below. It is observed that the platinum structure of the invention exhibits a sponge-like structure having a network gap composed of slit-like pores, which is the same single crystal as in the prior art (Patent Document 2), and is supported on carbon. . That is, FIG. 1 is an observation view of a platinum-carbon composite formed by carrying the sponge-like platinum nanosheet obtained in Example 1 with a transmission electron microscope, and FIG. 2 is an enlarged view thereof. In contrast to the carbon particles that are gray in the center, platinum is observed as black, and the state of being supported on the carbon particles is observed.
  • FIG. 1 is an observation view of a platinum-carbon composite formed by carrying the sponge-like platinum nanosheet obtained in Example 1 with a transmission electron microscope
  • FIG. 2 is an enlarged view thereof. In contrast to the carbon particles that are gray in the center, platinum is observed as black, and the state of being supported on the carbon particles is observed.
  • FIG. 3 is an observation view of a platinum-carbon composite obtained by carrying the sponge-like platinum nanosheet obtained in Example 2 with a transmission electron microscope, and FIG. 4 is an enlarged view thereof. It is confirmed that the supported state of platinum and carbon is the same as described above.
  • FIG. 5 is an X-ray diffraction pattern of the sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 of the present invention.
  • FIG. 6 is a diagram showing oxygen reduction characteristics of the sponge-like platinum nanosheet-supported carbon obtained in Example 1 or Example 2 (Platinum prepared without using a surfactant and not controlled in morphology). Compared to the oxygen reduction activity of the supported carbon). In Fig. 6, the experiment was performed under the conditions of electrolyte: 0.5 mol H 2 S 4 , 1 mvs, O 2 publishing (60 m 1 / min).
  • Example 1 Example 1:
  • the platinum product supported on the carbon was transformed into a single crystal with an outer diameter of 20 to 100 nm and a three-dimensionally connected rod-shaped skeleton with a diameter of 1.5 to 4 nm. It was confirmed that it had a sponge-like form with a net-like gap consisting of slit-like pores with a width of 0.3 to 2 nm, which were in the form of sheets connected with fine crystals (see Fig. 1 and Fig. 2). As a result, it was confirmed that a carbon carrying a sponge-like platinum nanosheet having a porous single crystal structure or microcrystals according to the present invention was obtained.
  • Example 2 Example 2:
  • a carbon-containing liquid crystal precursor was prepared under the same operation and the same conditions as in Example 1. This precursor, maintained at 15 ° C, was then added to a 10-fold molar amount of borohydride of the platinum source. A solution consisting of sodium and water was added and allowed to react for 24 hours. Then, it was dried at 60 ° C., washed with ethanol and washed with water to obtain a black powder. The obtained powder sample was observed by a transmission electron microscope, as in Example 1, and an outer diameter of 20 to 6 in which curved rod-shaped skeletons having a diameter of 1.5 to 4 nm were three-dimensionally connected.
  • the carbon was a sponge-like platinum nanosheet-supported carbon having a net-like gap composed of slit-like pores with a width of 0.3 to 2 nm, in the form of a sheet in which single crystals and fine crystals of 0 nm were connected ( (See Figure 3 and Figure 4).
  • the present invention includes an electrode catalyst for a fuel cell, a gas diffusion electrode for a fuel cell, a gas diffusion electrode for a metal-air battery, a gas diffusion electrode for salt electrolysis, a gas diffusion electrode for electrolysis, etc. It is expected to exhibit high-level properties and functions as well as material saving effects in devices using extremely expensive platinum or noble metal materials. . Gas diffusion electrodes and their constituent materials used in fuel cells, metal-air batteries, salt electrolysis, etc. are positioned as important technologies in the near future, and are the most important technical issues from the viewpoint of energy and the environment. One. The special form of the present invention and the significance of the carbon material carrying platinum having a unique gap are extremely large.

Abstract

A platinum-carbon composite of novel form carrying a platinum nanosheet that by application to catalysts, electrodes, etc. realizes nonconventional performance, action and effect. First, a reaction mixture consisting of either two types of nonionic surfactants or two types of surfactants composed of a mixture of one type of nonionic surfactant and one type of ionic surfactant, a platinum complex compound, water and carbon of varied type is prepared. Subsequently, an aqueous solution of reducing agent is added to the reaction mixture to thereby effect reaction. Thus, there is produced a platinum-carbon composite having a platinum nanosheet carried on carbon, which platinum nanosheet is in the form of a sheet consisting of mutually linked crystals or single crystals of 20 to 100 nm outer diameter whose skeletons are constituted of noble metal element platinum (Pt) and include three-dimensionally linked curved rodlike skeletons of 1.5 to 4 nm diameter, and which platinum nanosheet has a spongy configuration having network voids consisting of slitlike pores of 0.3 to 2 nm width. The produced platinum-carbon composite is recovered.

Description

明細 スポンジ状白金ナノシートをカーボンに担持せしめてなる白金一カーボン複合 体とその製造方法  Platinum-carbon composite comprising sponge-like platinum nanosheets supported on carbon and method for producing the same
技術分野 Technical field
本発明は、 金属白金の化学的及び電気化学的特性を利用した燃料電池用電極触 媒、 自動車排ガス処理用触媒等、 各種化学反応に対する触媒、 燃料電池用ガス拡 散電極、 金属一空気電池用ガス拡散電極、 食塩電解用ガス拡散電極、 電気分解用 等のガス拡散電極等、 各種態様の電極材料、 さらにはマイクロリアクター構成部 材、 物質貯蔵材料などとして使用される、 特定の構造のスポンジ状白金ナノシー トをカーボンに担持せしめてなる、 新規な形態の白金—カーボン複合体とその製 造方法に関する。 背景技術  The present invention relates to an electrode catalyst for fuel cells utilizing the chemical and electrochemical characteristics of metal platinum, a catalyst for automobile exhaust gas treatment, etc., a catalyst for various chemical reactions, a gas diffusion electrode for fuel cells, and a metal-air battery. Gas diffusion electrode, gas diffusion electrode for salt electrolysis, gas diffusion electrode for electrolysis, etc., various types of electrode materials, as well as microreactor components, substance storage materials, etc. The present invention relates to a novel form of platinum-carbon composite comprising platinum nanosheets supported on carbon and a method for producing the same. Background art
燃料電池やエネルギー変換及び物質変換のための各種電極触媒及びガス拡散電 極は、 一般に、 カーボン等の導電性担体に、 金属塩の水溶液あるいはコロイド分 散系を用いて、 含浸法、 イオン交換法、 共沈法などによって金属成分を導入した のち、 焼成、 水素還元などの処理を行なうことにより調製される (非特許文献 Various electrocatalysts and gas diffusion electrodes for fuel cells, energy conversion and material conversion are generally impregnated, ion-exchanged using an aqueous solution of metal salt or a colloidal dispersion system on a conductive carrier such as carbon. It is prepared by introducing metal components by coprecipitation method, etc., and then performing treatments such as calcination and hydrogen reduction.
1 )。 すなわち、 電極触媒は、 固体担体の表面に金属粒子を担持した複合粒子の形 で反応に供され、 その活性は、 金属種はもとより、 担持された金属微粒子の大き さ、 結晶面の種類、 担体の種類などによって変化し、 その中でも活性に与える影 響の大きな要素としては、 金属微粒子の形状及び大きさの制御は特に重要である。 担持される金属の粒子径及び形状は調製条件に依存し、 例えば、 テトラアンミン ジク口口白金を原料としてゼォライトに担持した白金微粒子の平均粒径は、 空気 中焼成では 6 n m、 真空中焼成では 1 n m以下になることが報告されている (非 特許文献 2 )。 さらに、 金属触媒の活性と粒子サイズとの関係は、 対象とする反応によって異 なり、 粒子サイズが大きくなるにつれて活性が低下する系 (例: P t Z活性炭に よる 2 , 3—ジメチルブタンの脱水素反応)、 逆に増大する系 (例: P t /アルミ ナによるメチルシク口ペンタンの水素化分解反応)、 さらには活性が粒子サイズに よらない系 (例: P t触媒による S O 2及ぴ H 2の酸化反応) の存在も報告されて いる (非特許文献 3 )。 1). That is, the electrocatalyst is subjected to the reaction in the form of composite particles in which metal particles are supported on the surface of a solid support, and its activity is not only the metal species but also the size of the supported metal fine particles, the type of crystal plane, the support The control of the shape and size of the metal fine particles is particularly important as an element that has a great influence on the activity. The particle size and shape of the supported metal depend on the preparation conditions. For example, the average particle size of platinum fine particles supported on zeolite using tetraammine dike mouth platinum as the raw material is 6 nm for air firing and 1 for vacuum firing. It has been reported to be below nm (Non-patent Document 2). Furthermore, the relationship between the activity of the metal catalyst and the particle size varies depending on the target reaction, and the activity decreases as the particle size increases (eg, dehydration of 2,3-dimethylbutane with P t Z activated carbon). Elementary reaction), a system that increases conversely (eg, hydrocracking of methyl cyclopentane with P t / alumina), and a system whose activity does not depend on the particle size (eg, SO 2 and H with P t catalyst) (Oxidation reaction 2 ) has also been reported (Non-patent Document 3).
このため、 白金触媒及び白金電極触媒の調製法として、 上記の一般的な方法を 様々に工夫することに加えて、 ポリビニールピロリ ドンなどの保護剤存在下で液 相還元し貴金属コロイドを作製する方法 (非特許文献 4 ) なども開発されてきて いる。 さらに最近、 メソポーラスシリカの細孔内に導入した塩化白金酸を水素還 元又は光還元することにより、 各々直径 2 . 5 n mの白金粒子と白金ワイヤーが 得られ、 ブタン水素化反応に対して後者は前者の数十倍高い活性を示すことも報 告されている (非特許文献 5 )。  Therefore, as a method for preparing platinum catalyst and platinum electrode catalyst, in addition to devising the above general methods in various ways, liquid phase reduction is performed in the presence of a protective agent such as polyvinylpyrrolidone to produce a noble metal colloid. Methods (Non-Patent Document 4) have also been developed. More recently, chloroplatinic acid introduced into the pores of mesoporous silica is reduced or photoreduced to obtain platinum particles and platinum wires each having a diameter of 2.5 nm. Has also been reported to exhibit activity several tens of times higher than that of the former (Non-patent Document 5).
一方、 本発明者らは、 二種類の界面活性剤から成る液晶を铸型として塩化白金 酸を還元する手法を開発し、 還元剤及び白金塩の種類によって、 外径 6〜7 n m、 内径 3〜4 n mの白金、 パラジウムなどの貴金属ナノチューブ及ぴスポンジ状貴 金属ナノ粒子を開発するのに成功し、 その成果を先に特許出願した (特許文献 1、 特許文献 2 )。  On the other hand, the present inventors have developed a technique for reducing chloroplatinic acid using a liquid crystal composed of two types of surfactants as a saddle type. We succeeded in developing noble metal nanotubes such as platinum and palladium of 4 nm and sponge-like noble metal nanoparticles, and applied for patents for the results (Patent Document 1, Patent Document 2).
しかしながら、 本発明者らにおいて開発した白金ナノ構造体に関する上記文献 2の記載内容は、 白金ナノ構造体が独立して生成するバルタの超微粉を製造する プロセスについて提示しているが、 この生成物を担体に担持せしめることについ ては具体的な開示がなされていなかった。 白金は、 資源的に希少であり、 世界的 にも分布している地域が極めて偏在し、 高価である。 したがって、 前記白金ナノ 構造体 (シート) を、 触媒、 電極触媒、 ガス拡散電極等において今後一層の有効 活用を図っていくためには、 実効性のある使用形態、 すなわち、 白金の形状をナ ノサイズで制御して白金ナノ構造体を担体に担持することが極めて重要であり、 早急にその完成が待たれている。  However, the description of the above-mentioned document 2 regarding the platinum nanostructure developed by the present inventors presents a process for producing Balta's ultrafine powder independently produced by the platinum nanostructure. No specific disclosure has been made regarding the loading of the carrier on the carrier. Platinum is scarce in terms of resources and is highly ubiquitous and expensive in regions that are distributed globally. Therefore, in order to further effectively utilize the platinum nanostructure (sheet) in the future for catalysts, electrode catalysts, gas diffusion electrodes, etc., the effective use form, that is, the shape of platinum is nanosized. It is extremely important to control the platinum nanostructure on the carrier by controlling the temperature, and its completion is urgently awaited.
一般に、 白金粒子を担体に担持することについては、 これまで多数の報告例が ある。 例えば、 燃料電池用の電極触媒及びガス拡散電極として、 難黒鉛化性炭 素を主成分とし、 構造の一部に乱層構造を有する炭素材料に、 貴金属粒子が担持 されている燃料電池用電極触媒 (特許文献 3 ) や、 白金粒子の平均粒径が 1 . 9 〜2 . 3 n mであり、 白金粒子が 6 0〜 8 0 w t %であることを特徴とする電極 (特許文献 4 ) など、 ガス拡散性に着目した電極触媒及びその製造方法が提案さ れている。 しかしながら、 本発明のように、 反応活性中心である白金の形状をナ ノサイズで制御してカーボン担体に担持した例はこれまでになレ、。 In general, there have been many reports on supporting platinum particles on a carrier. For example, non-graphitizable carbon as an electrode catalyst and gas diffusion electrode for fuel cells A fuel cell electrode catalyst in which noble metal particles are supported on a carbon material mainly composed of elemental elements and having a disordered layer structure in a part of the structure (Patent Document 3), and the average particle diameter of platinum particles is 1.9 to An electrode catalyst focusing on gas diffusivity and a method for producing the same have been proposed, such as an electrode (patent document 4) characterized in that it is 2.3 nm and platinum particles are 60 to 80 wt%. . However, as in the present invention, there are no examples in which the shape of platinum, which is a reaction active center, is controlled on the nanosize and supported on a carbon support.
さらに、 触媒層が、 触媒金属、 炭素粒子及び水素イオン伝導性高分子電解質と からなる複次粒子であり、 複次粒子の表層部には、 内部よりも高濃度で前記触媒 金属が含まれていることを特徴とするもの (特許文献 5 ) や触媒粒子としての白 金粒子表面上に導電性高分子層と、 水溶性高分子保護層とからなる白金ナノパー ティクル (特許文献 6 ) などが提案されているが、 これらはいずれも、 白金の微 粒子上に高分子などを取り付けて機能化したものであり、 白金そのものの形状を 制御しているものではない。  Further, the catalyst layer is a composite particle composed of a catalyst metal, carbon particles and a hydrogen ion conductive polymer electrolyte, and the surface layer portion of the composite particle contains the catalyst metal at a higher concentration than the inside. (Patent Document 5) and platinum nanoparticle (Patent Document 6) consisting of a conductive polymer layer and a water-soluble polymer protective layer on the surface of the gold particles as catalyst particles are proposed. However, all of these are functionalized by attaching a polymer or the like on platinum particles, and the shape of platinum itself is not controlled.
上記以外にも、 合金粒子が平均的な結晶の大きさ 0 . 5〜2 n mを有すること を特徴とする、 粉末形の電気伝導性担体材料上に微細に分散された合金粒子を含 有する白金 Zルテニウム合金触媒 (特許文献 7 ) や、 2つの貴金属が相互に合金 されておらずかつ高分散された形で担体材料上に存在しており、 この際白金のク リスタリットの大きさは、 2 n m未満でありかつルテニウムのクリスタリットの 大きさは、 l n m未満である触媒 (特許文献 8 ) などがあるが、 合金化あるいは 2種類の元素を用いているにすぎず、 形状の制御は行なわれていな!/、。  In addition to the above, platinum containing alloy particles finely dispersed on a powdery electrically conductive carrier material, characterized in that the alloy particles have an average crystal size of 0.5-2 nm Z-ruthenium alloy catalyst (Patent Document 7) and two noble metals are not alloyed with each other and exist in a highly dispersed form on the support material. In this case, the size of platinum crystallite is 2 There is a catalyst that is less than nm and the ruthenium crystallite is less than lnm (Patent Document 8). However, the shape is controlled only by alloying or using two kinds of elements. Do n’t! /.
ガス拡散電極としては、 導電性担体に担持させた銀微粒子と希土類酸化物微粒 子の複合触媒であって、 希土類酸化物微粒子にアル力リ土類金属を固溶させるこ とで、 酸素還元活性が高い電極触媒を実現したもの (特許文献 9 ) や、 撥水化処 理したカーボンシートをオゾン処理してカーボン表面を酸化した後、 白金錯体陽 イオンを溶存種として含有する溶液中に浸漬してイオン交換し、 次いで還元剤に より還元することを特徴とするガス拡散電極 (特許文献 1 0 ) などが提案されて いるが、 これらもやはり.、 活性中心としての貴金属触媒の形状は制御されていな レ、。 非特許文献 1 :富永 博夫 外 1名、 化学総説 「触媒設計」、 日本化学会編、 1The gas diffusion electrode is a composite catalyst of silver fine particles and rare earth oxide fine particles supported on a conductive carrier. The oxygen reduction activity is achieved by solid solution of alkaline earth metal in the rare earth oxide fine particles. That has realized a high electrode catalyst (Patent Document 9), and after oxidizing the carbon surface by treating the carbon sheet treated with water repellency, it is immersed in a solution containing platinum complex cations as dissolved species. Gas diffusion electrodes (Patent Document 10), which are characterized by ion exchange and then reduced by a reducing agent have been proposed. However, the shape of the noble metal catalyst as an active center is also controlled. I don't know. Non-Patent Document 1: Hiroo Tominaga, 1 outside, Chemical Review “Catalyst Design”, The Chemical Society of Japan
982年、 p. 50-63 982, p. 50-63
非特許文献 2 :内田 正之 外 2名、 触媒、 22、 310 (1977) 非特許文献 3 :荒井 弘通 外 1名、 「超微粒子一その化学と機能」、 朝倉書店、 Non-patent literature 2: Masayuki Uchida 2 outside, catalyst, 22, 310 (1977) Non-patent literature 3: Hiromichi Arai outside, 1 “Chemistry and function of ultrafine particles”, Asakura Shoten,
1 993年、 p. 124-1 28 1 993, p. 124-1 28
非特許文献 4 : N. To s h i ma外 1名、 Bu l l . Ch em. S'o c. J p n., 65, 400 (1992)  Non-Patent Document 4: N. To shi ma and one other, Bu l l. Ch em. S'o c. Jp n., 65, 400 (1992)
非特許文献 5 : A. Fuk u o k a外 7名、 Ca t a l y s i s To d a y, Non-Patent Document 5: A. Fuk u o ka, 7 others, Catal y s i s To d a y,
66, 23-31 (2001) 66, 23-31 (2001)
特許文献 1 :木島 岡 IJ、 特開 2004— 034228号公報  Patent Document 1: Kijima Oka IJ, Japanese Patent Laid-Open No. 2004-033428
特許文献 2 :木島 i 外 1名、 特願 2004— 223809  Patent Document 2: Kijima i outside 1 person, Japanese Patent Application 2004-223809
特許文献 3 :尾崎 純一 外 2名、 特開 2005— 019332号公報 特許文献 4 :寺田 智明 外 4名、 特開 2004— 335252号公報 特許文献 5 :内田 誠 外 4名、 特開 2004— 139789号公報  Patent Document 3: Junichi Ozaki, 2 people, JP 2005-019332 Patent Literature 4: Tomoaki Terada, 4 people, JP 2004-335252 Patent Literature 5: Makoto Uchida, 4 people, JP 2004-139789 Gazette
特許文献 6 :複本 正、 特開 2003— 282078号公報  Patent Document 6: Tadashi Nihonmoto, JP 2003-282078
特許文献 7 : エマヌエル アウアー外 3名、 特開平 1 1—250918号公報 特許文献 8 : エマヌエル アウアー外 5名、 特開平 10— 334925号公報 特許文献 9 :蜂谷 敏徳 外 1名、 特開 2004— 209468号公報 特許文献 10 :安田 和明 外 3名、 特開平 8— 162124号公報 発明の開示  Patent Document 7: 3 persons outside Emanuel Auer, JP-A-11-250918 Patent Document 8: 5 persons outside Emmanuel Auer, JP-A-10-334925 Patent Document 9: Toshinori Hachiya, 1 person, JP2004-209468 Patent Document 10: Kazuaki Yasuda and three others, Japanese Patent Laid-Open No. 8-162124 Disclosure of Invention
本発明が解決しようとする課題  Problems to be solved by the present invention
以上のように、 白金に代表される貴金属及ぴその合金をカーボン上に担持する 従来技術は、 還元剤の添加や各種反応の利用によって自己組織的に形成される球 状もしくは不定形の超微粒子であり、 新規な物性の発現及び燃料電池用電極の性 能向上のために、 白金をナノサイズレベルで形状制御してカーボンに担持させ、 これによつて従来とは異なる形態、 性質を有する新規な白金一カーボン複合体の 開発が諸分野から望まれている。 白金触媒は、 それ自体汎用性のある触媒であること、 各種ィヒ学反応に供されて いることは周知であり、 いちいち列挙する暇がないが、 その中でも、 近年、 注目 されている重要な利用分野の一つに燃料電池が挙げられる。 燃料電池設計におい ては、 燃科電池用のアノード電極とカソード電極のうち、 酸素還元活性が低いこ とに起因する力ソード過電圧の低減が強く望まれている。 本発明は、 この期待に 応えられる形状制御した白金系電極触媒を提供しようというものである。 課題を解決するための手段 As described above, conventional technologies for supporting precious metals such as platinum and their alloys on carbon are spherical or amorphous ultrafine particles that are formed in a self-organized manner by adding a reducing agent and using various reactions. In order to express new physical properties and improve the performance of fuel cell electrodes, platinum is supported on carbon by controlling its shape at the nano-size level, which makes it a new type with different forms and properties. Development of platinum-carbon composites is desired from various fields. It is well known that the platinum catalyst is a versatile catalyst and is used for various Ichological reactions, and there is no time to list it. One field of application is fuel cells. In fuel cell design, it is strongly desired to reduce the force sword overvoltage due to the low oxygen reduction activity among the anode and cathode electrodes for fuel cells. The present invention is to provide a platinum-based electrode catalyst whose shape is controlled to meet this expectation. Means for solving the problem
そのため、 本発明者らにおいては、 以上紹介した従来技術を前提技術とし、 さ らに従来技術とは異なる形態の、 形状制御した白金系触媒を開発すべく、 本発明 者らが先に提案し、 特許出願した特許文献 2に記載の複合界面活性剤系を基礎と する鍚型合成法をさらに発展させた結果、 白金塩を含む特定の反応混合物を調製 し、 反応混合物に予めカーボン粉末を混合し、 還元反応させることによってカー ポン粉末に特定の構造をしたスポンジ状白金ナノシートを析出させることに成功 し、 これによつて新規な形態の白金一カーボン複合体を提供することができるこ とを知見した。 本発明は、 この知見に基づいてなされたものであり、 その構成は 以下の (1 ) から (1 5 ) に記載のとおりである。  Therefore, the inventors of the present invention have previously proposed the platinum-based catalyst having a shape controlled, which is based on the conventional technology introduced above, and having a form different from that of the conventional technology. As a result of further development of the saddle-type synthesis method based on the composite surfactant system described in Patent Document 2 in which the patent application was filed, a specific reaction mixture containing a platinum salt was prepared, and carbon powder was mixed with the reaction mixture in advance. In this way, a sponge-like platinum nanosheet having a specific structure was successfully deposited on the carbon powder by a reduction reaction, thereby providing a new form of platinum-carbon composite. I found out. The present invention has been made on the basis of this finding, and the configuration thereof is as described in the following (1) to (15).
すなわち、 第 1の発明は、 (1 ) 貴金属元素である白金 (P t ) によってその骨 格が形成され、 かつ直径 1 . 5〜4 n mの彎曲したロッド状骨格が 3次元的に連 結した外径 2 0〜 1 0 0 n mの単結晶及ぴ微結晶が連結したシート状であり、 か つ幅 0 . 3〜2 n mのスリット状細孔から成る網状間隙を持つスポンジ状形態を 有する白金ナノシートをカーボンに担持してなる、 白金一カーボン複合体である。 第 2の発明は、 前記第 1の発明の製造方法を提示するものである。 すなわち、 ( 2 ) ポリオキシエチレンアルキルエーテル類、 ポリオキシエチレン脂肪酸エス テル類、 有機硫黄酸塩、 アルキルアンモニゥム塩、 ポリオキシエチレンソルビタ ンエステル、 ポリオキシエチレンアルキルフエニルエーテル、 及ぴポリオキシェ チレンポリオキシプロピレンプロックポリマーよりなる群から選択された二種類 の非ィオン性界面活性剤又は前記非ィオン性界面活性剤の一種とィオン性界面活 性剤一種の合わせて二種類の界面活性剤、 白金錯化合物、 水、 並びにカーボンか らなる反応混合物を調製し、 次いでこの反応混合物に還元剤水溶液を添加して反 応させることにより、 貴金属元素である白金 (P t ) によってその骨格が形成さ れ、 かつ直径 1 . 5〜 4 n mの彎曲した口ッド状骨格が 3次元的に連結した外径 2 0〜1 0 0 n mの単結晶及ぴ結晶が連結したシート状であり、 かつ幅 0 . 3〜 2 n mのスリット状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナ ノシートをカーボンに担持した、 白金一カーボン複合体を生成し、 これを回収す ることを特徴とする、 白金一カーボン複合体の製造方法である。 That is, according to the first invention, (1) the skeleton is formed by platinum (P t), which is a noble metal element, and the bent rod skeleton having a diameter of 1.5 to 4 nm is three-dimensionally connected. Platinum having a sponge-like shape with a net-like gap composed of slit-like pores having a width of 0.3 to 2 nm, which is a sheet shape in which single crystals and microcrystals having an outer diameter of 20 to 100 nm are connected. A platinum-carbon composite comprising nanosheets supported on carbon. The second invention presents the manufacturing method of the first invention. (2) Polyoxyethylene alkyl ethers, polyoxyethylene fatty acid esters, organic sulfur salts, alkyl ammonium salts, polyoxyethylene sorbitan esters, polyoxyethylene alkyl phenyl ethers, and polyoxyethylenes Two types of nonionic surfactants selected from the group consisting of polyoxypropylene block polymers, or one of the nonionic surfactants and ionic surfactants A precious metal element is prepared by preparing a reaction mixture composed of two kinds of surfactants, a platinum complex compound, water, and carbon in combination with one kind of a chemical agent, and then reacting the reaction mixture by adding an aqueous reducing agent solution. A single crystal with an outer diameter of 20 to 100 nm, whose skeleton is formed by platinum (P t), and which has three-dimensionally connected curved mouth-shaped skeletons with a diameter of 1.5 to 4 nm A platinum-carbon composite, in which a platinum nanosheet having a sponge-like form with a mesh-like gap composed of slit-like pores having a width of 0.3 to 2 nm and supported on carbon is supported on carbon. This is a method for producing a platinum-carbon composite, characterized in that it is produced and recovered.
第 3ないし第 8の発明は、 第 2の発明の態様発明である。  The third to eighth inventions are aspect inventions of the second invention.
すなわち、 非イオン性界面活性剤については、 (3 ) 前記ポリオキシエチレン アルキルエーテル類として、 ノナエチレングリコールモノへキサデシルエーテル 等を用い、 (4 ) 前記有機硫黄酸塩として、 ドデシル硫酸ナトリウム、 ドデシル ベンゼンスルホン酸ナトリウム等を用い、 (5 ) 前記アルキルアンモニゥム塩と して、 へキサデシルトリメチルアンモニゥムブロミド等を用い、 (6 ) 前記ポリ ォキシエチレンソノレビタンエステノレとして、 ポリオキシエチレンソノレビタンモノ ステアレート等を用いるという (2 ) に記載の白金—カーボン複合体の製造方法 の態様を提示するものである。 さらに、 (7 ) 前記白金錯化合物として、 へキサ クロ口白金酸塩、 ジニトロジァミン白金塩、 テトラアンミン白金塩等から選択さ れた少なくとも一種類の白金錯化合物を用い、 (8 ) 前記還元剤として、 水素化 ホウ素ナトリウム等を用いるという (2 ) に記載の白金一カーボン複合体の製造 方法の態様を提示するものである。  That is, for the nonionic surfactant, (3) Nonaethylene glycol monohexadecyl ether or the like is used as the polyoxyethylene alkyl ether, and (4) Sodium dodecyl sulfate or dodecyl is used as the organic sulfur salt. (5) Hexadecyltrimethylammonium bromide or the like is used as the alkyl ammonium salt, and (6) Polyoxyethylene sonolebitan ester is used as the polyoxyethylene. An embodiment of the method for producing a platinum-carbon composite described in (2), in which sonorebitan monostearate or the like is used, is presented. Further, (7) as the platinum complex compound, at least one kind of platinum complex compound selected from hexachloroplatinate, dinitrodiammine platinum salt, tetraammine platinum salt and the like is used, and (8) as the reducing agent, An embodiment of the method for producing a platinum-carbon composite described in (2), in which sodium borohydride or the like is used, is presented.
また、 イオン性界面活性剤としては、 ドデシル硫酸ナトリウム、 へキサデシル トリメチルアンモニゥムプロミド等を用いることができ、 カーボンとしては、 フ アーネスブラック等のカーボンブラックを用いることができる。  Further, as the ionic surfactant, sodium dodecyl sulfate, hexadecyl trimethyl ammonium promide, or the like can be used, and as the carbon, carbon black such as furnace black can be used.
第 9ないし第 1 5の発明は、 第 1の発明のスポンジ状白金ナノシート担持カー ボンの用途発明を提示するものである。  The ninth to fifteenth inventions present inventions of applications of the sponge-like platinum nanosheet-supporting carbon of the first invention.
すなわち、 (9 ) 前記 (1 ) のスポンジ状形態を有する白金ナノシートをカー ボンに担持してなる白金一カーボン複合体を、 その性質に見合った各種用途に使 用する機能性材料を提示する。 (10) 前記 ( 9 ) の機能性材料が触媒材料であることを特徴とする、 白金一 カーボン複合体からなる触媒材料を提示する。 That is, (9) A functional material that uses a platinum-carbon composite formed by supporting a platinum nanosheet having the sponge-like form of (1) on a carbon for various uses according to the property is presented. (10) Provided is a catalyst material comprising a platinum-carbon composite, wherein the functional material of (9) is a catalyst material.
(1 1) 前記触媒材料が燃料電池用触媒材料であることを特徴とする、 (1 0) に記載の白金一カーボン複合体からなる触媒材料を提示する。  (1 1) The catalyst material comprising a platinum-carbon composite according to (1 0), wherein the catalyst material is a fuel cell catalyst material.
(12) 前記 (9) の機能性材料がガス拡散電極材料であることを特徴とする、 白金一カーボン複合体からなるガス拡散電極材料を提示する。  (12) Provided is a gas diffusion electrode material comprising a platinum-carbon composite, wherein the functional material of (9) is a gas diffusion electrode material.
(13) 前記ガス拡散電極材料が燃料電池用ガス拡散電極材料であることを特 徴とする、 (12) に記载のの白金一カーボン複合体からなるガス拡散電極材料 を提示する。  (13) A gas diffusion electrode material comprising a platinum-carbon composite described in (12), characterized in that the gas diffusion electrode material is a gas diffusion electrode material for a fuel cell.
(14) 前記 (9) の機能性材料がマイクロリアクター構成材料であることを 特徴とする、 白金一カーボン複合体からなるマイクロリアクター構成材料を提示 する。  (14) Provided is a microreactor constituent material composed of a platinum-carbon composite, wherein the functional material of (9) is a microreactor constituent material.
(15) 前記 (9) の機能性材料が物質貯蔵材料であることを特徴とする、 白 金一カーボン複合体からなる物質貯蔵材料を提示する。  (15) Provided is a material storage material comprising a platinum-carbon composite, wherein the functional material of (9) is a material storage material.
なお、 前記機能性材料としては、 上述した触媒材料、 ガス拡散電極材料、 マイ ク口リアクター構成材料、 物質貯蔵材料に限られず、 スポンジ状白金ナノシート 担持カーボン (白金一カーボン複合体) の性質に見合った各種用途に使用するも のを含む。 発明の効果  The functional material is not limited to the above-mentioned catalyst material, gas diffusion electrode material, mic port reactor constituent material, and substance storage material, but it corresponds to the properties of the sponge-like platinum nanosheet-supported carbon (platinum-carbon composite). Including those used for various purposes. The invention's effect
本発明は、 カーボンに担持した白金ナノシートが前述のようなスポンジ状形 態を有するスポンジ状白金のため、 次のような効果が期待される。  In the present invention, since the platinum nanosheet supported on carbon is sponge-like platinum having the sponge-like form as described above, the following effects are expected.
(a) 前記 (1) の白金一カーボン複合体を、 燃料電池用の力ソード及ぴァノ 一ド電極材料として用いた場合、 スポンジ状白金とカーボンとの接触面積及 ぴスポンジ状白金とガスとの接触面積がともに増大することから、 従来に比 ベて過電圧が大幅に低減でき、 特に、 酸素還元活性が重要となる力ソード電 極材料としては、 その活性が飛躍的に向上することが期待される。 また、 従 来の技術に比べて、 その活性の高さや過電圧の低減の効果などにより、 使用 白金量の低減が期待される。 (a) When the platinum-carbon composite of the above (1) is used as a force sword and a anode electrode material for a fuel cell, the contact area between the sponge-like platinum and carbon and the sponge-like platinum and gas As the contact area with the sword increases, the overvoltage can be greatly reduced compared to the conventional case. Especially, as a power sword electrode material in which oxygen reduction activity is important, its activity can be dramatically improved. Be expected. Compared to conventional technology, it is used due to its high activity and the effect of reducing overvoltage. A reduction in the amount of platinum is expected.
( b ) 前記 (1 ) の白金—カーボン複合体を、 金属一空気電池の酸素還元電極 として用いた場合、 スポンジ状白金とカーボンとの接触面積及びスポンジ状 白金とガスとの接触面積がともに増大することから、 従来に比べて過電圧が 大幅に低減される事が期待される。  (b) When the platinum-carbon composite of (1) is used as an oxygen reduction electrode for a metal-air battery, both the contact area between sponge platinum and carbon and the contact area between sponge platinum and gas increase. Therefore, it is expected that the overvoltage will be greatly reduced compared to the conventional case.
( c ) 前記 (1 ) の白金一カーボン複合体を、 電気分解用の電極材料として用 いた場合、 従来の材料に比べて電極表面積の大幅な増大により反応効率の上 昇をもたらすことが期待される。 図面の簡単な説明  (c) When the platinum-carbon composite of (1) is used as an electrode material for electrolysis, it is expected to increase the reaction efficiency due to a significant increase in electrode surface area compared to conventional materials. The Brief Description of Drawings
図 1は、 実施例 1で得られたスポンジ状白金ナノシート担持カーボンの透過型 電子顕微鏡による観察図である。  FIG. 1 is an observation view of the sponge-like platinum nanosheet-supported carbon obtained in Example 1 using a transmission electron microscope.
図 2は、 実施例 1で得られたスポンジ状白金ナノシート担持カーボンの透過型 電子顕微鏡による観察図 (図 1の拡大図) である。  FIG. 2 is a transmission electron microscope observation of the sponge-like platinum nanosheet-supported carbon obtained in Example 1 (enlarged view of FIG. 1).
図 3は、 実施例 2で得られたスポンジ状白金ナノシート担持カーボンの透過型 電子顕微鏡による観察図である。 .  FIG. 3 is an observation view of the sponge-like platinum nanosheet-supported carbon obtained in Example 2 with a transmission electron microscope. .
図 4は、 実施例 2で得られたスポンジ状白金ナノシート担持カーボンの透過型 電子顕微鏡による観察図 (図 3の拡大図) である。  FIG. 4 is a transmission electron microscope observation of the sponge-like platinum nanosheet-supported carbon obtained in Example 2 (enlarged view of FIG. 3).
図 5は、 本発明の、 実施例 1ないし実施例 2で得られたスポンジ状白金ナノシ 一ト担持カーボンの X線回折図形である。  FIG. 5 is an X-ray diffraction pattern of the sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 of the present invention.
図 6は、 実施例 1ないし実施例 2で得られたスポンジ状白金ナノシート担持力 一ボンの酸素還元特性を示す図 (界面活性剤を用いずに調製した、 形態を制御し ていない白金を担持したカーボンの酸素還元活性との比較を示す図) である。  FIG. 6 is a graph showing oxygen reduction characteristics of a sponge based on the sponge-like platinum nanosheets obtained in Examples 1 and 2 (supporting platinum that was prepared without using a surfactant and whose morphology was not controlled). FIG. 2 is a diagram showing a comparison with the oxygen reduction activity of the obtained carbon.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は、 以上の特@ [を持つものであるが、 以下、 本発明を実施例及 ぴ添付した図面に基づき、 具体的に説明する。 ただし、 これらの実施例は、 あく までも本発明の一つの態様を開示するものであり、 決して本発明を限定する趣旨 ではない。 The invention of this application has the above-mentioned features. Hereinafter, the present invention will be specifically described based on examples and attached drawings. However, these examples are In the foregoing, one embodiment of the present invention is disclosed, and is not intended to limit the present invention in any way.
また、 製造方法の骨子は、 少なくとも 2種類の界面活性剤、 白金塩 (白金錯化 合物) の水溶液及ぴカーボンとを適切な条件で混合することによって特定構造の 铸型が得られ、 この铸型内で白金塩を還元することによって特定寸法の白金ナノ 粒子をカーボン上に誘導するというものであり、 铸型を構築するための最適温度 や混合条件も対象とする白金塩の種類、 用いる界面活性剤の特性、 用いるカーボ ンの特性、 及ぴ還元剤の種類によって多様に変化する。 実施例は、 本発明に対し て、 あくまでもその一態様例を示すものにすぎず、 本発明を構成する材料や製造 方法もこの実施例によって限定されるべきではない。  In addition, the outline of the manufacturing method can be obtained by mixing at least two types of surfactants, an aqueous solution of platinum salt (platinum complex) and carbon under appropriate conditions to obtain a saddle shape with a specific structure. By reducing the platinum salt in the saddle mold, platinum nanoparticles of a specific size are induced on the carbon, and the type of platinum salt that also covers the optimum temperature and mixing conditions for building the saddle mold is used. It varies depending on the characteristics of the surfactant, the characteristics of the carbon used, and the type of reducing agent. The examples merely show one example of the embodiment of the present invention, and the materials and manufacturing methods constituting the present invention should not be limited by the examples.
図 1〜図 4は、 以下に記載する本発明の実施例 1ないし 2で得られた各スポン ジ状白金ナノシート担持力一ボンの透過形電子顕微鏡による観察写真であり、 こ れによると、 本発明の白金組織は、 先行文献 (特許文献 2 ) と同様の単結晶でス リット状細孔から成る網状間隙を持つスポンジ状構造を呈し、 かつ、 カーボン上 に担持されていることが観察される。 すなわち、 図 1は、 実施例 1で得られたス ポンジ状白金ナノシートを担持してなる白金一カーボン複合体の透過型電子顕微 鏡による観察図であり、 図 2はその拡大図である。 中央の灰色を呈したカーボン 粒子に対して、 白金は黒色を呈して観察され、 カーボン粒子に担持されている状 態が観察される。 図 3は、 実施例 2で得られたスポンジ状白金ナノシートを担持 してなる白金一カーボン複合体の透過型電子顕微鏡による観察図であり、 図 4は、 その拡大図である。 その白金とカーボンの担持状態は、 前記説明と同様の状態を 呈していることが確認される。 また、 図 5は、 本発明の、 実施例 1ないし実施例 2で得られたスポンジ状白金ナノシート担持カーボンの X線回折図形である。 図 6は、 実施例 1ないし実施例 2で得られたスポンジ状白金ナノシート担持カーボ ンの酸素還元特性を示している図 (界面活性剤を用いずに調製した、 形態を制御 していない白金を担持したカーボンの酸素還元活性と比較している)。 図 6におい て、 実験は、 電解質: 0 . 5 m o l H 2 S〇4、 1 m v s、 O 2パブリング ( 6 0 m 1 /m i n ) の条件で行つた。 実施例 1 : 1 to 4 are transmission electron microscope observation photographs of each sponge-like platinum nanosheet carrying force obtained in Examples 1 to 2 of the present invention described below. It is observed that the platinum structure of the invention exhibits a sponge-like structure having a network gap composed of slit-like pores, which is the same single crystal as in the prior art (Patent Document 2), and is supported on carbon. . That is, FIG. 1 is an observation view of a platinum-carbon composite formed by carrying the sponge-like platinum nanosheet obtained in Example 1 with a transmission electron microscope, and FIG. 2 is an enlarged view thereof. In contrast to the carbon particles that are gray in the center, platinum is observed as black, and the state of being supported on the carbon particles is observed. FIG. 3 is an observation view of a platinum-carbon composite obtained by carrying the sponge-like platinum nanosheet obtained in Example 2 with a transmission electron microscope, and FIG. 4 is an enlarged view thereof. It is confirmed that the supported state of platinum and carbon is the same as described above. FIG. 5 is an X-ray diffraction pattern of the sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 of the present invention. FIG. 6 is a diagram showing oxygen reduction characteristics of the sponge-like platinum nanosheet-supported carbon obtained in Example 1 or Example 2 (Platinum prepared without using a surfactant and not controlled in morphology). Compared to the oxygen reduction activity of the supported carbon). In Fig. 6, the experiment was performed under the conditions of electrolyte: 0.5 mol H 2 S 4 , 1 mvs, O 2 publishing (60 m 1 / min). Example 1:
試験管に秤りとった塩化白金酸 (H2P t C 1 6) 及ぴその 2倍モル量の水 酸化ナトリゥムを含む水溶液を 60°Cに昇温し、 あらかじめ 6 0°Cに昇温し たノナエチレンダリコールモノデシルエーテノレ (C12EO9) を滴下した。 次 いで、 ポリオキシエチレン (20) ソルビタンモノステアレート (Tw e e n 6 0 ;米国 A t l a s P owd e r社 商品名) を加えて 60 °Cの湯浴で 1 5 分間振とうした。 このときの仕込みモル比は、 Na 2P t C 16: C12E09: Tw e e n 60 : H2O= 1 : 1 : 1 : 600とした。 Chloroplatinic acid (H 2 P t C 1 6 ) weighed in a test tube and an aqueous solution containing twice the molar amount of sodium hydroxide and sodium oxide were heated to 60 ° C and heated to 60 ° C in advance. Nonaethylene daricol monodecyl etherenole (C12EO9) was added dropwise. Next, polyoxyethylene (20) sorbitan monostearate (Tween 60; trade name of Atlas Powder, USA) was added, and the mixture was shaken for 15 minutes in a 60 ° C. water bath. Molar ratio at this time, Na 2 P t C 1 6 : C 12 E0 9: Tw een 60: H 2 O = 1: 1: 1: was 600.
ここに、 ファーネスブラック (バルカン; XC— 72) を、 P tの全体重量比 が 30 w t %となるように加え、 さらに 60 °Cの湯浴で 15分間振とうし、 N a 2 P t C l 6 : Ci2EO9 : Twe e n60 : H2O = 1 : 1 : 1 : 60のモル比 になるまで、 水分を蒸発させることにより除去した。 Furnace black (Vulcan; XC-72) was added to this so that the total weight ratio of Pt was 30 wt%, and it was further shaken in a 60 ° C water bath for 15 minutes, and Na 2 P t C l 6: Ci 2 EO 9 : Twe e n60: Removed by evaporating the water until the molar ratio of H2O = 1: 1: 1: 60.
その後、 1 5°Cで 20分間保持し、 カーボン含有液晶前駆体を得た。 このよう にして得られた前駆体に、 白金源の 5倍モル量の水素化ホウ素ナトリゥム及ぴ水 からなる溶液を加え、 そのまま 24時間反応させた。 その後、 60°Cで乾燥させ、 エタノール洗浄、 水洗を経て乾燥させ、 黒色粉末を得た。 得られた生成物の X線 回折パターンは、 白金の結晶構造を反映したピークを示しており、 得られた 生成物が白金を担持したカーボンであることが確認された (図 5)。  Thereafter, it was kept at 15 ° C. for 20 minutes to obtain a carbon-containing liquid crystal precursor. To the precursor thus obtained, a solution consisting of sodium borohydride and water in a 5-fold molar amount of the platinum source was added and allowed to react for 24 hours. Thereafter, it was dried at 60 ° C., followed by ethanol washing and water washing to obtain a black powder. The X-ray diffraction pattern of the obtained product showed a peak reflecting the crystal structure of platinum, and it was confirmed that the obtained product was carbon carrying platinum (FIG. 5).
透過型電子顕微鏡による観察により、 カーボン上に担持された白金生成物が、 直径 1. 5〜4 nmの彎曲したロッド状骨格が 3次元的に連結した外径 20〜1 00 n mの単結晶及ぴ微結晶が連結したシート状であり、 かつ幅 0. 3〜 2 n m のスリット状細孔から成る網状間隙を持つスポンジ状形態を有することを確認し た (図 1、 図 2参照)。 これにより、 本発明にかかる多孔性の単結晶構造あるい は微結晶が連結したスポンジ状白金ナノシートが担持されたカーボンが得られた ことを確認した。 実施例 2 :  Through observation with a transmission electron microscope, the platinum product supported on the carbon was transformed into a single crystal with an outer diameter of 20 to 100 nm and a three-dimensionally connected rod-shaped skeleton with a diameter of 1.5 to 4 nm. It was confirmed that it had a sponge-like form with a net-like gap consisting of slit-like pores with a width of 0.3 to 2 nm, which were in the form of sheets connected with fine crystals (see Fig. 1 and Fig. 2). As a result, it was confirmed that a carbon carrying a sponge-like platinum nanosheet having a porous single crystal structure or microcrystals according to the present invention was obtained. Example 2:
実施例 1と同様な操作、 同一条件で、 カーボン含有液晶前駆体を調製した。 次いで、 1 5 °Cに保持したこの前駆体に白金源の 10倍モル量の水素化ホウ素 ナトリウム及び水からなる溶液を加え、 そのまま 2 4時間反応させた。 その後、 6 0 °Cで乾燥させ、 エタノール洗浄、 水洗を経て乾燥させ、 黒色粉末を得た。 得られた粉末試料は、 透過型電子顕微鏡による観察により、 実施例 1の場合と 同様に、 直径 1 . 5〜4 n mの彎曲したロッド状骨格が 3次元的に連結した外径 2 0〜 6 0 n mの単結晶及び微結晶が連結したシート状であり、 かつ幅 0 . 3〜 2 n mのスリ ット状細孔から成る網状間隙を持つスポンジ状白金ナノシート担持 カーボンであることを確認した (図 3、 図 4参照)。 A carbon-containing liquid crystal precursor was prepared under the same operation and the same conditions as in Example 1. This precursor, maintained at 15 ° C, was then added to a 10-fold molar amount of borohydride of the platinum source. A solution consisting of sodium and water was added and allowed to react for 24 hours. Then, it was dried at 60 ° C., washed with ethanol and washed with water to obtain a black powder. The obtained powder sample was observed by a transmission electron microscope, as in Example 1, and an outer diameter of 20 to 6 in which curved rod-shaped skeletons having a diameter of 1.5 to 4 nm were three-dimensionally connected. It was confirmed that the carbon was a sponge-like platinum nanosheet-supported carbon having a net-like gap composed of slit-like pores with a width of 0.3 to 2 nm, in the form of a sheet in which single crystals and fine crystals of 0 nm were connected ( (See Figure 3 and Figure 4).
また、 実施例 1及び 2で得られた試料と、 界面活性剤を用いずに調製した試料 の 0 . 5 M硫酸水溶液中での溶存酸素還元特性を調べた結果は、 図 6に示すよう に、 飛躍的に向上することを確認した。 産業上の利用可能性  In addition, as shown in FIG. 6, the results of examining the dissolved oxygen reduction characteristics in the 0.5 M sulfuric acid aqueous solution of the samples obtained in Examples 1 and 2 and the sample prepared without using the surfactant are as follows. , Confirmed to improve dramatically. Industrial applicability
本発明は、 上述記載で述べたよう 、 燃料電池用電極触媒、 燃料電池用ガ ス拡散電極、 金属一空気電池用ガス拡散電極、 食塩電解用のガス拡散電極、 電気分解用等のガス拡散電極等においてきわめて有意な活性を有し、 これに よって極めて高価な白金ないし貴金属材料を使用するデバイスにおいて、 材 料節減効果を有することはもちろん、 高レベルの性質、 機能を発現するもの と期待される。 燃料電池、 金属一空気電池、 食塩電解、 等に利用されるガス 拡散電極及びその構成材料は、 近未来の重要技術に位置づけられており、 ェ ネルギー及び環境の観点からも最重要の技術課題の一つである。 本発明の特 異な形態、 特異な間隙を有しなる白金を担持したカーボン材料の意義は、 極 めて大である。  As described above, the present invention includes an electrode catalyst for a fuel cell, a gas diffusion electrode for a fuel cell, a gas diffusion electrode for a metal-air battery, a gas diffusion electrode for salt electrolysis, a gas diffusion electrode for electrolysis, etc. It is expected to exhibit high-level properties and functions as well as material saving effects in devices using extremely expensive platinum or noble metal materials. . Gas diffusion electrodes and their constituent materials used in fuel cells, metal-air batteries, salt electrolysis, etc. are positioned as important technologies in the near future, and are the most important technical issues from the viewpoint of energy and the environment. One. The special form of the present invention and the significance of the carbon material carrying platinum having a unique gap are extremely large.

Claims

請求の範囲 The scope of the claims
1 . 貴金属元素である白金 (P t ) によってその骨格が形成され、 かつ直径 1 . 5〜4 n mの彎曲したロッド状骨格が 3次元的に連結した外径 2 0〜1 0 O n m の単結晶及ぴ微結晶が連結したシート状であり、 かつ幅 0 . 3〜2 n mのスリツ ト状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナノシートをカー ボンに担持してなることを特徴とする、 白金一カーボン複合体。 1. The noble metal element platinum (P t) forms a skeleton, and a curved rod-shaped skeleton with a diameter of 1.5 to 4 nm is connected in a three-dimensional manner. A platinum nanosheet having a sponge-like form having a net-like gap composed of slit-like pores having a width of 0.3 to 2 nm and having a crystal form and a microcrystal connected to each other is supported on a carbon. Characteristic of platinum-carbon composite.
2 . ポリオキシエチレンアルキルエーテル類、 ポリオキシエチレン脂肪酸エステ ル類、 有機硫黄酸塩、 アルキルアンモニゥム塩、 ポリオキシエチレンソルビタン エステル、 ポリオキシエチレンアルキノレフェニルエーテノレ、 及びポリオキシェチ レンポリオキシプロピレンブロックポリマーよりなる群から選択された二種類の 非ィオン性界面活性剤又は前記非イオン性界面活性剤の一種とィオン性界面活性 剤一種の合わせて二種類の界面活性剤、 白金錯化合物、 水、 並びにカーボンから なる反応混合物を調製し、 次いでこの反応混合物に還元剤水溶液を添加して反応 させることにより、 貴金属元素である白金 (P t ) によってその骨格が形成され、 かつ直径 1 . 5〜 4 n mの彎曲した口ッド状骨格が 3次元的に連結した外径 2 0 〜 1 0 0 n mの単結晶及び結晶が連結したシート状であり、 かつ幅 0 . 3〜 2 n mのスリツト状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナノシ ートをカーボンに担持した、 白金一カーボン複合体を生成し、 これを回収するこ とを特徴とする、 白金一カーボン複合体の製造方法。  2. Polyoxyethylene alkyl ethers, polyoxyethylene fatty acid esters, organic sulfur salts, alkyl ammonium salts, polyoxyethylene sorbitan esters, polyoxyethylene alkynolephenyl etherol, and polyoxyethylene polyoxypropylene blocks Two types of nonionic surfactants selected from the group consisting of polymers, or a combination of two types of nonionic surfactants and one type of nonionic surfactants, platinum complex compounds, water, In addition, a reaction mixture composed of carbon is prepared, and then a reaction is performed by adding an aqueous reducing agent solution to the reaction mixture to form a skeleton with platinum (P t), which is a noble metal element, and a diameter of 1.5 to 4 Outer diameter 20 nm to 100 0 n, which is a three-dimensional connection of bent skeletons of nm a platinum nanosheet having a sponge-like form with a mesh-like gap composed of a single crystal of m and a crystal-connected sheet and a slit-like pore having a width of 0.3 to 2 nm. A method for producing a platinum-carbon composite, characterized in that a carbon composite is produced and recovered.
3 . 前記ポリオキシエチレンアルキノレエーテノレ類がノナエチレングリコールモノ へキサデシルエーテルである、 請求の範囲第 2項に記載の白金一カーボン複合体 の製造方法。  3. The method for producing a platinum-carbon composite according to claim 2, wherein the polyoxyethylene alkynoleatenole is nonaethylene glycol monohexadecyl ether.
4 . 前記有機硫黄酸塩がドデシル硫酸ナトリゥム又はドデシルベンゼンスルホン 酸ナトリゥムである、 請求の範囲第 2項に記載の白金一カーボン複合体の製造方 法。  4. The method for producing a platinum-carbon composite according to claim 2, wherein the organic sulfur salt is sodium dodecyl sulfate or sodium dodecylbenzenesulfonate.
5 . 前記アルキルアンモニゥム塩がへキサデシルトリメチルアンモニゥムプロミ ドである、 請求の範囲第 2項に記載の白金一カーボン複合体の製造方法。 5. The method for producing a platinum-carbon composite according to claim 2, wherein the alkyl ammonium salt is hexadecyltrimethylammonium promide.
6 . 前記ポリオキシエチレンソルビタンエステルがポリオキシエチレンソルビタ ンモノステアレートである、 請求の範囲第 2項に記載の白金一カーボン複合体の 製造方法。 6. The method for producing a platinum-carbon composite according to claim 2, wherein the polyoxyethylene sorbitan ester is polyoxyethylene sorbitan monostearate.
7 . 前記白金錯化合物がへキサク口口白金酸塩である、.請求の範囲第 2項に記載 の白金一カーボン複合体の製造方法。  7. The method for producing a platinum-carbon composite according to claim 2, wherein the platinum complex compound is a hexacous platinum salt.
8 . 前記還元剤が水素化ホウ素ナトリウムである、 請求の範囲第 2項に記載の白 金一カーボン複合体の製造方法。  8. The method for producing a platinum-carbon composite according to claim 2, wherein the reducing agent is sodium borohydride.
9 . 請求の範囲第 1項に記載のスポンジ状形態を有する白金ナノシートをカーボ ンに担持してなる白金一カーボン複合体からなる機能性材料。  9. A functional material comprising a platinum-carbon composite formed by supporting a platinum nanosheet having the sponge-like form according to claim 1 on a carbon.
1 0 . 請求の範囲第 9項に記載の機能性材料が触媒材料であることを特徴とする、 白金一カーボン複合体からなる触媒材料。  10. A catalyst material comprising a platinum-carbon composite, wherein the functional material according to claim 9 is a catalyst material.
1 1 . 前記触媒材料が燃料電池用触媒材料であることを特徴とする、 請求の範囲 第 1 0項に記載の白金一カーボン複合体からなる触媒材料。  11. The catalyst material comprising a platinum-carbon composite according to claim 100, wherein the catalyst material is a fuel cell catalyst material.
1 2 . 請求の範囲第 9項に記載の機能性材料がガス拡散電極材料であることを特 徴とする、 白金一カーボン複合体からなるガス拡散電極材料。  1 2. A gas diffusion electrode material comprising a platinum-carbon composite, wherein the functional material according to claim 9 is a gas diffusion electrode material.
1 3 . 前記ガス拡散電極材料が燃料電池用ガス拡散電極材料であることを特徴と する、 請求の範囲第 1 2項に記載の白金一カーボン複合体からなるガス拡散電極 材料。  13. The gas diffusion electrode material comprising a platinum-carbon composite according to claim 12, wherein the gas diffusion electrode material is a gas diffusion electrode material for a fuel cell.
1 4 . 請求の範囲第 9項に記載の機能性材料がマイクロリアクター構成材料であ ることを特徴とする、 白金一カーボン複合体からなるマイクロリアクター構成材 料。  14. A microreactor constituent material comprising a platinum-carbon composite, wherein the functional material according to claim 9 is a microreactor constituent material.
1 5 . 請求の範囲第 9項に記載の機能性材料が物質貯蔵材料であることを特徴と する、 白金一カーボン複合体からなる物質貯蔵材料。  1 5. A substance storage material comprising a platinum-carbon composite, wherein the functional material according to claim 9 is a substance storage material.
PCT/JP2006/301924 2005-02-15 2006-01-31 Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same WO2006087928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-037405 2005-02-15
JP2005037405A JP4934799B2 (en) 2005-02-15 2005-02-15 Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same

Publications (1)

Publication Number Publication Date
WO2006087928A1 true WO2006087928A1 (en) 2006-08-24

Family

ID=36916337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301924 WO2006087928A1 (en) 2005-02-15 2006-01-31 Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same

Country Status (2)

Country Link
JP (1) JP4934799B2 (en)
WO (1) WO2006087928A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077473A (en) * 2008-09-25 2010-04-08 Aisin Seiki Co Ltd Method for producing platinum nanoparticle
WO2015076375A1 (en) * 2013-11-25 2015-05-28 独立行政法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
CN105880629A (en) * 2016-05-24 2016-08-24 江苏大学 Preparation method for boron carbonitride nanosheet loaded metal nano particle hybrid material
CN113226545A (en) * 2018-12-26 2021-08-06 可隆工业株式会社 Catalyst, method of preparing the same, electrode including the same, membrane-electrode assembly including the electrode, and fuel cell including the assembly
CN114039061A (en) * 2021-10-07 2022-02-11 东莞市阳程智能设备有限公司 Hydrogen fuel power supply vehicle and vehicle-mounted hydrogen fuel cell thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004163B2 (en) * 2007-02-16 2012-08-22 国立大学法人 宮崎大学 Platinum-crosslinked nanowire particle-supported carbon and method for producing the same
WO2008153113A1 (en) * 2007-06-12 2008-12-18 Canon Kabushiki Kaisha Method of manufacturing membrane electrode assembly, method of manufacturing fuel cell, membrane electrode assembly, and fuel cell
JP4363498B2 (en) 2007-07-06 2009-11-11 エム・テクニック株式会社 Method for producing metal-supported carbon
KR101628509B1 (en) * 2013-11-01 2016-06-08 주식회사 엘지화학 Fuel cell and method for manufacturing the same
JP6173951B2 (en) 2014-03-11 2017-08-02 国立大学法人信州大学 Method for producing layered iridate, layered iridium acid and iridium oxide nanosheet
CA2981481C (en) 2014-04-25 2023-09-12 South Dakota Board Of Regents High capacity electrodes
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2003178770A (en) * 2002-12-26 2003-06-27 Sekisui Chem Co Ltd Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
JP2004034228A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Precious metal nanotube, and method for manufacturing the same
JP2006045582A (en) * 2004-07-30 2006-02-16 Univ Of Miyazaki Spongy nanoparticle composed of platinum or precious metal containing platinum and producing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2004034228A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Precious metal nanotube, and method for manufacturing the same
JP2003178770A (en) * 2002-12-26 2003-06-27 Sekisui Chem Co Ltd Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
JP2006045582A (en) * 2004-07-30 2006-02-16 Univ Of Miyazaki Spongy nanoparticle composed of platinum or precious metal containing platinum and producing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077473A (en) * 2008-09-25 2010-04-08 Aisin Seiki Co Ltd Method for producing platinum nanoparticle
WO2015076375A1 (en) * 2013-11-25 2015-05-28 独立行政法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
JP6052752B2 (en) * 2013-11-25 2016-12-27 国立研究開発法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
CN105880629A (en) * 2016-05-24 2016-08-24 江苏大学 Preparation method for boron carbonitride nanosheet loaded metal nano particle hybrid material
CN105880629B (en) * 2016-05-24 2018-08-21 江苏大学 A kind of preparation method of the metal nanoparticles loaded hybrid material of boron carbon nitrogen nanometer sheet
CN113226545A (en) * 2018-12-26 2021-08-06 可隆工业株式会社 Catalyst, method of preparing the same, electrode including the same, membrane-electrode assembly including the electrode, and fuel cell including the assembly
EP3903935A4 (en) * 2018-12-26 2022-10-05 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
US11837735B2 (en) 2018-12-26 2023-12-05 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
CN114039061A (en) * 2021-10-07 2022-02-11 东莞市阳程智能设备有限公司 Hydrogen fuel power supply vehicle and vehicle-mounted hydrogen fuel cell thereof

Also Published As

Publication number Publication date
JP4934799B2 (en) 2012-05-16
JP2006228450A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
WO2006087928A1 (en) Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same
Zuo et al. Direct methanol fuel cells system–A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation
Niu et al. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis
Du et al. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis
Hong et al. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity
Zhong et al. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction
Wang et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity
Long et al. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells
Zhou et al. A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells
Wang et al. Fabrication of mesoporous cage-bell Pt nanoarchitectonics as efficient catalyst for oxygen reduction reaction
Nazir et al. Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction
Chen et al. Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation
Hu et al. Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts
Long et al. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells
Zhang et al. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway
Wu et al. Graphene-supported Pd–Pt alloy nanoflowers: in situ growth and their enhanced electrocatalysis towards methanol oxidation
Douk et al. One-pot synthesis of ultrasmall PtAg nanoparticles decorated on graphene as a high-performance catalyst toward methanol oxidation
Peng et al. PdAg alloy nanotubes with porous walls for enhanced electrocatalytic activity towards ethanol electrooxidation in alkaline media
Zhu et al. Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells
WO2008040222A1 (en) Nanometer powder catalyst and its prepartion method
JP5087277B2 (en) Catalyst for fuel cell oxygen electrode
Yang et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction
Yang et al. Au@ PdAg core–shell nanotubes as advanced electrocatalysts for methanol electrooxidation in alkaline media
Wu et al. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment
Kale et al. Lollipop-shaped interconnected MnO2 nanotube/Co3O4 polyhedron composite derived from zeolitic-imidazolate framework-67 as an efficient electrocatalyst for oxygen evolution reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713067

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713067

Country of ref document: EP