JP2006222403A - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
JP2006222403A
JP2006222403A JP2005036986A JP2005036986A JP2006222403A JP 2006222403 A JP2006222403 A JP 2006222403A JP 2005036986 A JP2005036986 A JP 2005036986A JP 2005036986 A JP2005036986 A JP 2005036986A JP 2006222403 A JP2006222403 A JP 2006222403A
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
group
metal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005036986A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matagi
宏至 股木
Toshimi Fukui
俊巳 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2005036986A priority Critical patent/JP2006222403A/en
Publication of JP2006222403A publication Critical patent/JP2006222403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical amplifier using an organic inorganic complex containing rare earth metals in which (1) the rare earth metals can be heavily doped, (2) quenching is controlled, (3) optical transparency is ensured, and (4) economical efficiency is improved. <P>SOLUTION: An optical transmission channel consists of an organic polymer made by dispersing the rare earth metal. The rare earth metals form an inorganic dispersed phase in which another metal kind which makes configuration with at least one rare earth metal through oxygen. Preferably, the diameter of the inorganic dispersed phase, which consists of the rare earth metal and another metal kind is 0.1 to 1,000 nm which makes configuration therewith through oxygen. Preferably, the proportion of the rare earth metal is 90 wt% or less, by solid content conversion of total amount of the organic polymer and the rare earth metal dispersed phase. The metal which makes configuration with the rare earth metal through oxygen is one or more sorts of elements selected from group 3B, group 4A, and group 5A metals. As an example of a construction of the rare earth metal dispersed phase, a formation is shown by a rare earth metal salt and another metal alkoxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特定の波長または波長帯の光(信号光)の強度を、これとは異なる波長または波長帯を有する光(励起光)によって増幅する光増幅器に関するものであって、特に、光通信、光インターコネクションなどにおいて、励起光および/または信号光が光ファイバや光導波路などを伝搬させる様態に好適に用いられる光増幅器に関する。     The present invention relates to an optical amplifier that amplifies the intensity of light (signal light) having a specific wavelength or wavelength band by using light (excitation light) having a wavelength or wavelength band different from this, and in particular, optical communication. The present invention relates to an optical amplifier that is preferably used in a state where excitation light and / or signal light propagates through an optical fiber, an optical waveguide, or the like in optical interconnection or the like.

高度情報化社会が広がりを見せる中で、情報量の大容量化と情報処理および伝送速度の高速化に伴って、光通信技術の役割が重要になり、日本国内の幹線系はもとより、地球規模での光通信網が構築されつつある。1990年代になると、1本の光ファイバ中に波長の異なる多数の光信号を同時に伝送させる波長分割多重(WDM)伝送方式が商用化され、大容量高速情報通信網の構築が加速された。このようなWDM伝送方式の商用化を可能にした要素技術のひとつとして、光増幅技術があげられる。すでに商用化されている光増幅技術においては、波長1550nm帯の信号光を、波長980nm、1480nmなどの半導体レーザで励起して用いられている。このとき、これら信号光と励起光が伝搬する光ファイバ中に希土類金属がドープされており、この希土類金属が励起光によって励起されたのち放出する1550nnm帯の光を信号光に重畳することによって、長距離伝送過程で減衰する信号光強度を補っている。このように、光ファイバ中にドープされる希土類金属としてはエルビウムが最もよく知られており、エルビウム・ドープ光ファイバ増幅器(EDFA)として広く商用に供せられている。また、エルビウムのほか、利用する信号光波長帯に応じて、プラセオジウム、ツリウムなどの希土類金属を利用した光増幅器の開発が、活発に進められている。
一般的に、希土類金属は、石英系光ファイバ中に500〜1000ppm程度の濃度でドープされている。これ以上の濃度で添加すると希土類金属同士が凝集し、励起光によって励起された希土類金属のエネルギーが、信号光波長相当の光を放射する前に隣接する希土類金属に移動してしまい、所望の発光を得られないという現象がおこる。これは「濃度消光」と呼ばれており、石英系光ファイバ中に希土類金属をドープできる限界を左右している。このため、励起光によって実用上必要な強度まで信号光を増幅するために、100m程度の長尺な光ファイバが必要となり、光増幅器の小型化を阻む要因となっている。(非特許文献1参照。)
一方、各種レンズがガラスから有機重合体成形品に置き換えられているように、光増幅器に関しても、石英系母材から有機重合体母材に置き換えることによって、長距離幹線系光ファイバ網にとどまらず加入者系光ファイバなど一般家庭にまで普及しつつある膨大な光ファイバ伝送路中において必要となる低価格光増幅器を実用化して経済性を高めようとする検討が進められている。(特許文献1〜5参照)。しかし、希土類金属は、有機媒質中に溶解分散しにくいという問題がある。このため、プラスチック光ファイバのように経済性に優れた有機重合体母材に希土類金属をドープできず、低価格光増幅器の実用化による光伝送網の経済性改善を困難にしている。
As the advanced information society expands, the role of optical communication technology becomes more important as the amount of information increases and the information processing and transmission speed increase. An optical communication network is being built. In the 1990s, wavelength division multiplexing (WDM) transmission systems that simultaneously transmit a large number of optical signals with different wavelengths in one optical fiber were commercialized, and the construction of a large-capacity high-speed information communication network was accelerated. One of the elemental technologies that enables commercialization of such a WDM transmission method is an optical amplification technology. In an optical amplification technique that has already been commercialized, signal light having a wavelength of 1550 nm is used after being excited by a semiconductor laser having a wavelength of 980 nm, 1480 nm, or the like. At this time, a rare earth metal is doped in the optical fiber through which the signal light and the pumping light propagate, and the rare earth metal is excited by the pumping light and then emitted in the 1550 nm band is superimposed on the signal light. It compensates for the signal light intensity that attenuates in the long-distance transmission process. Thus, erbium is best known as a rare earth metal doped in an optical fiber, and is widely used commercially as an erbium-doped optical fiber amplifier (EDFA). In addition to erbium, optical amplifiers using rare earth metals such as praseodymium and thulium are being actively developed according to the signal light wavelength band to be used.
Generally, the rare earth metal is doped in a silica-based optical fiber at a concentration of about 500 to 1000 ppm. When added at a concentration higher than this, the rare earth metals aggregate together, and the energy of the rare earth metals excited by the excitation light moves to the adjacent rare earth metal before emitting the light corresponding to the signal light wavelength, and the desired light emission The phenomenon that cannot be obtained occurs. This is called “concentration quenching” and affects the limit to which rare earth metals can be doped in a silica-based optical fiber. For this reason, in order to amplify the signal light to a practically necessary intensity by the pumping light, a long optical fiber of about 100 m is required, which is a factor that hinders downsizing of the optical amplifier. (See Non-Patent Document 1.)
On the other hand, just as various lenses are replaced by glass from organic polymer molded products, optical amplifiers are not limited to long-distance trunk optical fiber networks by replacing quartz base materials with organic polymer base materials. Studies are underway to improve the economics by putting into practical use low-cost optical amplifiers that are required in the enormous amount of optical fiber transmission lines that are spreading to general households such as subscriber optical fibers. (See Patent Documents 1 to 5). However, rare earth metals have a problem that they are difficult to dissolve and disperse in an organic medium. For this reason, it is difficult to dope rare earth metals into an organic polymer base material that is economical, such as plastic optical fibers, making it difficult to improve the economics of optical transmission networks by putting low-cost optical amplifiers into practical use.

一般的に、有機重合体中にドープできる希土類金属として、希土類金属含有蛍光体があげられる。ここでいう蛍光体とは、ホスト材料、活性剤(activator)、活性助剤(coactivator)の3成分からなり、ホスト材料としては、酸化物結晶やイオン化合物結晶が用いられている。(非特許文献2参照。)すなわち、活性剤成分としてそれ自体で蛍光性を有する希土類金属を有機重合体中に直接ドープするのではなく、希土類金属を、イットリウム・アルミガーネット(YAG)などの酸化物結晶に一旦ドープしたのち、この結晶を粉砕して有機重合体に混ぜ込むことによって目的を達成している。しかしながら、このような手法に拠った場合、YAG結晶を形成するために1400℃程度の高温で焼成する必要があり、プロセスコストが高くなる。また、粉砕された希土類金属含有蛍光体の粒径は、一般的に1000nm(1μm)以上であり、光増幅器への応用を目的として高濃度で分散させた場合、光散乱による透明性低下をきたし、光伝送路として機能しなくなる。したがって、結晶などのホスト材料に希土類金属含有蛍光体を有機重合体にドープできる濃度には限界があり、ドープ量の高濃度化に伴う光増幅器の小型化と、光伝送媒質として有機材料を利用することによる経済性改善を両立させることができない。   In general, rare earth metal-containing phosphors can be cited as rare earth metals that can be doped into organic polymers. The phosphor here is composed of three components: a host material, an activator, and an activator, and an oxide crystal or an ionic compound crystal is used as the host material. (See Non-Patent Document 2.) That is, rather than directly doping an organic polymer with a rare earth metal having fluorescence itself as an activator component, the rare earth metal is oxidized with yttrium aluminum garnet (YAG) or the like. The object is achieved by once doping the product crystal and then crushing the crystal and mixing it into an organic polymer. However, when such a method is used, it is necessary to perform baking at a high temperature of about 1400 ° C. in order to form a YAG crystal, which increases the process cost. In addition, the particle size of the pulverized rare earth metal-containing phosphor is generally 1000 nm (1 μm) or more, and when dispersed at a high concentration for the purpose of application to an optical amplifier, the transparency decreases due to light scattering. It will not function as an optical transmission line. Therefore, there is a limit to the concentration at which a rare earth metal-containing phosphor can be doped into an organic polymer in a host material such as a crystal, and downsizing of an optical amplifier due to a high concentration of doping and use of an organic material as an optical transmission medium It is impossible to achieve economic improvement by doing.

一方、希土類金属を直接有機重合体中にドープする手法として、(a)ピリジン類、フェナントロリン類、キノリン類、β−ジケトンなどの有機配位子と希土類金属との有機錯体を形成して、有機重合体中に希土類金属を分散させる、(b)希土類金属を有機包摂化合物中にとりこんだものを有機重合体に分散させる、などの有機無機複合体合成手法が提案されてきた。(特許文献1、2、非特許文献3参照。)
上記(a)、(b)に示された手法は、希土類金属の種類や濃度の制御幅を広げられる特徴を有している。また、このようにして得られた希土類金属含有分散相は分子オーダーであるため、この分散相が多少凝集しても数nmから20nm程度の大きさに抑えることができるので、光散乱に伴う透明性の低下を来たすことなく高濃度ドープできるという特徴を有する。しかしながら、これらの方法に拠った場合、励起光によって励起された希土類金属の励起状態エネルギーが、量子力学で知られるフランク−コンドン原理によって希土類金属に直結する有機包摂化合物や有機配位子中のCH基やOH基の分子振動へと移行してしまい、希土類金属固有の発光過程が阻害される(消光される)という問題がある。(非特許文献4、5参照。)
このような問題を解決する手段として、希土類金属錯体の有機配位子や有機包摂化合物のCH基をフッ素化する、または重水素化することによって希土類金属の励起エネルギー準位と有機配位子や有機包摂化合物中の励起エネルギー準位とが重ならないようにして、消光を抑制する手法が提案されている。(特許文献6、非特許文献5、6参照)。このような手法は、希土類金属を高濃度で有機媒質中へ溶解分散することを可能にしつつ消光を抑制する上で効果的であるが、原料として用いられるフッ化物や重水素化物が非情に高価であるため、有機重合体を母材とする光増幅器を実用化することによって期待される光伝送網の経済性改善の効果を招来できないという問題が残る。

特開平05−088026号公報 特開2000−208851号公報 US Patent6292292号公報 US Patent6538805号公報 US Patent6751396号公報 特開2000−256251号公報 須藤昭一編『エルビウム添加光ファイバ増幅器』オプトロニクス社(平成11年)、第50頁 M.T.Andersonら、「PHOSPERS FOR FLAT PANEL EMISSION DISPLAYES」(B.G.Potter Jrら編「Synthesis and Application of Lanthanide−Doped Materials」第79頁所収、The American Ceramic Soceity(1996年) L.H.Slooffら、Journal of Applied Physics, 第83巻、497頁(1998) W.Siebrand、The Journal of ChemicalPhysics、第46巻、440頁(1967) Y.Hasegawaら、Chemistry Letters、(1999)、35頁 長谷川、「有機媒体中で光らないネオジウムをどのように光らせるか?」化学と工業、第53巻、126頁(2000)
On the other hand, as a technique for doping rare earth metals directly into organic polymers, (a) organic complexes of rare earth metals with organic ligands such as pyridines, phenanthrolines, quinolines, β-diketones and the like are formed. Organic-inorganic composite synthesis methods have been proposed, such as dispersing rare earth metals in polymers, and (b) dispersing rare earth metals in organic inclusion compounds in organic polymers. (See Patent Documents 1 and 2 and Non-Patent Document 3.)
The methods shown in the above (a) and (b) have the feature that the control range of the kind and concentration of rare earth metals can be expanded. Moreover, since the rare earth metal-containing dispersed phase obtained in this way is in the molecular order, even if this dispersed phase is somewhat agglomerated, it can be suppressed to a size of several nanometers to 20 nm. It has a feature that it can be doped at a high concentration without deteriorating the properties. However, when these methods are used, the excited state energy of the rare earth metal excited by the excitation light is directly linked to the rare earth metal by the Frank-Condon principle known in quantum mechanics. There is a problem that the light emission process inherent to the rare earth metal is inhibited (quenched). (See Non-Patent Documents 4 and 5.)
As means for solving such problems, the rare earth metal excitation energy level and the organic ligand can be obtained by fluorinating or deuterating the CH group of the rare earth metal complex or organic inclusion compound. There has been proposed a technique for suppressing quenching so that excitation energy levels in organic inclusion compounds do not overlap. (See Patent Document 6, Non-Patent Documents 5 and 6). Such a technique is effective in suppressing quenching while allowing a rare earth metal to be dissolved and dispersed in an organic medium at a high concentration, but fluoride and deuteride used as a raw material are extremely expensive. Therefore, there remains a problem that it is impossible to bring about the effect of improving the economic efficiency of an optical transmission network expected by putting an optical amplifier using an organic polymer as a base material into practical use.

Japanese Patent Laid-Open No. 05-088026 JP 2000-208551 A US Patent 6292292 US Patent 65538805 US Patent 6751396 JP 2000-256251 A Ed. Sudo, "Erbium-doped fiber amplifier" Optronics (1999), p. 50 M. T. T. et al. Anderson et al., “PHOSPERS FOR FLAT PANEL EMISION DISPLAYES” (edited by BG Potter Jr et al., “Synthesis and Application of Lanthanide-Doped Materials”, page 79, The Ace. L. H. Slooff et al., Journal of Applied Physics, 83, 497 (1998). W. Siebland, The Journal of Chemical Physics, 46, 440 (1967) Y. Hasegawa et al., Chemistry Letters, (1999), p. 35. Hasegawa, “How to shine neodymium that does not shine in organic media?” Chemistry and Industry, Vol. 53, 126 (2000)

以上のように、さまざまな方法によって希土類金属材料を有機重合体中にドープされてなる有機無機複合体の合成手法が提案されてきたが、希土類金属の高濃度ドープ化、消光の抑制、光学的透明性の確保、経済性の確保の4点をすべて満たしながら光増幅器に応用しえる材料は知られていない。   As described above, methods for synthesizing organic-inorganic composites in which rare earth metal materials are doped into organic polymers by various methods have been proposed. However, high concentration doping of rare earth metals, suppression of quenching, optical properties have been proposed. A material that can be applied to an optical amplifier while satisfying all four points of ensuring transparency and economy is not known.

本発明は以上のような事情に鑑みてなされたものであり、その目的は、(1)希土類金属の高濃度ドープが可能で、(2)消光の抑制、(3)光学的透明性の確保、および(4)経済性の改良が満たされた希土類金属含有有機無機複合体を用いた光増幅器を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and its purpose is (1) high concentration doping of rare earth metal, (2) suppression of quenching, (3) ensuring optical transparency. And (4) It is an object to provide an optical amplifier using a rare earth metal-containing organic-inorganic composite satisfying the improvement in economic efficiency.

本願発明者等は、上記目的を達成するために鋭意検討した。その結果、本発明者等が発明し、特願2004−197711にて出願した有機無機複合体を適用することによって、上記目的を達成できることを見出し、本発明を完成するに至った。すなわち、本発明にかかわる光増幅器においては、希土類金属が、希土類金属に他の金属種が酸素を介して配位されてなる無機分散相からなり、これが有機重合体と複合化されて用いられる。
請求項1に記載の光増幅器は、特定の波長または波長帯の光(信号光)、及びこれとは異なる波長または波長帯を有する光(励起光)を伝搬させる光伝送路を有し、該信号光強度が該励起光によって増幅される光増幅器において、光伝送路が希土類金属を分散してなる有機重合体からなり、該希土類金属が、少なくとも1種の希土類金属に他の金属種が酸素を介して配位してなる無機分散相を形成していることを特徴とする。
The inventors of the present application have made extensive studies in order to achieve the above object. As a result, the inventors have found that the above object can be achieved by applying the organic-inorganic composite invented by the present inventors and filed in Japanese Patent Application No. 2004-197711, and have completed the present invention. That is, in the optical amplifier according to the present invention, the rare earth metal is composed of an inorganic dispersed phase in which another metal species is coordinated to the rare earth metal via oxygen, and this is used in combination with an organic polymer.
The optical amplifier according to claim 1 has an optical transmission path for propagating light having a specific wavelength or wavelength band (signal light) and light having a different wavelength or wavelength band (excitation light), In the optical amplifier in which the signal light intensity is amplified by the excitation light, the optical transmission path is made of an organic polymer in which a rare earth metal is dispersed, the rare earth metal being at least one kind of rare earth metal and another metal kind being oxygen. An inorganic dispersed phase formed by coordination via is formed.

上記の構成によれば、希土類金属に他の金属種を酸素を介して配位させることによって、希土類金属の有機重合体中への高濃度ドープが可能になる。また、他の金属種が酸素を介して配位されることにより、有機重合体中のCH基やOH基と希土類金属との間のエネルギー移動による消光を抑制する。同時に、酸素を介して配位されている金属種が、希土類金属の近接相互作用および/またはクラスタ形成に伴う濃度消光を抑制する。   According to the above configuration, the rare earth metal can be highly doped into the organic polymer by coordinating the rare earth metal with other metal species via oxygen. Further, other metal species are coordinated via oxygen, thereby suppressing quenching due to energy transfer between the CH group or OH group in the organic polymer and the rare earth metal. At the same time, the metal species coordinated through oxygen suppresses concentration quenching associated with the proximity interaction and / or cluster formation of rare earth metals.

希土類金属の有機重合体中への分散を目的とした配位化合物の適用は、上記従来技術にも記載されており、一般的に金属配位可能な酸素又は窒素を介して有機化合物の配位が行われる。しかしながら、有機化合物を配位子とした配位では、上記に示した有機重合体中のCH基やOH基と希土類金属との間のエネルギー移動による消光を抑制する事が出来ない。   The application of coordination compounds for the purpose of dispersing rare earth metals in organic polymers is also described in the prior art described above, and generally the coordination of organic compounds via oxygen or nitrogen capable of metal coordination. Is done. However, coordination with an organic compound as a ligand cannot suppress quenching due to energy transfer between the CH group or OH group in the organic polymer described above and the rare earth metal.

酸素を介した他の金属種による配位を行わなければ、希土類金属間での凝集が起こり、実質的な有機重合体中への分散は出来ない。希釈濃度で分散することが出来たとしても、希土類金属の近接相互作用および/またはクラスタ形成に伴う消光により、目的とする希土類金属含有有機無機複合体を形成することが出来ない。   If coordination with other metal species via oxygen is not performed, aggregation between rare earth metals occurs, and substantial dispersion in the organic polymer cannot be achieved. Even if it can be dispersed at a dilute concentration, the target rare earth metal-containing organic-inorganic composite cannot be formed due to the proximity interaction of rare earth metals and / or quenching accompanying cluster formation.

本発明において希土類金属は、その他の金属種に結合した酸素を介して配位されている。本発明の無機分散相は、模式的に図1のように示される。同図に示すように、本発明の希土類金属含有有機無機複合体は、酸素を介して他の金属種(2)が配位してなる希土類金属(1)からなる無機分散相と、図示しない有機重合体とを含む複合体によって形成されている。ここで、該分散相において重要なことは、酸素を介した隣接位置への同種の希土類金属の存在を可能な限り低減することである。従って、酸素および他の金属種からなる配位子の数や種は固定されたものではなく、化学量論的に見て厳密に図1のような分子構造に限られるものではない。
本発明に係る有機重合体は、光学材料等に用いられる場合には、光学的に透明(透過性)であることが望ましい。有機重合体の透過率は透過性を有している範囲であれば特に限定されないが、透過率として30〜100%であることが好ましく、80〜100%であることがさらに好ましい。
また、本発明の希土類金属を含有する無機分散相は、酸素を介した隣接位置に同種の希土類金属の存在を可能な限り低減することが可能であれば、会合構造をとることも可能である。ここで、図1中のRは、アルキル基、アセチル基などのアルキルカルボニル基、水素などである。
請求項2に記載の光増幅器は、希土類金属と、これに他の金属種が酸素を介して配位してなる無機分散相全体の直径が0.1〜1000nmであることを特徴としている。
上記の構成によれば、酸素を介して他の金属が希土類金属に配位してなる希土類金属分散相の平均直径が上記範囲内であることで、希土類金属含有有機無機複合体中を透過する光の波長と比較して同直径が相対的に小さくなるため、希土類含有有機無機複合体の高い透明性を確保することができる。
請求項3に記載の発光装置は、上記の課題を解決するために、希土類金属の割合が、固形分換算で、有機重合体、および希土類金属とこれに他の金属種が酸素を介して配位してなる無機分散相の総量の90重量%以下であることを特徴としている。
上記の構成によれば、他の金属種が酸素を介して配位された希土類金属の2次凝集による光の散乱損失を来たすことがなく、本発明が深くかかわる光学機能応用分野において高い光透過性を発現させることができる。このように、希土類金属の割合が、固形分換算で、有機重合体、および希土類金属とこれに他の金属種が酸素を介して配位してなる無機分散相の総量の90重量%以下であれば本発明の目的を達成することができるが、本発明によって得られる希土類含有有機無機複合体の用途によっては、希土類含有有機無機複合体中を透過させる光の波長に対する吸光度を抑制する必要が生じるため、希土類金属の割合が、固形分換算で、有機重合体、および希土類金属とこれに他の金属種が酸素を介して配位してなる無機分散相の総量の30重量%以下であることが好ましい。
請求項4に記載の発光装置は、上記の課題を解決するために、希土類金属に酸素を介して配位する金属が、3B族、4A族、5A族金属より選ばれた1種もしく2種以上の元素であることを特徴としている。
上記の構成によれば、酸素を介してなる希土類金属への他の金属種の配位を容易にし、有機重合体中への分散と、希土類金属の発光過程における消光の抑制を効果的に発現しえる。
請求項5に記載の発光装置は、希土類金属と、これに酸素を介して他の金属種を希土類金属に配位してなる無機分散相が、希土類金属塩と他の金属アルコキシドとによって形成されてなることを特徴とする。
上記構成により、酸素を介して他の金属種が希土類金属に配意してなる分散相が効率よく形成される。
In the present invention, the rare earth metal is coordinated through oxygen bonded to other metal species. The inorganic dispersed phase of the present invention is schematically shown in FIG. As shown in the figure, the rare earth metal-containing organic-inorganic composite of the present invention includes an inorganic dispersed phase composed of a rare earth metal (1) in which another metal species (2) is coordinated via oxygen, and not shown. It is formed of a composite containing an organic polymer. Here, what is important in the dispersed phase is to reduce the presence of the same kind of rare earth metal at adjacent positions via oxygen as much as possible. Accordingly, the number and species of ligands composed of oxygen and other metal species are not fixed, and are not strictly limited to the molecular structure as shown in FIG.
When the organic polymer according to the present invention is used for an optical material or the like, it is desirably optically transparent (transmitting). Although the transmittance | permeability of an organic polymer will not be specifically limited if it is the range which has permeability | transmittance, it is preferable that it is 30-100% as a transmittance | permeability, and it is more preferable that it is 80-100%.
In addition, the inorganic dispersed phase containing the rare earth metal of the present invention can have an association structure as long as the presence of the same kind of rare earth metal can be reduced as much as possible in the adjacent position via oxygen. . Here, R in FIG. 1 represents an alkylcarbonyl group such as an alkyl group or an acetyl group, hydrogen, or the like.
The optical amplifier according to claim 2 is characterized in that the total diameter of the inorganic dispersed phase formed by coordinating a rare earth metal and another metal species thereto via oxygen is 0.1 to 1000 nm.
According to said structure, when the average diameter of the rare earth metal dispersed phase formed by coordinating other metals to the rare earth metal via oxygen is within the above range, the rare earth metal-containing organic-inorganic composite is transmitted. Since the same diameter is relatively small compared to the wavelength of light, high transparency of the rare earth-containing organic-inorganic composite can be ensured.
In order to solve the above-described problem, the light emitting device according to claim 3 has an organic polymer, a rare earth metal, and other metal species distributed through oxygen in terms of solid content. It is characterized by being 90% by weight or less of the total amount of the inorganic dispersed phase.
According to the above configuration, there is no light scattering loss due to secondary aggregation of rare earth metals in which other metal species are coordinated via oxygen, and high light transmission in an optical function application field deeply related to the present invention. Sex can be expressed. In this way, the ratio of the rare earth metal is 90% by weight or less of the total amount of the organic polymer, and the inorganic dispersed phase formed by coordination of the rare earth metal and other metal species to this via oxygen, in terms of solid content. If it is possible, the object of the present invention can be achieved, but depending on the use of the rare earth-containing organic-inorganic composite obtained by the present invention, it is necessary to suppress the absorbance of light transmitted through the rare-earth-containing organic-inorganic composite. Therefore, the ratio of the rare earth metal is 30% by weight or less of the total amount of the organic polymer, and the inorganic dispersed phase formed by coordination of the rare earth metal and other metal species with oxygen via the solid content. It is preferable.
In order to solve the above-described problem, the light emitting device according to claim 4 is one or two selected from the group 3B, 4A, and 5A metals as the metal coordinated to the rare earth metal through oxygen. It is characterized by being an element of more than species.
According to the above configuration, coordination of other metal species to the rare earth metal via oxygen is facilitated, and dispersion in the organic polymer and suppression of quenching in the light emission process of the rare earth metal are effectively expressed. It can be.
In the light-emitting device according to claim 5, an inorganic dispersed phase formed by coordinating a rare earth metal and another metal species to the rare earth metal via oxygen is formed of a rare earth metal salt and another metal alkoxide. It is characterized by.
With the above-described configuration, a dispersed phase in which other metal species are arranged to the rare earth metal via oxygen is efficiently formed.

本発明の光増幅器は、以上のように、特定の波長または波長帯の光(信号光)、及びこれとは異なる波長または波長帯を有する光(励起光)を伝搬させる光伝送路、希土類金属に他の金属種が酸素を介して配位された希土類金属含有無機分散相、および有機重合体とを含む構成である。
それゆえ、(1)希土類金属の高濃度ドープが可能で、(2)消光の抑制、(3)光学的透明性の確保を達成できる。また、酸化物結晶などのホスト材料形成のための高温プロセスや消光抑制のためのフッ化物、重水素化物のような高価な原料を要しないので、(4)経済性の確保が満たされるという効果を奏する。
As described above, the optical amplifier of the present invention includes an optical transmission line for propagating light having a specific wavelength or wavelength band (signal light) and light having a different wavelength or wavelength band (excitation light), rare earth metal And a rare earth metal-containing inorganic dispersed phase in which other metal species are coordinated via oxygen, and an organic polymer.
Therefore, (1) high concentration doping of rare earth metal is possible, (2) suppression of quenching, and (3) ensuring optical transparency can be achieved. In addition, high-temperature processes for forming host materials such as oxide crystals and expensive raw materials such as fluorides and deuterides for suppressing quenching are not required. (4) Benefits of ensuring economic efficiency Play.

本発明の希土類金属含有有機無機複合体の構成としては、希土類金属、希土類金属に酸素を介して配位可能な金属、および有機重合体とを含む複合体であれば、どのような組合せであってもよい。
希土類金属に他の金属種が酸素を介して配位してなる無機分散相の形成手法は、特に限定されるものではないが、例えば、希土類金属塩と金属アルコキシドの反応により形成される。
酸素を介して他の金属に配位されてなる無機分散相と有機重合体との複合体は、例えば、上記の金属アルコキシドと希土類金属塩との反応で形成された無機分散相と有機重合体とを混合・分散することにより調整できる。
The composition of the rare earth metal-containing organic-inorganic composite of the present invention may be any combination as long as it is a composite containing a rare earth metal, a metal capable of coordination with rare earth metal via oxygen, and an organic polymer. May be.
A method for forming an inorganic dispersed phase in which other metal species are coordinated to rare earth metal via oxygen is not particularly limited. For example, the inorganic dispersed phase is formed by a reaction between a rare earth metal salt and a metal alkoxide.
A composite of an inorganic dispersed phase and an organic polymer coordinated to another metal via oxygen is, for example, an inorganic dispersed phase and an organic polymer formed by the reaction of the above metal alkoxide and a rare earth metal salt. Can be adjusted by mixing and dispersing.

[光伝送路]
光伝送路としては、図2(a)、(b)に示したような構造を有するものが用いられる。通常、図2(a)は光ファイバ型、図2(b)は光導波路型と呼ばれる。いずれも場合も、相対的に屈折率の高い部位(コア)に光を閉じ込めて伝搬させる。
[Optical transmission line]
As the optical transmission line, one having a structure as shown in FIGS. 2A and 2B is used. Usually, FIG. 2A is called an optical fiber type, and FIG. 2B is called an optical waveguide type. In either case, light is confined and propagated in a portion (core) having a relatively high refractive index.

光増幅器(3)においては、信号光(4)が伝搬するが、同時に励起光(5)も伝搬する。通常、光増幅器の前後に光カプラが接続され、信号光(4)が伝搬する光伝送路中に励起光を導入して光増幅し、あるいは、光増幅後に励起光(5)を同伝送路から分離する。   In the optical amplifier (3), the signal light (4) propagates, but at the same time, the pumping light (5) also propagates. Usually, an optical coupler is connected before and after the optical amplifier, and pumping light is introduced into the optical transmission path through which the signal light (4) propagates to amplify the light, or after the optical amplification, the pumping light (5) is transmitted to the optical transmission line. Separate from.

また、本発明にかかわる光伝送路は、希土類金属含有有機無機複合体によって形成されている。   Further, the optical transmission line according to the present invention is formed of a rare earth metal-containing organic-inorganic composite.

[希土類金属]
希土類金属としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロムチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホロミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムのすべてが用いられる。
[酸素を介して希土類金属に配位する他の金属種]
他の金属種は、酸素を介して希土類金属に配位可能な元素であり、目的とする特性に悪影響を与えなければ特に限定されないが、好ましくは、3B族、4A族、5A族金属が用いられる。より好ましくは、アルミニウム、ガリウム、チタン、ジルコニウム、ニオブ、タンタルが用いられる。
[Rare earth metal]
Examples of rare earth metals include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
[Other metal species coordinated to rare earth metals via oxygen]
Other metal species are elements that can be coordinated to the rare earth metal via oxygen, and are not particularly limited as long as the target properties are not adversely affected. Preferably, Group 3B, Group 4A, and Group 5A metals are used. It is done. More preferably, aluminum, gallium, titanium, zirconium, niobium, or tantalum is used.

[無機分散相の作製]
無機分散相の形成方法は、目的とする希土類への酸素を介した金属の配位が形成可能であれば特に限定されるものではない。例えば、希土類原料と配位可能な金属原料を混合した後、加熱処理、粉砕する方法(出発原料としては、金属塩、水酸化物、酸化物などが用いられる)、希土類金属塩と配位可能な金属塩を溶剤に溶かした後、加水分解により沈殿析出させる方法、有機溶剤中で希土類金属塩と配位可能な金属のアルコキシドを反応させる方法などがある。
[Preparation of inorganic dispersed phase]
The method for forming the inorganic dispersed phase is not particularly limited as long as the metal coordination via oxygen to the target rare earth can be formed. For example, after mixing a rare earth raw material and a coordinating metal raw material, heat treatment and pulverization (starting raw materials are metal salts, hydroxides, oxides, etc.), can be coordinated with a rare earth metal salt There are a method in which a metal salt is dissolved in a solvent and then precipitated by hydrolysis, and a method in which an alkoxide of a metal capable of coordination with a rare earth metal salt is reacted in an organic solvent.

ナノメートルサイズの希土類金属分散相を得るためには、有機溶剤中で希土類金属塩と配位可能な金属のアルコキシドを反応させる方法が、好ましく用いられる。使用される溶剤は特に限定されるものではなく、配位構造を形成した最終生成物を有機重合体に分散できるものであれば何を用いてもよい。このような溶剤としては、例えば、メタノール、エタノール、1プロパノール、2プロパノール、1ブタノール、2ブタノール、tブタノールなどの1級アルコール;エチレングリコール、プロピレングリコール、グリセリンなどの多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールーα-モノメチルエーテル、プロピレングリコールーα-モノエチルエーテルなどのグリコールエーテル;アセトン、メチルエチルケトンなどのケトン;テトラヒドロフラン、ジオキサンなどの環状エーテル;酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトニトリル、ベンゼン、トルエン、キシレンなどの芳香族化合物;ペンタン、ヘキサン、ヘプタン、シクロヘキサンなどの炭化水素化合物;などが用いられる。   In order to obtain a nanometer-sized rare earth metal dispersed phase, a method of reacting a rare earth metal salt with a coordinateable metal alkoxide in an organic solvent is preferably used. The solvent to be used is not particularly limited, and any solvent may be used as long as the final product having a coordination structure can be dispersed in the organic polymer. Examples of such solvents include primary alcohols such as methanol, ethanol, 1 propanol, 2 propanol, 1 butanol, 2 butanol, and t butanol; polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin; ethylene glycol monomethyl ether Glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, propylene glycol α-monomethyl ether, propylene glycol α-monoethyl ether; ketones such as acetone and methyl ethyl ketone; cyclic ethers such as tetrahydrofuran and dioxane; acetic acid Esters such as methyl, ethyl acetate and propyl acetate; Aromatic compounds such as acetonitrile, benzene, toluene and xylene; Pentane Hexane, heptane, hydrocarbon compounds such as cyclohexane; and the like are used.

配位化合物を形成するために、溶剤の還流温度まで加熱する方法を用いることが可能であり、この方法は、多くの場合反応速度を促進することができるので有効な手段となる。得られた配位形成物に水を添加し、加水分解することで無機分散相のサイズを制御することも可能である。   In order to form the coordination compound, it is possible to use a method of heating to the reflux temperature of the solvent, and this method is effective because it can accelerate the reaction rate in many cases. It is also possible to control the size of the inorganic dispersed phase by adding water to the resulting coordination product and hydrolyzing it.

希土類金属の出発原料として、硝酸塩、硫酸塩、炭酸塩、塩化物などの鉱酸塩や蟻酸塩、酢酸塩、シュウ酸塩などの有機酸塩、アルコキシド等が用いられる。アニオン不純物の低減などを考えると、蟻酸塩、酢酸塩、シュウ酸塩などの有機酸塩やアルコキシドの使用が好ましい。より好ましくは、酢酸塩が用いられる。   As starting materials for rare earth metals, mineral salts such as nitrates, sulfates, carbonates and chlorides, organic acid salts such as formates, acetates and oxalates, alkoxides and the like are used. Considering the reduction of anionic impurities, it is preferable to use organic acid salts such as formate, acetate and oxalate and alkoxides. More preferably, acetate is used.

希土類金属の酢酸塩は、通常結晶水を含んでおり、配位させる金属の種類によってはそのまま使用することも可能であるが、反応前に脱水処理を行った方が好ましい。   The rare earth metal acetate usually contains water of crystallization and can be used as it is, depending on the type of metal to be coordinated, but it is preferable to perform a dehydration treatment before the reaction.

図1に示された分散相の官能基Rは、複合化する有機重合体の種類により選定され特に限定されない。有機重合体との相溶性を向上するため、有機重合体又は有機重合体を形成可能なモノマー成分との重合性の付与を目的として選択することが可能である。例えば、Rとして、水素、アルキル基、反応性を有するビニル基、アリル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基、シアノ基又はこれらの官能基を含有するアルキル基、アルキルシリル基、アルキルカルボニル基などがある。   The functional group R of the dispersed phase shown in FIG. 1 is not particularly limited and is selected depending on the type of organic polymer to be combined. In order to improve the compatibility with the organic polymer, it can be selected for the purpose of imparting polymerizability with the organic polymer or a monomer component capable of forming the organic polymer. For example, as R, hydrogen, an alkyl group, a reactive vinyl group, an allyl group, a diazo group, a nitro group, a cinnamoyl group, an acryloyl group, an imide group, an epoxy group, a cyano group, or an alkyl group containing these functional groups , Alkylsilyl groups, alkylcarbonyl groups, and the like.

また、複合化する有機重合体と均質な複合化が可能であれば、ポリ(メタ)アクリル酸、ポリエチレングリコール、ポリエチレンオキサイド、セルロース類などのカルボキシレート基、水酸基、アミノ基、アミド基などの活性水素を含む官能基を有する重合体も使用可能である。   In addition, if it can be homogeneously combined with the organic polymer to be combined, the activity of carboxylate groups such as poly (meth) acrylic acid, polyethylene glycol, polyethylene oxide, celluloses, hydroxyl groups, amino groups, amide groups, etc. A polymer having a functional group containing hydrogen can also be used.

無機分散相への官能基Rの導入方法としては、<1>無機分散相を形成した後の反応で導入する方法、又は<2>予め酸素を介して希土類金属又は/及び第4周期遷移金属に配位可能な出発原料としてのアルコキシドにR基を導入した後に希土類金属塩又は/及び第4周期遷移金属塩と反応させる方法がある。   As a method of introducing the functional group R into the inorganic dispersed phase, <1> a method of introducing it by a reaction after forming the inorganic dispersed phase, or <2> a rare earth metal or / and a fourth periodic transition metal through oxygen in advance. There is a method of introducing an R group into an alkoxide as a starting material capable of coordinating with a rare earth metal salt and / or a fourth period transition metal salt.

無機分散相と反応させる化合物は、上記目的の構造を形成可能であれば特に限定されないが、<1>の手法としては末端にカルボキシレート基、水酸基、アミノ基、アミド基などの活性水素を有する化合物、<2>の手法としてはアルキル基、反応性を有するビニル基、アリル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基、シアノ基又はこれらの官能基を含有するアルキル基を含むアルコキシシラン(R1R2R3SiOR4:R1はアルキル基、反応性を有するビニル基、アリル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基、シアノ基又はこれらの官能基を含有するアルキル基、R2、R3はアルキル基、反応性を有するビニル基、アリル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基、シアノ基又はこれらの官能基を含有するアルキル基、アルコキシル基、R4は、アルキル基)、アルコキシゲルマン(R1R2R3GeOR4:R1はアルキル基、反応性を有するビニル基、アリル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基、シアノ基又はこれらの官能基を含有するアルキル基、R2、R3はアルキル基、反応性を有するビニル基、アリル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基、シアノ基又はこれらの官能基を含有するアルキル基、アルコキシル基、R4は、アルキル基)などの縮重合により無機分散相と反応可能な化合物が好ましく用いられる。   The compound to be reacted with the inorganic dispersed phase is not particularly limited as long as it can form the above-mentioned target structure. However, the method <1> has an active hydrogen such as a carboxylate group, a hydroxyl group, an amino group, an amide group at the terminal. Compounds, <2> include alkyl groups, reactive vinyl groups, allyl groups, diazo groups, nitro groups, cinnamoyl groups, acryloyl groups, imide groups, epoxy groups, cyano groups, or functional groups thereof Alkoxysilanes containing alkyl groups (R1R2R3SiOR4: R1 represents an alkyl group, a reactive vinyl group, an allyl group, a diazo group, a nitro group, a cinnamoyl group, an acryloyl group, an imide group, an epoxy group, a cyano group, or a functional group thereof. Contains alkyl group, R2 and R3 are alkyl group, reactive vinyl group, allyl group, diazo group, nitro group, Cinnamoyl group, acryloyl group, imide group, epoxy group, cyano group or alkyl group containing these functional groups, alkoxyl group, R4 is alkyl group), alkoxygermane (R1R2R3GeOR4: R1 is alkyl group, reactive vinyl Group, allyl group, diazo group, nitro group, cinnamoyl group, acryloyl group, imide group, epoxy group, cyano group or alkyl group containing these functional groups, R2 and R3 are alkyl groups, reactive vinyl groups, Allyl group, diazo group, nitro group, cinnamoyl group, acryloyl group, imide group, epoxy group, cyano group or alkyl group containing these functional groups, alkoxyl group, R4 is alkyl group) A compound capable of reacting with the phase is preferably used.

[有機重合体]
有機重合体としては、他の金属種が配位されてなる希土類金属を凝集させることなく分散できるものであれば特に限定されるものではないが、好ましくは、光学機能の発現が利用される波長帯域において実質的に透明性を有するものが用いられる。ここで、光学機能の発現が利用される波長帯域とは、紫色〜赤色の可視帯に限られるものではなく、波長約400nmの紫色よりも波長が短い紫外線やX線、および波長約750nmの赤色よりも波長が長い赤外線の帯域であってもよい。
このような有機重合体としては、例えば、ポリメチルメタクリレート、ポリシクロヘキシルメタクリレート、ポリベンジルメタクリレート、ポリフェニルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン、ポリテトラフルオロエチレン、ポリ−4−メチルペンテン−1、ポリビニルアルコール、ポリエチレン、ポリアクリロニトリル、スチレン−アクリロニトリル共重合体、ポリ塩化ビニル、ポリビニルカルバゾール、スチレン−無水マレイン酸共重合体、ポリオレフィン、ポリイミド、エポキシ樹脂、ポリシロキサン、ポリシラン、ポリアミド、環状オレフィン樹脂などが例示できるが、これらに限定されるものではない。また、これらの有機重合体は、単独で用いてもよく2種以上組み合わせて用いることもできる。また、これらの有機重合体を溶媒に溶解し、あるいは加熱などによって溶融したものを目的とする希土類金属含有有機無機複合体の形態に加工できるが、有機重合体の前駆体となるモノマ、オリゴマ、モノマやオリゴマと有機重合体との混合体を出発原料として目的とする希土類金属含有有機無機複合体の形態に加工する過程で重合化することもできる。
[Organic polymer]
The organic polymer is not particularly limited as long as it can disperse the rare earth metal coordinated with other metal species without agglomeration, but preferably the wavelength at which the expression of the optical function is utilized. A material having substantially transparency in the band is used. Here, the wavelength band in which the expression of the optical function is used is not limited to the visible band of purple to red, but ultraviolet light and X-rays having a wavelength shorter than purple having a wavelength of about 400 nm, and red having a wavelength of about 750 nm. It may be an infrared band having a longer wavelength.
Examples of such an organic polymer include polymethyl methacrylate, polycyclohexyl methacrylate, polybenzyl methacrylate, polyphenyl methacrylate, polycarbonate, polyethylene terephthalate, polystyrene, polytetrafluoroethylene, poly-4-methylpentene-1, and polyvinyl alcohol. , Polyethylene, polyacrylonitrile, styrene-acrylonitrile copolymer, polyvinyl chloride, polyvinyl carbazole, styrene-maleic anhydride copolymer, polyolefin, polyimide, epoxy resin, polysiloxane, polysilane, polyamide, cyclic olefin resin, etc. However, it is not limited to these. These organic polymers may be used alone or in combination of two or more. In addition, these organic polymers can be processed into a desired rare earth metal-containing organic-inorganic composite by dissolving them in a solvent or melted by heating, etc., but monomers, oligomers, which are precursors of organic polymers, Polymerization can also be performed in the process of processing a mixture of a monomer or oligomer and an organic polymer into a desired rare earth metal-containing organic-inorganic composite as a starting material.

さらには、これらの有機重合体は、その主鎖や側鎖に、光や熱によって付加、架橋、重合などの反応を促す官能基を有していてもよい。このような官能基としては、ヒドロキシル基、カルボニル基、カルボキシル基、ジアゾ基、ニトロ基、シンナモイル基、アクリロイル基、イミド基、エポキシ基などが例示できる。   Furthermore, these organic polymers may have a functional group that promotes a reaction such as addition, crosslinking, or polymerization by light or heat in the main chain or side chain. Examples of such a functional group include a hydroxyl group, a carbonyl group, a carboxyl group, a diazo group, a nitro group, a cinnamoyl group, an acryloyl group, an imide group, and an epoxy group.

有機重合体は、可塑剤、酸化防止剤などの安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料などの着色剤などの添加物を含んでいても良い。さらに、有機重合体は、塗布性などの成型加工性を高めるために、溶媒(水、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類などの有機溶媒)を含んでいてもよい。   The organic polymer may contain additives such as stabilizers such as plasticizers and antioxidants, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments. Furthermore, in order to improve molding processability such as coating properties, organic polymers are made of organic solvents such as solvents (water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons). Solvent).

以下に、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<無機分散相の作製> 2−ブタノール中に110℃で1時間脱水処理した酢酸エルビウムとトリ−s−ブトキシアルミニウム(Er/Al=3モル、ErとAlの合計酸化物換算濃度5重量%)とを加え1時間還流した結果、薄ピンク透明な溶液を得た。得られた反応物の粒径を動的散乱法で測定し、粒径分布のピークトップが1.7nmの複合ナノ粒子である事を確認した。また、トリ−s−ブトキシアルミニウムの反応前後の27Al-NMRスペクトルの変化よりErへの酸素を介したAlの配位を確認した。   <Preparation of Inorganic Dispersed Phase> Erbium acetate and tri-s-butoxyaluminum dehydrated in 2-butanol at 110 ° C. for 1 hour (Er / Al = 3 mol, total oxide equivalent concentration of Er and Al 5% by weight) As a result of refluxing for 1 hour, a light pink transparent solution was obtained. The particle size of the obtained reaction product was measured by a dynamic scattering method, and it was confirmed that the peak top of the particle size distribution was a composite nanoparticle of 1.7 nm. Further, the coordination of Al via oxygen to Er was confirmed by the change in 27Al-NMR spectrum before and after the reaction of tri-s-butoxyaluminum.

<無機分散相と透明有機重合体との複合体の作製> 透明有機重合体として、光重合性アクリル樹脂「サイクロマー」(ダイセル化学社製)を用いた。この有機重合体と、前記の方法にて作製したEr−Al含有複合ナノ粒子、および光ラジカル発生剤「Irgacure369」(商品名,チバガイギー社製)をプロピレングリコールモノメチルエーテルエステルアセテート中で混合し、室温にて2時間攪拌させ混合液を得た。混合比は複合組成中のエルビウムの割合が、総固形分に対して5.2%、0.52%の重量分率となるよう調整した。   <Preparation of Composite of Inorganic Dispersed Phase and Transparent Organic Polymer> As the transparent organic polymer, a photopolymerizable acrylic resin “Cyclomer” (manufactured by Daicel Chemical Industries) was used. This organic polymer, Er—Al-containing composite nanoparticles prepared by the above method, and a photoradical generator “Irgacure369” (trade name, manufactured by Ciba Geigy Co., Ltd.) are mixed in propylene glycol monomethyl ether ester acetate at room temperature. And stirred for 2 hours to obtain a mixed solution. The mixing ratio was adjusted so that the ratio of erbium in the composite composition was 5.2% and 0.52% by weight based on the total solid content.

このように調整した混合液を、スピンナーを用いて溶融石英板上に回転塗布したのち、90℃のプレートヒータ上に1分間乾燥して残留溶媒を除去し、光重合性アクリル樹脂を母材とする、Er−Al含有有機無機複合薄膜を得た。さらに、幅7μmの直線導波路パターンが描き込まれたフォトマスクを介して、超高圧水銀灯でこの薄膜を露光した。次いで、アルカリ水(TMAH2.3%水溶液)に10秒間浸漬して超高圧水銀灯で露光されなかった部分を溶解除去した。最後に90℃で2分間乾燥して、光重合性アクリル樹脂とEr-Al無機分散相からなる幅7μm、厚さ2.8μmの有機無機複合体導波路を石英基板上に得た。   The mixture prepared in this manner is spin-coated on a fused quartz plate using a spinner, and then dried on a plate heater at 90 ° C. for 1 minute to remove residual solvent, and a photopolymerizable acrylic resin is used as a base material. An Er—Al-containing organic-inorganic composite thin film was obtained. Further, this thin film was exposed with an ultrahigh pressure mercury lamp through a photomask in which a linear waveguide pattern having a width of 7 μm was drawn. Subsequently, it was immersed in alkaline water (TMAH 2.3% aqueous solution) for 10 seconds to dissolve and remove a portion that was not exposed with an ultrahigh pressure mercury lamp. Finally, it was dried at 90 ° C. for 2 minutes to obtain an organic-inorganic composite waveguide having a width of 7 μm and a thickness of 2.8 μm composed of a photopolymerizable acrylic resin and an Er—Al inorganic dispersed phase on a quartz substrate.

<光増幅特性の測定>
このようにして得られた光重合性アクリル樹脂とEr-Al無機分散相からなる有機無機複合体導波路の光増幅特性を、図3に示すような光学系を用いて測定した。信号光(4)用光源としては波長1550nm、出力3mWの半導体レーザ(6)を用い、励起光(5)用光源としては波長983nm、尖頭出力150mWのパルス半導体レーザ(7)を用いた。また、励起光(5)は、波長980nm付近でのみ高反射率を有するダイクロイックミラー(8)を用いて信号光(4)の光軸と重ね、両光ともに作製した希土類金属含有有機無機複合体導波路(9)の端面から結合した。さらに、ふたつの光が導波路中を伝搬したのち信号光(4)だけ取り出して強度を測定するために、SF6ガラスからなるプリズム(11)を用いて、波長によって出射角度が異なることを利用して励起光(5)を分離した。そして、ピンホール(12)を通過した信号光(4)のみを受光器(13)で受光し、オシロスコープを用いて光強度を測定した。
<Measurement of optical amplification characteristics>
The optical amplification characteristics of the thus obtained organic-inorganic composite waveguide composed of the photopolymerizable acrylic resin and the Er-Al inorganic dispersed phase were measured using an optical system as shown in FIG. A semiconductor laser (6) having a wavelength of 1550 nm and an output of 3 mW was used as the light source for signal light (4), and a pulsed semiconductor laser (7) having a wavelength of 983 nm and a peak output of 150 mW was used as the light source for excitation light (5). In addition, the excitation light (5) is superimposed on the optical axis of the signal light (4) using a dichroic mirror (8) having a high reflectance only in the vicinity of a wavelength of 980 nm, and the rare earth metal-containing organic-inorganic composite produced with both lights It couple | bonded from the end surface of the waveguide (9). Furthermore, in order to measure only the intensity of the signal light (4) after the two lights have propagated through the waveguide, a prism (11) made of SF6 glass is used. The excitation light (5) was separated. Then, only the signal light (4) that passed through the pinhole (12) was received by the light receiver (13), and the light intensity was measured using an oscilloscope.

その結果、励起光用パルス半導体レーザが点灯していないときに比べて、点灯しているときの信号強度が3.8dB相当の利得をもって増幅されていることが確認でき、光増幅器として機能していることが検証できた。   As a result, it can be confirmed that the signal intensity when it is lit is amplified with a gain equivalent to 3.8 dB, compared to when the pumping light pulse semiconductor laser is not lit, and functions as an optical amplifier. It was verified that

本発明は、信号光強度を励起光によって増幅する光増幅器に関して好適に用いられる。このような光増幅器の例として、すでに石英系無機材料を母材として商用化されているEDFAがあげられるが、本発明により、石英系無機材料を有機重合体によって置換え、低価格化を可能にする。また、従来50〜100ppm程度しかドープできなかった希土類金属を10%(100000ppm)以上ドープできることから、長尺ものでしか実現できなかった光増幅器の小型化を可能にする。このことから、従来用いられてきた長距離幹線系の光ファイバ網だけでなく、加入者系光通信網など、伝送路の後段分岐数が増え、分岐による光伝送損失が問題となるような用途においてもその効果を発揮しえる。
さらに、今後、コンピュータ内ボード間伝送やボード内伝送を従来の電子にかわって光に担わせることによって、情報処理容量や速度のボトルネックを打破しようとして研究が進められている光インターコネクション分野においても、本発明の効果が発揮し得る。
The present invention is suitably used for an optical amplifier that amplifies signal light intensity with pumping light. An example of such an optical amplifier is an EDFA that has already been commercialized using a quartz-based inorganic material as a base material. However, the present invention enables the quartz-based inorganic material to be replaced with an organic polymer, thereby reducing the cost. To do. In addition, since rare earth metals that can only be doped by about 50 to 100 ppm can be doped by 10% (100,000 ppm) or more, it is possible to reduce the size of an optical amplifier that can only be realized by a long one. For this reason, not only long-distance trunk optical fiber networks that have been used in the past, but also subscriber optical communication networks, where the number of subsequent branches in the transmission path increases and optical transmission loss due to branching becomes a problem. The effect can be demonstrated even in.
Furthermore, in the optical interconnection field where research is going on to break down the bottleneck of information processing capacity and speed by using inter-board transmission between computers and intra-board transmission instead of conventional electronics. In addition, the effect of the present invention can be exhibited.

本発明にかかわる希土類金属含有有機無機複合体のうち、希土類金属に他の金属種が酸素を介して配位してなる希土類金属蛍光材料の模式図である。In the rare earth metal-containing organic-inorganic composite according to the present invention, it is a schematic diagram of a rare earth metal fluorescent material in which another metal species is coordinated to oxygen via a rare earth metal. (a)は光ファイバ型光増幅器である光増幅器の基本構成を示す模式図である。(b)は光導波路型光増幅器である光増幅器の基本構成を示す模式図である。(A) is a schematic diagram which shows the basic composition of the optical amplifier which is an optical fiber type | mold optical amplifier. FIG. 2B is a schematic diagram showing a basic configuration of an optical amplifier that is an optical waveguide type optical amplifier. 本発明にかかわる光増幅器のうち、実施例1にて作製したEr−Al系有機無機複合体からなる光導波路型光増幅器を用いて光増幅特性を測定する光学系図である。It is an optical system diagram which measures an optical amplification characteristic using the optical waveguide type optical amplifier which consists of an Er-Al type organic inorganic composite body produced in Example 1 among the optical amplifiers concerning this invention.

符号の説明Explanation of symbols

1 希土類金属
2 酸素を介して希土類金属に配位する他の金属種
3 光増幅器
4 信号光
5 励起光
6 半導体レーザ(信号光光源)
7 パルス半導体レーザ(励起光光源)
8 ダイクロイックミラー
9 希土類金属含有有機無機複合体導波路
10 溶融石英基板
11 プリズム
12 ピンホール
13 受光器

DESCRIPTION OF SYMBOLS 1 Rare earth metal 2 Other metal species coordinated to rare earth metal through oxygen 3 Optical amplifier 4 Signal light 5 Pumping light 6 Semiconductor laser (signal light source)
7 Pulsed semiconductor laser (excitation light source)
8 Dichroic mirror 9 Rare earth metal-containing organic-inorganic composite waveguide 10 Fused silica substrate 11 Prism 12 Pinhole 13 Light receiver

Claims (5)

特定の波長または波長帯の信号光、及びこれとは異なる波長または波長帯を有する励起光を伝搬させる光伝送路を有し、該信号光強度が該励起光によって増幅される光増幅器において、光伝送路が希土類金属を分散してなる有機重合体からなり、該希土類金属が、少なくとも1種の希土類金属に他の金属種が酸素を介して配位してなる無機分散相を形成していることを特徴とする光増幅器。 In an optical amplifier having an optical transmission path for propagating signal light having a specific wavelength or wavelength band and pump light having a wavelength or wavelength band different from the signal light, the signal light intensity is amplified by the pump light. The transmission path is made of an organic polymer in which a rare earth metal is dispersed, and the rare earth metal forms an inorganic dispersed phase in which at least one rare earth metal is coordinated with other metal species via oxygen. An optical amplifier characterized by that. 希土類金属と、これに他の金属種が酸素を介して配位してなる無機分散相の直径が平均0.1〜1000nmであることを特徴とする請求項1に記載の光増幅素器。 2. The optical amplifying device according to claim 1, wherein the average diameter of the inorganic dispersed phase obtained by coordinating the rare earth metal and other metal species with oxygen via oxygen is 0.1 to 1000 nm on average. 希土類金属の割合が、固形分換算で、有機重合体および希土類金属とこれに他の金属種が酸素を介して配位してなる無機分散相の総量の90重量%以下であることを特徴とする請求項1または2記載の光増幅器。 The ratio of the rare earth metal is 90% by weight or less of the total amount of the inorganic dispersed phase obtained by coordinating the organic polymer and the rare earth metal with other metal species via oxygen in terms of solid content. The optical amplifier according to claim 1 or 2. 希土類金属に酸素を介して配位する他の金属種が、3B族、4A族、5A族金属より選ばれた1種または2種以上の元素の組合せである請求項1〜3のいずれか1項に記載の光増幅器。 The other metal species coordinated to the rare earth metal through oxygen is one or a combination of two or more elements selected from Group 3B, Group 4A, and Group 5A metals. The optical amplifier according to item. 希土類金属と、これに他の金属種が酸素を介して配位してなる無機分散相が、希土類金属塩と他の金属アルコキシドとにより形成された事を特徴とする請求項1〜4のいずれか1項に記載の光増幅器。


The rare earth metal and an inorganic dispersed phase formed by coordinating other metal species with oxygen via oxygen are formed of a rare earth metal salt and another metal alkoxide. The optical amplifier according to claim 1.


JP2005036986A 2005-02-14 2005-02-14 Optical amplifier Pending JP2006222403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036986A JP2006222403A (en) 2005-02-14 2005-02-14 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036986A JP2006222403A (en) 2005-02-14 2005-02-14 Optical amplifier

Publications (1)

Publication Number Publication Date
JP2006222403A true JP2006222403A (en) 2006-08-24

Family

ID=36984471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036986A Pending JP2006222403A (en) 2005-02-14 2005-02-14 Optical amplifier

Country Status (1)

Country Link
JP (1) JP2006222403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260904A (en) * 2007-04-13 2008-10-30 Hitachi Chem Co Ltd Varnish containing photodoping material and optical waveguide amplifier using the same
JP2009200350A (en) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd Varnish containing material for optical doping, and optical waveguide amplifier using the same
JP2009277696A (en) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp Laser oscillation device and method of manufacturing plastic rod used therefor
WO2020144743A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Laser amplifier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040388A1 (en) * 1997-03-11 1998-09-17 New Japan Chemical Co., Ltd. Rare earth complexes
JP2000208851A (en) * 1999-01-14 2000-07-28 Oki Electric Ind Co Ltd Optical amplification element, optical circuit, manufacture of optical amplification element and optical amplification material
JP2000256251A (en) * 1999-03-09 2000-09-19 New Japan Chem Co Ltd Rare-earth metal-carrying nano-size (host-guest) complex
WO2002091487A1 (en) * 2001-05-02 2002-11-14 Kansai Technology Licensing Organization Co., Ltd. Light emitting apparatus
JP2003147346A (en) * 2001-11-15 2003-05-21 Kansai Tlo Kk Photo-functional material made by using rare earth element complex, and light emitting device
JP2005015803A (en) * 2003-06-26 2005-01-20 Lucent Technol Inc Crosslinked polysesquioxane host matrix containing lanthanide chelated by organic guest ligand and producing method of such matrix
WO2005073342A1 (en) * 2004-01-29 2005-08-11 Keio University Metal oxide phosphor microparticle and process for producing the same; utilizing the same, dispersion liquid, fluorescence conversion membrane, method of separating metal oxide phosphor microparticle, fluorescent liquid, fluorescent paste, phosphor and process for producing the same; and fluorescence converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040388A1 (en) * 1997-03-11 1998-09-17 New Japan Chemical Co., Ltd. Rare earth complexes
JP2000208851A (en) * 1999-01-14 2000-07-28 Oki Electric Ind Co Ltd Optical amplification element, optical circuit, manufacture of optical amplification element and optical amplification material
JP2000256251A (en) * 1999-03-09 2000-09-19 New Japan Chem Co Ltd Rare-earth metal-carrying nano-size (host-guest) complex
WO2002091487A1 (en) * 2001-05-02 2002-11-14 Kansai Technology Licensing Organization Co., Ltd. Light emitting apparatus
JP2003147346A (en) * 2001-11-15 2003-05-21 Kansai Tlo Kk Photo-functional material made by using rare earth element complex, and light emitting device
JP2005015803A (en) * 2003-06-26 2005-01-20 Lucent Technol Inc Crosslinked polysesquioxane host matrix containing lanthanide chelated by organic guest ligand and producing method of such matrix
WO2005073342A1 (en) * 2004-01-29 2005-08-11 Keio University Metal oxide phosphor microparticle and process for producing the same; utilizing the same, dispersion liquid, fluorescence conversion membrane, method of separating metal oxide phosphor microparticle, fluorescent liquid, fluorescent paste, phosphor and process for producing the same; and fluorescence converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260904A (en) * 2007-04-13 2008-10-30 Hitachi Chem Co Ltd Varnish containing photodoping material and optical waveguide amplifier using the same
JP2009200350A (en) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd Varnish containing material for optical doping, and optical waveguide amplifier using the same
JP2009277696A (en) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp Laser oscillation device and method of manufacturing plastic rod used therefor
WO2020144743A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Laser amplifier

Similar Documents

Publication Publication Date Title
US8778227B2 (en) Organic/inorganic composite
Chen et al. Lanthanide‐Based Luminescent Materials for Waveguide and Lasing
US10059876B2 (en) Color conversion films with plasmon enhanced fluorescent dyes
JP4946163B2 (en) Method for producing metal oxide nanoparticles
Wang et al. Optical waveguide amplifiers based on NaYF 4: Er 3+, Yb 3+ NPs-PMMA covalent-linking nanocomposites
JP2006222403A (en) Optical amplifier
Pecoraro et al. Real time random laser properties of Rhodamine-doped di-ureasil hybrids
Miluski et al. Properties of Eu3+ doped poly (methyl methacrylate) optical fiber
Moynihan et al. Optical properties of planar polymer waveguides doped with organo-lanthanide complexes
Chen et al. Demonstration of optical gain at 1550 nm in erbium–ytterbium co-doped polymer waveguide amplifier
Tsang et al. Eu $^{3+} $-Doped Planar Optical Polymer Waveguide Amplifiers
JP4956888B2 (en) Optical functional optical material comprising a fluorine-containing acrylate polymer
Liang et al. Fabrication and amplified spontaneous emission of Eu (DBM) 3 Phen doped step-index polymer optical fiber
Haque et al. Synthesis and spectroscopic characterization of Nile Blue doped silica gel rods
JP2009200348A (en) Material for optical doping, and optical amplifying medium
JP2009200349A (en) Material for photodoping and optical amplifying medium
Chinya et al. Synthesis and characterization of transparent erbium–ytterbium co‐doped polymer nanocomposites for fabrication of polymer optical preform
Mataki et al. High-gain optical amplification of europium–aluminum (Eu3+–Al)-nanocluster-doped planar polymer waveguides
JP2011042759A (en) Metal oxide phosphor fine particle
Costela et al. Solid-state dye lasers
JP5034638B2 (en) Varnish containing optical doping material and optical waveguide amplifier using the same
KR20130116649A (en) Formulation of core solution for application to optical amplifiers
JP4681316B2 (en) Light emitting device
JP2008116847A (en) High refractive index optical material
JP2007178921A (en) Optical material having high refractive index and low dispersion characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717