JP2006220351A - Freezer - Google Patents

Freezer Download PDF

Info

Publication number
JP2006220351A
JP2006220351A JP2005033762A JP2005033762A JP2006220351A JP 2006220351 A JP2006220351 A JP 2006220351A JP 2005033762 A JP2005033762 A JP 2005033762A JP 2005033762 A JP2005033762 A JP 2005033762A JP 2006220351 A JP2006220351 A JP 2006220351A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
water
side heat
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033762A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ishiki
良和 石木
Shoji Kikuchi
昭治 菊地
Kyuhei Ishihane
久平 石羽根
Tsunayuki Itagaki
綱之 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005033762A priority Critical patent/JP2006220351A/en
Priority to CN 200610004767 priority patent/CN1818506A/en
Publication of JP2006220351A publication Critical patent/JP2006220351A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve coefficient of performance by increasing cooling capacity by securing high supercooling degree without increasing power consumption. <P>SOLUTION: In this freezer, an auxiliary heat exchanger 5 for further cooling a condensate refrigerant flowing out from a heat source-side heat exchanger (condenser) 2, is mounted on the way of a refrigerant pipe connecting the heat source-side heat exchanger (condenser) 2 and an expanding device 3. The cooling water is supplied to the auxiliary heat exchanger from the external to further cool the liquid refrigerant from the heat source-side heat exchanger 2. Accordingly, high supercooling degree of the liquid refrigerant can be secured without reducing the circulation of the refrigerant circulated in a use-side heat exchanger (evaporator) 4, and a coefficient of performance of a freezing cycle can be improved without increasing required power of a compressor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷水或いは冷温水を製造するための冷凍装置に関し、特に冷凍サイクルを循環する冷媒の過冷却度を大きく確保するものに関する。   The present invention relates to a refrigeration apparatus for producing cold water or cold / hot water, and particularly relates to a device that ensures a large degree of supercooling of a refrigerant circulating in a refrigeration cycle.

冷凍サイクルを利用して冷水等を製造する冷凍装置の高効率化を図るためには、圧縮機の所要動力を増加させずに冷却能力を増加させる必要がある。このためには凝縮器で凝縮された液冷媒の過冷却度を大きく確保し、膨張装置で減圧されて二相状態となった冷媒と、蒸発器出口で気化した冷媒とのエンタルピ差を大きく確保することが必要であり、これによって単一質量あたりの冷媒が冷水から奪う熱量を多くすることができる。この液冷媒の過冷却度を大きく確保する方法としては、凝縮器と膨張装置の間に補助熱交換器を設置し、この補助熱交換器の副側に、液冷媒配管から分岐させた冷媒を減圧・膨張させたものを流し、この減圧・膨張された冷媒で主回路となる前記冷媒配管を流れる凝縮冷媒を該補助熱交換器で更に冷却し、前記減圧・膨張され補助熱交換器で蒸発された分岐冷媒は前記圧縮機の中間圧力室或いは圧縮機の低圧側に注入されるようにしたものが、例えば特許文献1に記載されている。   In order to increase the efficiency of a refrigeration apparatus that manufactures cold water or the like using a refrigeration cycle, it is necessary to increase the cooling capacity without increasing the required power of the compressor. For this purpose, a large degree of supercooling of the liquid refrigerant condensed in the condenser is ensured, and a large enthalpy difference is ensured between the refrigerant that has been reduced in pressure by the expansion device and is vaporized at the outlet of the evaporator. This makes it possible to increase the amount of heat taken by the refrigerant per unit mass from the cold water. As a method for ensuring a large degree of supercooling of this liquid refrigerant, an auxiliary heat exchanger is installed between the condenser and the expansion device, and the refrigerant branched from the liquid refrigerant pipe is placed on the auxiliary side of this auxiliary heat exchanger. The decompressed / expanded refrigerant is flowed, and the condensed refrigerant flowing through the refrigerant pipe as the main circuit with the decompressed / expanded refrigerant is further cooled by the auxiliary heat exchanger, and the decompressed / expanded refrigerant is evaporated by the auxiliary heat exchanger. For example, Patent Document 1 discloses that the branched refrigerant thus injected is injected into an intermediate pressure chamber of the compressor or a low pressure side of the compressor.

特開平11−248264号公報JP-A-11-248264

上記の補助熱交換器の副側に分岐冷媒を使用する方法では、補助熱交換器で熱交換した後の分岐冷媒を冷凍サイクル中に戻す必要があるため、圧縮機中間圧室或いは低圧側へ送る必要がある。例えば、分岐冷媒を圧縮機中間圧室へ戻す場合、圧縮機には主吸込口から吸入する冷媒に加え、中間圧室から注入される分岐冷媒も圧縮するため、圧縮機の所要動力はその分増加し、このため消費電力は増加することになる。また、分岐冷媒を低圧側へ送る場合、圧縮機の主吸込口から吸入する冷媒量は、補助熱交換器がない場合とほぼ同じであるため、圧縮機の所要動力としては増加しないが、蒸発器へ循環し、冷水から熱量を奪う冷媒の循環量が減少する。このため、冷水から奪う熱量が減少し、冷却能力が減少することになる。これらのように、液冷媒の過冷却度を大きく確保するために冷凍サイクルの中から分岐させた分岐冷媒を補助熱交換器の副側へ流すことは、冷凍サイクルの成績係数(=冷却能力÷消費電力)を向上することができないという問題がある。   In the method of using a branched refrigerant on the auxiliary side of the auxiliary heat exchanger, it is necessary to return the branched refrigerant after heat exchange with the auxiliary heat exchanger to the refrigeration cycle. I need to send it. For example, when returning the branch refrigerant to the compressor intermediate pressure chamber, the compressor also compresses the branch refrigerant injected from the intermediate pressure chamber in addition to the refrigerant sucked from the main suction port. As a result, the power consumption increases. In addition, when the branch refrigerant is sent to the low pressure side, the amount of refrigerant sucked from the main suction port of the compressor is almost the same as that without the auxiliary heat exchanger. The circulation amount of the refrigerant that circulates to the vessel and takes heat away from the cold water decreases. For this reason, the amount of heat taken from the cold water decreases, and the cooling capacity decreases. As described above, the flow of the branched refrigerant branched from the refrigeration cycle in order to ensure a large degree of supercooling of the liquid refrigerant to the auxiliary side of the auxiliary heat exchanger means that the coefficient of performance of the refrigeration cycle (= cooling capacity ÷ There is a problem that the power consumption) cannot be improved.

本発明の目的は、過冷却度を大きく確保して冷却能力を増加すると共に、消費電力は増加させないようにして成績係数を向上させることができる冷凍装置を得ることにある。   An object of the present invention is to obtain a refrigeration apparatus capable of improving a coefficient of performance while ensuring a large degree of supercooling to increase cooling capacity and not increasing power consumption.

上記課題を解決するために、本発明の特徴は、圧縮機、凝縮器、膨張装置及び利用側熱交換器となる蒸発器が冷媒配管で接続されて冷凍サイクルを構成し、冷水を製造するようにした冷凍装置において、前記冷媒配管における凝縮器と膨張装置との間に補助熱交換器を配置し、該補助熱交換器に冷却水を流すことにより、この冷却水と前記凝縮器で凝縮された液冷媒とを熱交換させるようにしたことにある。   In order to solve the above-described problems, the present invention is characterized in that a compressor, a condenser, an expansion device, and an evaporator serving as a use side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle to produce cold water. In the refrigeration apparatus, an auxiliary heat exchanger is disposed between the condenser and the expansion device in the refrigerant pipe, and the cooling water is allowed to flow through the auxiliary heat exchanger, whereby the cooling water and the condenser are condensed. Heat exchange with the liquid refrigerant.

ここで、前記凝縮器は空気で冷媒を冷却するようにした空気熱交換器、或いは水で冷媒を冷却するようにした水冷凝縮器で構成することができる。   The condenser may be an air heat exchanger that cools the refrigerant with air or a water-cooled condenser that cools the refrigerant with water.

本発明の他の特徴は、圧縮機、四方弁、熱源側熱交換器、膨張装置及び利用側熱交換器が冷媒配管で接続されて冷凍サイクルを構成し、冷温水を製造するようにした冷凍装置において、前記冷媒配管における熱源側熱交換器と利用側熱交換器との間に、冷媒配管を流れる冷媒を冷却水と熱交換させるための補助熱交換器を配置し、更に、この補助熱交換器で冷却された冷媒が前記膨張装置に、冷却運転及び加熱運転の何れにおいても常に同一方向から流入するように、逆止弁で構成されたブリッジ回路を備えることにある。   Another feature of the present invention is that the compressor, the four-way valve, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle, and to produce cold / hot water. In the apparatus, an auxiliary heat exchanger for exchanging heat between the refrigerant flowing through the refrigerant pipe and the cooling water is disposed between the heat source side heat exchanger and the use side heat exchanger in the refrigerant pipe. It is provided with a bridge circuit constituted by a check valve so that the refrigerant cooled by the exchanger always flows into the expansion device from the same direction in both the cooling operation and the heating operation.

本発明の更に他の特徴は、圧縮機、四方弁、熱源側熱交換器、膨張装置及び利用側熱交換器が冷媒配管で接続されて冷凍サイクルを構成し、冷温水を製造するようにした冷凍装置において、前記冷媒配管における熱源側熱交換器と利用側熱交換器との間に、冷媒配管を流れる冷媒を水と熱交換させるための補助熱交換器を配置し、前記補助熱交換器の主側には前記冷媒を流し、補助熱交換器の副側には水を流すと共に、前記補助熱交換器と前記膨張装置における冷媒流れ方向が、冷却運転と加熱運転では逆方向になるようにしたことにある。   Still another feature of the present invention is that a compressor, a four-way valve, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle to produce cold / hot water. In the refrigeration apparatus, an auxiliary heat exchanger for exchanging heat with water flowing through the refrigerant pipe is disposed between the heat source side heat exchanger and the use side heat exchanger in the refrigerant pipe, and the auxiliary heat exchanger The refrigerant flows through the main side of the heater and water flows through the auxiliary side of the auxiliary heat exchanger so that the refrigerant flows in the auxiliary heat exchanger and the expansion device in opposite directions in the cooling operation and the heating operation. It is in that.

ここで、前記補助熱交換器は、前記熱源側熱交換器と前記膨張装置との間に配置され、冷水製造時には熱源側熱交換器で冷却された冷媒を更に冷却した後、膨張装置で減圧膨張させ、温水製造時には利用側熱交換器で冷却された冷媒を膨張装置で減圧膨張させた後、前記補助熱交換器と熱源側熱交換器で冷媒を蒸発させるように構成することができる。   Here, the auxiliary heat exchanger is disposed between the heat source side heat exchanger and the expansion device, and further cools the refrigerant cooled by the heat source side heat exchanger at the time of cold water production, and then reduces the pressure by the expansion device. It is possible to expand the refrigerant cooled by the use side heat exchanger at the time of producing hot water, and then evaporate the refrigerant by the auxiliary heat exchanger and the heat source side heat exchanger.

熱源側熱交換器(凝縮器)と膨張装置を接続する冷媒配管の途中に熱源側熱交換器(凝縮器)から流出する凝縮液冷媒を冷却するための補助熱交換器を配置し、この補助熱交換器のもう一方側の流路には、冷却水系統を配管接続する構成とすることにより、冷水製造の際には、補助熱交換器を過冷却器として機能させることができ、液冷媒の過冷却度を大きく確保し、冷却能力を増加させることができる。しかも、本発明では、過冷却器として作用する補助熱交換器の副側に、主側である冷凍サイクル中の冷媒を分岐して用いず、別系統の冷却水を使用しているので、圧縮機の所要動力を増加させることなく、また利用側熱交換器(蒸発器)を循環する冷媒循環量も減少させずに、冷凍サイクルの成績係数を向上できる効果が得られる。   An auxiliary heat exchanger for cooling the condensate refrigerant flowing out of the heat source side heat exchanger (condenser) is arranged in the middle of the refrigerant pipe connecting the heat source side heat exchanger (condenser) and the expansion device. In the flow path on the other side of the heat exchanger, a cooling water system is connected to the pipe so that the auxiliary heat exchanger can function as a supercooler during cold water production. A large degree of supercooling can be secured, and the cooling capacity can be increased. In addition, in the present invention, the coolant in the refrigeration cycle that is the main side is not branched and used on the auxiliary side of the auxiliary heat exchanger that acts as a subcooler, and cooling water of a separate system is used. The effect of improving the coefficient of performance of the refrigeration cycle can be obtained without increasing the required power of the machine and without reducing the amount of refrigerant circulating through the use side heat exchanger (evaporator).

また、四方弁を有し、冷温水を製造する冷凍装置における加熱運転では、膨張装置と熱源側熱交換器(蒸発器)を接続する冷媒配管の途中に補助熱交換器を配置する構成とし、補助熱交換器の副側に別系統の冷却水を使用することで、補助熱交換器を蒸発器の一部として作用させることができ、蒸発性能を向上させ、蒸発圧力を高く保てるという効果がある。これによって、加熱運転での成績係数も向上でき、更に着霜抑制にも効果があり、積算暖房能力を大きく確保できる効果も得られる。   In addition, in the heating operation in the refrigeration apparatus that has a four-way valve and produces cold / hot water, the auxiliary heat exchanger is arranged in the middle of the refrigerant pipe connecting the expansion device and the heat source side heat exchanger (evaporator), By using another system of cooling water on the auxiliary side of the auxiliary heat exchanger, the auxiliary heat exchanger can act as part of the evaporator, improving the evaporation performance and keeping the evaporation pressure high. is there. As a result, the coefficient of performance in the heating operation can be improved, further effective in suppressing frost formation, and the effect of ensuring a large integrated heating capacity can be obtained.

以下、本発明の実施例を、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の冷凍装置の第1実施例を示す図である。
図1における冷凍装置の冷凍サイクル構成は、圧縮機1、空気熱交換器(熱源側熱交換器)2、補助熱交換器5、膨張装置(膨張弁)3及び水側熱交換器(利用側熱交換器)4が冷媒配管で順次連結されて構成されており、矢印は冷媒の流れる方向を示す。
FIG. 1 is a view showing a first embodiment of the refrigeration apparatus of the present invention.
1 includes a compressor 1, an air heat exchanger (heat source side heat exchanger) 2, an auxiliary heat exchanger 5, an expansion device (expansion valve) 3, and a water side heat exchanger (use side). (Heat exchanger) 4 is configured by sequentially connecting refrigerant pipes, and an arrow indicates a direction in which the refrigerant flows.

圧縮機1で圧縮・吐出された高温・高圧のガス冷媒は、空気熱交換器2で外部の空気と熱交換され、凝縮・液化し、更に補助熱交換器5で補助熱交換器に外部から供給される冷却水と熱交換されて、更に過冷却される。その後、冷媒は膨張装置4により減圧・膨張され、水熱交換器4に流入し、負荷(冷却器等)側から流入する水と熱交換して水を冷却することで蒸発し、再びガス冷媒となって前記圧縮機1へ戻るサイクルを構成する。冷水は、水側熱交換器4で冷媒が蒸発する際の熱量として、水が冷やされ、製造される。   The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 is heat-exchanged with the external air by the air heat exchanger 2 to condense and liquefy, and further to the auxiliary heat exchanger by the auxiliary heat exchanger 5 from the outside. Heat is exchanged with the supplied cooling water, and further cooling is performed. Thereafter, the refrigerant is depressurized and expanded by the expansion device 4, flows into the water heat exchanger 4, and evaporates by exchanging heat with water flowing in from the load (cooler or the like) side to cool the water, and again the gas refrigerant Thus, a cycle returning to the compressor 1 is formed. Cold water is produced by cooling water as the amount of heat when the refrigerant evaporates in the water-side heat exchanger 4.

図2は、図1に示される実施例において、補助熱交換器5を設けた本実施例と、本実施例のような補助熱交換器を備えていない場合の冷凍サイクルをモリエル線図上に示したものである。この図に示すように、補助熱交換器5がない場合には、冷凍サイクルはa→b→c→dの順に循環することになる。ここで冷却能力は、d→aにおけるエンタルピ差hと、冷凍サイクル内を循環する冷媒循環量gとの積によって表される。補助熱交換器5を備える本実施例の場合、補助熱交換器5に外部から供給される冷却水により、図上でc→eへと過冷却され、その後膨張装置3でe→fと減圧されるため、冷却能力は、f→aにおけるエンタルピ差iと冷凍サイクル内を循環する冷媒循環量gとの積によって表され、冷却能力を補助熱交換器5による過冷却分だけ増加させることができる。   FIG. 2 shows, on the Mollier diagram, the refrigeration cycle in the embodiment shown in FIG. 1 in which the auxiliary heat exchanger 5 is provided and the refrigeration cycle in the case where the auxiliary heat exchanger as in this embodiment is not provided. It is shown. As shown in this figure, when the auxiliary heat exchanger 5 is not provided, the refrigeration cycle circulates in the order of a → b → c → d. Here, the cooling capacity is represented by the product of the enthalpy difference h in d → a and the refrigerant circulation amount g circulating in the refrigeration cycle. In the case of the present embodiment including the auxiliary heat exchanger 5, the cooling water supplied from the outside to the auxiliary heat exchanger 5 is supercooled from c to e in the figure, and then reduced from e to f by the expansion device 3. Therefore, the cooling capacity is represented by the product of the enthalpy difference i in f → a and the refrigerant circulation amount g circulating in the refrigeration cycle, and the cooling capacity can be increased by the amount of subcooling by the auxiliary heat exchanger 5. it can.

一方、圧縮機の所要動力は、圧縮機の仕事分であるa→bのエンタルピ差jと冷凍サイクル内を循環する冷媒循環量gとの積によって表されるため、補助熱交換器がある場合とない場合とで差異はなく同じになる。従って、本実施例によれば、冷凍サイクルの成績係数(=冷却能力÷消費電力)を向上できることになる。   On the other hand, since the required power of the compressor is represented by the product of the enthalpy difference j of a → b which is the work of the compressor and the refrigerant circulation amount g circulating in the refrigeration cycle, there is an auxiliary heat exchanger There is no difference between the case where it is not and the case where it is not. Therefore, according to the present embodiment, the coefficient of performance (= cooling capacity ÷ power consumption) of the refrigeration cycle can be improved.

図3は、図1に示す実施例における熱源側熱交換器である空気熱交換器2を、水冷凝縮器9に変更した例を示し、他の構成は図1の実施例と同様である。矢印は冷媒の流れる方向を示す。   FIG. 3 shows an example in which the air heat exchanger 2 that is the heat source side heat exchanger in the embodiment shown in FIG. 1 is changed to a water-cooled condenser 9, and the other configurations are the same as those in the embodiment of FIG. Arrows indicate the direction of refrigerant flow.

以上述べた本発明の実施例によれば、冷却運転時に消費電力を増加させることなく過冷却度を大きく確保して、冷却能力を増加させ、冷凍サイクルの成績係数を向上させることができる効果が得られる。   According to the embodiment of the present invention described above, there is an effect that the degree of supercooling can be secured largely without increasing the power consumption during the cooling operation, the cooling capacity can be increased, and the coefficient of performance of the refrigeration cycle can be improved. can get.

図4は本発明の冷凍装置の第2実施例を示すもので、図1に示される実施例に対して、気液分離器6、ブリッジ回路7及び四方弁8を追加し、水側熱交換器4に供給される冷水又は温水に対して冷却運転と加熱運転の切換えを可能にし、冷水及び温水の両方をつくることを可能にした冷凍装置である。実線の矢印は冷却運転時の冷媒の流れ方向を示し、点線の矢印は加熱運転時の冷媒の流れ方向を示す。即ち、本実施例では、圧縮機1の吸込側に気液分離器を、圧縮機吐出側には四方弁8を設けている。また、ブリッジ回路7は熱源側熱交換器(空気熱交換器)2と水側熱交換器を接続する配管の間に設置されており、冷却運転と加熱運転のどちらの場合でも、冷媒はまず補助熱交換器5に流れた後膨張装置3に流れるように、冷媒の流れ方向が同一方向となるように、逆止弁を組合せて構成されている。前記気液分離器6は圧縮機1に液冷媒が直接戻らないようにするためのものである。   FIG. 4 shows a second embodiment of the refrigeration apparatus of the present invention. A gas-liquid separator 6, a bridge circuit 7 and a four-way valve 8 are added to the embodiment shown in FIG. This is a refrigeration apparatus that enables switching between a cooling operation and a heating operation with respect to cold water or hot water supplied to the vessel 4, and makes it possible to produce both cold water and hot water. The solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the dotted line arrows indicate the flow direction of the refrigerant during the heating operation. That is, in this embodiment, a gas-liquid separator is provided on the suction side of the compressor 1 and a four-way valve 8 is provided on the discharge side of the compressor. In addition, the bridge circuit 7 is installed between the pipe connecting the heat source side heat exchanger (air heat exchanger) 2 and the water side heat exchanger. A check valve is combined so that the refrigerant flows in the same direction so that it flows to the expansion device 3 after flowing to the auxiliary heat exchanger 5. The gas-liquid separator 6 is for preventing the liquid refrigerant from returning directly to the compressor 1.

冷却運転時には、圧縮機1から吐出された高温・高圧のガス冷媒は四方弁8により空気熱交換器2側に流れ、ここで冷却・凝縮されブリッジ回路7を経て補助熱交換器5に流れる。この補助熱交換器5で冷却水により更に冷却された後、膨張装置3に入り減圧膨張される。その後、再びブリッジ回路7を経て水側熱交換器4に流れ、水側熱交換器4に入口4aから流入する水を冷却して、冷媒は蒸発し、気液分離器6でガス冷媒だけが圧縮機に吸入される。水側熱交換器4で冷却された水(冷水)は出口4bから冷房用途等のために供給される。   During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the air heat exchanger 2 side by the four-way valve 8, where it is cooled and condensed and flows to the auxiliary heat exchanger 5 through the bridge circuit 7. After further cooling with cooling water in this auxiliary heat exchanger 5, it enters the expansion device 3 and is expanded under reduced pressure. Thereafter, the water flows again to the water-side heat exchanger 4 through the bridge circuit 7 and cools the water flowing into the water-side heat exchanger 4 from the inlet 4a, and the refrigerant evaporates. Inhaled into the compressor. Water (cold water) cooled by the water-side heat exchanger 4 is supplied from the outlet 4b for cooling purposes.

加熱運転時には、圧縮機1から吐出された高温・高圧のガス冷媒は四方弁8により水側熱交換器4側に流れ、この水側熱交換器4に供給された水を加熱し、冷媒は水を温めることにより凝縮・液化する。この凝縮・液化の際の熱量として、水が温められる。その後冷媒はブリッジ回路7を経て補助熱交換器5に入るが、加熱運転時には補助熱交換器5で冷媒を更に冷却する必要はないので、補助熱交換器5に冷却水を供給する必要はない(補助熱交換器での冷媒の冷却は行わない)。   During the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the water-side heat exchanger 4 side by the four-way valve 8, heats the water supplied to the water-side heat exchanger 4, and the refrigerant is Condensed and liquefied by warming water. Water is warmed as the amount of heat during this condensation and liquefaction. Thereafter, the refrigerant passes through the bridge circuit 7 and enters the auxiliary heat exchanger 5, but it is not necessary to further cool the refrigerant in the auxiliary heat exchanger 5 during the heating operation, and thus it is not necessary to supply cooling water to the auxiliary heat exchanger 5. (The refrigerant is not cooled in the auxiliary heat exchanger).

図5は、図4に示す実施例におけるブリッジ回路7をなくした場合の変形例である。冷却運転と加熱運転の切換えは四方弁8で為され、四方弁部における冷媒の流れ方向は図4の実施例と同様であるが、補助熱交換器5と膨張装置3との間における冷媒の流れ方向は冷却運転時と加熱運転時とでは逆方向になる。この図4に示す例では膨張装置3を水側熱交換器4と補助熱交換器5との間に設けているので、冷却運転時には実線の矢印で示すように、加熱運転時には点線の矢印で示すように冷媒は流れる。   FIG. 5 shows a modification in which the bridge circuit 7 in the embodiment shown in FIG. 4 is eliminated. Switching between the cooling operation and the heating operation is performed by the four-way valve 8, and the flow direction of the refrigerant in the four-way valve portion is the same as that in the embodiment of FIG. 4, but the refrigerant flow between the auxiliary heat exchanger 5 and the expansion device 3 is changed. The flow direction is opposite between the cooling operation and the heating operation. In the example shown in FIG. 4, since the expansion device 3 is provided between the water-side heat exchanger 4 and the auxiliary heat exchanger 5, as indicated by the solid line arrow during the cooling operation, the dotted line arrow is used during the heating operation. As shown, the refrigerant flows.

冷却運転時は、図1に示される第1実施例と同じ作用、効果が得られる。加熱運転時の場合、圧縮機1で圧縮・吐出された高温・高圧ガス冷媒は、水側熱交換器4により、水と熱交換され凝縮・液化し、膨張装置3により減圧・膨張され、補助熱交換器5で、補助熱交換器に供給される水と熱交換して熱量を奪い、渇き度が大きくなり、その後、空気熱交換器2に流入して空気と熱交換され、蒸発して再びガス冷媒となり、気液分離器6を経て圧縮機1へ戻る。温水は、水側熱交換器4で冷媒が凝縮・液化する際の熱量で水が温められ、製造される。このため、本実施例では、加熱能力を直接増加させる効果はないものの、冷凍サイクルの蒸発性能を向上できるため、蒸発圧力を高く保つことができる効果がある。   During the cooling operation, the same operation and effect as the first embodiment shown in FIG. 1 can be obtained. During the heating operation, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 is heat-exchanged with water by the water-side heat exchanger 4 to condense and liquefy, and is decompressed and expanded by the expansion device 3 to assist. The heat exchanger 5 exchanges heat with water supplied to the auxiliary heat exchanger to take heat, and the degree of thirst increases, and then flows into the air heat exchanger 2 to exchange heat with air and evaporate. It becomes a gas refrigerant again, and returns to the compressor 1 through the gas-liquid separator 6. Hot water is produced by warming water with the amount of heat generated when the refrigerant condenses and liquefies in the water-side heat exchanger 4. For this reason, in this embodiment, although there is no effect of directly increasing the heating capacity, it is possible to improve the evaporation performance of the refrigeration cycle, so that the evaporation pressure can be kept high.

図6は、図5に示される実施例において、補助熱交換器5がある場合と、ない場合の加熱運転時の冷凍サイクルをモリエル線図上に示したものである。補助熱交換器5がない場合、冷凍サイクルはk→l→m→nの順に循環することになり、ここで加熱能力はl→mにおけるエンタルピ差rと、冷凍サイクル内を循環する冷媒循環量sとの積によって表される。次に、補助熱交換器5がある場合には、蒸発圧力が高く保てるため、膨張装置3によってm→oへと減圧され、補助熱交換器5によって、o→pとなり、空気熱交換器2によってp→qの蒸発行程を辿ることになる。このように、空気熱交換器2が負担する熱交換量を、補助熱交換器5が一部負担するため、空気熱交換器2の出口冷媒温度を高く取り出すことが可能となる。そして、空気熱交換器2の出口冷媒温度にて過熱度を一定値に確保しようとする場合、即ち補助熱交換器5がない場合と同一の過熱度にする場合には、蒸発圧力を高く維持できる。蒸発圧力を高く保つことで、圧縮機1に吸入される冷媒の比体積を減少させ、冷媒循環量を増加できる効果が得られる(s→t)。更に、圧縮機1の効率を向上させる効果もあり、その結果加熱能力を増加できる効果も得られる。また、圧縮機1の全断熱効率を向上させる効果もあり、消費電力の低減も見込め、冷凍サイクルの成績係数を向上させることができる。蒸発圧力を高く保つことは、空気熱交換器内の冷媒の温度を高く保つことにもなり、加熱運転時における空気熱交換器2への着霜量を低減させることができる。この結果、着霜による加熱能力の減少を抑制でき、積算暖房能力を大幅に向上できる効果も得られる。   FIG. 6 shows on the Mollier diagram the refrigeration cycle during the heating operation with and without the auxiliary heat exchanger 5 in the embodiment shown in FIG. When the auxiliary heat exchanger 5 is not provided, the refrigeration cycle circulates in the order of k → l → m → n, where the heating capacity is the enthalpy difference r in l → m and the amount of refrigerant circulating in the refrigeration cycle. Expressed by the product of s. Next, when there is the auxiliary heat exchanger 5, the evaporation pressure can be kept high, so the pressure is reduced from m → o by the expansion device 3, and o → p by the auxiliary heat exchanger 5, and the air heat exchanger 2. Follows the evaporation process of p → q. Thus, since the auxiliary heat exchanger 5 partially bears the heat exchange amount borne by the air heat exchanger 2, the outlet refrigerant temperature of the air heat exchanger 2 can be taken out high. When the superheat degree is to be secured at the outlet refrigerant temperature of the air heat exchanger 2, that is, when the superheat degree is the same as when the auxiliary heat exchanger 5 is not provided, the evaporation pressure is kept high. it can. By keeping the evaporating pressure high, it is possible to reduce the specific volume of the refrigerant sucked into the compressor 1 and increase the refrigerant circulation amount (s → t). Furthermore, there is also an effect of improving the efficiency of the compressor 1, and as a result, an effect of increasing the heating capacity is also obtained. In addition, there is an effect of improving the total heat insulation efficiency of the compressor 1, and a reduction in power consumption can be expected, so that the coefficient of performance of the refrigeration cycle can be improved. Keeping the evaporation pressure high also keeps the temperature of the refrigerant in the air heat exchanger high, and the amount of frost on the air heat exchanger 2 during the heating operation can be reduced. As a result, a decrease in heating capacity due to frost formation can be suppressed, and an effect that the integrated heating capacity can be greatly improved is also obtained.

以上述べたように、本発明の第2実施例によれば、冷却運転と加熱運転の両方を可能とし、冷却運転時には前記第1実施例と同様の効果が得られると共に、加熱運転時には、蒸発圧力を上昇させて、加熱能力の増加、着霜量の低減を図ることができ、冷凍サイクルの成績係数と積算暖房能力を向上させることが可能になる。   As described above, according to the second embodiment of the present invention, both the cooling operation and the heating operation can be performed, the same effect as the first embodiment can be obtained during the cooling operation, and the evaporation can be performed during the heating operation. By increasing the pressure, it is possible to increase the heating capacity and reduce the amount of frost formation, and it is possible to improve the coefficient of performance and the integrated heating capacity of the refrigeration cycle.

本発明の冷凍装置の第1実施例を示す冷凍サイクル構成図である。1 is a configuration diagram of a refrigeration cycle showing a first embodiment of the refrigeration apparatus of the present invention. FIG. 図1の冷凍装置の効果を説明するためのモリエル線図である。It is a Mollier diagram for demonstrating the effect of the freezing apparatus of FIG. 図1に示す本発明の冷凍装置の一部変形例を示す冷凍サイクル構成図である。It is a refrigerating-cycle block diagram which shows the partial modification of the freezing apparatus of this invention shown in FIG. 本発明の冷凍装置の第2実施例を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows 2nd Example of the freezing apparatus of this invention. 図4に示す本発明の冷凍装置の一部変形例を示す冷凍サイクル構成図である。It is a refrigeration cycle block diagram which shows the partial modification of the refrigeration apparatus of this invention shown in FIG. 図5の冷凍装置の効果を説明するためのモリエル線図である。It is a Mollier diagram for demonstrating the effect of the freezing apparatus of FIG.

符号の説明Explanation of symbols

1…圧縮機、2…空気熱交換器(熱源側熱交換器)、3…膨張装置、4…水側熱交換器(利用側熱交換器)、5…補助熱交換器、6…気液分離器、7…ブリッジ回路、8…四方弁、9…水冷凝縮器(熱源側熱交換器)。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Air heat exchanger (heat source side heat exchanger), 3 ... Expansion device, 4 ... Water side heat exchanger (use side heat exchanger), 5 ... Auxiliary heat exchanger, 6 ... Gas liquid Separator, 7 ... Bridge circuit, 8 ... Four-way valve, 9 ... Water-cooled condenser (heat source side heat exchanger).

Claims (6)

圧縮機、凝縮器、膨張装置及び利用側熱交換器となる蒸発器が冷媒配管で接続されて冷凍サイクルを構成し、冷水を製造するようにした冷凍装置において、
前記冷媒配管における凝縮器と膨張装置との間に補助熱交換器を配置し、該補助熱交換器に冷却水を流すことにより、この冷却水と前記凝縮器で凝縮された液冷媒とを熱交換させるようにしたことを特徴とする冷凍装置。
In a refrigeration apparatus in which a compressor, a condenser, an expansion device, and an evaporator serving as a use-side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle and produce cold water,
An auxiliary heat exchanger is disposed between the condenser and the expansion device in the refrigerant pipe, and the cooling water is allowed to flow through the auxiliary heat exchanger, whereby the cooling water and the liquid refrigerant condensed in the condenser are heated. A refrigeration apparatus characterized by being exchanged.
請求項1において、前記凝縮器は空気で冷媒を冷却するようにした空気熱交換器で構成されていることを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the condenser comprises an air heat exchanger configured to cool the refrigerant with air. 請求項1において、前記凝縮器は水で冷媒を冷却するようにした水冷凝縮器で構成されていることを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the condenser is a water-cooled condenser configured to cool a refrigerant with water. 圧縮機、四方弁、熱源側熱交換器、膨張装置及び利用側熱交換器が冷媒配管で接続されて冷凍サイクルを構成し、冷温水を製造するようにした冷凍装置において、
前記冷媒配管における熱源側熱交換器と利用側熱交換器との間に、冷媒配管を流れる冷媒を冷却水と熱交換させるための補助熱交換器を配置し、
更に、この補助熱交換器で冷却された冷媒が前記膨張装置に、冷却運転及び加熱運転の何れにおいても常に同一方向から流入するように、逆止弁で構成されたブリッジ回路を備えることを特徴とする冷凍装置。
In a refrigeration system in which a compressor, a four-way valve, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle, and produce cold / hot water,
Between the heat source side heat exchanger and the use side heat exchanger in the refrigerant pipe, an auxiliary heat exchanger for exchanging heat with the coolant flowing through the refrigerant pipe is arranged,
In addition, a bridge circuit constituted by a check valve is provided so that the refrigerant cooled by the auxiliary heat exchanger always flows into the expansion device from the same direction in both the cooling operation and the heating operation. Refrigeration equipment.
圧縮機、四方弁、熱源側熱交換器、膨張装置及び利用側熱交換器が冷媒配管で接続されて冷凍サイクルを構成し、冷温水を製造するようにした冷凍装置において、
前記冷媒配管における熱源側熱交換器と利用側熱交換器との間に、冷媒配管を流れる冷媒を水と熱交換させるための補助熱交換器を配置し、前記補助熱交換器の主側には前記冷媒を流し、補助熱交換器の副側には水を流すと共に、
前記補助熱交換器と前記膨張装置における冷媒流れ方向が、冷却運転と加熱運転では逆方向になるようにしたことを特徴とする冷凍装置。
In a refrigeration system in which a compressor, a four-way valve, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle, and produce cold / hot water,
An auxiliary heat exchanger for exchanging heat between the refrigerant flowing through the refrigerant pipe and water is disposed between the heat source side heat exchanger and the use side heat exchanger in the refrigerant pipe, and is arranged on the main side of the auxiliary heat exchanger. Flowing the refrigerant, flowing water to the auxiliary side of the auxiliary heat exchanger,
The refrigeration apparatus characterized in that the refrigerant flow directions in the auxiliary heat exchanger and the expansion device are opposite in the cooling operation and the heating operation.
請求項5において、前記補助熱交換器は、前記熱源側熱交換器と前記膨張装置との間に配置され、冷水製造時には熱源側熱交換器で冷却された冷媒を更に冷却した後、膨張装置で減圧膨張させ、温水製造時には利用側熱交換器で冷却された冷媒を膨張装置で減圧膨張させた後、前記補助熱交換器と熱源側熱交換器で冷媒を蒸発させるように構成したことを特徴とする冷凍装置。
6. The expansion device according to claim 5, wherein the auxiliary heat exchanger is disposed between the heat source side heat exchanger and the expansion device, and further cools the refrigerant cooled by the heat source side heat exchanger at the time of cold water production, In the hot water production, the refrigerant cooled by the use side heat exchanger is decompressed and expanded by the expansion device, and then the auxiliary heat exchanger and the heat source side heat exchanger are configured to evaporate the refrigerant. Refrigeration equipment characterized.
JP2005033762A 2005-02-10 2005-02-10 Freezer Pending JP2006220351A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005033762A JP2006220351A (en) 2005-02-10 2005-02-10 Freezer
CN 200610004767 CN1818506A (en) 2005-02-10 2006-02-10 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033762A JP2006220351A (en) 2005-02-10 2005-02-10 Freezer

Publications (1)

Publication Number Publication Date
JP2006220351A true JP2006220351A (en) 2006-08-24

Family

ID=36918628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033762A Pending JP2006220351A (en) 2005-02-10 2005-02-10 Freezer

Country Status (2)

Country Link
JP (1) JP2006220351A (en)
CN (1) CN1818506A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072379A1 (en) * 2007-12-07 2009-06-11 Mitsubishi Heavy Industries, Ltd. Refrigerant circuit
WO2010023737A1 (en) * 2008-08-27 2010-03-04 株式会社前川製作所 Two-stage compressor heat pump cycling apparatus
JP2010216692A (en) * 2009-03-16 2010-09-30 Nippon Light Metal Co Ltd Heat exchange device for outdoor unit of air conditioning system
JP2011106798A (en) * 2009-11-13 2011-06-02 Isao Yamashita Exhaust cooling generator
KR101608919B1 (en) * 2014-10-14 2016-04-04 유한회사 일광산업사 High efficiency heat pump system, and super-cooling and heat absorption compensation apparatus thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
CN103900282B (en) * 2012-12-28 2016-10-05 珠海格力电器股份有限公司 Freezing unit and there is its refrigerator car
ES2805204T3 (en) * 2016-11-01 2021-02-11 Weiss Umwelttechnik Gmbh Test chamber
CN110398085A (en) * 2019-08-17 2019-11-01 广东纽恩泰新能源科技发展有限公司 A kind of heat pump system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830453U (en) * 1971-08-16 1973-04-13
JPS4971855U (en) * 1972-10-04 1974-06-21
JPH05264121A (en) * 1992-03-23 1993-10-12 Aisin Seiki Co Ltd Engine-driven air conditioner
JPH08233386A (en) * 1995-03-01 1996-09-13 Aisin Seiki Co Ltd Heat exchanger
JP2000121108A (en) * 1999-11-01 2000-04-28 Hitachi Ltd Air-conditioner
JP2000320917A (en) * 1999-05-06 2000-11-24 Hitachi Ltd Heat pump cold/hot water machine
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830453U (en) * 1971-08-16 1973-04-13
JPS4971855U (en) * 1972-10-04 1974-06-21
JPH05264121A (en) * 1992-03-23 1993-10-12 Aisin Seiki Co Ltd Engine-driven air conditioner
JPH08233386A (en) * 1995-03-01 1996-09-13 Aisin Seiki Co Ltd Heat exchanger
JP2000320917A (en) * 1999-05-06 2000-11-24 Hitachi Ltd Heat pump cold/hot water machine
JP2000121108A (en) * 1999-11-01 2000-04-28 Hitachi Ltd Air-conditioner
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072379A1 (en) * 2007-12-07 2009-06-11 Mitsubishi Heavy Industries, Ltd. Refrigerant circuit
JP2009139037A (en) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
WO2010023737A1 (en) * 2008-08-27 2010-03-04 株式会社前川製作所 Two-stage compressor heat pump cycling apparatus
JP5346343B2 (en) * 2008-08-27 2013-11-20 株式会社前川製作所 Two-stage compression heat pump cycle device
JP2010216692A (en) * 2009-03-16 2010-09-30 Nippon Light Metal Co Ltd Heat exchange device for outdoor unit of air conditioning system
JP2011106798A (en) * 2009-11-13 2011-06-02 Isao Yamashita Exhaust cooling generator
KR101608919B1 (en) * 2014-10-14 2016-04-04 유한회사 일광산업사 High efficiency heat pump system, and super-cooling and heat absorption compensation apparatus thereof

Also Published As

Publication number Publication date
CN1818506A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP5595245B2 (en) Refrigeration equipment
JP6125000B2 (en) Dual refrigeration equipment
JP3102651U (en) Refrigerator refrigerator with two evaporators
JP2006220351A (en) Freezer
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP4827191B2 (en) Operation method of heat pump using CO2 as refrigerant
JP2006284022A (en) Geothermal heat pump device
US20090223232A1 (en) Defrost system
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP4999530B2 (en) Air conditioner
KR20080103855A (en) Refrigerating system
JP2007051788A (en) Refrigerating device
JP2012237518A (en) Air conditioner
JP2004108616A (en) Hot-water supply system for co2 refrigerating cycle
JP2006003023A (en) Refrigerating unit
JP2002061980A (en) Compression type heat pump air conditioner and method for operating the same
KR20130055790A (en) High efficiency heat pump type cooling and heating apparatus
JP2008267731A (en) Air-conditioning device
JP2002327969A (en) Refrigerating system
JP6455752B2 (en) Refrigeration system
KR100951685B1 (en) Apparatus for supplying cold-hot water or air for air-conditioning of hybrid heat-pump type
JP2001304619A (en) Ice storage type air conditioner
JP2008145002A (en) Air conditioning device
JP2000320908A (en) Refrigerating cycle circuit
JP3097971U (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20071221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A977 Report on retrieval

Effective date: 20100311

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Effective date: 20100914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A02