JP2012237518A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012237518A
JP2012237518A JP2011107631A JP2011107631A JP2012237518A JP 2012237518 A JP2012237518 A JP 2012237518A JP 2011107631 A JP2011107631 A JP 2011107631A JP 2011107631 A JP2011107631 A JP 2011107631A JP 2012237518 A JP2012237518 A JP 2012237518A
Authority
JP
Japan
Prior art keywords
refrigerant
tube
inner tube
air conditioner
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011107631A
Other languages
Japanese (ja)
Inventor
Gaiken O
凱建 王
Kayoko Maruyama
佳代子 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011107631A priority Critical patent/JP2012237518A/en
Publication of JP2012237518A publication Critical patent/JP2012237518A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner achieving an environmental friendliness by using a refrigerant having a low warming potential, and achieving resource saving performance that achieves refrigerant saving performance and miniaturization of a device.SOLUTION: This air conditioner includes a refrigerating cycle 11 that circulates the refrigerant in the order of a compressor 20, a condenser 12, a subcool circuit 14, an expansion valve 17 and an evaporator 19. In the air conditioner, the subcool circuit 14 has such a structure that a small-diameter inner tube is inserted into a large-diameter outer tube without being directly brought into contact with the inner peripheral surface of the outer tube and also a plurality of intermediate tubes are inserted into a clearance between the outer tube and the inner tube so as to be brought into tight contact with the outer peripheral surface of at least the inner tube, and is so configured that in the inner tube, a heat exchange medium is allowed to flow; meanwhile, the refrigerant subjected to heat exchange is allowed to flow to the whole clearance between the outer tube and the inner tube together with the insides of the intermediate tubes.

Description

本発明は、熱交換器に過冷却部を設けた空気調和機に関する。   The present invention relates to an air conditioner in which a supercooler is provided in a heat exchanger.

従来は、冷凍サイクルの性能向上のため、凝縮部にサブクールコンデンサ(過冷却部)を設け、冷媒としてR1234yfを使用すると共に、サブクールコンデンサの出口側冷媒と蒸発器の出口側冷媒との間で熱交換を行う内部熱交換器を設け、さらにサブクールコンデンサの過冷却部の占有率を最適化した冷凍サイクルが開示されている(特許文献1参照)。   Conventionally, in order to improve the performance of the refrigeration cycle, a subcool condenser (supercooling section) is provided in the condensing section, and R1234yf is used as the refrigerant, and heat is generated between the outlet side refrigerant of the subcool condenser and the outlet side refrigerant of the evaporator. There is disclosed a refrigeration cycle in which an internal heat exchanger for exchanging is provided and the occupation ratio of the subcooling section of the subcool condenser is optimized (see Patent Document 1).

また、従来は、室内熱交換器の下流側に配置される空気通路を介して暖房運転時に室内熱交換器の前面側、かつ下側の冷媒出口から冷媒が流出するように、室内熱交換器に冷媒を流すと共に、冷媒の循環量を制御する制御装置とを備えた空気調和機が開示されている。この制御装置は、暖房運転時に室内熱交換器の前面側、かつ下側熱交換部がサブクール状態となるように冷媒の循環量を制御している(特許文献2参照)。   Further, conventionally, the indoor heat exchanger is configured such that the refrigerant flows out from the front and lower refrigerant outlets of the indoor heat exchanger during the heating operation via an air passage disposed on the downstream side of the indoor heat exchanger. An air conditioner including a control device that controls the circulation amount of the refrigerant while flowing the refrigerant is disclosed. This control device controls the circulation amount of the refrigerant so that the front side of the indoor heat exchanger and the lower heat exchange section are in the subcooled state during the heating operation (see Patent Document 2).

また、従来は、サブクール型凝縮器を採用する冷凍サイクル装置において、冷却運転モードと加熱運転モードとを切り替え可能としている。冷却運転モード時には、COPを向上させるようにしている。加熱運転モード時には、過冷却用熱交換部を迂回させるように冷媒の流す冷媒バイパス装置を設け、室外熱交換器内を流通する冷媒に生じる圧力損失を低下させる。これにより、圧縮機駆動動力を低減させて、加熱運転モード時におけるCOPについても向上させることができる(特許文献3参照)。   Conventionally, in a refrigeration cycle apparatus that employs a subcool condenser, the cooling operation mode and the heating operation mode can be switched. In the cooling operation mode, COP is improved. In the heating operation mode, a refrigerant bypass device through which the refrigerant flows is provided so as to bypass the supercooling heat exchange section, and pressure loss generated in the refrigerant flowing through the outdoor heat exchanger is reduced. Thereby, compressor drive power can be reduced and it can improve also about COP at the time of heating operation mode (refer to patent documents 3).

特開2010−255906号公報JP 2010-255906 A 特開2010−243018号公報JP 2010-243018 A 特開2009−236404号公報JP 2009-236404 A

上記したように、従来様々な熱交換器を備えた装置が提案されているが、近年では使用される冷媒の温暖化係数による環境性が強く求められてきていると共に、制御の安定性に伴う性能の保証、省エネ性(熱交換効率の向上)、省資材性(省冷媒性と装置の小型化)、低コスト性などのニーズも念頭に置いておく必要がある。例えば、温暖化係数が相対的に低いR32(冷媒)を用いた冷凍サイクルを検討する際に、サブクール量(SC)が2℃以下の場合に膨張弁の開度が安定しない結果となった。凝縮器出口にサイトグラスを取り付け冷媒状態を確認した際にサブクール量が十分でない場合は、クリアな液にならず、ガスが混在する状態となって、それが膨張弁での流体の大きな抵抗が発生する原因になるものと推測することができる。R32の熱物性によると、R410A(冷媒)と比べて潜熱量が約50%向上すると共に、密度が約20%減少する。従って、R410Aと同じ能力の条件において、R32の省冷媒性(冷媒量が少なくなり、熱交換器を小型化できる)を大きく見込むことができる。   As described above, devices having various heat exchangers have been proposed in the past, but in recent years, environmental properties due to the global warming potential of the refrigerant used have been strongly demanded, and the stability of the control is accompanied. It is also necessary to keep in mind the needs such as performance guarantee, energy saving (improving heat exchange efficiency), material saving (refrigerant saving and downsizing of equipment), and low cost. For example, when examining a refrigeration cycle using R32 (refrigerant) having a relatively low warming coefficient, the opening degree of the expansion valve is not stable when the subcool amount (SC) is 2 ° C. or less. If the amount of subcooling is not enough when a sight glass is attached to the outlet of the condenser and the refrigerant state is confirmed, it will not be a clear liquid and gas will be mixed, which will cause a large fluid resistance at the expansion valve. It can be inferred that this is a cause of occurrence. According to the thermophysical properties of R32, the amount of latent heat is improved by about 50% and the density is reduced by about 20% compared to R410A (refrigerant). Therefore, under the conditions of the same capability as R410A, it is possible to greatly expect the refrigerant saving property of R32 (the amount of refrigerant is reduced and the heat exchanger can be downsized).

しかしながら、上述したように、凝縮器出口でサブクール量(SC)が2℃以下になると、冷房、暖房ともに冷凍サイクル制御が困難になるため、R32を用いた冷凍サイクルの制御上は、最低でもサブクール量(SC)を2℃よりも大きくする必要がある。   However, as described above, when the subcooling amount (SC) at the condenser outlet becomes 2 ° C. or lower, it is difficult to control the refrigeration cycle for both cooling and heating. Therefore, the control of the refrigeration cycle using R32 is at least subcooled. The amount (SC) needs to be greater than 2 ° C.

そこで、上記特許文献1では、冷媒としてR1234yfを使用するにあたって、サブクールが性能向上に寄与するように工夫されているが、冷凍サイクル制御の安定性については考慮されていないという問題があった。   Therefore, in the above-mentioned Patent Document 1, when R1234yf is used as the refrigerant, the subcool is devised so as to contribute to the performance improvement, but there is a problem that the stability of the refrigeration cycle control is not taken into consideration.

また、上記特許文献2では、制御装置により暖房運転時に室内熱交換器の前面側で、かつ下側熱交換部がサブクール状態となるように冷媒の循環量を制御し、室内機の足元の暖房効果を強化しており、上記特許文献3では、サブクールの確保により運転モードによらずにCOPが向上するように工夫されている。しかしながら、上記特許文献2および3では、省資材性(省冷媒性と熱交換器の小型化)やサブクールの確保(2℃よりも大きくする)に関する課題が解決されていないという問題があった。   Moreover, in the said patent document 2, the circulation amount of a refrigerant | coolant is controlled by the control apparatus so that a lower side heat exchange part may be in a subcool state in the front side of an indoor heat exchanger at the time of heating operation, and heating of the foot of an indoor unit is carried out. The above-described Patent Document 3 is devised so that the COP is improved regardless of the operation mode by securing the subcool. However, Patent Documents 2 and 3 have a problem that the problems relating to material saving (refrigerant saving and heat exchanger miniaturization) and securing of subcooling (greater than 2 ° C.) are not solved.

本発明は、上記に鑑みてなされたものであって、温暖化係数の低い冷媒を用いることにより環境性を達成すると共に、制御の安定性に伴う性能の保証、省エネ性、省冷媒性と装置の小型化が達成可能な省資材性、および低コスト性を図ることが可能な空気調和機を得ることを目的とする。   The present invention has been made in view of the above, and achieves environmental performance by using a refrigerant having a low global warming coefficient, and also guarantees performance associated with control stability, energy saving, refrigerant saving and an apparatus. An object of the present invention is to obtain an air conditioner capable of achieving material saving and low cost that can achieve downsizing.

上述した課題を解決し、目的を達成するために、本発明は、冷媒を圧縮する圧縮機と、冷媒の熱を放出させる放熱器と、冷媒を熱交換媒体により冷却する冷媒冷却手段と、冷媒の流量を調整する流量制御弁と、冷媒を蒸発させる蒸発器と、前記冷媒冷却手段における熱交換量を制御する熱交換量制御手段とを備え、前記圧縮機、前記放熱器、前記冷媒冷却手段、前記流量制御弁、前記蒸発器の順に冷媒を循環させる冷凍サイクルを有する空気調和機において、前記冷媒冷却手段は、太径の外管内に細径の内管が前記外管の内周面に直接に接触することなく内挿されていると共に、前記外管と前記内管との間の間隙に、複数の中管を少なくとも前記内管の外周面に密接するように内挿配置せしめられてなる構造を有し、且つ前記内管内には、前記熱交換媒体が流通せしめられる一方、前記中管内と共に、前記外管と内管との間の間隙全体に熱交換される前記冷媒を流通せしめられるように構成されていることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a compressor that compresses a refrigerant, a radiator that releases the heat of the refrigerant, a refrigerant cooling means that cools the refrigerant using a heat exchange medium, and a refrigerant A flow control valve for adjusting the flow rate of the refrigerant, an evaporator for evaporating the refrigerant, and a heat exchange amount control means for controlling a heat exchange amount in the refrigerant cooling means, the compressor, the radiator, and the refrigerant cooling means. In the air conditioner having a refrigeration cycle in which the refrigerant is circulated in the order of the flow rate control valve and the evaporator, the refrigerant cooling means includes a large-diameter outer tube and a small-diameter inner tube on the inner peripheral surface of the outer tube. Inserted without direct contact, and inserted into the gap between the outer tube and the inner tube so that a plurality of inner tubes are in close contact with at least the outer peripheral surface of the inner tube. And the inner tube has a front While the heat exchange medium is caused to flow, together with the in tube, characterized in that it is adapted to be caused to flow the refrigerant to be heat exchanged across the gap between the outer tube and the inner tube.

また、本発明の好ましい態様によれば、前記冷媒冷却手段は、太径の外管内に中径の第1内管が前記外管の内周面に直接に接触することなく内挿されていると共に、前記第1内管内に細径の第2内管が前記第1内管内の内周面に直接に接触することなく内挿され、前記外管と前記第1内管との間の間隙に、複数の前記中管を少なくとも前記第1内管の外周面に密接するように内挿配置せしめられてなる構造を有し、且つ前記第2内管内、および前記中管内と共に、前記外管と前記第1内管との間の間隙全体に前記熱交換媒体が流通せしめられる一方、前記第1内管と前記第2内管との間の間隙全体に熱交換される前記冷媒を流通せしめられるように構成されていることが望ましい。   Further, according to a preferred aspect of the present invention, the refrigerant cooling means is inserted into the thick outer tube without the medium diameter first inner tube being in direct contact with the inner peripheral surface of the outer tube. In addition, a second inner tube having a small diameter is inserted into the first inner tube without directly contacting the inner peripheral surface of the first inner tube, and a gap between the outer tube and the first inner tube is inserted. A plurality of the intermediate pipes are inserted and arranged so as to be in close contact with at least the outer peripheral surface of the first inner pipe, and the outer pipe together with the second inner pipe and the inner pipe The heat exchange medium is circulated through the entire gap between the first inner pipe and the first inner pipe, while the refrigerant is circulated through the entire gap between the first inner pipe and the second inner pipe. It is desirable to be configured.

また、本発明の好ましい態様によれば、前記冷媒は、R32を用いていることが望ましい。   Moreover, according to a preferable aspect of the present invention, it is desirable that R32 is used as the refrigerant.

また、本発明の好ましい態様によれば、前記外管の内径は、4mm〜10mmの範囲であり、前記中管の内径は、0.25mm〜1.00mmの範囲であることが望ましい。   According to a preferred aspect of the present invention, it is desirable that the outer tube has an inner diameter in the range of 4 mm to 10 mm, and the inner tube has an inner diameter in the range of 0.25 mm to 1.00 mm.

また、本発明の好ましい態様によれば、前記熱交換量制御手段は、前記冷媒冷却手段の出口で検出された前記冷媒の液温度と飽和液温度との温度差が2℃よりも大きくなるように、前記流量制御弁に対して前記冷媒の流量を制御することが望ましい。   Further, according to a preferred aspect of the present invention, the heat exchange amount control means is configured such that the temperature difference between the refrigerant liquid temperature and the saturated liquid temperature detected at the outlet of the refrigerant cooling means is greater than 2 ° C. In addition, it is desirable to control the flow rate of the refrigerant with respect to the flow rate control valve.

また、本発明の好ましい態様によれば、前記冷媒冷却手段は、前記熱交換媒体の流量を調整する流量調整手段をさらに備え、前記熱交換量制御手段は、前記冷媒冷却手段の出口で検出された前記冷媒の液温度と飽和液温度との温度差が2℃よりも大きくなるように、前記流量調整手段に対して前記熱交換媒体の流量を制御することが望ましい。   According to a preferred aspect of the present invention, the refrigerant cooling means further includes a flow rate adjusting means for adjusting a flow rate of the heat exchange medium, and the heat exchange amount control means is detected at an outlet of the refrigerant cooling means. In addition, it is desirable to control the flow rate of the heat exchange medium with respect to the flow rate adjusting means so that the temperature difference between the liquid temperature of the refrigerant and the saturated liquid temperature is greater than 2 ° C.

本発明によれば、冷媒冷却手段として、太径の外管内に細径の内管を外管の内周面に直接に接触することなく内挿し、外管と内管との間に複数の中管を内管の外周面に密接するように内挿配置し、内管内には熱交換媒体を流通させ、中管内と共に、外管と内管との間の間隙全体に冷媒を流通させるように構成している。そのため、20〜30cmの長さで冷媒冷却手段による過冷却がとれるようになり、液冷媒の流れる領域が短くて済むことから省冷媒性と装置の小型化が可能な空気調和機が得られるという効果を奏する。   According to the present invention, as a refrigerant cooling means, a thin inner pipe is inserted into a large outer pipe without directly contacting the inner peripheral surface of the outer pipe, and a plurality of outer pipes are arranged between the outer pipe and the inner pipe. The inner tube is inserted and arranged so as to be in close contact with the outer peripheral surface of the inner tube, the heat exchange medium is circulated in the inner tube, and the refrigerant is circulated in the entire gap between the outer tube and the inner tube together with the inner tube. It is configured. Therefore, the supercooling by the refrigerant cooling means can be taken with a length of 20 to 30 cm, and the area where the liquid refrigerant flows can be shortened, so that an air conditioner capable of saving refrigerant and miniaturizing the apparatus is obtained. There is an effect.

図1は、本実施例にかかる空気調和機の冷凍サイクルの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a refrigeration cycle of an air conditioner according to the present embodiment. 図2は、冷媒の相変化と圧力の関係を示すp−h線図である。FIG. 2 is a ph diagram showing the relationship between refrigerant phase change and pressure. 図3は、凝縮器内の冷媒状態分布を示す模式図である。FIG. 3 is a schematic diagram showing a refrigerant state distribution in the condenser. 図4は、本実施例にかかる空気調和機の冷凍サイクルにおける温度センサーと温度との関係を冷房と暖房毎に示したグラフである。FIG. 4 is a graph showing the relationship between the temperature sensor and the temperature in the refrigeration cycle of the air conditioner according to the present example for each cooling and heating. 図5−1は、本実施例にかかるヒートパイプ式のサブクール回路の構成例を示す図である。FIG. 5A is a diagram of a configuration example of a heat pipe type subcool circuit according to the present embodiment. 図5−2は、図5−1のハニカムパイプのB−B線断面図である。FIG. 5B is a cross-sectional view of the honeycomb pipe of FIG. 図6は、本実施例にかかる空気強制対流式のサブクール回路の構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of an air forced convection type subcool circuit according to the present embodiment. 図7は、図6のサブクール回路を用いた空気調和機の冷凍サイクルの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a refrigeration cycle of an air conditioner using the subcool circuit of FIG. 図8は、本実施例にかかる水循環式のサブクール回路の構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of a water circulation type subcool circuit according to the present embodiment. 図9は、ハニカムパイプに用いられるマイクロチャネルの等価直径と圧力損失との関係を示す線図である。FIG. 9 is a diagram showing the relationship between the equivalent diameter of the microchannel used for the honeycomb pipe and the pressure loss. 図10は、ハニカムパイプに用いられるマイクロチャネルの流量と圧力損失との関係を示す線図である。FIG. 10 is a diagram showing the relationship between the flow rate of the microchannel used in the honeycomb pipe and the pressure loss. 図11は、ハニカムパイプに用いられるマイクロチャネルの等価直径と熱伝達率との関係を示す線図である。FIG. 11 is a diagram showing the relationship between the equivalent diameter of a microchannel used for a honeycomb pipe and the heat transfer coefficient. 図12は、ハニカムパイプに用いられるマイクロチャネルの流量と熱伝達率との関係を示す線図である。FIG. 12 is a diagram showing the relationship between the flow rate of the microchannel used for the honeycomb pipe and the heat transfer coefficient. 図13−1は、ハニカムパイプの断面構成例を示す図である。FIG. 13-1 is a diagram illustrating a cross-sectional configuration example of a honeycomb pipe. 図13−2は、ハニカムパイプの断面構成例を示す図である。FIG. 13-2 is a diagram illustrating a cross-sectional configuration example of the honeycomb pipe. 図13−3は、ハニカムパイプの断面構成例を示す図である。FIG. 13-3 is a diagram illustrating a cross-sectional configuration example of the honeycomb pipe. 図14は、ハニカムパイプの断面構成例を示す図である。FIG. 14 is a diagram illustrating a cross-sectional configuration example of a honeycomb pipe. 図15は、ハニカムパイプの断面構成例を示す図である。FIG. 15 is a diagram illustrating a cross-sectional configuration example of the honeycomb pipe.

以下に、本発明にかかる空気調和機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an air conditioner according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本実施例にかかる空気調和機の冷凍サイクルに用いられる冷媒冷却手段としてのサブクール回路は、冷媒に例えばR32を用いており、その冷媒を冷却する熱交換媒体としての冷却流体に例えば、空気、水などを好適に用いることができる。なお、冷媒および冷却流体は、上記以外のものを用いて実施することも可能である。   The subcool circuit as the refrigerant cooling means used in the refrigeration cycle of the air conditioner according to the present embodiment uses, for example, R32 as the refrigerant, and uses, for example, air, water as the cooling fluid as the heat exchange medium for cooling the refrigerant. Etc. can be used suitably. In addition, it is also possible to implement using a refrigerant | coolant and a cooling fluid other than the above.

まず、本実施例にかかる冷凍サイクルの構成について説明する。図1は、本実施例にかかる空気調和機の冷凍サイクルの構成例を示す図である。冷凍サイクル11は、気体冷媒が圧縮機20で圧縮されると温度が高くなり、これを放熱器(ここでは、室外熱交換器)としての凝縮器12で気体冷媒の熱を放出させることで冷媒を液体に変化させる。液体になった冷媒は、凝縮器出口配管13を通って冷媒冷却手段としてのサブクール回路14に入り、熱交換媒体としての冷却流体と熱交換することで冷却される。サブクール回路14のサブクール回路出口配管15から出た冷媒は、温度センサー16で温度が検出され、冷媒の流量を調節する流量制御弁としての膨張弁17を通って低圧液となり、蒸発器へ送られる。低圧液となった冷媒は、蒸発器19に送られると蒸発して気化し、周囲から気化熱を奪って冷却を行う。蒸発器19で蒸発した気体冷媒は、再び上記圧縮機20に戻って圧縮される。このように、本実施例の冷凍サイクル11は構成されている。   First, the configuration of the refrigeration cycle according to the present embodiment will be described. FIG. 1 is a diagram illustrating a configuration example of a refrigeration cycle of an air conditioner according to the present embodiment. In the refrigeration cycle 11, when the gaseous refrigerant is compressed by the compressor 20, the temperature becomes high, and the refrigerant is released by releasing the heat of the gaseous refrigerant with a condenser 12 as a radiator (here, an outdoor heat exchanger). To liquid. The refrigerant that has become liquid passes through the condenser outlet pipe 13 and enters the subcool circuit 14 as the refrigerant cooling means, and is cooled by exchanging heat with the cooling fluid as the heat exchange medium. The temperature of the refrigerant from the subcool circuit outlet pipe 15 of the subcool circuit 14 is detected by a temperature sensor 16 and passes through an expansion valve 17 as a flow rate control valve for adjusting the flow rate of the refrigerant to be low-pressure liquid and sent to the evaporator. . When the refrigerant that has become a low-pressure liquid is sent to the evaporator 19, it evaporates and vaporizes, and cools by removing the heat of vaporization from the surroundings. The gaseous refrigerant evaporated in the evaporator 19 returns to the compressor 20 and is compressed again. Thus, the refrigeration cycle 11 of the present embodiment is configured.

また、本実施例における熱交換量制御手段としての制御部18は、図1に示すように、温度センサー16で検出された冷媒の温度と当該冷媒の飽和液温度とを比較して所定の温度差が得られているか否かを判断し、所定の温度差(R32冷媒の場合は2℃よりも大きい)が得られていない場合は、膨張弁17に対して冷媒の流量を制御することにより所定の温度差が得られるようにしている。   Further, as shown in FIG. 1, the control unit 18 serving as a heat exchange amount control unit in the present embodiment compares the refrigerant temperature detected by the temperature sensor 16 with the saturated liquid temperature of the refrigerant to obtain a predetermined temperature. It is determined whether or not a difference is obtained, and if a predetermined temperature difference (greater than 2 ° C. in the case of R32 refrigerant) is not obtained, the refrigerant flow rate is controlled with respect to the expansion valve 17. A predetermined temperature difference is obtained.

図3は、凝縮器内の冷媒状態分布を示す模式図であり、ガス冷媒状態で流入した冷媒が、2相状態を経て、液冷媒状態21へと変化することを説明している。通常、冷媒が凝縮器12内で十分液化するように制御している。しかし液冷媒は熱交換にほとんど寄与しないため、凝縮器内の液冷媒が流れる部分は無駄なスペースとなる。また、液冷媒はガス冷媒に比べ単位体積あたりの質量が大きいため、凝縮器内の液冷媒が流れる部分が大きいと、多量の冷媒が必要となる。   FIG. 3 is a schematic diagram showing the refrigerant state distribution in the condenser, and illustrates that the refrigerant flowing in the gas refrigerant state changes to the liquid refrigerant state 21 through the two-phase state. Usually, the refrigerant is controlled so as to be sufficiently liquefied in the condenser 12. However, since the liquid refrigerant hardly contributes to heat exchange, a portion where the liquid refrigerant flows in the condenser becomes a useless space. In addition, since the liquid refrigerant has a larger mass per unit volume than the gas refrigerant, a large amount of refrigerant is required if the portion through which the liquid refrigerant flows in the condenser is large.

図4は、図1で示す冷凍サイクル11に設けた各温度センサー1〜10により検出される温度との関係を冷房と暖房毎に示したグラフであり、例えば図1中の温度センサー6は室外熱交換器(凝縮器12+サブクール回路14)の出口温度を示している。しかし、本実施例の室外熱交換器の出口温度は、図1に示すようにサブクール回路14が凝縮器12と膨張弁17との間に配置されているため、サブクール回路出口配管15に設けられている温度センサー16の温度となる。この冷房時、暖房時における温度センサー16の温度は、R32冷媒の飽和液温度に対して2℃よりも大きい温度差がとれていれば、図3に示すように、凝縮器12においてガス冷媒状態から2相状態(ガス冷媒と液冷媒が混合した状態)を経て、サブクール回路14において液冷媒状態21となっていると判断することができる。つまり、図2のp−h線図の凝縮器による凝縮過程(X→Y)では、図中の曲線で示した飽和蒸気線(頂点から右側の線)及び飽和液線(頂点から左側の線)に対して所定の温度差がとれていないため、冷媒がガス冷媒状態から2相状態(液リッチ)まで変化している。そして、図2のp−h線図に示すサブクール回路による過冷却過程(Y→Z)では、冷媒をサブクール回路14で過冷却することにより、図中の曲線で示した飽和液線に対して所定の温度差がとれると、液冷媒状態21とすることができる。   FIG. 4 is a graph showing the relationship between the temperatures detected by the temperature sensors 1 to 10 provided in the refrigeration cycle 11 shown in FIG. 1 for each cooling and heating. For example, the temperature sensor 6 in FIG. The outlet temperature of the heat exchanger (condenser 12 + subcool circuit 14) is shown. However, the outlet temperature of the outdoor heat exchanger of the present embodiment is provided in the subcool circuit outlet pipe 15 because the subcool circuit 14 is disposed between the condenser 12 and the expansion valve 17 as shown in FIG. It becomes the temperature of the temperature sensor 16. As shown in FIG. 3, the temperature of the temperature sensor 16 at the time of cooling and heating is larger than 2 ° C. with respect to the saturated liquid temperature of the R32 refrigerant. It can be determined that the subcooling circuit 14 is in the liquid refrigerant state 21 through a two-phase state (a state where the gas refrigerant and the liquid refrigerant are mixed). That is, in the condensation process (X → Y) by the condenser in the ph diagram of FIG. 2, the saturated vapor line (line from the apex to the right) and the saturated liquid line (line from the apex to the left) shown by the curve in the figure. ), The refrigerant has changed from a gas refrigerant state to a two-phase state (liquid rich). Then, in the subcooling process (Y → Z) by the subcool circuit shown in the ph diagram of FIG. 2, the refrigerant is supercooled by the subcool circuit 14, so that the saturated liquid line indicated by the curve in FIG. When a predetermined temperature difference is obtained, the liquid refrigerant state 21 can be obtained.

このように、本実施例におけるサブクール回路14は、凝縮器12を通った冷媒を効率良く過冷却できるように構成することにより、液冷媒の流れる領域を短くすることができるため、サブクール回路14を小型化して空気調和機を小型化することができると共に、サブクール回路内の冷媒量が少なくて済むことから、省冷媒性とすることができる。なお、図1および図4は、温度センサー1〜10によって温度を検出する一例を示したものであって、本発明にかかる空気調和機の実施の形態は、必ずしもこの例に限定されない。   Thus, since the subcool circuit 14 in the present embodiment is configured so that the refrigerant that has passed through the condenser 12 can be efficiently subcooled, the region in which the liquid refrigerant flows can be shortened. The air conditioner can be reduced in size, and the amount of refrigerant in the subcool circuit can be reduced, so that the refrigerant can be saved. 1 and 4 show an example in which the temperature is detected by the temperature sensors 1 to 10, and the embodiment of the air conditioner according to the present invention is not necessarily limited to this example.

本実施例におけるサブクール回路14の特徴的な構成を以下説明する。図5−1は、ヒートパイプ式のサブクール回路である。サブクール回路14は、図5−1に示すように、ハニカムパイプ30を凝縮器出口配管13と、サブクール回路出口配管15との間に繋いである。図5−1に示すハニカムパイプ30のB−B線断面の形状は、図5−2に示すように、太径の外管36内に細径の内管32が、外管36の内周面に直接に接触しないように内挿され、外管36と内管32との間の間隙には、複数の中管34を少なくとも内管32の外周面に密接するように内挿配置した構造を有している。そして、内管32の中には、熱交換媒体としての冷却流体を流通させると共に、中管34と共に、外管36と内管32との間の間隙全体に熱交換される冷媒を流通させるように構成されている。   A characteristic configuration of the subcool circuit 14 in this embodiment will be described below. FIG. 5A is a heat pipe type subcool circuit. As shown in FIG. 5A, the subcool circuit 14 connects the honeycomb pipe 30 between the condenser outlet pipe 13 and the subcool circuit outlet pipe 15. 5B is a cross-sectional view taken along the line B-B of the honeycomb pipe 30 shown in FIG. 5A. As shown in FIG. A structure in which a plurality of middle tubes 34 are inserted and disposed so as to be in close contact with at least the outer peripheral surface of the inner tube 32 in the gap between the outer tube 36 and the inner tube 32. have. A cooling fluid as a heat exchange medium is circulated in the inner pipe 32, and a refrigerant to be heat-exchanged is circulated through the entire gap between the outer pipe 36 and the inner pipe 32 together with the inner pipe 34. It is configured.

本実施例における中管34は、内径が1mm以下と非常に細いマイクロチャネル(以下、マイクロチューブともいう)を用いているため、その分冷却流体との接触面積が大きくなり、熱交換効率が良好となる。また、外管36の内径は、後述するように中管34と内管32(42、52)との組み合わせ方、熱伝達率、チューブ内の圧力損失等を考慮すると、内径が4mm〜10mmの範囲が好ましく、内管32の外径は、外管36の内径の40%〜60%が好ましい。また、マイクロチューブで構成される中管34の内径は、0.25mm〜1.00mmの範囲であることが好ましい。このマイクロチューブの内径の数値限定となる根拠は、図9〜図12に示す線図であり、特に、図9によれば、マイクロチューブの内径Deが0.25mm以下になると圧力損失が急上昇しており、図11によれば、マイクロチューブの内径Deが1mm以上になると熱伝導率の変化が緩やかになることから、圧力損失と熱伝導率の両者の有効範囲を根拠としている。   Since the inner tube 34 in this embodiment uses a very thin microchannel (hereinafter also referred to as a microtube) having an inner diameter of 1 mm or less, the contact area with the cooling fluid is increased accordingly, and the heat exchange efficiency is good. It becomes. Further, the inner diameter of the outer tube 36 is 4 mm to 10 mm in consideration of the combination method of the intermediate tube 34 and the inner tube 32 (42, 52), the heat transfer rate, the pressure loss in the tube, and the like as will be described later. The range is preferable, and the outer diameter of the inner tube 32 is preferably 40% to 60% of the inner diameter of the outer tube 36. Moreover, it is preferable that the internal diameter of the middle tube 34 comprised with a microtube is the range of 0.25 mm-1.00 mm. The grounds for limiting the numerical value of the inner diameter of the microtube are the diagrams shown in FIGS. 9 to 12. In particular, according to FIG. 9, when the inner diameter De of the microtube is 0.25 mm or less, the pressure loss rapidly increases. According to FIG. 11, since the change in thermal conductivity becomes moderate when the inner diameter De of the microtube is 1 mm or more, the effective range of both pressure loss and thermal conductivity is based.

これらのハニカムパイプ30に使用される金属材料としては、銅、ステンレス、アルミニウムなどを好ましく用いることができるが、これ以外にも熱伝導率が良好で、耐久性のある材料であれば使用することができる。   As the metal material used for these honeycomb pipes 30, copper, stainless steel, aluminum and the like can be preferably used, but any other material having good thermal conductivity and durability can be used. Can do.

図5−1のヒートパイプ式のサブクール回路は、上記したように構成されている。そして、内管32を構成するヒートパイプは、その中を流れる冷却流体により中管34を流れるR32冷媒の熱量を吸収したのち空気中に運び、そこで凝縮した後、再びR32冷媒の熱量を吸収する動作が繰り返し行われる。このように、ハニカムパイプ30内で過冷却されたR32冷媒は、サブクール回路出口配管14aの温度センサー16で検出される温度が飽和液温度と比較して2℃よりも大きい温度差があるか否かを図1の制御部18が判断し、温度差が2℃以下であれば制御部18が膨張弁17を絞って、冷媒の流量を少なくすることで、検出温度が飽和液温より2℃よりも大きい温度差となるように制御する。このように、本実施例では、熱交換効率の良いハニカムパイプ30を用いると共に、サブクール回路の出口の冷媒温度を飽和液温度を適切な温度差に制御することができる。また熱伝導率が良好であるため、サブクール回路14を小型化できると共に、冷媒量を少なくして、省資源化を図ることができる。特に、本実施例では、吐出温度の高い冷媒(例えばR32)を用いた場合でも、良好なサイクル性能を得ることができる。   The heat pipe type subcool circuit of FIG. 5A is configured as described above. The heat pipe constituting the inner pipe 32 absorbs the amount of heat of the R32 refrigerant flowing through the inner pipe 34 by the cooling fluid flowing through the inner pipe 32, then carries it into the air, condenses there, and again absorbs the amount of heat of the R32 refrigerant. The operation is repeated. In this way, the R32 refrigerant supercooled in the honeycomb pipe 30 has a temperature difference detected by the temperature sensor 16 of the subcool circuit outlet pipe 14a that is greater than 2 ° C. compared to the saturated liquid temperature. If the temperature difference is 2 ° C. or less, the control unit 18 throttles the expansion valve 17 to reduce the flow rate of the refrigerant, so that the detected temperature is 2 ° C. below the saturated liquid temperature. The temperature is controlled to be larger than that. Thus, in the present embodiment, the honeycomb pipe 30 with good heat exchange efficiency can be used, and the refrigerant temperature at the outlet of the subcool circuit can be controlled to an appropriate temperature difference. In addition, since the thermal conductivity is good, the subcool circuit 14 can be downsized, and the amount of refrigerant can be reduced to save resources. In particular, in this embodiment, good cycle performance can be obtained even when a refrigerant having a high discharge temperature (for example, R32) is used.

続いて、図6は、空気強制対流式のサブクール回路の構成例を示す図であり、図7は、図6のサブクール回路を用いた空気調和機の冷凍サイクルの構成例を示す図である。図6のサブクール回路は、図5−1と同様にハニカムパイプ30を凝縮器出口配管13と、サブクール回路出口配管15との間に繋いである。図5−1と異なる構成は、内管42が空気の強制対流を発生させる流量調整手段としてのファン44と繋がっており、開口径の異なるファン44と内管42との間にデフュザー付きの空気通路を介在させている。ここで、ファン44の回転数制御を行い、内管42を流れる空気の流量をコントロールすることで、R32冷媒を用いた場合の目標である飽和液温度と比較して2℃よりも大きい温度差が得られるように、冷凍サイクルの過冷却度を実現する。   6 is a diagram illustrating a configuration example of an air forced convection type subcool circuit, and FIG. 7 is a diagram illustrating a configuration example of a refrigeration cycle of an air conditioner using the subcool circuit of FIG. The subcool circuit in FIG. 6 connects the honeycomb pipe 30 between the condenser outlet pipe 13 and the subcool circuit outlet pipe 15 as in FIG. 5-1. The structure different from FIG. 5A is that the inner pipe 42 is connected to a fan 44 as a flow rate adjusting means for generating forced convection of air, and air having a diffuser is provided between the fan 44 and the inner pipe 42 having different opening diameters. A passage is interposed. Here, by controlling the rotational speed of the fan 44 and controlling the flow rate of the air flowing through the inner pipe 42, a temperature difference larger than 2 ° C. compared to the target saturated liquid temperature when the R32 refrigerant is used. To achieve a supercooling degree of the refrigeration cycle.

図7に示すように、図6のサブクール回路を用いた冷凍サイクルは、凝縮器12で気体冷媒の熱を放出させることで冷媒が2相状態から液相状態へ変化し、凝縮器出口配管13を通ってサブクール回路14に入る。サブクール回路14に入った冷媒は、ハニカムパイプ30内を通る間に、冷却流体である空気により熱交換が行われて冷却される。サブクール回路14のサブクール回路出口配管15から流出した冷媒は、温度センサー16によって温度が検出される。制御部18は、検出された冷媒温度がR32冷媒の飽和液温より2℃よりも大きい温度差があるか否かを判断し、温度差が2℃以下であればファン44の回転数を上げるように制御し、温度差が2℃よりも大きければその回転数を維持するように制御する。このように、本実施例の熱交換効率の良いハニカムパイプ30を用いて構成されたサブクール回路14は、凝縮器12からの冷媒を過冷却処理することで、サブクール回路14を流出した冷媒温度をR32冷媒の飽和液温度と比較して2℃よりも大きい温度差に容易にすることができる。また、家庭用エアコンに用いられる冷凍サイクルにおいては、サブクール回路14の熱交換を行うハニカムパイプ30の長さを20〜30cm程度とすることができるため、従来の熱交換器部分(例えば、70cm×2程度)と比べると装置を大幅に小型化できると共に、熱交換部分に溜まっている冷媒を少なくできるので、省冷媒性を実現することができる。   As shown in FIG. 7, in the refrigeration cycle using the subcool circuit of FIG. 6, the refrigerant changes heat from the two-phase state to the liquid phase state by releasing the heat of the gaseous refrigerant in the condenser 12, and the condenser outlet pipe 13. And enters the subcool circuit 14. While passing through the honeycomb pipe 30, the refrigerant that has entered the subcool circuit 14 is cooled by heat exchange with air that is a cooling fluid. The temperature of the refrigerant flowing out from the subcool circuit outlet pipe 15 of the subcool circuit 14 is detected by the temperature sensor 16. The controller 18 determines whether or not the detected refrigerant temperature has a temperature difference larger than 2 ° C. than the saturated liquid temperature of the R32 refrigerant. If the temperature difference is 2 ° C. or less, the control unit 18 increases the rotation speed of the fan 44. If the temperature difference is larger than 2 ° C., the rotational speed is controlled to be maintained. As described above, the subcool circuit 14 configured using the honeycomb pipe 30 having a high heat exchange efficiency according to the present embodiment performs a supercooling process on the refrigerant from the condenser 12, thereby reducing the refrigerant temperature flowing out of the subcool circuit 14. Compared to the saturated liquid temperature of the R32 refrigerant, a temperature difference greater than 2 ° C. can be facilitated. Moreover, in the refrigerating cycle used for a home air conditioner, since the length of the honeycomb pipe 30 that performs heat exchange of the subcool circuit 14 can be about 20 to 30 cm, a conventional heat exchanger portion (for example, 70 cm × Compared with (about 2), the apparatus can be greatly reduced in size and the amount of refrigerant accumulated in the heat exchange portion can be reduced, so that refrigerant saving performance can be realized.

なお、冷媒の流量の制御と熱交換媒体の流量の制御について説明したが、本発明はこれに限るものではなく、これらを組み合わせたものや、圧縮機の回転数制御によるものでも良い。   Note that the control of the flow rate of the refrigerant and the control of the flow rate of the heat exchange medium have been described, but the present invention is not limited to this, and a combination of these may be used, or the control of the rotation speed of the compressor.

続いて、図8は、水循環式のサブクール回路の構成例を示す図である。図8のサブクール回路は、図5−1と同様にハニカムパイプ30を凝縮器出口配管13と、サブクール回路出口配管15との間に繋いである。図5−1と異なる構成は、内管52が通水路であり、水タンク56内の冷却水を流量調整手段としてのポンプ54によって通水路である内管52を循環させ、ハニカムパイプ30内で冷却水と冷媒との間で熱交換を行い、冷却水の熱をフィン付き銅管50で空気に放出した後、水タンク56に冷却水を戻す。このように、水循環式のサブクール回路は、冷却水を循環させてハニカムパイプ30を通る冷媒を冷却し、ポンプ54の回転数を制御して冷却水の流量をコントロールすることによって、冷却能力を図1の制御部18により制御することができる。このため、ハニカムパイプ30内で過冷却されたR32冷媒は、サブクール回路出口の温度センサー16で検出される温度が飽和液温度より2℃よりも大きい温度にすることが可能となる。制御部18によるポンプ54の回転数制御は、図7におけるファン44の回転数制御と同様であるので、重複説明を省略する。   Next, FIG. 8 is a diagram illustrating a configuration example of a water circulation type subcool circuit. In the subcool circuit of FIG. 8, the honeycomb pipe 30 is connected between the condenser outlet pipe 13 and the subcool circuit outlet pipe 15 as in FIG. 5-1. 5A, the inner pipe 52 is a water passage, and the cooling water in the water tank 56 is circulated through the inner pipe 52 which is a water passage by a pump 54 as a flow rate adjusting means. Heat exchange is performed between the cooling water and the refrigerant, and the cooling water is returned to the water tank 56 after the heat of the cooling water is released to the air through the finned copper pipe 50. In this way, the water circulation type subcool circuit circulates the cooling water to cool the refrigerant passing through the honeycomb pipe 30 and controls the flow rate of the cooling water by controlling the number of revolutions of the pump 54 to increase the cooling capacity. It can be controlled by one control unit 18. For this reason, the R32 refrigerant supercooled in the honeycomb pipe 30 can be set to a temperature detected by the temperature sensor 16 at the subcool circuit outlet, which is higher than 2 ° C. than the saturated liquid temperature. The rotational speed control of the pump 54 by the control unit 18 is the same as the rotational speed control of the fan 44 in FIG.

上記実施例にかかるハニカムパイプは、図5−2に示すような断面構造のものを用いて実施しているが、本発明は、これに限定されるものではなく、以下の図13−1〜図13−3、図14、図15に示すような構造のハニカムパイプを用いて、上記と同様に実施することができる。図13−1〜図13−3のハニカムパイプの外管の内径が7mmの場合であり、図14のハニカムパイプの外管の内径が5mmの場合であり、図15のハニカムパイプの外管の内径が9mmの場合である。   The honeycomb pipe according to the above embodiment is implemented using a cross-sectional structure as shown in FIG. 5-2, but the present invention is not limited to this, and the following FIGS. It can implement similarly to the above using the honeycomb pipe of a structure as shown to FIGS. 13-3, FIG. 14, FIG. 13-1 to 13-3 are the cases where the inner diameter of the outer pipe of the honeycomb pipe is 7 mm, the inner diameter of the outer pipe of the honeycomb pipe of FIG. 14 is 5 mm, and the outer pipe of the honeycomb pipe of FIG. This is the case where the inner diameter is 9 mm.

図13−1のハニカムパイプ構造は、外管36と内管32(42、52)との間の間隙が大きいため、中管34となるマイクロチューブを内管32(42、52)の外周部に対して2重に配置している。冷媒は、中管34と共に、外管36と内管32(42、52)との間の間隙全体に流通するようにしている。   In the honeycomb pipe structure of FIG. 13A, since the gap between the outer tube 36 and the inner tube 32 (42, 52) is large, the microtube serving as the intermediate tube 34 is replaced with the outer peripheral portion of the inner tube 32 (42, 52). Are arranged twice. The refrigerant flows through the entire gap between the outer tube 36 and the inner tube 32 (42, 52) together with the intermediate tube 34.

図13−2のハニカムパイプ構造は、外管36と内管32(42、52)との間の間隙が図13−1と同じであり、マイクロチューブとなる中管34bが部分的に使用され、それ以外の中管34aは内管32(42、52)の外周と外管36の内周にそれぞれ接する程度の太い径を持っていて、互いに密接して配置されている。冷媒は、中管34a,34b内と共に、外管36と内管32(42、52)との間の間隙全体に流通するようにしている。   In the honeycomb pipe structure of Fig. 13-2, the gap between the outer tube 36 and the inner tube 32 (42, 52) is the same as that of Fig. 13-1, and the middle tube 34b serving as a micro tube is partially used. The other intermediate pipes 34a have a diameter large enough to contact the outer circumference of the inner pipe 32 (42, 52) and the inner circumference of the outer pipe 36, and are arranged in close contact with each other. The refrigerant flows through the entire gap between the outer pipe 36 and the inner pipe 32 (42, 52) as well as in the middle pipes 34a, 34b.

図13−3のハニカムパイプ構造は、外管36と内管32(42、52)との間の間隙が図13−1と同じであり、中管34は内管32(42、52)の外周と外管36の内周にそれぞれ接する程度の太い径を持っている。冷媒は、中管34と共に、外管36と内管32(42、52)との間の間隙全体に流通するようにしている。   In the honeycomb pipe structure of Fig. 13-3, the gap between the outer tube 36 and the inner tube 32 (42, 52) is the same as that of Fig. 13-1, and the middle tube 34 is the inner tube 32 (42, 52). The outer diameter and the outer diameter of the outer tube 36 are large enough to contact each other. The refrigerant flows through the entire gap between the outer tube 36 and the inner tube 32 (42, 52) together with the intermediate tube 34.

図14のハニカムパイプ構造は、外管36と内管37との間の間隙が狭く、中管34は内管37の外周と外管36の内周にそれぞれ接する程度の内径1mm径以下のマイクロチューブが密接して配置されている。   In the honeycomb pipe structure of FIG. 14, the gap between the outer tube 36 and the inner tube 37 is narrow, and the inner tube 34 is a micro tube having an inner diameter of 1 mm or less that is in contact with the outer periphery of the inner tube 37 and the inner periphery of the outer tube 36. The tubes are arranged closely.

図15に示すハニカムパイプ構造は、太径の外管36内に中径の第1内管38が外管36の内周面に直接に接触することなく内挿され、第1内管38内に細径の第2内管40が第1内管38内の内周面に直接に接触することなく内挿され、第1内管38の外周と外管36の内周にそれぞれ接する程度の内径1mm径以下のマイクロチューブからなる中管39が密接して配置されている。そして、第2内管40、および中管39内と共に、外管36と第1内管38との間の間隙全体に冷却流体が流通せしめられ、第1内管38と第2内管40との間の間隙に熱交換される冷媒を流通せしめるように構成されている。このハニカムパイプ構造は、冷媒を内側の冷却媒体と、外側の冷却媒体との両側から冷却が行われるため、熱交換効率を高くできる。   In the honeycomb pipe structure shown in FIG. 15, the first inner tube 38 having a medium diameter is inserted into the outer tube 36 having a large diameter without directly contacting the inner peripheral surface of the outer tube 36. The second inner tube 40 having a small diameter is inserted without directly contacting the inner peripheral surface of the first inner tube 38 and is in contact with the outer periphery of the first inner tube 38 and the inner periphery of the outer tube 36. An inner tube 39 made of a microtube having an inner diameter of 1 mm or less is closely arranged. Then, the cooling fluid is circulated in the entire gap between the outer tube 36 and the first inner tube 38 together with the second inner tube 40 and the inner tube 39, and the first inner tube 38 and the second inner tube 40 The refrigerant to be heat-exchanged is circulated in the gap between the two. In this honeycomb pipe structure, the refrigerant is cooled from both sides of the inner cooling medium and the outer cooling medium, so that the heat exchange efficiency can be increased.

図13〜図15に示すようなハニカムパイプ構造とすることで、冷媒の流量を多くしても圧力損失を高くせずに、冷媒と熱交換媒体との熱交換面積を大きくすることができるため、熱交換効率を高くすることができる。   Since the honeycomb pipe structure as shown in FIGS. 13 to 15 can increase the heat exchange area between the refrigerant and the heat exchange medium without increasing the pressure loss even if the flow rate of the refrigerant is increased. The heat exchange efficiency can be increased.

なお、上記実施例では、冷媒にR32を用いて実施したが、必ずしもこれに限定されるものではなく、例えばR410A、R407Cの他、二酸化炭素、アンモニア等の自然冷媒などであっても同様に実施することが可能である。但し、使用する冷媒毎に飽和液温度が異なるため、個々の冷媒の飽和液温より所定の温度差が得られるか否かを判断して制御を行う必要がある。   In the above embodiment, R32 is used as the refrigerant. However, the invention is not necessarily limited to this. For example, in addition to R410A and R407C, natural refrigerants such as carbon dioxide and ammonia are also used. Is possible. However, since the saturated liquid temperature differs for each refrigerant to be used, it is necessary to perform control by determining whether or not a predetermined temperature difference is obtained from the saturated liquid temperature of each refrigerant.

本発明に係る空気調和機は、エアコン等の室内機や室外機における熱交換器に好適に利用することができる。   The air conditioner according to the present invention can be suitably used for an indoor unit such as an air conditioner or a heat exchanger in an outdoor unit.

1〜10 温度センサー
11 冷凍サイクル
12 凝縮器
13 凝縮器出口配管
14 サブクール回路
15 サブクール回路出口配管
16 温度センサー
17 膨張弁
18 制御部
19 蒸発器
20 圧縮機
21 液冷媒状態
30 ハニカムパイプ
32,37,42,52 内管
34,34a,34b,39 中管
36 外管
38 第1内管
40 第2内管
44 ファン
50 フィン付き銅管
54 ポンプ
56 水タンク
DESCRIPTION OF SYMBOLS 1-10 Temperature sensor 11 Refrigeration cycle 12 Condenser 13 Condenser outlet piping 14 Subcool circuit 15 Subcool circuit outlet piping 16 Temperature sensor 17 Expansion valve 18 Control part 19 Evaporator 20 Compressor 21 Liquid refrigerant state 30 Honeycomb pipe 32,37, 42,52 Inner pipes 34, 34a, 34b, 39 Middle pipe 36 Outer pipe 38 First inner pipe 40 Second inner pipe 44 Fan 50 Finned copper pipe 54 Pump 56 Water tank

Claims (6)

冷媒を圧縮する圧縮機と、冷媒の熱を放出させる放熱器と、冷媒を熱交換媒体により冷却する冷媒冷却手段と、冷媒の流量を調整する流量制御弁と、冷媒を蒸発させる蒸発器と、前記冷媒冷却手段における熱交換量を制御する熱交換量制御手段とを備え、前記圧縮機、前記放熱器、前記冷媒冷却手段、前記流量制御弁、前記蒸発器の順に冷媒を循環させる冷凍サイクルを有する空気調和機において、
前記冷媒冷却手段は、
太径の外管内に細径の内管が前記外管の内周面に直接に接触することなく内挿されていると共に、前記外管と前記内管との間の間隙に、複数の中管を少なくとも前記内管の外周面に密接するように内挿配置せしめられてなる構造を有し、且つ前記内管内には、前記熱交換媒体が流通せしめられる一方、前記中管内と共に、前記外管と内管との間の間隙全体に熱交換される前記冷媒を流通せしめられるように構成されていることを特徴とする空気調和機。
A compressor that compresses the refrigerant, a radiator that releases the heat of the refrigerant, a refrigerant cooling means that cools the refrigerant with a heat exchange medium, a flow rate control valve that adjusts the flow rate of the refrigerant, an evaporator that evaporates the refrigerant, A heat exchange amount control means for controlling the heat exchange amount in the refrigerant cooling means, and a refrigeration cycle for circulating the refrigerant in the order of the compressor, the radiator, the refrigerant cooling means, the flow control valve, and the evaporator. In the air conditioner that has
The refrigerant cooling means is
A thin inner tube is inserted into the thick outer tube without directly contacting the inner peripheral surface of the outer tube, and a plurality of intermediate tubes are inserted in the gap between the outer tube and the inner tube. A pipe is inserted and arranged so as to be in close contact with at least the outer peripheral surface of the inner pipe, and the heat exchange medium is circulated in the inner pipe, while An air conditioner configured to allow the refrigerant to exchange heat to the entire gap between the pipe and the inner pipe.
前記冷媒冷却手段は、
太径の外管内に中径の第1内管が前記外管の内周面に直接に接触することなく内挿されていると共に、前記第1内管内に細径の第2内管が前記第1内管内の内周面に直接に接触することなく内挿され、前記外管と前記第1内管との間の間隙に、複数の前記中管を少なくとも前記第1内管の外周面に密接するように内挿配置せしめられてなる構造を有し、且つ前記第2内管内、および前記中管内と共に、前記外管と前記第1内管との間の間隙全体に前記熱交換媒体が流通せしめられる一方、前記第1内管と前記第2内管との間の間隙全体に熱交換される前記冷媒を流通せしめられるように構成されていることを特徴とする請求項1に記載の空気調和機。
The refrigerant cooling means is
A medium-diameter first inner tube is inserted into the large-diameter outer tube without directly contacting the inner peripheral surface of the outer tube, and a small-diameter second inner tube is inserted into the first inner tube. Inserted without directly contacting the inner peripheral surface in the first inner tube, and at least a plurality of the intermediate tubes in the gap between the outer tube and the first inner tube, the outer peripheral surface of the first inner tube And the heat exchange medium in the second inner tube and the inner tube and the entire gap between the outer tube and the first inner tube. 2. The refrigerant according to claim 1, wherein the refrigerant exchanged in heat is circulated through the entire gap between the first inner pipe and the second inner pipe. Air conditioner.
前記冷媒は、R32を用いていることを特徴とする請求項1または2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein R32 is used as the refrigerant. 前記外管の内径は、4mm〜10mmの範囲であり、前記中管の外径は、0.25mm〜1.00mmの範囲であることを特徴とする請求項1〜3のいずれか1つに記載の空気調和機。   The inner diameter of the outer tube is in the range of 4 mm to 10 mm, and the outer diameter of the intermediate tube is in the range of 0.25 mm to 1.00 mm. The air conditioner described. 前記熱交換量制御手段は、前記冷媒冷却手段の出口で検出された前記冷媒の液温度と飽和液温度との温度差が2℃よりも大きくなるように、前記流量制御弁に対して前記冷媒の流量を制御することを特徴とする請求項1〜4のいずれか1つに記載の空気調和機。   The heat exchange amount control means is configured to provide the refrigerant with respect to the flow rate control valve so that a temperature difference between the liquid temperature of the refrigerant detected at the outlet of the refrigerant cooling means and a saturated liquid temperature is greater than 2 ° C. The air conditioner according to any one of claims 1 to 4, wherein a flow rate of the air conditioner is controlled. 前記冷媒冷却手段は、前記熱交換媒体の流量を調整する流量調整手段をさらに備え、
前記熱交換量制御手段は、前記冷媒冷却手段の出口で検出された前記冷媒の液温度と飽和液温度との温度差が2℃よりも大きくなるように、前記流量調整手段に対して前記熱交換媒体の流量を制御することを特徴とする請求項1〜4のいずれか1つに記載の空気調和機。
The refrigerant cooling means further includes a flow rate adjusting means for adjusting the flow rate of the heat exchange medium,
The heat exchange amount control means controls the heat flow rate adjusting means so that the temperature difference between the refrigerant liquid temperature and the saturated liquid temperature detected at the outlet of the refrigerant cooling means is greater than 2 ° C. The air conditioner according to any one of claims 1 to 4, wherein the flow rate of the exchange medium is controlled.
JP2011107631A 2011-05-12 2011-05-12 Air conditioner Pending JP2012237518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107631A JP2012237518A (en) 2011-05-12 2011-05-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107631A JP2012237518A (en) 2011-05-12 2011-05-12 Air conditioner

Publications (1)

Publication Number Publication Date
JP2012237518A true JP2012237518A (en) 2012-12-06

Family

ID=47460566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107631A Pending JP2012237518A (en) 2011-05-12 2011-05-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP2012237518A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129942A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2015190681A (en) * 2014-03-28 2015-11-02 リンナイ株式会社 heat pump heating device
PL421971A1 (en) * 2017-06-21 2019-01-02 Przedsiębiorstwo Produkcyjno Usługowo Handlowe Eko-Energia Spółka Z Ograniczoną Odpowiedzialnością Subcooler
CN109869800A (en) * 2019-03-18 2019-06-11 天津商业大学 A kind of high temperature heat pump heating system with subcooler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530498A (en) * 2005-03-14 2008-08-07 ヨーク・インターナショナル・コーポレーション HVAC system with powered supercooler
JP2009162417A (en) * 2007-12-30 2009-07-23 Sakae:Kk Multitubular heat exchanger and heat treatment device using the same
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
JP2009243715A (en) * 2008-03-28 2009-10-22 Kobelco & Materials Copper Tube Inc Leakage detecting tube and heat exchanger
JP2010014351A (en) * 2008-07-04 2010-01-21 Fujitsu General Ltd Refrigerating air conditioner
JP2010230256A (en) * 2009-03-27 2010-10-14 Fujitsu General Ltd Refrigerant-to-refrigerant heat exchanger
JP2011179689A (en) * 2010-02-26 2011-09-15 Hitachi Appliances Inc Refrigeration cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530498A (en) * 2005-03-14 2008-08-07 ヨーク・インターナショナル・コーポレーション HVAC system with powered supercooler
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
JP2009162417A (en) * 2007-12-30 2009-07-23 Sakae:Kk Multitubular heat exchanger and heat treatment device using the same
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
JP2009243715A (en) * 2008-03-28 2009-10-22 Kobelco & Materials Copper Tube Inc Leakage detecting tube and heat exchanger
JP2010014351A (en) * 2008-07-04 2010-01-21 Fujitsu General Ltd Refrigerating air conditioner
JP2010230256A (en) * 2009-03-27 2010-10-14 Fujitsu General Ltd Refrigerant-to-refrigerant heat exchanger
JP2011179689A (en) * 2010-02-26 2011-09-15 Hitachi Appliances Inc Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129942A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2015190681A (en) * 2014-03-28 2015-11-02 リンナイ株式会社 heat pump heating device
PL421971A1 (en) * 2017-06-21 2019-01-02 Przedsiębiorstwo Produkcyjno Usługowo Handlowe Eko-Energia Spółka Z Ograniczoną Odpowiedzialnością Subcooler
CN109869800A (en) * 2019-03-18 2019-06-11 天津商业大学 A kind of high temperature heat pump heating system with subcooler

Similar Documents

Publication Publication Date Title
KR100905995B1 (en) Air conditioner
JP4832355B2 (en) Refrigeration air conditioner
JP4428341B2 (en) Refrigeration cycle equipment
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2009299909A (en) Refrigeration cycle device
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
WO2016071955A1 (en) Air conditioning apparatus
WO2011148567A1 (en) Refrigeration device and cooling and heating device
JP2012237518A (en) Air conditioner
JP2014102030A (en) Heat-pump hot water supply device
JP2010014351A (en) Refrigerating air conditioner
JP4651452B2 (en) Refrigeration air conditioner
JP2009024884A (en) Refrigerating cycle device and cold insulation cabinet
JP2009162403A (en) Air conditioner
JP2013134024A (en) Refrigeration cycle device
WO2014203500A1 (en) Air conditioner
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JP2015218954A (en) Refrigeration cycle device
CN110914608A (en) Refrigeration device and method for operating refrigeration device
JP7118247B2 (en) air conditioner
JP6925508B2 (en) Heat exchanger, refrigeration cycle device and air conditioner
JP2017161164A (en) Air-conditioning hot water supply system
JPWO2017149642A1 (en) Refrigeration cycle equipment
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2012233638A (en) Refrigerating air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721