JP2007051788A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2007051788A
JP2007051788A JP2005235274A JP2005235274A JP2007051788A JP 2007051788 A JP2007051788 A JP 2007051788A JP 2005235274 A JP2005235274 A JP 2005235274A JP 2005235274 A JP2005235274 A JP 2005235274A JP 2007051788 A JP2007051788 A JP 2007051788A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
refrigeration
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235274A
Other languages
Japanese (ja)
Inventor
Shiro Yakushiji
史朗 薬師寺
Mitsushi Kawai
満嗣 河合
Noriyuki Okuda
則之 奥田
Keisuke Tanimoto
啓介 谷本
Katsuhiro Kawabata
克宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005235274A priority Critical patent/JP2007051788A/en
Publication of JP2007051788A publication Critical patent/JP2007051788A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve energy-saving performance of a refrigerating device performing a refrigerating cycle with a plurality of utilization side heat exchangers having different refrigerant evaporating temperatures. <P>SOLUTION: A refrigerant circuit 11 is provided with an outdoor heat exchanger 25, an air-conditioning heat exchanger 44 and a cooling heat exchanger 45. The refrigerant circuit 11 is also provided with an evaporator 64 of an absorption refrigerator 60 performing an absorption refrigerating cycle with exhaust heat as a heat source, as a supercooling heat exchanger. A refrigerant condensed in the outdoor heat exchanger 25 is supercooled with cold of the evaporator 64 and then evaporated at different temperatures in the air-conditioning heat exchanger 44 and the cooling heat exchanger 45. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の利用側熱交換器を有する冷媒回路を備えた冷凍装置に関し、特に各利用側熱交換器での冷媒の蒸発温度がそれぞれ異なる冷凍サイクルを行う冷凍装置に係るものである。   The present invention relates to a refrigeration apparatus including a refrigerant circuit having a plurality of usage-side heat exchangers, and particularly relates to a refrigeration apparatus that performs refrigeration cycles in which the evaporation temperatures of refrigerants in the respective usage-side heat exchangers are different.

従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られており、食品等を貯蔵する冷蔵庫等の冷却機として広く利用されている。   Conventionally, a refrigeration apparatus including a refrigerant circuit that performs a refrigeration cycle is known, and is widely used as a refrigerator such as a refrigerator that stores food and the like.

例えば、特許文献1には、室内の空調、冷蔵/冷凍庫内の冷却を同時に行う冷凍装置が開示されている。この冷凍装置では、室外熱交換器を有する室外回路に対して、室内の空調を行う空調熱交換器と、冷蔵庫内を冷却する冷蔵熱交換器と、冷凍庫内を冷却する冷凍熱交換器とが並列に接続されている。   For example, Patent Document 1 discloses a refrigeration apparatus that simultaneously performs indoor air conditioning and cooling in a refrigerator / freezer. In this refrigeration apparatus, an air conditioning heat exchanger that performs indoor air conditioning, a refrigeration heat exchanger that cools the inside of the refrigerator, and a refrigeration heat exchanger that cools the inside of the freezer, with respect to the outdoor circuit having the outdoor heat exchanger. Connected in parallel.

この冷凍装置の例えば冷房運転時には、上記室外熱交換器が凝縮器となり、上記空調熱交換器、冷蔵熱交換器、及び冷凍熱交換器がそれぞれ蒸発器となるように冷媒が循環する。その結果、空調熱交換器では、冷媒が室内空気から吸熱して室内の冷房が行われると同時に、上記冷蔵熱交換器や上記冷凍熱交換器では、それぞれの冷媒が各庫内空気から吸熱して各庫内の冷却が行われる。   For example, during the cooling operation of the refrigeration apparatus, the outdoor heat exchanger serves as a condenser, and the refrigerant circulates so that the air conditioning heat exchanger, the refrigeration heat exchanger, and the refrigeration heat exchanger serve as evaporators. As a result, in the air-conditioning heat exchanger, the refrigerant absorbs heat from the indoor air to cool the room, and at the same time, in the refrigerated heat exchanger and the refrigeration heat exchanger, each refrigerant absorbs heat from the indoor air. The inside of each cabinet is cooled.

以上のように、この冷凍装置では、上記空調熱交換器や冷蔵熱交換器等の複数の利用側熱交換器を蒸発器とし、各利用側熱交換器で異なる冷却対象を冷却するようにしている。このため、この冷凍装置では、空調熱交換器よりも冷蔵熱交換器の冷媒蒸発温度が低く設定され、更には冷蔵熱交換器よりも冷凍熱交換器の冷媒蒸発温度が低く設定されている。つまり、この冷凍装置では、各利用側熱交換器で冷媒蒸発温度の異温度化を図りながら蒸気圧縮式の冷凍サイクルを行うようにしている。
特開2002−228297号公報
As described above, in this refrigeration apparatus, a plurality of usage-side heat exchangers such as the air conditioning heat exchanger and the refrigeration heat exchanger are used as evaporators, and different cooling targets are cooled in each usage-side heat exchanger. Yes. For this reason, in this refrigeration apparatus, the refrigerant evaporation temperature of the refrigeration heat exchanger is set lower than that of the air-conditioning heat exchanger, and further, the refrigerant evaporation temperature of the refrigeration heat exchanger is set lower than that of the refrigeration heat exchanger. That is, in this refrigeration apparatus, a vapor compression refrigeration cycle is performed while the refrigerant evaporating temperature is made different between the use side heat exchangers.
JP 2002-228297 A

このように冷媒蒸発温度の異温度化を図った冷凍装置では、冷媒蒸発温度が低く設定される冷蔵熱交換器や冷凍熱交換器における冷凍サイクルの高低差圧が大きくなる。このため、冷蔵熱交換器や冷凍熱交換器で蒸発した冷媒を圧縮するために要する圧縮機の入力が増大し、この冷凍装置の消費電力が増大してしまう。即ち、省エネルギーで冷媒を異温度に蒸発させて冷凍サイクルを行う冷凍装置が望まれる。   Thus, in the refrigeration apparatus in which the refrigerant evaporation temperature is made different, the height difference pressure of the refrigeration cycle in the refrigeration heat exchanger or the refrigeration heat exchanger in which the refrigerant evaporation temperature is set low is increased. For this reason, the input of the compressor required in order to compress the refrigerant | coolant which evaporated with the refrigeration heat exchanger or the freezing heat exchanger increases, and the power consumption of this freezing apparatus will increase. That is, there is a demand for a refrigeration apparatus that performs a refrigeration cycle by evaporating refrigerant to different temperatures with energy saving.

本発明は、かかる点に鑑みてなされたものであり、その目的は、複数の利用側熱交換器の冷媒蒸発温度がそれぞれ異なる冷凍サイクルを行う冷凍装置の省エネルギー性の向上を図ることである。   This invention is made | formed in view of this point, The objective is aiming at the improvement of the energy-saving property of the refrigerating apparatus which performs the refrigerating cycle from which the refrigerant | coolant evaporation temperature of a some utilization side heat exchanger differs, respectively.

第1の発明は、圧縮機(21,22,23)、熱源側熱交換器(25)、第1利用側熱交換器(44)、及び第2利用側熱交換器(45,46)が設けられた冷媒回路(11)を備え、上記冷媒回路(11)では、第2利用側熱交換器(45,46)の冷媒蒸発温度が第1利用側熱交換器(44)の冷媒蒸発温度よりも低くなる蒸気圧縮式の冷凍サイクルを行う冷凍装置を前提としている。そして、この冷凍装置は、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)を備え、上記冷媒回路(11)には、上記熱源側熱交換器(25)で凝縮した冷媒を上記吸収式冷凍機(60)の冷熱で冷却する過冷却用熱交換器(64)が設けられていることを特徴とするものである。   The first invention includes a compressor (21, 22, 23), a heat source side heat exchanger (25), a first usage side heat exchanger (44), and a second usage side heat exchanger (45, 46). The refrigerant circuit (11) is provided, and in the refrigerant circuit (11), the refrigerant evaporation temperature of the second usage side heat exchanger (45, 46) is the refrigerant evaporation temperature of the first usage side heat exchanger (44). It is premised on a refrigeration apparatus that performs a vapor compression refrigeration cycle that is lower than that. The refrigeration apparatus includes an absorption chiller (60) that performs an absorption refrigeration cycle using exhaust heat as a heat source, and the refrigerant circuit (11) includes a refrigerant condensed in the heat source side heat exchanger (25). Is provided with a supercooling heat exchanger (64) that cools the product with the cold heat of the absorption refrigerator (60).

第1の発明では、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)の冷熱を利用して冷媒回路(11)を流れる冷媒の過冷却が行われる。具体的には、冷媒回路(11)において圧縮機(21,22,23)の吐出冷媒が、熱源側熱交換器(25)で凝縮した後、過冷却用熱交換器(64)を通過する。この過冷却用熱交換器(64)では、冷媒回路(11)の冷媒が上記吸収式冷凍機(60)の冷熱によって冷却される。その結果、熱源側熱交換器(25)で凝縮した冷媒が過冷却される。以上のようにして過冷却された冷媒は、第1利用側熱交換器(44)や第2利用側熱交換器(45,46)へ送られる。各利用側熱交換器(45,46,47)では、冷媒が異なる温度で蒸発し、例えば室内空気の冷却や、冷蔵/冷凍庫内の空気の冷却が同時に行われる。   In the first invention, the refrigerant flowing through the refrigerant circuit (11) is supercooled by using the cold heat of the absorption chiller (60) that performs the absorption refrigeration cycle using exhaust heat as a heat source. Specifically, in the refrigerant circuit (11), the refrigerant discharged from the compressor (21, 22, 23) is condensed in the heat source side heat exchanger (25), and then passes through the supercooling heat exchanger (64). . In the supercooling heat exchanger (64), the refrigerant in the refrigerant circuit (11) is cooled by the cold heat of the absorption chiller (60). As a result, the refrigerant condensed in the heat source side heat exchanger (25) is supercooled. The refrigerant supercooled as described above is sent to the first usage side heat exchanger (44) and the second usage side heat exchanger (45, 46). In each use side heat exchanger (45, 46, 47), the refrigerant evaporates at different temperatures, and for example, cooling of indoor air and cooling of air in a refrigerator / freezer are performed simultaneously.

第2の発明は、第1の発明において、上記冷媒回路(11)では、第1利用側熱交換器(44)が設けられる第1利用側回路(51)と、第2冷却熱交換器(45,46)が設けられる第2利用側回路(52,53)とが設けられ、熱源側熱交換器(25)で凝縮した冷媒が第1利用側回路(51)と第2利用側回路(52,53)とに分配される一方、上記過冷却用熱交換器(64)は、第2利用側回路(52,53)における第2利用側熱交換器(52,53)の上流側に設けられていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the refrigerant circuit (11) includes a first usage side circuit (51) provided with a first usage side heat exchanger (44), and a second cooling heat exchanger ( 45, 46) and the second usage side circuit (52, 53), and the refrigerant condensed in the heat source side heat exchanger (25) is supplied to the first usage side circuit (51) and the second usage side circuit ( 52, 53), the supercooling heat exchanger (64) is arranged upstream of the second usage side heat exchanger (52, 53) in the second usage side circuit (52, 53). It is characterized by being provided.

第2の発明では、熱源側熱交換器(25)で凝縮した冷媒が、第1利用側回路(51)と第2利用側回路(52)とに分流する。第1利用側回路(51)に流入した冷媒は、第1利用側熱交換器(44)で蒸発し、例えば室内の空気が冷却される。一方、第2利用側回路(52)に流入した冷媒は、過冷却用熱交換器(64)を通過する際、上記吸収式冷凍機(60)の冷熱によって過冷却される。その後、冷媒は、第2利用側熱交換器(45,46)において、上記第1利用側熱交換器(44)よりも低い温度で蒸発し、例えば冷蔵/冷凍庫内の空気が冷却される。つまり、本発明では、過冷却用熱交換器(64)で冷却された冷媒が、冷媒蒸発温度が低く設定される第2利用側熱交換器(45,46)のみに送られる。   In the second invention, the refrigerant condensed in the heat source side heat exchanger (25) is divided into the first usage side circuit (51) and the second usage side circuit (52). The refrigerant that has flowed into the first usage side circuit (51) evaporates in the first usage side heat exchanger (44), and for example, indoor air is cooled. On the other hand, the refrigerant flowing into the second usage side circuit (52) is supercooled by the cold heat of the absorption refrigerator (60) when passing through the supercooling heat exchanger (64). Thereafter, the refrigerant evaporates in the second usage side heat exchanger (45, 46) at a temperature lower than that of the first usage side heat exchanger (44), and for example, the air in the refrigerator / freezer is cooled. That is, in the present invention, the refrigerant cooled by the supercooling heat exchanger (64) is sent only to the second usage side heat exchanger (45, 46) in which the refrigerant evaporation temperature is set low.

第3の発明は、圧縮機(21,22,23)、熱源側熱交換器(25)、第1利用側熱交換器(44)、及び第2利用側熱交換器(45,46)が設けられた冷媒回路(11)を備え、上記冷媒回路(11)では、第2利用側熱交換器(45,46)の冷媒蒸発温度が第1利用側熱交換器(44)の冷媒蒸発温度よりも低くなる蒸気圧縮式の冷凍サイクルを行う冷凍装置を前提としている。そして、この冷凍装置は、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)を備え、上記冷媒回路(11)には、上記圧縮機(21,22,23)の吐出冷媒を上記吸収式冷凍機(60)の冷熱で冷却して凝縮させる凝縮用熱交換器(64)が上記熱源側熱交換器(25)と並列に設けられていることを特徴とするものである。   The third invention includes a compressor (21, 22, 23), a heat source side heat exchanger (25), a first usage side heat exchanger (44), and a second usage side heat exchanger (45, 46). The refrigerant circuit (11) is provided, and in the refrigerant circuit (11), the refrigerant evaporation temperature of the second usage side heat exchanger (45, 46) is the refrigerant evaporation temperature of the first usage side heat exchanger (44). It is premised on a refrigeration apparatus that performs a vapor compression refrigeration cycle that is lower than that. The refrigeration apparatus includes an absorption refrigerator (60) that performs an absorption refrigeration cycle using exhaust heat as a heat source, and the refrigerant circuit (11) includes a refrigerant discharged from the compressor (21, 22, 23). The heat exchanger for condensation (64) which cools and condenses with the cold of the absorption refrigerator (60) is provided in parallel with the heat source side heat exchanger (25). .

第3の発明では、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)の冷熱を利用して冷媒回路(11)を流れる冷媒を凝縮させる。具体的には、冷媒回路(11)において圧縮機(21,22,23)の吐出冷媒は、熱源側熱交換器(25)と凝縮用熱交換器(64)とに分流する。凝縮用熱交換器(64)では、冷媒回路(11)の冷媒が上記吸収式冷凍機(60)の冷熱によって冷却されて凝縮する。この冷媒は、上記熱源側熱交換器(25)で凝縮した冷媒と合流して、第1利用側熱交換器(44)や第2利用側熱交換器(45,46)へ送られる。各利用側熱交換器(45,46,47)では、冷媒が異なる温度で蒸発し、例えば室内空気の冷却や、冷蔵/冷凍庫内の空気の冷却が同時に行われる。   In 3rd invention, the refrigerant | coolant which flows through a refrigerant circuit (11) is condensed using the cold heat of the absorption refrigerator (60) which performs an absorption refrigeration cycle by using waste heat as a heat source. Specifically, the refrigerant discharged from the compressor (21, 22, 23) in the refrigerant circuit (11) is divided into the heat source side heat exchanger (25) and the condensation heat exchanger (64). In the heat exchanger for condensation (64), the refrigerant in the refrigerant circuit (11) is cooled and condensed by the cold heat of the absorption chiller (60). This refrigerant merges with the refrigerant condensed in the heat source side heat exchanger (25) and is sent to the first usage side heat exchanger (44) and the second usage side heat exchanger (45, 46). In each use side heat exchanger (45, 46, 47), the refrigerant evaporates at different temperatures, and for example, cooling of indoor air and cooling of air in a refrigerator / freezer are performed simultaneously.

第4の発明は、第3の発明において、上記冷媒回路(11)は、圧縮機(21,22)の吐出冷媒を上記熱源側熱交換器(25)と上記凝縮用熱交換器(64)との双方に供給する第1冷媒経路と、該圧縮機(21,22)の吐出冷媒を上記熱源側熱交換器(25)だけに供給する第2冷媒経路とを変更可能に構成されていることを特徴とするものである。   In a fourth aspect based on the third aspect, the refrigerant circuit (11) uses the refrigerant discharged from the compressor (21, 22) as the heat source side heat exchanger (25) and the condensing heat exchanger (64). And a second refrigerant path for supplying the refrigerant discharged from the compressor (21, 22) only to the heat source side heat exchanger (25). It is characterized by this.

第4の発明では、冷媒回路(11)における冷媒の流れが第1冷媒経路と第2冷媒経路とに切り換えられる。冷媒が第1冷媒経路を流れる場合、圧縮機(21,22)の吐出冷媒は、熱源側熱交換器(25)と凝縮用熱交換器(64)とに分流し、両熱交換器(25,64)でそれぞれ冷媒が凝縮する。冷媒が第2冷媒経路を流れる場合、圧縮機(21,22)の吐出冷媒は、凝縮用熱交換器(64)には流入せず、熱源側熱交換器(25)のみに流入して凝縮する。つまり、本発明の冷凍装置では、冷媒を熱源側熱交換器(25)と凝縮用熱交換器(64)との双方で凝縮させる運転と、冷媒を熱源側熱交換器(25)のみで凝縮させる運転とが切り換えられる。   In the fourth invention, the refrigerant flow in the refrigerant circuit (11) is switched between the first refrigerant path and the second refrigerant path. When the refrigerant flows through the first refrigerant path, the refrigerant discharged from the compressor (21, 22) is divided into the heat source side heat exchanger (25) and the condensing heat exchanger (64), and both heat exchangers (25 64), the refrigerant condenses. When the refrigerant flows through the second refrigerant path, the refrigerant discharged from the compressor (21, 22) does not flow into the condensation heat exchanger (64), but flows into the heat source side heat exchanger (25) and condenses. To do. In other words, in the refrigeration apparatus of the present invention, the refrigerant is condensed in both the heat source side heat exchanger (25) and the condensation heat exchanger (64), and the refrigerant is condensed only in the heat source side heat exchanger (25). The operation to be switched is switched.

第5の発明は、第1利用側熱交換器(44)と第2利用側熱交換器(45,46)とが設けられる冷媒回路(11)を備え、上記冷媒回路(11)では、第2利用側熱交換器(45,46)の冷媒蒸発温度が第1利用側熱交換器(44)の冷媒蒸発温度よりも低くなる蒸気圧縮式の冷凍サイクルを行う冷凍装置を前提としている。そして、この冷凍装置では、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)を備え、上記冷媒回路(11)には、上記第1利用側熱交換器(44)で蒸発した冷媒を吸入して圧縮する第1圧縮機(21)と、上記第2利用側熱交換器(45,46)で蒸発した冷媒を吸入して圧縮する第2圧縮機(22)と、上記第1圧縮機(21)から吐出された冷媒を室外空気との熱交換によって凝縮させる熱源側熱交換器(25)と、上記第2圧縮機(22)から吐出された冷媒を上記吸収式冷凍機(60)の冷熱で冷却して凝縮させる凝縮用熱交換器(64)とが設けられていることを特徴とするものである。   A fifth invention includes a refrigerant circuit (11) provided with a first usage-side heat exchanger (44) and a second usage-side heat exchanger (45, 46). In the refrigerant circuit (11), The premise is a refrigeration apparatus that performs a vapor compression refrigeration cycle in which the refrigerant evaporation temperature of the two usage-side heat exchangers (45, 46) is lower than the refrigerant evaporation temperature of the first usage-side heat exchanger (44). The refrigeration apparatus includes an absorption chiller (60) that performs an absorption refrigeration cycle using exhaust heat as a heat source, and the refrigerant circuit (11) is evaporated by the first usage-side heat exchanger (44). A first compressor (21) for sucking and compressing the refrigerant, and a second compressor (22) for sucking and compressing the refrigerant evaporated in the second use side heat exchanger (45, 46), A heat source side heat exchanger (25) that condenses the refrigerant discharged from the first compressor (21) by heat exchange with outdoor air, and the refrigerant discharged from the second compressor (22) is the absorption refrigeration. And a condensing heat exchanger (64) for cooling and condensing with the cold heat of the machine (60).

第5の発明では、第1利用側熱交換器(44)で蒸発した冷媒は、第1圧縮機(21)で圧縮された後、熱源側熱交換器(25)に送られる。この熱源側熱交換器(25)では、冷媒が室外空気に放熱して凝縮する。一方、第2利用側熱交換器(45,46)において、上記第1利用側熱交換器(44)より低い温度で蒸発した冷媒は、第2圧縮機(22)で圧縮された後、凝縮用熱交換器(64)に送られる。この凝縮用熱交換器(64)では、冷媒回路(11)の冷媒が上記吸収式冷凍機(60)の冷熱によって冷却されて凝縮する。   In the fifth aspect of the invention, the refrigerant evaporated in the first usage side heat exchanger (44) is compressed by the first compressor (21) and then sent to the heat source side heat exchanger (25). In the heat source side heat exchanger (25), the refrigerant dissipates heat to the outdoor air and condenses. On the other hand, in the second usage side heat exchanger (45, 46), the refrigerant evaporated at a lower temperature than the first usage side heat exchanger (44) is compressed by the second compressor (22) and then condensed. Sent to the heat exchanger (64). In the heat exchanger for condensation (64), the refrigerant in the refrigerant circuit (11) is cooled and condensed by the cold heat of the absorption chiller (60).

ところで、熱源側熱交換器(25)において冷媒を冷却する室外空気と、凝縮用熱交換器(64)において冷媒を冷却する吸収式冷凍機(60)の冷熱とを比較すると、該吸収式冷凍機(60)の冷熱の方が低温となる。したがって、凝縮用熱交換器(64)では熱源側熱交換器(25)よりも冷媒の凝縮温度を低く設定することができる。   By the way, when the outdoor air that cools the refrigerant in the heat source side heat exchanger (25) and the cold heat of the absorption refrigerator (60) that cools the refrigerant in the heat exchanger for condensation (64) are compared, the absorption refrigeration The cold temperature of the machine (60) is lower. Therefore, the condensation temperature of the refrigerant can be set lower in the condensation heat exchanger (64) than in the heat source side heat exchanger (25).

ここで本発明では、第2利用側熱交換器(45,46)において低温で蒸発した冷媒を凝縮用熱交換器(64)に送るようにしている。このため、第2利用側熱交換器(45,46)での冷媒蒸発温度と凝縮用熱交換器(64)での冷媒凝縮温度との温度差が小さくなり、第2利用側熱交換器(45,46)側の冷凍サイクルにおける高低差圧が小さくなる。   Here, in the present invention, the refrigerant evaporated at a low temperature in the second usage side heat exchanger (45, 46) is sent to the heat exchanger for condensation (64). For this reason, the temperature difference between the refrigerant evaporation temperature in the second usage side heat exchanger (45, 46) and the refrigerant condensation temperature in the condensation heat exchanger (64) is reduced, and the second usage side heat exchanger ( The pressure difference in the refrigeration cycle on the 45, 46) side is reduced.

第6の発明は、第5の発明において、第1圧縮機(21)の吐出冷媒を熱源側熱交換器(25)で凝縮させた後、凝縮用熱交換器(64)へ供給することを特徴とするものである。   In a sixth aspect based on the fifth aspect, the refrigerant discharged from the first compressor (21) is condensed in the heat source side heat exchanger (25) and then supplied to the heat exchanger for condensation (64). It is a feature.

第6の発明では、第1圧縮機(21)で圧縮した冷媒が、熱源側熱交換器(25)に送られて凝縮する。その後、この冷媒は、第2圧縮機(22)で圧縮された冷媒と合流して、凝縮用熱交換器(64)へ送られる。つまり、第1圧縮機(21)で圧縮された冷媒は、熱源側熱交換器(25)と凝縮用熱交換器(64)との双方で冷却されるため、各利用側熱交換器(44,45,46)へ送られる冷媒の過冷却度が増大する。   In the sixth invention, the refrigerant compressed by the first compressor (21) is sent to the heat source side heat exchanger (25) and condensed. Thereafter, the refrigerant merges with the refrigerant compressed by the second compressor (22), and is sent to the heat exchanger for condensation (64). That is, the refrigerant compressed by the first compressor (21) is cooled by both the heat source side heat exchanger (25) and the heat exchanger for condensation (64), so that each use side heat exchanger (44 , 45, 46), the degree of supercooling of the refrigerant sent increases.

第7の発明は、第5の発明において、冷媒回路(11)は、第1圧縮機(21)の吐出冷媒を熱源側熱交換器(25)に供給する同時に第2圧縮機(22)の吐出冷媒を凝縮用熱交換器(64)に供給する第1冷媒経路と、第1圧縮機(21)と第2圧縮機(22)との双方の吐出冷媒を熱源側熱交換器(25)に供給する第2冷媒経路とを変更可能に構成されていることを特徴とするものである。   In a seventh aspect based on the fifth aspect, the refrigerant circuit (11) supplies the refrigerant discharged from the first compressor (21) to the heat source side heat exchanger (25) and at the same time the second compressor (22). The first refrigerant path for supplying the discharged refrigerant to the heat exchanger for condensation (64), and the discharged refrigerant from both the first compressor (21) and the second compressor (22) are used as the heat source side heat exchanger (25). It is comprised so that a 2nd refrigerant | coolant path | route supplied to can be changed.

第7の発明では、冷媒回路(11)における冷媒の流れが第1冷媒経路と第2冷媒経路とに切り換えられる。冷媒が第1冷媒経路を流れる場合、第1圧縮機(21)の吐出冷媒は、熱源側熱交換器(25)で凝縮する一方、第2圧縮機(22)の吐出冷媒は熱源側熱交換器(25)で凝縮する。冷媒が第2冷媒経路を流れる場合、第1圧縮機(21)と第2圧縮機(22)との双方の冷媒が熱源側熱交換器(25)で凝縮する。つまり、本発明では、それぞれの冷媒を熱源側熱交換器(25)と凝縮用熱交換器(64)との双方で別々に凝縮させる運転と、双方の冷媒を熱源側熱交換器(25)で凝縮させる運転とが切り換えられる。   In the seventh invention, the refrigerant flow in the refrigerant circuit (11) is switched between the first refrigerant path and the second refrigerant path. When the refrigerant flows through the first refrigerant path, the refrigerant discharged from the first compressor (21) condenses in the heat source side heat exchanger (25), while the refrigerant discharged from the second compressor (22) exchanges heat source side heat. Condensate in vessel (25). When the refrigerant flows through the second refrigerant path, the refrigerant of both the first compressor (21) and the second compressor (22) is condensed in the heat source side heat exchanger (25). That is, in the present invention, the operation of separately condensing each refrigerant in both the heat source side heat exchanger (25) and the heat exchanger for condensation (64), and both refrigerants in the heat source side heat exchanger (25) The operation to condense is switched.

上記第1の発明では、熱源側熱交換器(25)で凝縮した冷媒を過冷却用熱交換器(64)で冷却してから利用側熱交換器(44,45,46)に送るようにしている。このため、利用側熱交換器(44,45,46)で蒸発する冷媒の過冷却度を増大させることができ、利用側熱交換器(44,45,46)の冷却能力を向上させることができる。ここで、本発明では、過冷却用熱交換器(64)において、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)の冷熱で冷媒を冷却するようにしている。このため、排熱を有効活用しながら冷媒回路(11)の冷媒を効果的に過冷却することができるので、この冷凍装置の省エネルギー性を向上させることができる。   In the first invention, the refrigerant condensed in the heat source side heat exchanger (25) is cooled by the supercooling heat exchanger (64) and then sent to the use side heat exchanger (44, 45, 46). ing. For this reason, it is possible to increase the degree of supercooling of the refrigerant evaporated in the use side heat exchanger (44, 45, 46), and to improve the cooling capacity of the use side heat exchanger (44, 45, 46). it can. Here, in the present invention, in the supercooling heat exchanger (64), the refrigerant is cooled by the cold heat of the absorption chiller (60) that performs the absorption refrigeration cycle using exhaust heat as a heat source. For this reason, since the refrigerant of the refrigerant circuit (11) can be effectively supercooled while effectively utilizing the exhaust heat, the energy saving performance of the refrigeration apparatus can be improved.

特に、上記第2の発明では、過冷却用熱交換器(64)で冷却した冷媒を、冷媒蒸発温度が低く設定される第2利用側熱交換器(45,46)のみに送るようにしている。このため、冷媒蒸発温度が低く、高低差圧が大きくなってしまう第2利用側熱交換器(45,46)側の冷凍サイクルについて、低圧側のエンタルピ差を増大でき、この冷凍装置のCOP(成績係数)を効果的に改善することできる。したがって、この冷凍装置の省エネルギー性を効果的に向上させることができる。   In particular, in the second aspect of the invention, the refrigerant cooled by the supercooling heat exchanger (64) is sent only to the second usage side heat exchanger (45, 46) in which the refrigerant evaporation temperature is set low. Yes. For this reason, the enthalpy difference on the low pressure side can be increased for the refrigeration cycle on the second usage side heat exchanger (45, 46) side where the refrigerant evaporation temperature is low and the high / low differential pressure becomes large, and the COP ( The coefficient of performance can be effectively improved. Therefore, the energy saving property of this refrigeration apparatus can be improved effectively.

また、上記第3の発明では、熱源側熱交換器(25)と凝縮用熱交換器(64)とを冷媒回路(11)に並列に接続し、各熱交換器(25,26)で冷媒を凝縮させるようにしている。ここで本発明の凝縮用熱交換器(64)では、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)の冷熱で冷媒を凝縮させるようにしている。このため、排熱を有効活用しながら冷媒回路(11)の冷媒を凝縮させることができ、この冷凍装置の省エネルギー性を向上させることができる。   In the third aspect of the invention, the heat source side heat exchanger (25) and the condensation heat exchanger (64) are connected in parallel to the refrigerant circuit (11), and the refrigerant is cooled by the heat exchangers (25, 26). To condense. Here, in the heat exchanger for condensation (64) of the present invention, the refrigerant is condensed by the cold heat of the absorption chiller (60) that performs the absorption refrigeration cycle using the exhaust heat as a heat source. For this reason, the refrigerant in the refrigerant circuit (11) can be condensed while effectively utilizing the exhaust heat, and the energy saving performance of the refrigeration apparatus can be improved.

更に、上記第4の発明では、冷媒を熱源側熱交換器(25)と凝縮用熱交換器(64)との双方で凝縮させる運転と、冷媒を熱源側熱交換器(25)のみで凝縮させる運転とを切り換えられるようにしている。このため、例えば吸収式冷凍機(60)の熱源となる排熱が不足し、吸収式冷凍機(60)で所望の吸収式冷凍サイクルが行えなくなった場合には、吸収式冷凍機(60)を停止させると同時に冷媒回路(11)の冷媒を熱源側熱交換器(25)のみで凝縮させて冷凍サイクルを継続することができる。つまり、本発明によれば、吸収式冷凍機(60)の停止時にも各利用側熱交換器(44,45,46)で冷却対象を冷却することができる。したがって、この冷凍装置の信頼性を向上できる。   Furthermore, in the fourth aspect of the invention, the operation of condensing the refrigerant in both the heat source side heat exchanger (25) and the condensing heat exchanger (64), and the refrigerant condensed only in the heat source side heat exchanger (25). The operation can be switched. For this reason, for example, when the exhaust heat that becomes the heat source of the absorption refrigeration machine (60) is insufficient and the absorption refrigeration machine (60) cannot perform a desired absorption refrigeration cycle, the absorption refrigeration machine (60) And the refrigerant in the refrigerant circuit (11) can be condensed only by the heat source side heat exchanger (25) and the refrigeration cycle can be continued. That is, according to the present invention, it is possible to cool the cooling target with each use side heat exchanger (44, 45, 46) even when the absorption chiller (60) is stopped. Therefore, the reliability of this refrigeration apparatus can be improved.

上記第5の発明では、第2利用側熱交換器(45,46)において、第1利用側熱交換器(44)よりも低温で蒸発する冷媒を凝縮用熱交換器(64)で凝縮させるようにしている。このため、第2利用側熱交換器(45,46)に係る冷凍サイクルの高低差圧が小さくできるので、第2利用側熱交換器(45,46)を蒸発した冷媒を圧縮する際の第2圧縮機(22)の入力を削減することができる。したがって、従来であれば、冷媒蒸発温度が低くCOPも低下し易い第2利用側熱交換器(45,46)側の冷凍サイクルについて、このCOPの改善を図ることができる。このため、この冷凍装置の省エネルギー性を効果的に向上させることができる。   In the fifth aspect of the invention, in the second usage side heat exchanger (45, 46), the refrigerant evaporating at a lower temperature than the first usage side heat exchanger (44) is condensed in the condensation heat exchanger (64). I am doing so. For this reason, since the differential pressure of the refrigeration cycle according to the second usage-side heat exchanger (45, 46) can be reduced, the second usage-side heat exchanger (45, 46) is compressed when the refrigerant evaporated is compressed. The input of the two compressors (22) can be reduced. Therefore, conventionally, it is possible to improve the COP of the refrigeration cycle on the second usage side heat exchanger (45, 46) side where the refrigerant evaporation temperature is low and the COP is likely to decrease. For this reason, the energy-saving property of this refrigeration apparatus can be improved effectively.

上記第6の発明によれば、第1圧縮機(21)で圧縮した冷媒を熱源側熱交換器(25)と凝縮用熱交換器(64)との双方で冷却することで、各利用側熱交換器(44,45,46)へ送られる冷媒の過冷却度を増大させることができる。このため、各利用側熱交換器(44,45,46)の冷却能力を向上させることができる。   According to the sixth aspect of the present invention, the refrigerant compressed by the first compressor (21) is cooled by both the heat source side heat exchanger (25) and the condensation heat exchanger (64), so that each use side The degree of supercooling of the refrigerant sent to the heat exchanger (44, 45, 46) can be increased. For this reason, the cooling capacity of each use side heat exchanger (44, 45, 46) can be improved.

上記第7の発明によれば、第1圧縮機(21)の吐出冷媒を熱源側熱交換器(25)で凝縮させると同時に第2圧縮機(22)の吐出冷媒を凝縮用熱交換器(64)で凝縮させる運転と、第1圧縮機(21)及び第2圧縮機(22)の吐出冷媒を熱源側熱交換器(25)で凝縮させる運転とを切り換えられるようにしている。このため、吸収式冷凍機(60)の停止時にも両圧縮機(21,22)の吐出冷媒を熱源側熱交換器(25)で凝縮させて各利用側熱交換器(44,45,46)へ送ることができ、冷却対象を継続して冷却することができる。   According to the seventh aspect of the invention, the refrigerant discharged from the first compressor (21) is condensed in the heat source side heat exchanger (25), and at the same time, the refrigerant discharged from the second compressor (22) is condensed into a heat exchanger for condensation ( The operation of condensing in 64) and the operation of condensing the refrigerant discharged from the first compressor (21) and the second compressor (22) in the heat source side heat exchanger (25) can be switched. For this reason, even when the absorption chiller (60) is stopped, the refrigerant discharged from both compressors (21, 22) is condensed in the heat source side heat exchanger (25) to be used on each use side heat exchanger (44, 45, 46). ) And the object to be cooled can be continuously cooled.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described.

実施形態1の冷凍装置(10)は、例えばコンビニエンスストア等に適用されて、室内の空調と冷凍/冷蔵ショーケース内の庫内の冷却とを同時に行うものである。   The refrigeration apparatus (10) of Embodiment 1 is applied to, for example, a convenience store, and performs air conditioning in a room and cooling in a refrigerator in a refrigeration / refrigeration showcase at the same time.

図1に示すように、この冷凍装置(10)は、室外に設置される室外ユニット(20)と、室内に設置される室内ユニット(40)と、吸収式冷凍機(60)とを備えている。上記室外ユニット(20)には室外回路(30)が、上記室内ユニット(40)には室内回路(50)がそれぞれ設けられている。この冷凍装置(10)では、室外回路(30)と室内回路(50)とが互いに接続されることで、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷媒回路(11)が構成されている。   As shown in FIG. 1, this refrigeration apparatus (10) includes an outdoor unit (20) installed outdoors, an indoor unit (40) installed indoors, and an absorption refrigerator (60). Yes. The outdoor unit (20) is provided with an outdoor circuit (30), and the indoor unit (40) is provided with an indoor circuit (50). In the refrigeration apparatus (10), the outdoor circuit (30) and the indoor circuit (50) are connected to each other, thereby forming a refrigerant circuit (11) that performs a vapor compression refrigeration cycle by circulating the refrigerant. Yes.

<室外ユニットの構成>
上記室外ユニット(20)の室外回路(30)は、第1圧縮機(21)が設けられる第1分岐管(31)と、第2圧縮機(22)が設けられる第2分岐管(32)と、室外熱交換器(25)が設けられる高圧配管(33)とを備えている。この高圧配管(33)の流入側は2つに分岐して上記第1分岐管(31)及び第2分岐管(32)と接続している。
<Outdoor unit configuration>
The outdoor circuit (30) of the outdoor unit (20) includes a first branch pipe (31) provided with a first compressor (21) and a second branch pipe (32) provided with a second compressor (22). And a high-pressure pipe (33) provided with an outdoor heat exchanger (25). The inflow side of the high-pressure pipe (33) branches into two and is connected to the first branch pipe (31) and the second branch pipe (32).

上記第1圧縮機(21)及び第2圧縮機(22)は、何れも全密閉型で高圧ドーム型のスクロール圧縮機である。これらの圧縮機(21,22)には、インバータを介して電力が供給される。各圧縮機(21,22)は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更することによって、その容量が変更可能となっている。   The first compressor (21) and the second compressor (22) are both hermetic and high-pressure dome type scroll compressors. Electric power is supplied to these compressors (21, 22) via an inverter. The capacity of each compressor (21, 22) can be changed by changing the rotation speed of the compressor motor by changing the output frequency of the inverter.

上記室外熱交換器(25)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、本発明の熱源側熱交換器を構成している。この室外熱交換器(25)の近傍には室外ファン(26)が設置されている。そして、室外熱交換器(25)では、上記室外ファン(26)が送風する室外空気と冷媒との間で熱交換が行われる。   The outdoor heat exchanger (25) is a cross fin type fin-and-tube heat exchanger, and constitutes the heat source side heat exchanger of the present invention. An outdoor fan (26) is installed in the vicinity of the outdoor heat exchanger (25). In the outdoor heat exchanger (25), heat is exchanged between the outdoor air blown by the outdoor fan (26) and the refrigerant.

また、室外回路(30)には、室外熱交換器(25)の下流側に上記吸収式冷凍機(60)の蒸発器(64)が設けられている。この吸収式冷凍機(60)の詳細は後述するものとする。   The outdoor circuit (30) is provided with the evaporator (64) of the absorption refrigerator (60) on the downstream side of the outdoor heat exchanger (25). Details of the absorption refrigerator (60) will be described later.

<室内ユニットの構成>
上記室内ユニット(40)の室内回路(50)は、空調膨張弁(41)及び空調熱交換器(44)が設けられる空調側配管(51)と、冷却膨張弁(42)及び冷却熱交換器(45)が設けられる冷却側配管(52)とが互いに並行に接続されて構成されている。空調側配管(51)は本発明の第1利用回路を、冷却側配管(52)は本発明の第2利用回路をそれぞれ構成している。空調側配管(51)及び冷却側配管(52)の一端には、上記高圧配管(33)の流出側が分岐して接続されている。一方、空調側配管(51)の他端には上記第1分岐管(31)が、冷却側配管(52)の他端には上記第2分岐管(32)がそれぞれ接続されている。
<Indoor unit configuration>
The indoor circuit (50) of the indoor unit (40) includes an air conditioning side pipe (51) provided with an air conditioning expansion valve (41) and an air conditioning heat exchanger (44), a cooling expansion valve (42), and a cooling heat exchanger. The cooling side pipe (52) provided with (45) is connected in parallel to each other. The air conditioning side pipe (51) constitutes the first usage circuit of the present invention, and the cooling side pipe (52) constitutes the second usage circuit of the present invention. The outflow side of the high pressure pipe (33) is branched and connected to one end of the air conditioning side pipe (51) and the cooling side pipe (52). On the other hand, the first branch pipe (31) is connected to the other end of the air conditioning side pipe (51), and the second branch pipe (32) is connected to the other end of the cooling side pipe (52).

上記空調膨張弁(41)及び冷却膨張弁(42)は、その開度が調節可能な電子膨張弁で構成されている。上記空調熱交換器(44)及び冷却熱交換器(45)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、本発明の利用側熱交換器を構成している。   The air conditioning expansion valve (41) and the cooling expansion valve (42) are electronic expansion valves whose opening degrees can be adjusted. The air conditioning heat exchanger (44) and the cooling heat exchanger (45) are cross-fin type fin-and-tube heat exchangers, and constitute the use side heat exchanger of the present invention.

上記空調熱交換器(44)の近傍には、図示しない空調ファンが設けられている。そして、空調熱交換器(44)では、空調ファンの送風空気と冷媒との間で熱交換が行われる。その結果、冷却された送風空気が室内に供給され、室内の冷房が行われる。この際の空調熱交換器(44)の冷媒蒸発温度は約5℃に設定されている。   An air conditioning fan (not shown) is provided in the vicinity of the air conditioning heat exchanger (44). In the air conditioning heat exchanger (44), heat exchange is performed between the air blown from the air conditioning fan and the refrigerant. As a result, the cooled blown air is supplied into the room and the room is cooled. The refrigerant evaporation temperature of the air conditioning heat exchanger (44) at this time is set to about 5 ° C.

上記冷却熱交換器(45)の近傍には、図示しない庫内ファンが設けられている。そして、冷却熱交換器(45)では、庫内ファンの送風空気と冷媒との間で熱交換が行われる。その結果、冷却された送風空気が庫内に供給され、庫内空気の冷却が行われる。この際の冷却熱交換器(45)の冷媒蒸発温度は約−40℃〜−10℃に設定されており、冷媒蒸発温度に応じて庫内の冷蔵運転や冷凍運転が行われる。   In the vicinity of the cooling heat exchanger (45), an internal fan (not shown) is provided. In the cooling heat exchanger (45), heat is exchanged between the blown air of the internal fan and the refrigerant. As a result, the cooled blown air is supplied into the warehouse, and the interior air is cooled. The refrigerant evaporating temperature of the cooling heat exchanger (45) at this time is set to about −40 ° C. to −10 ° C., and the refrigeration operation and the freezing operation in the refrigerator are performed according to the refrigerant evaporating temperature.

<吸収式冷凍機の構成>
図2に示す上記吸収式冷凍機(60)は、臭化リチウムを吸収剤とし水を冷媒として吸収冷凍サイクルを行う、いわゆる臭化リチウム吸収冷凍機で構成されている。この吸収式冷凍機(60)は、箱形のケーシング(61)内に、再生器(62)、凝縮器(63)、蒸発器(64)、吸収器(65)、及び溶液熱交換器(66)を備えている。また、吸収式冷凍機(60)は、冷却ファン(67)及び溶液ポンプ(68)を備えている。
<Configuration of absorption refrigerator>
The absorption refrigerator (60) shown in FIG. 2 is a so-called lithium bromide absorption refrigerator that performs an absorption refrigeration cycle using lithium bromide as an absorbent and water as a refrigerant. The absorption refrigerator (60) includes a regenerator (62), a condenser (63), an evaporator (64), an absorber (65), and a solution heat exchanger (61) in a box-shaped casing (61). 66). The absorption refrigerator (60) includes a cooling fan (67) and a solution pump (68).

上記再生器(62)には、コンビニエンスストア等へ電力を供給する、例えばガスエンジンなどの発電機の排熱が供給される。その結果、この排熱は、再生器(62)内の臭化リチウム溶液の加熱に利用される。つまり、この吸収式冷凍機(60)は、発電機の排熱を熱源として吸収式冷凍サイクルを行う、いわゆる排熱駆動型の吸収式冷凍機で構成されている。なお、上記排熱の温度は、90℃以下が好ましく、特に80℃以上90℃以下の範囲が好適である。   The regenerator (62) is supplied with exhaust heat from a generator such as a gas engine, which supplies power to a convenience store or the like. As a result, this exhaust heat is used for heating the lithium bromide solution in the regenerator (62). That is, the absorption chiller (60) is a so-called exhaust heat drive type absorption chiller that performs an absorption refrigeration cycle using the exhaust heat of the generator as a heat source. The temperature of the exhaust heat is preferably 90 ° C. or less, and particularly preferably in the range of 80 ° C. or more and 90 ° C. or less.

上記凝縮器(63)及び吸収器(65)は、空冷式の熱交換器を構成している。凝縮器(63)では、上記再生器(62)で分離された水蒸気と、冷却ファン(67)の送風空気との間で熱交換が行われる。上記吸収器(65)では、水冷媒を吸収した臭化リチウム溶液と、冷却ファン(67)の送風空気との間で熱交換が行われる。   The condenser (63) and the absorber (65) constitute an air-cooled heat exchanger. In the condenser (63), heat exchange is performed between the water vapor separated by the regenerator (62) and the air blown from the cooling fan (67). In the absorber (65), heat exchange is performed between the lithium bromide solution that has absorbed the water refrigerant and the air blown from the cooling fan (67).

上述のように、蒸発器(64)は、室外回路(30)における室外熱交換器(25)の下流側に接続されている。この蒸発器(64)では、室外回路(30)を流れる冷媒と、上記凝縮器(63)で凝縮した水冷媒との間で熱交換が行われる。その結果、室外回路(30)を流れる冷媒は、水冷媒に蒸発熱を奪われて冷却される。つまり、この蒸発器(64)は、上記室外熱交換器(25)を流出した冷媒を上記吸収式冷凍機(60)の冷熱で冷却する過冷却用熱交換器を構成している。   As described above, the evaporator (64) is connected to the downstream side of the outdoor heat exchanger (25) in the outdoor circuit (30). In the evaporator (64), heat exchange is performed between the refrigerant flowing in the outdoor circuit (30) and the water refrigerant condensed in the condenser (63). As a result, the refrigerant flowing through the outdoor circuit (30) is cooled due to the evaporation heat taken away by the water refrigerant. That is, the evaporator (64) constitutes a supercooling heat exchanger that cools the refrigerant that has flowed out of the outdoor heat exchanger (25) with the cold heat of the absorption chiller (60).

−運転動作−
冷凍装置(10)の運転時には、第1圧縮機(21)及び第2圧縮機(22)が運転される。その結果、冷媒回路(11)では、空調熱交換器(44)と冷却熱交換器(45)とで冷媒蒸発温度が異なる冷凍サイクルが行われる。同時に、上記吸収式冷凍機(60)では、溶液ポンプ(68)が運転される。その結果、吸収式冷凍機(60)では、発電機の排熱を駆動源として吸収式冷凍サイクルが行われる。
-Driving action-
During the operation of the refrigeration apparatus (10), the first compressor (21) and the second compressor (22) are operated. As a result, in the refrigerant circuit (11), refrigeration cycles with different refrigerant evaporation temperatures are performed between the air conditioning heat exchanger (44) and the cooling heat exchanger (45). At the same time, in the absorption refrigerator (60), the solution pump (68) is operated. As a result, in the absorption chiller (60), an absorption refrigeration cycle is performed using the exhaust heat of the generator as a drive source.

まず、上記吸収式冷凍機(60)の基本的な運転動作について図2を参照しながら説明する。   First, the basic operation of the absorption refrigerator (60) will be described with reference to FIG.

再生器(62)では、発電機の排熱によって臭化リチウム溶液が加熱されて沸騰する。その結果、臭化リチウム溶液中の水冷媒が蒸発する一方、臭化リチウム溶液は濃縮される。再生器(62)で水蒸気となった水冷媒は、凝縮器(63)へ流入する。凝縮器(63)では、冷却ファン(67)の送風空気によって水冷媒が冷却されて凝縮する。凝縮器(63)で液化した水冷媒は、図示しない細管を通る際に減圧されてから蒸発器(64)へ流入する。   In the regenerator (62), the lithium bromide solution is heated and boiled by the exhaust heat of the generator. As a result, the water refrigerant in the lithium bromide solution evaporates, while the lithium bromide solution is concentrated. The water refrigerant that has become water vapor in the regenerator (62) flows into the condenser (63). In the condenser (63), the water refrigerant is cooled and condensed by the air blown from the cooling fan (67). The water refrigerant liquefied by the condenser (63) is decompressed when passing through a thin tube (not shown) and then flows into the evaporator (64).

蒸発器(64)に流入した低圧の水冷媒は、図1に示す室外回路(30)を流れる冷媒から吸熱して蒸発する。蒸発器(64)で再び水蒸気となった水冷媒は、吸収器(65)へ流入する。吸収器(65)では、再生器(62)で濃縮された臭化リチウム濃溶液が、溶液熱交換器(66)を経由して散布される。その結果、吸収器(65)では、散布された臭化リチウム濃溶液に水冷媒が吸収され、臭化リチウム溶液が希釈される。なお、この際生じる吸収熱は冷却ファン(67)の送風空気によって取り除かれる。   The low-pressure water refrigerant flowing into the evaporator (64) absorbs heat from the refrigerant flowing through the outdoor circuit (30) shown in FIG. 1 and evaporates. The water refrigerant that has become water vapor again in the evaporator (64) flows into the absorber (65). In the absorber (65), the concentrated lithium bromide solution concentrated in the regenerator (62) is sprayed via the solution heat exchanger (66). As a result, in the absorber (65), the water refrigerant is absorbed in the dispersed lithium bromide concentrated solution, and the lithium bromide solution is diluted. The absorbed heat generated at this time is removed by the air blown from the cooling fan (67).

吸収器(65)に貯まった臭化リチウム希溶液は、溶液ポンプ(68)によって加圧されてから溶液熱交換器(66)に送られる。溶液熱交換器(66)では、溶液ポンプ(68)で圧送される臭化リチウム希溶液と、再生器(62)から吸収器(65)へ送られる臭化リチウム濃溶液との間で熱交換が行われ、臭化リチウム希溶液が加熱される。溶液熱交換器(66)で加熱された臭化リチウム希溶液は、再生器(62)に送られ、発電機の排熱によって再び加熱される。   The diluted lithium bromide solution stored in the absorber (65) is pressurized by the solution pump (68) and then sent to the solution heat exchanger (66). In the solution heat exchanger (66), heat exchange is performed between the lithium bromide dilute solution pumped by the solution pump (68) and the lithium bromide concentrated solution sent from the regenerator (62) to the absorber (65). And a dilute solution of lithium bromide is heated. The lithium bromide dilute solution heated by the solution heat exchanger (66) is sent to the regenerator (62) and is heated again by the exhaust heat of the generator.

次に冷凍装置(10)における冷媒回路(11)の冷媒の流れについて説明する。   Next, the flow of the refrigerant in the refrigerant circuit (11) in the refrigeration apparatus (10) will be described.

第1圧縮機(21)及び第2圧縮機(22)の吐出冷媒は、高圧配管(33)で合流した後、室外熱交換器(25)に流入する。室外熱交換器(25)では、冷媒が空気に放熱して凝縮する。室外熱交換器(25)で凝縮した冷媒は、吸収式冷凍機(60)の蒸発器(64)を流通する。   The refrigerant discharged from the first compressor (21) and the second compressor (22) joins at the high-pressure pipe (33) and then flows into the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the refrigerant dissipates heat into the air and condenses. The refrigerant condensed in the outdoor heat exchanger (25) flows through the evaporator (64) of the absorption chiller (60).

蒸発器(64)では、室外回路(30)を流れる冷媒が吸収式冷凍機(60)の水冷媒によって過冷却される。蒸発器(64)で過冷却された冷媒は、空調側配管(51)と冷却側配管(52)とに分配される。空調側配管(51)に流入した冷媒は、空調膨張弁(41)で減圧された後、空調熱交換器(44)を流通する。空調熱交換器(44)では、冷媒が空気から吸熱して蒸発する一方、空調ファンの送風空気が冷却されて室内に供給される。また、冷却側配管(52)に流入した冷媒は、冷却膨張弁(42)で減圧された後、冷却熱交換器(45)を流通する。冷却熱交換器(45)では、冷媒が空気から吸熱して蒸発する一方、庫内ファンの空気が冷却されて庫内の冷却が行われる。   In the evaporator (64), the refrigerant flowing in the outdoor circuit (30) is supercooled by the water refrigerant of the absorption chiller (60). The refrigerant supercooled by the evaporator (64) is distributed to the air conditioning side pipe (51) and the cooling side pipe (52). The refrigerant flowing into the air conditioning side pipe (51) is depressurized by the air conditioning expansion valve (41) and then circulates through the air conditioning heat exchanger (44). In the air conditioning heat exchanger (44), the refrigerant absorbs heat from the air and evaporates, while the air blown by the air conditioning fan is cooled and supplied to the room. Further, the refrigerant flowing into the cooling side pipe (52) is depressurized by the cooling expansion valve (42) and then flows through the cooling heat exchanger (45). In the cooling heat exchanger (45), the refrigerant absorbs heat from the air and evaporates, while the air in the internal fan is cooled to cool the internal space.

以上のようにして空調熱交換器(44)で蒸発した冷媒は、第1圧縮機(21)に吸入されて再び圧縮される。また、冷却熱交換器(45)で蒸発した冷媒は、第2圧縮機(22)に吸入されて再び圧縮される。   The refrigerant evaporated in the air conditioning heat exchanger (44) as described above is sucked into the first compressor (21) and compressed again. The refrigerant evaporated in the cooling heat exchanger (45) is sucked into the second compressor (22) and compressed again.

−実施形態1の効果−
上記実施形態1では、室外熱交換器(25)で凝縮した冷媒を吸収式冷凍機(60)の蒸発器(64)で冷却してから空調熱交換器(44)及び冷却熱交換器(45)に送るようにしている。このため、各利用側熱交換器(44,45)で蒸発する冷媒の過冷却度を増大させることができ、各利用側熱交換器(44,45)の冷却能力を向上させることができる。また、上記吸収式冷凍機(60)は、発電機の排熱を熱源として吸収式冷凍サイクルを行っている。このため、発電機の排熱を有効活用しながら冷媒回路(11)の冷媒を効果的に過冷却することができ、この冷凍装置の省エネルギー性を向上させることができる。
-Effect of Embodiment 1-
In the first embodiment, the refrigerant condensed in the outdoor heat exchanger (25) is cooled by the evaporator (64) of the absorption refrigeration machine (60) and then the air conditioning heat exchanger (44) and the cooling heat exchanger (45 ). For this reason, the supercooling degree of the refrigerant | coolant which evaporates with each utilization side heat exchanger (44,45) can be increased, and the cooling capacity of each utilization side heat exchanger (44,45) can be improved. The absorption chiller (60) performs an absorption refrigeration cycle using the exhaust heat of the generator as a heat source. For this reason, it is possible to effectively supercool the refrigerant in the refrigerant circuit (11) while effectively utilizing the exhaust heat of the generator, and the energy saving performance of the refrigeration apparatus can be improved.

−実施形態1の変形例1−
図3に示す変形例1の室内回路(50)には、室内の空調を行う空調熱交換器(44)と、冷蔵ショーケースの冷蔵庫内を冷却する冷蔵熱交換器(45)、冷凍ショーケースの冷凍庫内を冷却する冷凍熱交換器(46)とが設けられている。
-Modification 1 of Embodiment 1-
The indoor circuit (50) of Modification 1 shown in FIG. 3 includes an air conditioning heat exchanger (44) for air conditioning the room, a refrigeration heat exchanger (45) for cooling the refrigerator in the refrigerated showcase, and a freezer showcase. And a freezing heat exchanger (46) for cooling the inside of the freezer.

この変形例の室内回路(50)では、高圧配管(33)の流出側が2つに分岐しており、空調側配管(51)、冷蔵側配管(52)に接続されている。この冷蔵側配管(52)には、更に分岐して冷凍側配管(53)が接続されている。そして、上記空調側配管(51)には空調膨張弁(41)及び空調熱交換器(44)が、上記冷蔵側配管(52)には、冷蔵膨張弁(42)及び冷蔵熱交換器(45)が、上記冷凍側配管(53)には、冷凍膨張弁(43)及び冷凍熱交換器(46)がそれぞれ設けられている。また、この冷凍側配管(53)には、冷凍熱交換器(46)の下流側にブースタ圧縮機(23)が設けられている。つまり、この冷凍装置(10)では、冷凍熱交換器(46)で蒸発した冷媒が、ブースタ圧縮機(23)で圧縮された後、更に第2圧縮機(22)で圧縮される、いわゆる2段圧縮式の冷凍サイクルが行われる。なお、空調熱交換器(44)の冷媒蒸発温度は約5℃に、冷蔵熱交換器(45)の冷媒蒸発温度は約−10℃に、冷凍熱交換器(46)の冷媒蒸発温度尾は約−40℃にそれぞれ設定されている。   In the indoor circuit (50) of this modified example, the outflow side of the high-pressure pipe (33) branches into two, and is connected to the air conditioning side pipe (51) and the refrigeration side pipe (52). The refrigerating side pipe (52) is further branched and connected to the freezing side pipe (53). The air conditioning side pipe (51) has an air conditioning expansion valve (41) and an air conditioning heat exchanger (44), and the refrigeration side pipe (52) has a refrigeration expansion valve (42) and a refrigeration heat exchanger (45). However, the refrigeration side pipe (53) is provided with a refrigeration expansion valve (43) and a refrigeration heat exchanger (46), respectively. The refrigeration side pipe (53) is provided with a booster compressor (23) on the downstream side of the refrigeration heat exchanger (46). That is, in this refrigeration apparatus (10), the refrigerant evaporated in the refrigeration heat exchanger (46) is compressed by the booster compressor (23) and then further compressed by the second compressor (22). A stage compression refrigeration cycle is performed. The refrigerant evaporation temperature of the air conditioning heat exchanger (44) is about 5 ° C., the refrigerant evaporation temperature of the refrigeration heat exchanger (45) is about −10 ° C., and the refrigerant evaporation temperature tail of the refrigeration heat exchanger (46) is Each is set to about -40 ° C.

この変形例1の冷凍装置(10)では、室外熱交換器(25)で凝縮した冷媒が吸収式冷凍機(60)の蒸発器(64)で過冷却された後、空調熱交換器(44)と冷蔵熱交換器(45)と冷凍熱交換器(46)とに分流する。このため、この変形例1においても、発電機の排熱を有効活用しながら、各利用側熱交換器(44,45,46)の冷却能力を向上させることができる。   In the refrigeration apparatus (10) of the first modification, the refrigerant condensed in the outdoor heat exchanger (25) is supercooled in the evaporator (64) of the absorption refrigeration machine (60), and then the air conditioning heat exchanger (44 ), A refrigerated heat exchanger (45), and a refrigeration heat exchanger (46). For this reason, also in this modification 1, the cooling capacity of each use side heat exchanger (44, 45, 46) can be improved, utilizing the exhaust heat of a generator effectively.

−実施形態1の変形例2−
図4に示す変形例2の冷凍装置(10)は、冷媒回路(11)における吸収式冷凍機(60)の蒸発器(64)の配置が上記変形例1と異なるものである。
-Modification 2 of Embodiment 1
The refrigeration apparatus (10) of the second modification shown in FIG. 4 is different from the first modification in the arrangement of the evaporator (64) of the absorption chiller (60) in the refrigerant circuit (11).

具体的に、この変形例2では、冷蔵側配管(52)における流入端と上記冷凍側配管(53)との接続部との間に蒸発器(64)が設けられている。つまり、この冷凍装置(10)では、上記冷蔵熱交換器(45)及び冷凍熱交換器(46)に流入する冷媒のみが蒸発器(64)によって過冷却される。   Specifically, in the second modification, an evaporator (64) is provided between the inflow end of the refrigeration side pipe (52) and the connection portion between the refrigeration side pipe (53). That is, in the refrigeration apparatus (10), only the refrigerant flowing into the refrigeration heat exchanger (45) and the refrigeration heat exchanger (46) is supercooled by the evaporator (64).

この変形例2では、蒸発器(64)で過冷却した冷媒を、冷媒蒸発温度が低く設定される冷蔵熱交換器(45)及び冷凍熱交換器(46)に送るようにしている。このため、冷媒蒸発温度が低く、高低差圧が大きくなってしまうこれらの熱交換器(45,46)側の冷凍サイクルについて、低圧側のエンタルピ差を増大でき、この冷凍装置(10)のCOP(成績係数)を効果的に改善することできる。したがって、この冷凍装置の省エネルギー性を効果的に向上させることができる。   In the second modification, the refrigerant supercooled by the evaporator (64) is sent to the refrigeration heat exchanger (45) and the refrigeration heat exchanger (46) in which the refrigerant evaporation temperature is set low. For this reason, the enthalpy difference on the low pressure side can be increased for the refrigeration cycle on the side of the heat exchanger (45, 46) where the refrigerant evaporation temperature is low and the high / low differential pressure becomes large, and the COP of the refrigeration apparatus (10) (Coefficient of performance) can be improved effectively. Therefore, the energy saving property of this refrigeration apparatus can be improved effectively.

《発明の実施形態2》
図5に示すように、実施形態2に係る冷凍装置(10)の冷媒回路(11)には、室外熱交換器(25)が設けられる第1高圧配管(33)と並列に上記蒸発器(64)が設けられる第2高圧配管(34)が接続されている。このため、各圧縮機(21,22)の吐出冷媒は、上記室外熱交換器(25)と上記蒸発器(64)とに分流する。つまり、実施形態2の蒸発器(64)は、各圧縮機(21,22)の吐出冷媒を吸収式冷凍機(60)の冷熱で冷却して凝縮させる凝縮用熱交換器を構成している。
<< Embodiment 2 of the Invention >>
As shown in FIG. 5, the refrigerant circuit (11) of the refrigeration apparatus (10) according to the second embodiment has the evaporator (11) in parallel with the first high-pressure pipe (33) provided with the outdoor heat exchanger (25). A second high-pressure pipe (34) provided with 64) is connected. For this reason, the refrigerant discharged from each compressor (21, 22) is divided into the outdoor heat exchanger (25) and the evaporator (64). That is, the evaporator (64) of the second embodiment constitutes a heat exchanger for condensation that cools and condenses the refrigerant discharged from each compressor (21, 22) with the cold heat of the absorption refrigeration machine (60). .

また、第2高圧配管(34)における蒸発器(64)の下流側には第1開閉弁(71)が設けられている。この冷媒回路(11)では、第1開閉弁(71)を開の状態として冷媒を循環させる第1冷媒経路と、第1開閉弁(71)を閉の状態として冷媒を循環させる第2冷媒経路とを変更可能となっている。   A first on-off valve (71) is provided downstream of the evaporator (64) in the second high-pressure pipe (34). In this refrigerant circuit (11), the first refrigerant path for circulating the refrigerant with the first on-off valve (71) opened, and the second refrigerant path for circulating the refrigerant with the first on-off valve (71) closed. And can be changed.

具体的に、この冷凍装置(10)の通常運転時には、吸収式冷凍機(60)で吸収式冷凍サイクルが行われると共に第1開閉弁(71)が開放される。各圧縮機(21,22)の吐出冷媒は、室外熱交換器(25)と蒸発器(64)との双方に供給されてそれぞれ凝縮する。各冷媒は第1高圧配管(33)で再び合流した後、空調側配管(51)と冷却側配管(52)とに分流する。空調側配管(51)に流入した冷媒は、空調熱交換器(44)で蒸発した後、第1圧縮機(21)に吸入される。一方、冷却側配管(52)に流入した冷媒は、冷却熱交換器(45)で蒸発した後、第2圧縮機(22)に吸入される。   Specifically, during normal operation of the refrigeration apparatus (10), an absorption refrigeration cycle is performed in the absorption chiller (60) and the first on-off valve (71) is opened. The refrigerant discharged from each compressor (21, 22) is supplied to both the outdoor heat exchanger (25) and the evaporator (64) to condense. The refrigerants merge again in the first high-pressure pipe (33), and then split into the air conditioning side pipe (51) and the cooling side pipe (52). The refrigerant flowing into the air conditioning side pipe (51) evaporates in the air conditioning heat exchanger (44) and is then sucked into the first compressor (21). On the other hand, the refrigerant that has flowed into the cooling side pipe (52) evaporates in the cooling heat exchanger (45) and then is sucked into the second compressor (22).

一方、吸収式冷凍機(60)に排熱を供給する発電機が停止状態となる場合には、上記吸収式冷凍機(60)も停止されると共に第1開閉弁(71)が閉鎖される。各圧縮機(21,22)の吐出冷媒は、第1高圧配管(33)を流通し室外熱交換器(25)だけに供給されて凝縮する。室外熱交換器(25)で凝縮した冷媒は、空調側配管(51)と冷却側配管(52)とに分流する。空調側配管(51)に流入した冷媒は、空調熱交換器(44)で蒸発した後、第1圧縮機(21)に吸入される。一方、冷却側配管(52)に流入した冷媒は、冷却熱交換器(45)で蒸発した後、第2圧縮機(22)に吸入される。   On the other hand, when the generator for supplying exhaust heat to the absorption chiller (60) is stopped, the absorption chiller (60) is also stopped and the first on-off valve (71) is closed. . The refrigerant discharged from each compressor (21, 22) flows through the first high-pressure pipe (33), is supplied only to the outdoor heat exchanger (25), and is condensed. The refrigerant condensed in the outdoor heat exchanger (25) is divided into the air conditioning side pipe (51) and the cooling side pipe (52). The refrigerant flowing into the air conditioning side pipe (51) evaporates in the air conditioning heat exchanger (44) and is then sucked into the first compressor (21). On the other hand, the refrigerant that has flowed into the cooling side pipe (52) evaporates in the cooling heat exchanger (45) and then is sucked into the second compressor (22).

−実施形態2の効果−
上記実施形態2では、室外熱交換器(25)と、上記凝縮用熱交換器となる蒸発器(64)とを冷媒回路(11)に並列に接続し、各熱交換器(25,26)で冷媒を凝縮させるようにしている。ここで上記蒸発器(64)では、排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)の冷熱で冷媒を凝縮させるようにしている。このため、排熱を有効活用しながら冷媒回路(11)の冷媒を凝縮させることができ、この冷凍装置の省エネルギー性を向上させることができる。
-Effect of Embodiment 2-
In the second embodiment, the outdoor heat exchanger (25) and the evaporator (64) serving as the condensation heat exchanger are connected in parallel to the refrigerant circuit (11), and each heat exchanger (25, 26) is connected. In order to condense the refrigerant. Here, in the evaporator (64), the refrigerant is condensed by the cold heat of the absorption chiller (60) that performs the absorption refrigeration cycle using the exhaust heat as a heat source. For this reason, the refrigerant in the refrigerant circuit (11) can be condensed while effectively utilizing the exhaust heat, and the energy saving performance of the refrigeration apparatus can be improved.

また、上記実施形態2では、発電機の停止時等に吸収式冷凍機(60)を停止させると同時に冷媒回路(11)における冷媒の経路を切り換えることで、冷媒を室外熱交換器(25)のみで凝縮させて各利用側熱交換器(45,46)へ送るようにしている。このため、吸収式冷凍機(60)が停止状態であっても、冷媒回路(11)で冷凍サイクルを継続することができ、各利用側熱交換器(44,45)で冷却対象を冷却することができる。したがって、この冷凍装置(10)の信頼性を向上できる。   In the second embodiment, the absorption chiller (60) is stopped when the generator is stopped, etc., and at the same time, the refrigerant path in the refrigerant circuit (11) is switched, whereby the refrigerant is transferred to the outdoor heat exchanger (25). It is made to condense only by sending it to each use side heat exchanger (45,46). Therefore, even if the absorption chiller (60) is in a stopped state, the refrigeration cycle can be continued in the refrigerant circuit (11), and the cooling target is cooled by each use side heat exchanger (44, 45). be able to. Therefore, the reliability of the refrigeration apparatus (10) can be improved.

《発明の実施形態3》
図6に示すように、実施形態3に係る冷凍装置(10)の冷媒回路(11)には、一端が空調側配管(51)の流出端と接続し、他端が空調側配管(51)及び冷却側配管(52)の流入端に分岐して接続する第1高圧配管(33)が設けられている。この第1高圧配管(33)には、その流入側から流出側に向かって順に、第1圧縮機(21)、室外熱交換器(25)、及び室外膨張弁(48)が設けられている。また、冷媒回路(11)には、一端が冷却側配管(52)の流出端と接続し、他端が第1高圧配管(33)における室外膨張弁(48)の下流側と接続する第2高圧配管(34)が設けられている。この第2高圧配管(34)には、その流入側から流出側に向かって順に、上記吸収式冷凍機(60)の蒸発器(64)と、第1開閉弁(71)とが設けられている。
<< Embodiment 3 of the Invention >>
As shown in FIG. 6, in the refrigerant circuit (11) of the refrigeration apparatus (10) according to Embodiment 3, one end is connected to the outflow end of the air conditioning side pipe (51) and the other end is the air conditioning side pipe (51). And the 1st high voltage | pressure piping (33) branched and connected to the inflow end of cooling side piping (52) is provided. The first high-pressure pipe (33) is provided with a first compressor (21), an outdoor heat exchanger (25), and an outdoor expansion valve (48) in that order from the inflow side to the outflow side. . The refrigerant circuit (11) has one end connected to the outflow end of the cooling side pipe (52) and the other end connected to the downstream side of the outdoor expansion valve (48) in the first high pressure pipe (33). A high pressure pipe (34) is provided. The second high-pressure pipe (34) is provided with an evaporator (64) of the absorption refrigerator (60) and a first on-off valve (71) in order from the inflow side to the outflow side. Yes.

更に冷媒回路(11)には、一端が第2高圧配管(34)における第2圧縮機(22)と蒸発器(64)との間に接続し、他端が第1高圧配管(33)における第1圧縮機(21)と室外熱交換器(25)との間に接続する第1バイパス管(35)が設けられている。この第1バイパス管(35)には、第2開閉弁(72)が設けられている。   Furthermore, one end of the refrigerant circuit (11) is connected between the second compressor (22) and the evaporator (64) in the second high-pressure pipe (34), and the other end is in the first high-pressure pipe (33). A first bypass pipe (35) connected between the first compressor (21) and the outdoor heat exchanger (25) is provided. The first bypass pipe (35) is provided with a second on-off valve (72).

実施形態3の冷媒回路(11)では、第1開閉弁(71)を開の状態とし、第2開閉弁(72)を閉の状態として、第1圧縮機(21)の吐出冷媒を室外熱交換器(25)に供給する同時に第2圧縮機(22)の吐出冷媒を蒸発器(64)に供給する第1冷媒経路と、第1開閉弁(71)を閉の状態とし、第2開閉弁(72)を開の状態として、第1圧縮機(21)と第2圧縮機(22)との双方の吐出冷媒を室外熱交換器(25)に供給する第2冷媒経路とを変更可能となっている。   In the refrigerant circuit (11) of Embodiment 3, the first on-off valve (71) is opened, the second on-off valve (72) is closed, and the refrigerant discharged from the first compressor (21) is used as outdoor heat. The first refrigerant path for supplying the refrigerant discharged from the second compressor (22) to the evaporator (64) at the same time as the supply to the exchanger (25) and the first on-off valve (71) are closed, and the second opening and closing The second refrigerant path for supplying refrigerant discharged from both the first compressor (21) and the second compressor (22) to the outdoor heat exchanger (25) can be changed with the valve (72) opened. It has become.

具体的に、この冷凍装置(10)の通常運転時には、吸収式冷凍機(60)で吸収式冷凍サイクルが行われると共に第1開閉弁(71)が開放される一方、第2開閉弁(72)が閉鎖される。第1圧縮機(21)の吐出冷媒は、室外熱交換器(25)に供給されて約50℃の凝縮温度で凝縮する一方、第2圧縮機(22)の吐出冷媒は、蒸発器(64)に供給されて約20℃の凝縮温度で凝縮する。室外熱交換器(25)で凝縮した冷媒は、室外膨張弁(48)で減圧された後、上記蒸発器(64)で凝縮した冷媒と合流する。この冷媒は、空調側配管(51)と冷却側配管(52)とに分流し、各熱交換器(44,45)で蒸発した後、それぞれの圧縮機(21,22)に吸入される。   Specifically, during normal operation of the refrigeration apparatus (10), an absorption refrigeration cycle is performed in the absorption chiller (60) and the first on-off valve (71) is opened, while the second on-off valve (72 ) Will be closed. The refrigerant discharged from the first compressor (21) is supplied to the outdoor heat exchanger (25) and condenses at a condensation temperature of about 50 ° C., while the refrigerant discharged from the second compressor (22) passes through the evaporator (64 To condense at a condensation temperature of about 20 ° C. The refrigerant condensed in the outdoor heat exchanger (25) is decompressed by the outdoor expansion valve (48) and then merged with the refrigerant condensed in the evaporator (64). This refrigerant is divided into an air conditioning side pipe (51) and a cooling side pipe (52), is evaporated in each heat exchanger (44, 45), and is then sucked into each compressor (21, 22).

一方、吸収式冷凍機(60)に排熱を供給する発電機が停止状態となる場合には、上記吸収式冷凍機(60)も停止されると共に第1開閉弁(71)が閉鎖される一方、第2開閉弁(72)が開放される。また、この運転時には、室外膨張弁(48)が全開状態に設定される。   On the other hand, when the generator for supplying exhaust heat to the absorption chiller (60) is stopped, the absorption chiller (60) is also stopped and the first on-off valve (71) is closed. On the other hand, the second on-off valve (72) is opened. During this operation, the outdoor expansion valve (48) is set to a fully open state.

第2圧縮機(22)の吐出冷媒は、第1バイパス管(35)を介して第1高圧配管(33)に流入し、第1圧縮機(21)の吐出冷媒と合流する。この冷媒は、室外熱交換器(25)に供給されて凝縮する。室外熱交換器(25)で凝縮した冷媒は、室外膨張弁(48)を通過して、空調側配管(51)と冷却側配管(52)とに分流し、各熱交換器(44,45)で蒸発した後、それぞれの圧縮機(21,22)に吸入される。   The refrigerant discharged from the second compressor (22) flows into the first high-pressure pipe (33) through the first bypass pipe (35) and merges with the refrigerant discharged from the first compressor (21). This refrigerant is supplied to the outdoor heat exchanger (25) to condense. The refrigerant condensed in the outdoor heat exchanger (25) passes through the outdoor expansion valve (48) and is divided into the air conditioning side pipe (51) and the cooling side pipe (52), and each heat exchanger (44,45 ) And then sucked into each compressor (21, 22).

−実施形態3の効果−
上記実施形態3では、冷却熱交換器(45)において比較的低温(約−40℃から約−10℃)で蒸発させた冷媒を吸収式冷凍機(60)の蒸発器(64)に送り、比較的低温(約20℃)で凝縮させるようにしている。このため、冷却熱交換器(45)での冷媒蒸発温度と吸収式冷凍機(60)の蒸発器(64)での冷媒凝縮温度との温度差が小さくなり、冷却熱交換器(45)側の冷凍サイクルにおける高低差圧が小さくすることができる。したがって、冷却熱交換器(45)で蒸発した冷媒を圧縮する際の第2圧縮機(22)の入力を削減することができる。したがって、従来であれば、冷媒蒸発温度が低くCOPも低下し易い冷却熱交換器(45)側の冷凍サイクルについて、このCOPの改善を図ることができる。その結果、この冷凍装置(10)の省エネルギー性を効果的に向上させることができる。
-Effect of Embodiment 3-
In the third embodiment, the refrigerant evaporated at a relatively low temperature (about −40 ° C. to about −10 ° C.) in the cooling heat exchanger (45) is sent to the evaporator (64) of the absorption refrigerator (60), The condensation is performed at a relatively low temperature (about 20 ° C.). For this reason, the temperature difference between the refrigerant evaporating temperature in the cooling heat exchanger (45) and the refrigerant condensing temperature in the evaporator (64) of the absorption chiller (60) is reduced, and the cooling heat exchanger (45) side The height difference pressure in the refrigeration cycle can be reduced. Therefore, the input of the 2nd compressor (22) at the time of compressing the refrigerant evaporated with the cooling heat exchanger (45) can be reduced. Therefore, conventionally, the COP can be improved in the refrigeration cycle on the cooling heat exchanger (45) side where the refrigerant evaporation temperature is low and the COP is likely to decrease. As a result, the energy saving performance of the refrigeration apparatus (10) can be effectively improved.

また、上記実施形態3では、第1圧縮機(21)の吐出冷媒を室外熱交換器(25)で凝縮させると同時に第2圧縮機(22)の吐出冷媒を蒸発器(64)で凝縮させる運転と、第1圧縮機(21)及び第2圧縮機(22)の吐出冷媒を室外熱交換器(25)で凝縮させる運転とを切り換えられるようにしている。このため、吸収式冷凍機(60)の停止時にも両圧縮機(21,22)の吐出冷媒を室外熱交換器(25)で凝縮させて各利用側熱交換器(44,45,46)へ送ることができ、冷却対象を継続して冷却することができる。   In the third embodiment, the refrigerant discharged from the first compressor (21) is condensed in the outdoor heat exchanger (25), and at the same time, the refrigerant discharged from the second compressor (22) is condensed in the evaporator (64). The operation and the operation of condensing the refrigerant discharged from the first compressor (21) and the second compressor (22) by the outdoor heat exchanger (25) can be switched. For this reason, even when the absorption chiller (60) is stopped, the refrigerant discharged from both compressors (21, 22) is condensed in the outdoor heat exchanger (25) and used on each heat exchanger (44, 45, 46). The object to be cooled can be continuously cooled.

−実施形態3の変形例−
図7に示すように、上記実施形態3について、上記実施形態1の変形例1と同様に、冷凍熱交換器(46)及びブースタ圧縮機(23)を付与した構成とすることもできる。この場合にも、冷蔵熱交換器(45)及び冷凍熱交換器(46)で蒸発した冷媒を蒸発器(64)で凝縮させることで、第2圧縮機(22)及びブースタ圧縮機(23)の入力を削減でき、この冷凍装置(10)の省エネルギー性を向上させることができる。
-Modification of Embodiment 3-
As shown in FIG. 7, the third embodiment may have a configuration in which a refrigeration heat exchanger (46) and a booster compressor (23) are provided, as in the first modification of the first embodiment. Also in this case, the second compressor (22) and the booster compressor (23) are obtained by condensing the refrigerant evaporated in the refrigeration heat exchanger (45) and the refrigeration heat exchanger (46) in the evaporator (64). Can be reduced, and the energy saving performance of the refrigeration apparatus (10) can be improved.

《発明の実施形態4》
図8に示すように、実施形態4に係る冷凍装置(10)の冷媒回路(11)には、一端が空調側配管(51)の流出端と接続し、他端が空調側配管(51)及び冷蔵側配管(52)の流入端に分岐して接続する第1高圧配管(33)が設けられている。この第1高圧配管(33)には、その流入側から流出側に向かって順に、第1圧縮機(21)、室外熱交換器(25)、室外膨張弁(48)、及び上記吸収式冷凍機(60)の蒸発器(64)が設けられている。また、冷媒回路(11)には、一端が冷蔵側配管(52)及び冷凍側配管(53)の流出端と接続し、他端が第1高圧配管(33)における室外膨張弁(48)と蒸発器(64)との間に接続する第2高圧配管(34)が設けられている。この第2高圧配管(34)には、その流入側から流出側に向かって順に、第2圧縮機(22)及び第3開閉弁(73)が設けられている。
<< Embodiment 4 of the Invention >>
As shown in FIG. 8, the refrigerant circuit (11) of the refrigeration apparatus (10) according to Embodiment 4 has one end connected to the outflow end of the air conditioning side pipe (51) and the other end connected to the air conditioning side pipe (51). And the 1st high voltage | pressure piping (33) branched and connected to the inflow end of refrigeration side piping (52) is provided. The first high-pressure pipe (33) includes, in order from the inflow side to the outflow side, the first compressor (21), the outdoor heat exchanger (25), the outdoor expansion valve (48), and the absorption refrigeration. The evaporator (64) of the machine (60) is provided. The refrigerant circuit (11) has one end connected to the outflow end of the refrigeration side pipe (52) and the freezing side pipe (53), and the other end connected to the outdoor expansion valve (48) in the first high-pressure pipe (33). A second high-pressure pipe (34) connected to the evaporator (64) is provided. The second high-pressure pipe (34) is provided with a second compressor (22) and a third on-off valve (73) in order from the inflow side to the outflow side.

更に冷媒回路(11)には、一端が第2高圧配管(34)における第2圧縮機(22)と第3開閉弁(73)との間に接続し、他端が第1高圧配管(33)における第1圧縮機(21)と室外熱交換器(25)との間に接続する第1バイパス管(35)が設けられている。この第1バイパス管(35)には、第2開閉弁(72)が設けられている。   Further, one end of the refrigerant circuit (11) is connected between the second compressor (22) and the third on-off valve (73) in the second high-pressure pipe (34), and the other end is connected to the first high-pressure pipe (33). ), A first bypass pipe (35) connected between the first compressor (21) and the outdoor heat exchanger (25) is provided. The first bypass pipe (35) is provided with a second on-off valve (72).

実施形態4の冷媒回路(11)では、第3開閉弁(73)を開の状態とし、第2開閉弁(72)を閉の状態として、第1圧縮機(21)の吐出冷媒を室外熱交換器(25)に供給する同時に第2圧縮機(22)の吐出冷媒を蒸発器(64)に供給する第1冷媒経路と、第3開閉弁(73)を閉の状態とし、第2開閉弁(72)を開の状態として、第1圧縮機(21)と第2圧縮機(22)との双方の吐出冷媒を室外熱交換器(25)に供給する第2冷媒経路とを変更可能となっている。   In the refrigerant circuit (11) of Embodiment 4, the third on-off valve (73) is opened, the second on-off valve (72) is closed, and the refrigerant discharged from the first compressor (21) is used as outdoor heat. The first refrigerant path for supplying refrigerant discharged from the second compressor (22) to the evaporator (64) and the third on-off valve (73) at the same time as supplying to the exchanger (25) are closed, and the second opening / closing is performed. The second refrigerant path for supplying refrigerant discharged from both the first compressor (21) and the second compressor (22) to the outdoor heat exchanger (25) can be changed with the valve (72) opened. It has become.

具体的に、この冷凍装置(10)の通常運転時には、吸収式冷凍機(60)で吸収式冷凍サイクルが行われると共に第3開閉弁(73)が開放される一方、第2開閉弁(72)が閉鎖される。第1圧縮機(21)の吐出冷媒は、室外熱交換器(25)に供給されて凝縮した後、室外膨張弁(48)で減圧される。一方、第2圧縮機(22)の吐出冷媒は、第1高圧配管(33)に流入し、上記室外膨張弁(48)を通過した冷媒と合流する。この冷媒は、蒸発器(64)で冷却されて凝縮し、更には過冷却される。蒸発器(64)を通過した冷媒は、空調側配管(51)、冷蔵側配管(52)、及び冷凍側配管(53)に分流する。空調側配管(51)に流入した冷媒は、空調熱交換器(44)で蒸発した後、第1圧縮機(21)に吸入される。冷凍側配管(53)に流入した冷媒は、冷凍熱交換器(46)で蒸発した後、ブースタ圧縮機(23)で更に圧縮される。冷蔵側配管(52)に流入した冷媒は、冷蔵熱交換器(45)で蒸発した後、ブースタ圧縮機(23)の吐出冷媒と混合して第2圧縮機(22)に吸入される。   Specifically, during normal operation of the refrigeration apparatus (10), an absorption refrigeration cycle is performed in the absorption chiller (60) and the third on-off valve (73) is opened, while the second on-off valve (72 ) Will be closed. The refrigerant discharged from the first compressor (21) is supplied to the outdoor heat exchanger (25) and condensed, and then decompressed by the outdoor expansion valve (48). On the other hand, the refrigerant discharged from the second compressor (22) flows into the first high-pressure pipe (33) and merges with the refrigerant that has passed through the outdoor expansion valve (48). This refrigerant is cooled and condensed by the evaporator (64), and further supercooled. The refrigerant that has passed through the evaporator (64) is divided into an air conditioning side pipe (51), a refrigeration side pipe (52), and a refrigeration side pipe (53). The refrigerant flowing into the air conditioning side pipe (51) evaporates in the air conditioning heat exchanger (44) and is then sucked into the first compressor (21). The refrigerant that has flowed into the refrigeration side pipe (53) evaporates in the refrigeration heat exchanger (46), and is further compressed by the booster compressor (23). The refrigerant flowing into the refrigeration side pipe (52) evaporates in the refrigeration heat exchanger (45), then mixes with the refrigerant discharged from the booster compressor (23) and is sucked into the second compressor (22).

一方、吸収式冷凍機(60)に排熱を供給する発電機が停止状態となる場合には、上記吸収式冷凍機(60)も停止されると共に第3開閉弁(73)が閉鎖される一方、第2開閉弁(72)が開放される。また、この運転時には、室外膨張弁(48)が全開状態に設定される。   On the other hand, when the generator for supplying exhaust heat to the absorption chiller (60) is stopped, the absorption chiller (60) is also stopped and the third on-off valve (73) is closed. On the other hand, the second on-off valve (72) is opened. During this operation, the outdoor expansion valve (48) is set to a fully open state.

第2圧縮機(22)の吐出冷媒は、第1バイパス管(35)を介して第1高圧配管(33)に流入し、第1圧縮機(21)の吐出冷媒と合流する。この吐出冷媒は、室外熱交換器(25)に供給されて凝縮する。室外熱交換器(25)で凝縮した冷媒は、室外膨張弁(48)を通過して、停止状態の蒸発器(64)をそのまま通過し、空調側配管(51)、冷蔵側配管(52)、及び冷凍側配管(53)に分流する。それ以降の冷媒の流れは上記通常運転時と同様である。   The refrigerant discharged from the second compressor (22) flows into the first high-pressure pipe (33) through the first bypass pipe (35) and merges with the refrigerant discharged from the first compressor (21). This discharged refrigerant is supplied to the outdoor heat exchanger (25) to condense. The refrigerant condensed in the outdoor heat exchanger (25) passes through the outdoor expansion valve (48), passes through the stopped evaporator (64) as it is, and is supplied with the air conditioning side pipe (51) and the refrigeration side pipe (52). And to the freezing side pipe (53). Subsequent refrigerant flows are the same as in the normal operation.

−実施形態4の効果−
上記実施形態4では、第1圧縮機(21)で圧縮した冷媒を室外熱交換器(25)と、吸収式冷凍機(60)の蒸発器(64)との双方で冷却するようにしている。このため、各利用側熱交換器(44,45,46)へ送られる冷媒の過冷却度を増大させることができる。したがって、各利用側熱交換器(44,45,46)の冷却能力を向上させることができる。
-Effect of Embodiment 4-
In the fourth embodiment, the refrigerant compressed by the first compressor (21) is cooled by both the outdoor heat exchanger (25) and the evaporator (64) of the absorption chiller (60). . For this reason, the supercooling degree of the refrigerant | coolant sent to each utilization side heat exchanger (44,45,46) can be increased. Therefore, the cooling capacity of each use side heat exchanger (44, 45, 46) can be improved.

また、上記実施形態4においても、吸収式冷凍機(60)の停止時において、第1圧縮機(21)及び第2圧縮機(22)の双方の吐出冷媒を室外熱交換器(25)で凝縮させるようにしている。このため、吸収式冷凍機(60)の停止時にも冷却対象を継続して冷却することができる。   Also in the fourth embodiment, when the absorption chiller (60) is stopped, the refrigerant discharged from both the first compressor (21) and the second compressor (22) is removed by the outdoor heat exchanger (25). I try to condense it. For this reason, the cooling target can be continuously cooled even when the absorption refrigerator (60) is stopped.

《発明の実施形態5》
図9に示すように、実施形態5に係る冷凍装置(10)の冷媒回路(11)には、一端が空調側配管(51)の流出端と接続し、他端が空調側配管(51)の流入端に接続する第1高圧配管(33)が設けられている。この第1高圧配管(33)には、その流入端から流出端に向かって順に、第1圧縮機(21)及び室外熱交換器(25)が設けられている。また、冷媒回路(11)には、一端が冷蔵側配管(52)及び冷凍側配管(53)の流出端と接続し、他端が該冷蔵側配管(52)及び冷凍側配管(53)の流入端と接続する第2高圧配管(34)が設けられている。この第2高圧配管(34)には、その流入端から流出端に向かって順に、第2圧縮機(22)、吸収式冷凍機(60)の蒸発器(64)、及び第1開閉弁(71)が設けられている。
<< Embodiment 5 of the Invention >>
As shown in FIG. 9, in the refrigerant circuit (11) of the refrigeration apparatus (10) according to Embodiment 5, one end is connected to the outflow end of the air conditioning side pipe (51) and the other end is the air conditioning side pipe (51). The 1st high-pressure piping (33) connected to the inflow end of is provided. The first high-pressure pipe (33) is provided with a first compressor (21) and an outdoor heat exchanger (25) in order from the inflow end to the outflow end. Further, one end of the refrigerant circuit (11) is connected to the outflow end of the refrigeration side pipe (52) and the refrigeration side pipe (53), and the other end is connected to the refrigeration side pipe (52) and the refrigeration side pipe (53). A second high-pressure pipe (34) connected to the inflow end is provided. The second high pressure pipe (34) includes, in order from the inflow end to the outflow end, the second compressor (22), the evaporator (64) of the absorption chiller (60), and the first on-off valve ( 71).

更に冷媒回路(11)には、一端が第2高圧配管(34)における第2圧縮機(22)と蒸発器(64)との間に接続し、他端が第1高圧配管(33)における第1圧縮機(21)と室外熱交換器(25)との間に接続する第1バイパス管(35)が設けられている。この第1バイパス管(35)には、第2開閉弁(72)が設けられている。また、冷媒回路(11)には、一端が第1高圧配管(33)における室外熱交換器(25)の下流側に接続し、他端が第1高圧配管(33)における第1開閉弁(71)の下流側に接続する第2バイパス管(36)が設けられている。この第2バイパス管(36)には、第3開閉弁(73)が設けられている。   Furthermore, one end of the refrigerant circuit (11) is connected between the second compressor (22) and the evaporator (64) in the second high-pressure pipe (34), and the other end is in the first high-pressure pipe (33). A first bypass pipe (35) connected between the first compressor (21) and the outdoor heat exchanger (25) is provided. The first bypass pipe (35) is provided with a second on-off valve (72). The refrigerant circuit (11) has one end connected to the downstream side of the outdoor heat exchanger (25) in the first high-pressure pipe (33) and the other end connected to the first on-off valve ( 71) A second bypass pipe (36) connected to the downstream side is provided. The second bypass pipe (36) is provided with a third on-off valve (73).

実施形態5の冷媒回路(11)では、第1開閉弁(71)を開の状態、第2開閉弁(72)を閉の状態、第3開閉弁(73)を閉の状態として、第1圧縮機(21)の吐出冷媒を室外熱交換器(25)に供給する同時に第2圧縮機(22)の吐出冷媒を蒸発器(64)に供給する第1冷媒経路と、第1開閉弁(71)を閉の状態、第2開閉弁(72)を開の状態、第3開閉弁(73)を開の状態として、第1圧縮機(21)と第2圧縮機(22)との双方の吐出冷媒を室外熱交換器(25)に供給する第2冷媒経路とが変更可能となっている。   In the refrigerant circuit (11) of the fifth embodiment, the first on-off valve (71) is opened, the second on-off valve (72) is closed, and the third on-off valve (73) is closed. A first refrigerant path for supplying refrigerant discharged from the compressor (21) to the outdoor heat exchanger (25) and simultaneously supplying refrigerant discharged from the second compressor (22) to the evaporator (64); Both the first compressor (21) and the second compressor (22) with the 71) closed, the second on-off valve (72) opened, and the third on-off valve (73) opened. The second refrigerant path for supplying the discharged refrigerant to the outdoor heat exchanger (25) can be changed.

具体的に、この冷凍装置(10)の通常運転時には、吸収式冷凍機(60)で吸収式冷凍サイクルが行われると共に第1開閉弁(71)が開放される一方、第2開閉弁(72)及び第3開閉弁(73)が閉鎖される。第1圧縮機(21)の吐出冷媒は、室外熱交換器(25)に供給されて約50℃の凝縮温度で凝縮した後、空調側配管(51)に流入する。この冷媒は、空調熱交換器(44)で蒸発した後、第1圧縮機(21)に吸入される。   Specifically, during normal operation of the refrigeration apparatus (10), an absorption refrigeration cycle is performed in the absorption chiller (60) and the first on-off valve (71) is opened, while the second on-off valve (72 ) And the third on-off valve (73) are closed. The refrigerant discharged from the first compressor (21) is supplied to the outdoor heat exchanger (25) and condensed at a condensation temperature of about 50 ° C., and then flows into the air conditioning side pipe (51). This refrigerant is sucked into the first compressor (21) after evaporating in the air conditioning heat exchanger (44).

一方、第2圧縮機(22)の吐出冷媒は、蒸発器(64)に供給されて約20℃の凝縮温度で凝縮した後、冷蔵側配管(52)、及び冷凍側配管(53)に分流する。冷凍側配管(53)に流入した冷媒は、冷凍熱交換器(46)で蒸発した後、ブースタ圧縮機(23)で更に圧縮される。冷蔵側配管(52)に流入した冷媒は、冷蔵熱交換器(45)で蒸発した後、ブースタ圧縮機(23)の吐出冷媒と混合して第2圧縮機(22)に吸入される。   On the other hand, the refrigerant discharged from the second compressor (22) is supplied to the evaporator (64) and condensed at a condensation temperature of about 20 ° C., and then is divided into the refrigeration side pipe (52) and the refrigeration side pipe (53). To do. The refrigerant that has flowed into the refrigeration side pipe (53) evaporates in the refrigeration heat exchanger (46), and is further compressed by the booster compressor (23). The refrigerant flowing into the refrigeration side pipe (52) evaporates in the refrigeration heat exchanger (45), then mixes with the refrigerant discharged from the booster compressor (23) and is sucked into the second compressor (22).

一方、吸収式冷凍機(60)に排熱を供給する発電機が停止状態となる場合には、上記吸収式冷凍機(60)も停止されると共に第1開閉弁(71)が閉鎖される一方、第2開閉弁(72)及び第3開閉弁(73)が開放される。   On the other hand, when the generator for supplying exhaust heat to the absorption chiller (60) is stopped, the absorption chiller (60) is also stopped and the first on-off valve (71) is closed. On the other hand, the second on-off valve (72) and the third on-off valve (73) are opened.

第2圧縮機(22)の吐出冷媒は、第1バイパス管(35)を介して第1高圧配管(33)に流入し、第1圧縮機(21)の吐出冷媒と合流する。この吐出冷媒は、室外熱交換器(25)に供給されて凝縮する。室外熱交換器(25)で凝縮した冷媒の一部は、空調側配管(51)にする。この冷媒は、空調熱交換器(44)で蒸発した後、第1圧縮機(21)に吸入される。   The refrigerant discharged from the second compressor (22) flows into the first high-pressure pipe (33) through the first bypass pipe (35) and merges with the refrigerant discharged from the first compressor (21). This discharged refrigerant is supplied to the outdoor heat exchanger (25) to condense. A part of the refrigerant condensed in the outdoor heat exchanger (25) is made into the air conditioning side pipe (51). This refrigerant is sucked into the first compressor (21) after evaporating in the air conditioning heat exchanger (44).

一方、室外熱交換器(25)で凝縮した冷媒の残りは、第2バイパス管(36)を介して冷蔵側配管(52)、及び冷凍側配管(53)に分流する。それ以降の冷媒の流れは上記通常運転時と同様である。   On the other hand, the remaining refrigerant condensed in the outdoor heat exchanger (25) is divided into the refrigeration side pipe (52) and the refrigeration side pipe (53) via the second bypass pipe (36). Subsequent refrigerant flows are the same as in the normal operation.

−実施形態5の効果−
上記実施形態5においても、冷蔵熱交換器(45)及び冷凍熱交換器(46)において相対的に低温で蒸発させた冷媒を蒸発器(64)において相対的に低温で凝縮させるようにしている。このため、冷蔵熱交換器(45)及び冷凍熱交換器(46)に係る冷凍サイクルの高低差圧を小さくでき、第2圧縮機(22)及びブースタ圧縮機(23)の入力を削減できる。したがって、この冷凍装置(10)の省エネルギー性を効果的に向上させることができる。
-Effect of Embodiment 5-
Also in the fifth embodiment, the refrigerant evaporated at a relatively low temperature in the refrigeration heat exchanger (45) and the refrigeration heat exchanger (46) is condensed at a relatively low temperature in the evaporator (64). . For this reason, the differential pressure of the refrigeration cycle relating to the refrigeration heat exchanger (45) and the refrigeration heat exchanger (46) can be reduced, and the inputs of the second compressor (22) and the booster compressor (23) can be reduced. Therefore, the energy saving property of the refrigeration apparatus (10) can be effectively improved.

また、実施形態5では、開閉弁(71,72,73)の開閉状態を切り換えることで、吸収式冷凍機(60)の停止時にも両圧縮機(21,22)の吐出冷媒を室外熱交換器(25)で凝縮させて各利用側熱交換器(44,45,46)へ送ることができる。したがって、冷却対象を継続して冷却することができ、この冷凍装置(10)の信頼性を向上できる。   In the fifth embodiment, by switching the open / close state of the on-off valves (71, 72, 73), the refrigerant discharged from both compressors (21, 22) is exchanged with the outdoor heat even when the absorption chiller (60) is stopped. It can be condensed in the vessel (25) and sent to each use side heat exchanger (44, 45, 46). Therefore, the object to be cooled can be continuously cooled, and the reliability of the refrigeration apparatus (10) can be improved.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

上記実施形態では、ガスエンジンの排熱を吸収式冷凍機(60)の熱源として利用しているが、例えば燃料電池やマイクロガスタービン等の発電機の排熱を利用してもよい。   In the above embodiment, the exhaust heat of the gas engine is used as a heat source of the absorption chiller (60), but the exhaust heat of a generator such as a fuel cell or a micro gas turbine may be used.

また、上記実施形態の冷凍装置(10)では、空調熱交換器(44)で室内の冷房のみを行うようにしているが、この冷凍装置(10)で冷房と暖房とを切り換え可能とするように冷媒回路を構成してもよい。   Further, in the refrigeration apparatus (10) of the above embodiment, only the indoor cooling is performed by the air conditioning heat exchanger (44), but the refrigeration apparatus (10) can be switched between cooling and heating. A refrigerant circuit may be configured.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、各利用側熱交換器での冷媒の蒸発温度がそれぞれ異なる冷凍サイクルを行う冷凍装置に関し有用である。   As described above, the present invention is useful for a refrigeration apparatus that performs a refrigeration cycle in which the evaporation temperature of the refrigerant in each use-side heat exchanger is different.

実施形態1に係る冷凍装置の概略構成を示す配管系統図である。1 is a piping system diagram illustrating a schematic configuration of a refrigeration apparatus according to Embodiment 1. FIG. 実施形態1に係る冷凍装置の吸収式冷凍機の概略構成図である。1 is a schematic configuration diagram of an absorption refrigerator of a refrigeration apparatus according to Embodiment 1. FIG. 実施形態1の変形例1に係る冷凍装置の概略構成を示す配管系統図である。FIG. 5 is a piping system diagram illustrating a schematic configuration of a refrigeration apparatus according to Modification 1 of Embodiment 1. 実施形態1の変形例2に係る冷凍装置の概略構成を示す配管系統図である。It is a piping system diagram which shows schematic structure of the freezing apparatus which concerns on the modification 2 of Embodiment 1. 実施形態2に係る冷凍装置の概略構成を示す配管系統図である。6 is a piping system diagram illustrating a schematic configuration of a refrigeration apparatus according to Embodiment 2. FIG. 実施形態3に係る冷凍装置の概略構成を示す配管系統図である。It is a piping system diagram which shows schematic structure of the freezing apparatus which concerns on Embodiment 3. 実施形態3の変形例に係る冷凍装置の概略構成を示す配管系統図である。It is a piping system diagram which shows schematic structure of the freezing apparatus which concerns on the modification of Embodiment 3. 実施形態4に係る冷凍装置の概略構成を示す配管系統図である。It is a piping system diagram which shows schematic structure of the freezing apparatus which concerns on Embodiment 4. 実施形態5に係る冷凍装置の概略構成を示す配管系統図である。FIG. 6 is a piping system diagram illustrating a schematic configuration of a refrigeration apparatus according to Embodiment 5.

符号の説明Explanation of symbols

10 冷凍装置
11 冷媒回路
21 第1圧縮機
22 第2圧縮機
25 室外熱交換器(熱源側熱交換器)
45 空調熱交換器(第1利用側熱交換器)
46 冷却熱交換器(第2利用側熱交換器)
51 空調側配管(第1利用側回路)
52 冷却側配管(第2利用側回路)
60 吸収式冷凍機
64 蒸発器(過冷却用熱交換器、凝縮用熱交換器)
10 Refrigeration equipment
11 Refrigerant circuit
21 First compressor
22 Second compressor
25 Outdoor heat exchanger (heat source side heat exchanger)
45 Air conditioning heat exchanger (first use side heat exchanger)
46 Cooling heat exchanger (second use side heat exchanger)
51 Air conditioning side piping (first usage side circuit)
52 Cooling side piping (second usage side circuit)
60 Absorption refrigerator
64 Evaporator (heat exchanger for supercooling, heat exchanger for condensation)

Claims (7)

圧縮機(21,22,23)、熱源側熱交換器(25)、第1利用側熱交換器(44)、及び第2利用側熱交換器(45,46)が設けられた冷媒回路(11)を備え、
上記冷媒回路(11)では、第2利用側熱交換器(45,46)の冷媒蒸発温度が第1利用側熱交換器(44)の冷媒蒸発温度よりも低くなる蒸気圧縮式の冷凍サイクルを行う冷凍装置であって、
排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)を備え、
上記冷媒回路(11)には、上記熱源側熱交換器(25)で凝縮した冷媒を上記吸収式冷凍機(60)の冷熱で冷却する過冷却用熱交換器(64)が設けられていることを特徴とする冷凍装置。
Refrigerant circuit provided with a compressor (21, 22, 23), a heat source side heat exchanger (25), a first usage side heat exchanger (44), and a second usage side heat exchanger (45, 46) 11)
The refrigerant circuit (11) includes a vapor compression refrigeration cycle in which the refrigerant evaporation temperature of the second usage side heat exchanger (45, 46) is lower than the refrigerant evaporation temperature of the first usage side heat exchanger (44). A refrigeration apparatus to perform,
It has an absorption refrigerator (60) that performs an absorption refrigeration cycle using exhaust heat as a heat source,
The refrigerant circuit (11) is provided with a supercooling heat exchanger (64) for cooling the refrigerant condensed in the heat source side heat exchanger (25) with the cold heat of the absorption refrigeration machine (60). A refrigeration apparatus characterized by that.
請求項1において、
上記冷媒回路(11)では、第1利用側熱交換器(44)が設けられる第1利用側回路(51)と、第2冷却熱交換器(45,46)が設けられる第2利用側回路(52,53)とが設けられ、熱源側熱交換器(25)で凝縮した冷媒が第1利用側回路(51)と第2利用側回路(52,53)とに分配される一方、
上記過冷却用熱交換器(64)は、第2利用側回路(52,53)における第2利用側熱交換器(52,53)の上流側に設けられていることを特徴とする冷凍装置。
In claim 1,
In the refrigerant circuit (11), the first usage side circuit (51) provided with the first usage side heat exchanger (44) and the second usage side circuit provided with the second cooling heat exchanger (45, 46). (52, 53) and the refrigerant condensed in the heat source side heat exchanger (25) is distributed to the first usage side circuit (51) and the second usage side circuit (52, 53),
The subcooling heat exchanger (64) is provided on the upstream side of the second usage side heat exchanger (52, 53) in the second usage side circuit (52, 53). .
圧縮機(21,22,23)、熱源側熱交換器(25)、第1利用側熱交換器(44)、及び第2利用側熱交換器(45,46)が設けられた冷媒回路(11)を備え、
上記冷媒回路(11)では、第2利用側熱交換器(45,46)の冷媒蒸発温度が第1利用側熱交換器(44)の冷媒蒸発温度よりも低くなる蒸気圧縮式の冷凍サイクルを行う冷凍装置であって、
排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)を備え、
上記冷媒回路(11)には、上記圧縮機(21,22,23)の吐出冷媒を上記吸収式冷凍機(60)の冷熱で冷却して凝縮させる凝縮用熱交換器(64)が上記熱源側熱交換器(25)と並列に設けられていることを特徴とする冷凍装置。
Refrigerant circuit provided with a compressor (21, 22, 23), a heat source side heat exchanger (25), a first usage side heat exchanger (44), and a second usage side heat exchanger (45, 46) 11)
The refrigerant circuit (11) includes a vapor compression refrigeration cycle in which the refrigerant evaporation temperature of the second usage side heat exchanger (45, 46) is lower than the refrigerant evaporation temperature of the first usage side heat exchanger (44). A refrigeration apparatus to perform,
It has an absorption refrigerator (60) that performs an absorption refrigeration cycle using exhaust heat as a heat source,
The refrigerant circuit (11) includes a heat exchanger for condensation (64) that cools and condenses the refrigerant discharged from the compressor (21, 22, 23) with the cold heat of the absorption refrigeration machine (60). A refrigeration apparatus provided in parallel with the side heat exchanger (25).
請求項3において、
上記冷媒回路(11)は、圧縮機(21,22)の吐出冷媒を上記熱源側熱交換器(25)と上記凝縮用熱交換器(64)との双方に供給する第1冷媒経路と、該圧縮機(21,22)の吐出冷媒を上記熱源側熱交換器(25)だけに供給する第2冷媒経路とを変更可能に構成されていることを特徴とする冷凍装置。
In claim 3,
The refrigerant circuit (11) includes a first refrigerant path for supplying refrigerant discharged from the compressor (21, 22) to both the heat source side heat exchanger (25) and the condensation heat exchanger (64); A refrigeration apparatus configured to be capable of changing a second refrigerant path for supplying only refrigerant discharged from the compressor (21, 22) to the heat source side heat exchanger (25).
第1利用側熱交換器(44)と第2利用側熱交換器(45,46)とが設けられる冷媒回路(11)を備え、上記冷媒回路(11)では、第2利用側熱交換器(45,46)の冷媒蒸発温度が第1利用側熱交換器(44)の冷媒蒸発温度よりも低くなる蒸気圧縮式の冷凍サイクルを行う冷凍装置であって、
排熱を熱源として吸収式冷凍サイクルを行う吸収式冷凍機(60)を備え、
上記冷媒回路(11)には、
上記第1利用側熱交換器(44)で蒸発した冷媒を吸入して圧縮する第1圧縮機(21)と、
上記第2利用側熱交換器(45,46)で蒸発した冷媒を吸入して圧縮する第2圧縮機(22)と、
上記第1圧縮機(21)から吐出された冷媒を室外空気との熱交換によって凝縮させる熱源側熱交換器(25)と、
上記第2圧縮機(22)から吐出された冷媒を上記吸収式冷凍機(60)の冷熱で冷却して凝縮させる凝縮用熱交換器(64)とが設けられていることを特徴とする冷凍装置。
The refrigerant circuit (11) is provided with a first usage side heat exchanger (44) and a second usage side heat exchanger (45, 46). In the refrigerant circuit (11), the second usage side heat exchanger is provided. (45, 46) is a refrigeration system for performing a vapor compression refrigeration cycle in which the refrigerant evaporation temperature is lower than the refrigerant evaporation temperature of the first usage-side heat exchanger (44),
It has an absorption refrigerator (60) that performs an absorption refrigeration cycle using exhaust heat as a heat source,
In the refrigerant circuit (11),
A first compressor (21) that sucks and compresses the refrigerant evaporated in the first use side heat exchanger (44);
A second compressor (22) that sucks and compresses the refrigerant evaporated in the second use side heat exchanger (45, 46);
A heat source side heat exchanger (25) for condensing the refrigerant discharged from the first compressor (21) by heat exchange with outdoor air;
A refrigeration comprising a condensing heat exchanger (64) for cooling and condensing the refrigerant discharged from the second compressor (22) with the cold of the absorption refrigeration machine (60) apparatus.
請求項5において、
第1圧縮機(21)の吐出冷媒を熱源側熱交換器(25)で凝縮させた後、凝縮用熱交換器(64)へ供給することを特徴とする冷凍装置。
In claim 5,
A refrigerating apparatus, wherein the refrigerant discharged from the first compressor (21) is condensed in the heat source side heat exchanger (25) and then supplied to the heat exchanger for condensation (64).
請求項5において、
冷媒回路(11)は、第1圧縮機(21)の吐出冷媒を熱源側熱交換器(25)に供給する同時に第2圧縮機(22)の吐出冷媒を凝縮用熱交換器(64)に供給する第1冷媒経路と、第1圧縮機(21)と第2圧縮機(22)との双方の吐出冷媒を熱源側熱交換器(25)に供給する第2冷媒経路とを変更可能に構成されていることを特徴とする冷凍装置。
In claim 5,
The refrigerant circuit (11) supplies the refrigerant discharged from the first compressor (21) to the heat source side heat exchanger (25) and simultaneously supplies the refrigerant discharged from the second compressor (22) to the heat exchanger for condensation (64). The first refrigerant path to be supplied and the second refrigerant path to supply the refrigerant discharged from both the first compressor (21) and the second compressor (22) to the heat source side heat exchanger (25) can be changed. A refrigeration apparatus comprising the refrigeration apparatus.
JP2005235274A 2005-08-15 2005-08-15 Refrigerating device Pending JP2007051788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235274A JP2007051788A (en) 2005-08-15 2005-08-15 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235274A JP2007051788A (en) 2005-08-15 2005-08-15 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2007051788A true JP2007051788A (en) 2007-03-01

Family

ID=37916354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235274A Pending JP2007051788A (en) 2005-08-15 2005-08-15 Refrigerating device

Country Status (1)

Country Link
JP (1) JP2007051788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130081399A (en) * 2012-01-09 2013-07-17 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
WO2013169591A1 (en) * 2012-05-11 2013-11-14 Hill Phoenix, Inc. Co2 refrigeration system with integrated air conditioning module
JP2014522477A (en) * 2011-06-15 2014-09-04 ガスコンサルト リミテッド Natural gas liquefaction process
KR101859231B1 (en) * 2012-01-09 2018-05-17 엘지전자 주식회사 A combined refrigerating and freezing system
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921575A (en) * 1995-07-03 1997-01-21 Nkk Corp Refrigerator
JPH11223412A (en) * 1998-02-04 1999-08-17 Daikin Ind Ltd Refrigerating device
JPH11248273A (en) * 1998-02-26 1999-09-14 Mitsubishi Electric Corp Refrigerating air conditioner and facility selecting method therefor
JP2001280729A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
JP2002106984A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Control method and exchanging method for refrigerant circuit as well as refrigerant circuit device
JP2002349996A (en) * 2001-05-29 2002-12-04 Ebara Corp Exhaust heat recovery air conditioner
JP2002349980A (en) * 2001-03-23 2002-12-04 Daikin Ind Ltd Refrigeration unit
JP2004347269A (en) * 2003-05-23 2004-12-09 Daikin Ind Ltd Refrigeration device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921575A (en) * 1995-07-03 1997-01-21 Nkk Corp Refrigerator
JPH11223412A (en) * 1998-02-04 1999-08-17 Daikin Ind Ltd Refrigerating device
JPH11248273A (en) * 1998-02-26 1999-09-14 Mitsubishi Electric Corp Refrigerating air conditioner and facility selecting method therefor
JP2001280729A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
JP2002106984A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Control method and exchanging method for refrigerant circuit as well as refrigerant circuit device
JP2002349980A (en) * 2001-03-23 2002-12-04 Daikin Ind Ltd Refrigeration unit
JP2002349996A (en) * 2001-05-29 2002-12-04 Ebara Corp Exhaust heat recovery air conditioner
JP2004347269A (en) * 2003-05-23 2004-12-09 Daikin Ind Ltd Refrigeration device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522477A (en) * 2011-06-15 2014-09-04 ガスコンサルト リミテッド Natural gas liquefaction process
KR20130081399A (en) * 2012-01-09 2013-07-17 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
KR101859231B1 (en) * 2012-01-09 2018-05-17 엘지전자 주식회사 A combined refrigerating and freezing system
KR101973204B1 (en) * 2012-01-09 2019-04-26 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
WO2013169591A1 (en) * 2012-05-11 2013-11-14 Hill Phoenix, Inc. Co2 refrigeration system with integrated air conditioning module
US9689590B2 (en) 2012-05-11 2017-06-27 Hill Phoenix, Inc. CO2 refrigeration system with integrated air conditioning module
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
KR101639814B1 (en) Refrigerating and freezing combine air conditioning system
WO2012066763A1 (en) Freezer
JP5805567B2 (en) Refrigeration cycle and refrigeration showcase
JP2009228979A (en) Air conditioner
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP2011214753A (en) Refrigerating device
KR20100059176A (en) Storage system
JP2007051788A (en) Refrigerating device
US8978410B2 (en) Refrigerating system having two evaporators performing heat exchange
JP5237157B2 (en) Air heat source turbo heat pump
JP2012207843A (en) Heat pump apparatus
JP2011117685A (en) Freezer-refrigerator
JP2001108345A (en) Two stage compression freezer/refrigerator
JP2013210133A (en) Refrigerating device
CN216481291U (en) Air conditioner
CN102997527B (en) Gas-liquid heat exchange type refrigeration device
JP2010249444A (en) Freezer-refrigerator
JP2007240040A (en) Refrigerating system and its control method
JP4660334B2 (en) Refrigeration system
KR101118137B1 (en) Air cooling type heat pump system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2001201194A (en) Cold storage system with deep freezer
JP7305050B2 (en) refrigeration cycle equipment
KR100512418B1 (en) condensation system using refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130