JP2006194701A - 振動ジャイロ - Google Patents

振動ジャイロ Download PDF

Info

Publication number
JP2006194701A
JP2006194701A JP2005005636A JP2005005636A JP2006194701A JP 2006194701 A JP2006194701 A JP 2006194701A JP 2005005636 A JP2005005636 A JP 2005005636A JP 2005005636 A JP2005005636 A JP 2005005636A JP 2006194701 A JP2006194701 A JP 2006194701A
Authority
JP
Japan
Prior art keywords
vibrator
signal
bias
compensation amount
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005636A
Other languages
English (en)
Inventor
Hiroyuki Takahashi
尋之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2005005636A priority Critical patent/JP2006194701A/ja
Publication of JP2006194701A publication Critical patent/JP2006194701A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】振動子の温度変化に応じて変動するバイアスを精度よく補償した角速度信号ωaを生成し、かつ信頼性の高い簡単な構造の振動ジャイロの提供。
【解決手段】検出信号101bは、振動子1が受ける角速度ωを表す。振動子1の共振周波数は振動子1の温度の関数である。自励発振部2は振動子1の共振周波数で自励振動をする。この自励振動による信号102は、周波数の情報を保持したまま波形整形信号103となり、信号103の周波数は周波数計測部81で計測される。周波数計測部81の出力181は、周波数データであるが、振動子1の温度に対応しているので、温度信号181として出力される。バイアス補償量演算部82は、温度信号181で表される温度データに基づき、バイアス補償量信号108を生成する。アナログ加算器9は、角速度信号107にバイアス補償量信号108を加え、バイアスの補償された角速度信号ωaを生成する。
【選択図】 図3

Description

本発明は、機械的な共振周波数で振動する振動子と、該振動子の角速度に応じたコリオリ力により該振動子に生じる振動を検出振動として検出する検出回路とを有する振動ジャイロに関し、特に温度によるバイアス及びスケールファクタの変動の補正が可能な振動ジャイロの補償量演算部に関する。
振動ジャイロの基本原理は、例えば非特許文献1に記載されている。この種の振動ジャイロで振動子として、U字形、4脚形、6脚形等の音叉型振動子や音辺形といった各種形状のものが用いられている。振動子をなす振動体の材料としては、エリンバ等の恒弾性材料、シリコン又は水晶、タンタル酸リチウム、ニオブ酸リチウム、ランガサイト等の圧電性単結晶が用いられる。振動体が恒弾性材料やシリコンであるときは、振動体に圧電セラミックでなる圧電素子を貼付し、その圧電素子には電極を蒸着する。振動体が圧電性単結晶でなるときは、電極を蒸着する。電極としては、駆動信号を加えるための駆動電極および検出振動を取り出すための検出電極がある。
6脚形振動子の振動ジャイロの例が特許文献1又は特許文献2に記載されている。図8は、特許文献1又は特許文献2に記載の音叉型振動ジャイロの基本構造及びその作動を説明するための図である。但し、6脚形振動子は、矩形板状の胴部の両端部に駆動用3脚および検出用の3脚をそれぞれ等間隔に配置してなるが、その3脚のうちの中央の脚は、振動の安定化のためものであり、作用原理の説明では重要ではないので、図8には中央脚を省略した4脚形の振動子を挙げた。図8の振動子は、胴部10と、駆動脚(特許文献1では、駆動側アーム)111と、検出脚(特許文献1では、検出側アーム)112とでなる。駆動脚111は励振用駆動脚111a及び111bでなる。検出脚112は振動用検出脚112a及び112bでなる。
図8(A)は音叉型振動ジャイロに対する回転の入力がないときの振動子の状態を表し、同図(B)は音叉型振動ジャイロに対し回転の入力があるときの振動子の状態を表す。励振用駆動脚111a及び111bは、互いに対をなし、逆位相で振動する。振動用検出脚112a及び112bは、互いに対をなし、逆位相で振動する。胴部10は、直方体であり、その平面形(上面10aの形)は正方形である(正方形である必要は必ずしもない)。胴部10における各面は、上面を符号10aで現し、底面(図に現れていない)を符号10bで現し、駆動脚111側の端面を符号10cで現し、検出脚112側の端面(図に現れていない)を符号10dで現し、一方の側面を符号10eで現し、他方の側面(図に現れていない)を符号10fで表すこととする。上面10a及び底面10bを主面と称する
胴部10、励振用駆動脚111a及び111b並びに振動用検出脚112a及び112bは、1つの圧電単結晶体でなり、一枚の板状の圧電単結晶から切り出された形をなす。胴部10、励振用駆動脚111a,111b及び振動用検出脚112a,112bの厚みは同一である。励振用駆動脚111a及び111bが励振されていない状態、即ち静止状態では、励振用駆動脚111a,111bの軸及び振動用検出脚112a,112bの軸は、胴部10の端面10c及び10dにそれぞれ垂直である。励振用駆動脚111a及び振動用検出脚112aの軸は同一の軸線上にある。同様に、励振用駆動脚111b及び振動用検出脚112bの軸も同一の軸線上にある。また、胴部10の重心を通り、側面10e平行な面に関し、励振用駆動脚111a及び111bは対称であり、また振動用検出脚112a及び112bも対称である。励振用駆動脚111a,111b及び振動用検出脚112a,112bには駆動用電極及び検出用電極がそれぞれ設けてある(これら電極の図示は省略されている。)。
このような図8の構造の音叉型振動ジャイロにおける駆動用電極に励振用の交流電圧を印加すると、励振用駆動脚111a及び111bは、上面10aに平行な平面内において互いに反対方向に、即ち逆位相に、振動する。この振動が、音叉型振動ジャイロにおける駆動振動である。駆動振動は、胴部10の主面(上面10a及び底面10b)に平行な平面内における振動であり、このような主面に平行な平面内における振動を面内振動と称する。面内振動は、図8(A)において矢印Ha及びHbで現してある。この状態で、角速度ωの回転が図8(B)の入力軸回りに入力されると、脚振動による脚端速度に比例してコリオリ力が発生するので、コリオリ力は脚振動と90度位相がずれた同じ周波数の振動になる。この振動は、コリオリ力に基づく振動という意味で、コリオリ振動と称することにする。脚端の変位が±aの範囲になるように脚が振動をしているとき、その脚端速度の絶対値は、脚端の変位が±aの時にゼロであり、脚端の変位がゼロの時に最大となる。図8の構造の音叉型振動ジャイロでは、角速度ωの回転が図8(B)の入力軸回りに入力されたとき、励振用駆動脚111a及び111bにコリオリ力が作用し、コリオリ振動Ca及びCbがそれぞれ生じる。コリオリ振動Ca及びCbは、胴部10の主面に直交する方向の振動であり、その位相は互いに逆である。胴部10の主面に直交する方向の振動を面垂直振動と称する。
胴部10は、板状であるので、その主面に平行な方向の振動、即ち面内振動に対しては極めて高い剛性を有し、他方主面に直交する方向の振動、即ち面垂直振動に対しては相対的に低い剛性を示す。そこで、励振用駆動脚111a,111bに生じる振動のうちで、面内振動である駆動振動Ha及びHbは、振動用検出脚112a,112bには殆ど伝搬せず、他方面垂直振動であるコリオリ振動Ca及びCbは高い効率で振動用検出脚112a,112bに伝搬する。振動用検出脚112a及び112bに伝搬したコリオリ振動が、音叉型振動ジャイロにおける検出振動Da及びDbである。音叉型振動ジャイロは、検出振動Da及びDbにより振動用検出脚112a及び112bに現れる電圧を検出用電極で電気信号として取り出すことにより、角速度ωを検出する。
音叉型振動ジャイロでは、振動用検出脚112a,112bに現れる駆動振動成分がノイズであり、検出振動成分(Da,Db)が信号である。そこで、振動用検出脚112a,112bにおける検出振動成分(Da,Db)に対する駆動振動成分の比が信号対雑音比(S/N比)となるので、角速度ωを高い精度で検出するには、振動用検出脚112a,112bに漏れ、現れる駆動振動成分を低減する必要がある。振動用検出脚112a,112bに漏れる駆動振動成分は、信号成分[検出振動成分(Da,Db)]に対するバイアスとなり、このバイアスが不安定であれば、角速度ωの検出精度は低下する。バイアスは、振動ジャイロに角速度ωの入力がないときにも検出脚に現れる振動に起因する信号である。バイアスが生じる原因としては、振動子の形状誤差、電極形成誤差、振動子支持構造による振動子の部分的な拘束などがある。
図7は、振動ジャイロの機能ブロック図である。振動ジャイロにおける音叉型振動子として、図8には4脚形の振動子を挙げたが、図7の振動ジャイロでは図示の簡略化のために、振動子はU字形とした。振動ジャイロでは、振動子を励振するための駆動信号を振動子に供給することにより、振動子に入力される角速度ωを表す検出信号を振動子から取得する。振動子の脚数が変われば、駆動信号および検出信号の数および位相が変わるが、振動子の脚数に拘わらずが、振動ジャイロの基本構成は変わらない。したがって、図8の4脚形の振動子を備える振動ジャイロも、図7と同様な機能ブロック図の回路で実現できる。図7において、振動子1は、圧電性単結晶製の振動体に駆動電極および検出電極を蒸着してなる。
図7の振動ジャイロは、振動子1、自励発信部2、波形整形部3、位相部4、交流増幅部5、同期検波部6および直流増幅部7でなる。自励発信部2は、振動子1を共振手段とする発信回路であり、駆動信号102を生成する。振動子1は、駆動信号102により励振され、電極に現れる電気信号を帰還信号101aとして自励発信部2に帰還するとともに、外部から角速度ωの入力があったときに検出電極に現れる検出信号101bは交流増幅部5へ出力する。波形整形部3は、コンパレータ等でなり、駆動信号102の波形を整形し、波形整形駆動信号103を出力する。位相部4は、波形整形駆動信号103の位相を移送し、参照信号104を生成する。交流増幅部5は、交流信号である検出信号101bを増幅し、増幅検出信号105を出力する。同期検波部6は、参照信号104でもって増幅検出信号105の同期検波を行い、検波信号106を出力する。直流増幅部7は、直流信号である検波信号106を増幅し、直流増幅した検波信号を角速度信号ωaとして出力する。
振動ジャイロの振動子1は、角速度ωを表す検出信号101bを出力するが、検出信号101bは微弱であり、しかも駆動信号102とは位相を90°異にする交流信号である。そこで、振動ジャイロでは、角速度信号ωaを得るために、検出信号101bを交流増幅部5でまず増幅して交流の信号105を出力するとともに、同期検波部6で同期検波することにより、その交流信号105を直流の検波信号106に変換した後、直流増幅部7でさらに増幅している。また、その同期検波部6で用いる参照信号104を生成するために、駆動信号102の波形を波形整形部3で整形し、移相部4おいて位相調整を行っている。
「超音波エレクトロニクス振動論―応用と基礎―」、宮川義朗著、朝倉書店 特開2001-255152 特開2001-208545 特開平05-288555
振動ジャイロでは、先に図8を参照して説明したように、振動子1の形状誤差や電極形成誤差、振動子搭載構造の影響等によって、振動ジャイロに入力される実際の角速度ωがゼロの場合にも、出力の角速度信号ωaがゼロにならない場合があり、入力角速度ωがゼロのときに出力される角速度信号ωaはバイアスと称される。振動子1に温度変動があると、振動子1の弾性係数、寸法、機械的な歪などが変動する。そこで、バイアスは振動子1の温度により変動する。
また、振動ジャイロに温度変化が加わると、振動子1の圧電的な特性変動あるいは電気回路の電気的な特性変動により、同期検波部6の入力信号105と参照信号104との位相関係が変動する。この位相の変動は、角速度計測における感度の変化となって表れる。感度が変動すると、振動ジャイロの出力信号である角速度信号ωaが変動し、やはり角速度信号ωaの測定誤差となる。この感度変化に起因する測定誤差は、振動ジャイロという測定器におけるスケールファクタの変化といえる。
図5は、特許文献3で示された補償量演算部を有する振動ジャイロの機能ブロック図である。図5において、15は振動子1近傍に設置された温度センサ、18は補償量演算部、9はアナログ加算器である。補償量演算部18は、A/D変換器、PLD(プログラマブルロジックデバイス)及びD/A変換器を縦続に接続してなる。図5の符号1乃至7で示す要素は、図7におけるものと同じ作用をする。図5の回路では、直流増幅部7の出力107(バイアス補償前の角速度信号)は、アナログ加算器9の一方の入力端に接続されている。補償量演算部18は、温度センサ15の出力である温度信号115にA/D変換器でA/D変換を施すことによりディジタル化温度信号を生成し、PLDでそのディジタル化温度信号を処理することによりバイアス補償量信号を生成し、このバイアス補償量信号にD/A変換器でD/A変換を施し、アナログ化したバイアス補償量信号118をアナログ加算器9の他方の入力端に入力している。かくして、図5の振動ジャイロは、符号15,18及び9の要素を図7の要素に付加することにより、アナログ加算器9の出力として、バイアスが補償された角速度信号ωaを得ている。バイアスは、振動子1の温度変動に応じて変動するが、バイアス補償量信号118は温度信号115に基づき補正されているので、バイアス補償量信号118により環境温度に拘わらず、バイアスは補償される。特許文献3では、直流増幅部7の出力107はバイアスを含んだ角速度信号であるが、角速度信号ωaはそのバイアス成分を除いた角速度ωを表すとされている。バイアスは、振動子1の温度変動に応じて変動するが、バイアス補償量信号118は温度信号115に基づき補正されているので、バイアス補償量信号118により環境温度に拘わらず、バイアスを補償する技術が、特許文献3から一応覗われる。
しかしながら、図5に挙げた特許文献3の振動ジャイロでは、温度センサ15が振動子1近傍に設置されたとしても、温度センサ15は振動子1そのものの温度を計測しているわけではないので、バイアス補償量信号118には補正誤差が不可避である。また、振動子1近傍への温度センサ15を設置することは、工数や部品費の増大を伴うので、特許文献3の方式では、環境温度に応じたバイアス補償という機能付与のために振動ジャイロの製造費が増大することは避けられない。そのうえ、温度センサの設置をする特許文献3の方式には、温度センサの複雑な支持構造や脆弱な配線によって、振動ジャイロの信頼性が損なわれるという欠点がある。
さらに、振動ジャイロに温度変化が加わるとき、振動子1の圧電的な特性変動あるいは電気回路特性の電気的な変動により、同期検波部6での入力信号105と参照信号104との位相関係が変動する。この位相変動は角速度信号ωaに対して感度の変化となって表れるが、特許文献3の方法ではその感度の補正をすることができない。
そこで、本発明の目的は、簡潔な構造で信頼性があり、適正なバイアス補償又は感度補正の少なくとも一方を可能とする補償量演算部を備える振動ジャイロの提供にある。
前述の課題を解決するために本発明は次の手段を提供する。
(1)振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段と、該振動子が該角速度を受けていないときにおけるコリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有する振動ジャイロにおいて、
前記バイアス補償量生成手段は、前記共振周波数に応じて前記バイアス補償量を生成することを特徴とする振動ジャイロ。
(2)前記バイアス補償量生成手段は、前記共振周波数を計測し、計測した周波数に対応する値を前記振動子の温度データとして出力する周波数計測部と、該温度データに基づき前記バイアス補償量を生成するバイアス補償量演算部とを備え、
前記バイアス補償量演算部は、温度を変数とする多項式又はルックアップテーブルを予め記憶しており、前記温度データに対応する前記バイアス補償量を該多項式又はルックアップテーブルにより求める
ことを特徴とする前記(1)に記載の振動ジャイロ。
(3)振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段とを有し、
前記コリオリ振動検出手段は、前記駆動信号の位相を移送することにより参照信号生成する移相部と、前記振動子の出力のコリオリ振動を該参照信号で同期検波する同期検波部とを備えてなる振動ジャイロにおいて、
前記共振周波数の変化に基づく位相補正量信号を生成し、該位相補正量信号を前記移相部に供給する位相量補正手段を備え、
前記位相量補正手段は、前記振動子の温度変動に起因する前記コリオリ振動と前記参照信号との位相差の変動量を補正するだけの大きさの位相を前記位相補正量信号で表し、
前記移相部は、前記位相補正量信号で表される位相補正量だけ前記参照信号の位相を移相する
ことを特徴とする振動ジャイロ。
(4)前記振動子が前記角速度を受けていないときにおける前記コリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有し、
前記バイアス補償量生成手段は、前記共振周波数に基づき前記振動子の温度データを取得し、該温度データに応じて前記バイアス補償量を生成する
ことを特徴とする前記(3)に記載の振動ジャイロ。
上記本発明によれば、振動子1の共振周波数が振動子1自体の温度に応じて変動することを利用し、振動子1の温度を計測するので、温度計測位置に伴うバイアス補償誤差が生じない。また本発明によれば、バイアス補償だけでなく、環境温度による感度の変動も補正する補償量演算部を有する振動ジャイロが提供できる。さらに、本発明によれば、温度センサが不要であるので、簡単な構造で小型化が可能であり、また制作費も低廉な信頼性の高い振動ジャイロを提供できる。
次に本発明の実施の形態を挙げ、図面を参照し、本発明を一層具体的に説明する。図1は、本発明の第1の実施の形態の振動ジャイロを示す機能ブロック図である。この実施の形態における補償量演算部8は、波形整形部3の出力の波形整形駆動信号103から温度データを得ている。他方、図5に示した従来の振動ジャイロにおける補償量演算部18は、温度センサ15の出力の温度信号115から温度データを得ていた。そこで、図1の実施の形態における補償量演算部8は、構成および作動において、図5の補償量演算部18とは相違する。また、図1の実施の形態では、図5の温度センサ15を要しない。その他の点において、図1の実施の形態は図5の従来の振動ジャイロと同じであるので、以下ではそれら相違点を中心に、図1の実施の形態を説明する。
図1の実施の形態の補償量演算部8は、図5の従来の振動ジャイロと同様に、温度データに基づき、補償量(バイアス推定量の極性を反転した値)を演算し、その補償量を表すバイアス補償量信号108を生成し、直流増幅部7の出力信号107(バイアス補償前の角速度信号)にバイアス補償量信号108を直接加算することにより、バイアスを打ち消している。
図3は、補償量演算部8の具体的構成例を示した第1の実施の形態(図1)の機能ブロック図である。図3の補償量演算部8は、周波数計測部81およびバイアス補償量演算部82でなる。周波数計測部81は、波形整形部3の出力の波形整形駆動信号103を受け、波形整形駆動信号103の周波数を計測する。波形整形駆動信号103の周波数は駆動信号102の周波数と同じであるから、周波数計測部81の計数値は駆動信号102の周波数を表す。その駆動信号102の周波数は、自励発信部2の発振周波数であるから、振動子1の共振周波数である。
図6は、振動子1の共振周波数と温度との関係を示すグラフである。このように振動子1の共振周波数は、振動子1の熱膨張率や弾性率の温度係数で変動し、振動子1の温度の関数となっている。従って、図3の実施の形態における補償量演算部8では、周波数計測部81により波形整形駆動信号103の周波数を計測することにより、振動子1の温度データを得ることができる。周波数計測部81の出力信号181は、振動子1の共振周波数を表す信号であるとともに、この共振周波数が振動子1の温度に一義的に対応しているので、温度信号でもある。この実施の形態では、信号181を温度信号と称することにする。
図3の実施の形態における補償量演算部8は、図5の従来の振動ジャイロにおける温度センサ15出力の温度信号115の代わりに、波形整形駆動信号103の周波数を周波数計測部81で計測することにより、振動子1の温度データを得るとともに、バイアス補償量演算部82で、その温度データに応じたバイアス補償量を算出して、このバイアス補償量信号108を生成している。
バイアス補償量演算部82は、温度を変数とする多項式あるいはルックアップテーブルを保有し、入力に対して1対1に対応する出力を生成する。多項式における係数あるいはルックアップテーブルのテーブル値を決めるために、振動ジャイロの温度試験により事前にバイアスの計測をする。温度試験は、振動ジャイロの使用環境の温度範囲の全域にわたって、一定温度間隔でバイアスを計測することにより行う。この試験より得た各温度ごとのバイアスの極性を反転した値が、各温度のバイアス補償量である。多項式で補償量を求めるときは、各温度における多項式の値が各温度における補償量となるように、多項式における各係数を計算し、バイアス補償量演算部82に記憶しておく。ルックアップテーブルで補償量を求めるときは、各温度ごとの補償量を各温度のテーブル値として、バイアス補償量演算部82に記憶しておく。
図1及び図3を参照して説明した本発明の第1の実施例において、自励発振部2は前述の振動子駆動手段に相当し、波形整形部3、移相部4、交流増幅部5および同期検波部6は前述のコリオリ振動検出手段に相当し、補償量演算部8は前述のバイアス補償量生成手段に相当し、直流増幅部及びアナログ加算器9は前述のバイアス除去手段に相当する。
図2は本発明の第2の実施の形態の振動ジャイロを示す機能ブロック図である。振動ジャイロに温度変化が加わると、振動子1の圧電的な特性変動あるいは電気回路における電気特性の変動により、同期検波部6の入力信号である増幅検出信号105と参照信号104との位相関係が変動する。この位相変動は、角速度信号ωaの大きさの変動として表れるので、振動ジャイロの感度の変化となる。感度が変動すると、振動ジャイロの出力信号である角速度信号ωaが変動し、やはり角速度信号ωaの測定誤差となる。この感度変化に起因する測定誤差は、振動ジャイロという測定器におけるスケールファクタの変化といえる。図1の実施の形態ではその感度変化に起因する測定誤差は補正できない。
図2の実施の形態では、前記位相変動を補正するために、その変動分の大きさの位相を補正位相量として補償量演算部80で演算し、その補正位相量を表す位相補正量信号108bを移相部4に加え、参照信号104の位相をその補正位相量だけ移相することにより、同期検波部6の2つの入力信号(増幅検出信号105および参照信号104)間の位相変動を防止している。このようにして、位相補正量信号108bに応じた位相量だけ移相部4において参照信号104の位相を調整することで、温度変動に起因する感度の変動を補償し、振動ジャイロのスケールファクタの補正が可能となる。また、補償量演算部80は、図1の実施の形態における補償量演算部8と同様に、バイアス補償量108を生成し、角速度信号107におけるバイアスを補償する機能も備える。
図4は、補償量演算部80の具体的構成例を示した第2の実施の形態の機能ブロック図である。補償量演算部80は、周波数計測部81、バイアス補償量演算部82および感度補正演算部83でなる。図4の補償量演算部80における周波数計測部81およびバイアス補償量演算部82は、図3の補償量演算部8におけるものと同じである。バイアスに対する補償量と感度に対する補正量は異なるので、補償量演算部80は、バイアス補償量演算部82とは別に、感度補正演算部83を備えている。感度補正演算部83は、図3の実施の形態におけるバイアス補償量演算部82と同様に、温度を変数とする多項式あるいはルックアップテーブルを保有し、入力に対して1対1に対応する出力を生成する。多項式の係数値あるいはルックアップテーブルのテーブル値を決めるために、振動ジャイロの温度試験を行い、温度変動に起因する増幅検出信号105と参照信号104との間の位相の変動量を事前に計測する。この位相変動量の極性を反転した値を補正位相量として生成するように、多項式の係数あるいはルックアップテーブルのテーブル値を決定する。感度補正演算部83における係数またはテーブル値は、前述のバイアス補償量演算部82における係数値またはテーブル値と同様に決める。感度補正演算部83は、予め記憶している多項式あるいはルックアップテーブルに、温度信号181を適用し、補正位相量を演算し、補正位相量を表す位相補正量信号108bを生成する。
図2及び図4を参照して説明した本発明の第2の実施例において、自励発振部2は前述の振動子駆動手段に相当し、波形整形部3、移相部4、交流増幅部5および同期検波部6は前述のコリオリ振動検出手段に相当し、補償量演算部80はバイアス補償量生成手段に相当し、直流増幅部及びアナログ加算器9は前述のバイアス除去手段に相当し、感度補正演算部は前述の位相量補正手段に相当する。
なお、以上には図面を参照して本発明の実施の形態を具体的に説明したが、本発明がこれらの実施の形態に限定されるものでないことは勿論である。例えば、上記実施の形態における補償量演算部8,80(バイアス補償量生成手段に相当)の入力信号は、波形整形された駆動信号103であったが、波形整形された駆動信号103に代えて駆動信号102又は帰還信号101aでも差し支えない。駆動信号102および帰還信号101aの周波数は振動子1の温度情報を含むからである。さらに、振動子1の表面であって駆動電極が配置されている面に駆動電極とは別の電極を固着し、その別の電極から取り出した信号を、駆動信号103に代えて、補償量演算部8,80の入力信号としてもよい。補償量演算部8,80の入力信号の信号源に関する上記の事項は、振動子1の脚の形状がU字形、4脚形、6脚形等のいずれであるかに拘わらず、同じである。
本発明の第1の実施の形態の補償量演算部を有する振動ジャイロを示す機能ブロック図である。 本発明の第2の実施の形態の補償量演算部を有する振動ジャイロを示す機能ブロック図である。 補償量演算部8の具体的構成例を示す第1の実施の形態の機能ブロック図である。 補償量演算部80の具体的構成例を示す第2の実施の形態の機能ブロック図である。 温度センサで温度データを取得することにより、バイアス補償を行う従来の振動ジャイロの機能ブロック図である。 振動子における温度と共振周波数との関係を示すグラフである。 振動ジャイロの基本機能を示す図であり、補償量演算部を有しないジャイロの機能ブロック図である。 駆動脚と検出脚とを胴部で結合した構造の音叉型振動ジャイロの作動原理を説明する図である。
符号の説明
1 振動子
2 自励発振部
3 波形整形部
4 移相部
5 交流増幅部
6 同期検波部
7 直流増幅部
8,18,80 補償量演算部
9 アナログ加算器
10 胴部
10a 胴部上面
10b 胴部底面
10c、10d 胴部端面
10e、10f 胴部側面
15 温度センサ
81 周波数計測部
82 バイアス補償量演算部
83 感度補正演算部
101a 帰還信号
101b 検出信号
102 駆動信号
103 波形整形された駆動信号
104 参照信号
105 増幅された検出信号
106 検波信号
108,118 バイアス補償量信号
108b 補正位相量信号
111a,111b 励振用駆動脚
112a,112b 振動用検出脚
115,181 温度信号
ω 角速度
ωa 角速度信号
Ca,Cb コリオリ振動
Ha、Hb 駆動振動
Da、Db 検出振動

Claims (4)

  1. 振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段と、該振動子が該角速度を受けていないときにおけるコリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有する振動ジャイロにおいて、
    前記バイアス補償量生成手段は、前記共振周波数に応じて前記バイアス補償量を生成することを特徴とする振動ジャイロ。
  2. 前記バイアス補償量生成手段は、前記共振周波数を計測し、計測した周波数に対応する値を前記振動子の温度データとして出力する周波数計測部と、該温度データに基づき前記バイアス補償量を生成するバイアス補償量演算部とを備え、
    前記バイアス補償量演算部は、温度を変数とする多項式又はルックアップテーブルを予め記憶しており、前記温度データに対応する前記バイアス補償量を該多項式又はルックアップテーブルにより求める
    ことを特徴とする請求項1に記載の振動ジャイロ。
  3. 振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段とを有し、
    前記コリオリ振動検出手段は、前記駆動信号の位相を移送することにより参照信号生成する移相部と、前記振動子の出力のコリオリ振動を該参照信号で同期検波する同期検波部とを備えてなる振動ジャイロにおいて、
    前記共振周波数の変化に基づく位相補正量信号を生成し、該位相補正量信号を前記移相部に供給する位相量補正手段を備え、
    前記位相量補正手段は、前記振動子の温度変動に起因する前記コリオリ振動と前記参照信号との位相差の変動量を補正するだけの大きさの位相を前記位相補正量信号で表し、
    前記移相部は、前記位相補正量信号で表される位相補正量だけ前記参照信号の位相を移相する
    ことを特徴とする振動ジャイロ。
  4. 前記振動子が前記角速度を受けていないときにおける前記コリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有し、
    前記バイアス補償量生成手段は、前記共振周波数に基づき前記振動子の温度データを取得し、該温度データに応じて前記バイアス補償量を生成する
    ことを特徴とする請求項3に記載の振動ジャイロ。
JP2005005636A 2005-01-12 2005-01-12 振動ジャイロ Pending JP2006194701A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005636A JP2006194701A (ja) 2005-01-12 2005-01-12 振動ジャイロ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005636A JP2006194701A (ja) 2005-01-12 2005-01-12 振動ジャイロ

Publications (1)

Publication Number Publication Date
JP2006194701A true JP2006194701A (ja) 2006-07-27

Family

ID=36800901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005636A Pending JP2006194701A (ja) 2005-01-12 2005-01-12 振動ジャイロ

Country Status (1)

Country Link
JP (1) JP2006194701A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071692A (ja) * 2005-09-07 2007-03-22 Nec Tokin Corp 圧電振動ジャイロ用振動子
JP2007139642A (ja) * 2005-11-21 2007-06-07 Japan Aviation Electronics Industry Ltd 振動ジャイロ
JP2007205975A (ja) * 2006-02-03 2007-08-16 Japan Aviation Electronics Industry Ltd 振動ジャイロ
JP2010054438A (ja) * 2008-08-29 2010-03-11 Hitachi Ltd 角速度検出装置
WO2011045909A1 (ja) * 2009-10-13 2011-04-21 パナソニック株式会社 角速度センサ
JP2011085417A (ja) * 2009-10-13 2011-04-28 Panasonic Corp 角速度センサ
JP2011153881A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 角速度センサ
JP2011153880A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 角速度センサ
RU2480713C1 (ru) * 2011-09-21 2013-04-27 Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") Способ алгоритмической компенсации температурной скорости дрейфа твердотельного волнового гироскопа
CN105892293A (zh) * 2016-04-06 2016-08-24 苏州大学 一种硅微陀螺数字化驱动闭环控制***
CN112556723A (zh) * 2020-12-03 2021-03-26 重庆两江卫星移动通信有限公司 一种基于温度与相位补偿的相关解调优化方法及陀螺控制***
CN117109637A (zh) * 2023-10-19 2023-11-24 四川图林科技有限责任公司 一种半球谐振陀螺仪的温漂误差修正补偿方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071692A (ja) * 2005-09-07 2007-03-22 Nec Tokin Corp 圧電振動ジャイロ用振動子
JP2007139642A (ja) * 2005-11-21 2007-06-07 Japan Aviation Electronics Industry Ltd 振動ジャイロ
JP4535989B2 (ja) * 2005-11-21 2010-09-01 日本航空電子工業株式会社 振動ジャイロ
JP2007205975A (ja) * 2006-02-03 2007-08-16 Japan Aviation Electronics Industry Ltd 振動ジャイロ
JP4536016B2 (ja) * 2006-02-03 2010-09-01 日本航空電子工業株式会社 振動ジャイロ
JP2010054438A (ja) * 2008-08-29 2010-03-11 Hitachi Ltd 角速度検出装置
US9435647B2 (en) 2009-10-13 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor
WO2011045909A1 (ja) * 2009-10-13 2011-04-21 パナソニック株式会社 角速度センサ
JP2011085417A (ja) * 2009-10-13 2011-04-28 Panasonic Corp 角速度センサ
US10359285B2 (en) 2009-10-13 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor and method for correcting angular velocity sensor
CN102686976A (zh) * 2009-10-13 2012-09-19 松下电器产业株式会社 角速度传感器
JP2011153881A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 角速度センサ
JP2011153880A (ja) * 2010-01-27 2011-08-11 Panasonic Corp 角速度センサ
RU2480713C1 (ru) * 2011-09-21 2013-04-27 Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") Способ алгоритмической компенсации температурной скорости дрейфа твердотельного волнового гироскопа
CN105892293A (zh) * 2016-04-06 2016-08-24 苏州大学 一种硅微陀螺数字化驱动闭环控制***
CN105892293B (zh) * 2016-04-06 2018-07-24 苏州大学 一种硅微陀螺数字化驱动闭环控制***
CN112556723A (zh) * 2020-12-03 2021-03-26 重庆两江卫星移动通信有限公司 一种基于温度与相位补偿的相关解调优化方法及陀螺控制***
CN117109637A (zh) * 2023-10-19 2023-11-24 四川图林科技有限责任公司 一种半球谐振陀螺仪的温漂误差修正补偿方法
CN117109637B (zh) * 2023-10-19 2023-12-19 四川图林科技有限责任公司 一种半球谐振陀螺仪的温漂误差修正补偿方法

Similar Documents

Publication Publication Date Title
JP2006194701A (ja) 振動ジャイロ
US5585562A (en) Vibration-sensing gyro
US8746033B2 (en) Angular velocity sensor
JPH09170927A (ja) 振動型角速度検出装置
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JPH08152328A (ja) 角速度センサ及びその使用方法
JP3336605B2 (ja) 角速度センサ
EP2572162B1 (en) Angular rate sensor with improved ageing properties
JP4763565B2 (ja) 位相補償同期検波回路、振動ジャイロ
KR100198308B1 (ko) 진동 자이로스코프
JP2010286371A (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP3966719B2 (ja) 角速度測定装置
JP2006250643A (ja) 角速度センサの異常検出装置
US20070277614A1 (en) Vibration sensor
JP5151934B2 (ja) 真空計
JPH10260043A (ja) 角速度検出装置
JP2548679B2 (ja) 振動ジャイロスコープ
JP2004361320A (ja) 振動子の励振方法、物理量の測定方法および物理量測定装置
JP4591787B2 (ja) 振動子および角速度測定装置
JP2006023268A (ja) ジャイロセンサの感度調整方法
JP2005308530A (ja) 角速度・加速度複合センサ
JP3035161B2 (ja) 振動ジャイロスコープ
JPH07128069A (ja) 角速度センサ
JPH08304446A (ja) 圧電型変位センサ
Padovani et al. In-Plane and Out-of-Plane FM Accelerometers with 130 DB Dynamic Range Through Nems-Based Oscillators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090515