JP2006188379A - Method for improving saturable absorption function of single walled carbon nanotube - Google Patents

Method for improving saturable absorption function of single walled carbon nanotube Download PDF

Info

Publication number
JP2006188379A
JP2006188379A JP2005000351A JP2005000351A JP2006188379A JP 2006188379 A JP2006188379 A JP 2006188379A JP 2005000351 A JP2005000351 A JP 2005000351A JP 2005000351 A JP2005000351 A JP 2005000351A JP 2006188379 A JP2006188379 A JP 2006188379A
Authority
JP
Japan
Prior art keywords
walled carbon
saturable absorption
carbon nanotube
absorption function
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005000351A
Other languages
Japanese (ja)
Other versions
JP4706055B2 (en
Inventor
Hiromichi Kataura
弘道 片浦
Yasumitsu Miyata
耕充 宮田
Yoichi Sakakibara
陽一 榊原
Madoka Tokumoto
圓 徳本
Shun Matsuzaki
瞬 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005000351A priority Critical patent/JP4706055B2/en
Publication of JP2006188379A publication Critical patent/JP2006188379A/en
Application granted granted Critical
Publication of JP4706055B2 publication Critical patent/JP4706055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which single walled carbon nanotubes exhibiting sufficiently practical saturable absorption can be obtained by uniformizing the diameter distribution of the SWNT (single walled carbon nanotube) by controlling the diameter of the SWNT in a post-treatment. <P>SOLUTION: The method includes a step of applying oxidation treatment to the single walled carbon nanotube, and the diameter distribution of the single walled carbon nanotube is made narrow by selectively oxidizing the single walled carbon nanotube having small diameters. Thereby, the saturable absorption function of the single walled carbon nanotubes can be improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単層カーボンナノチューブが有する可飽和吸収機能を向上させる方法に関するものである。   The present invention relates to a method for improving the saturable absorption function of a single-walled carbon nanotube.

単層カーボンナノチューブ(SWNT)は炭素でできた物質であり、炭素の六角員環からなるシート(グラフェンシート)を筒状に巻いた形状をしている。SWNTは、グラフェンシートの巻き方により導電性や光吸収スペクトルが異なるという特異な性質を持ち、将来の機能材料としての応用が期待されている。特に、SWNTは所定の条件下において可飽和吸収という特殊な機能を有するため、非線形光学素子などへの光学的応用が有望視されている。   A single-walled carbon nanotube (SWNT) is a substance made of carbon, and has a shape in which a sheet (graphene sheet) made of a hexagonal ring of carbon is wound into a cylindrical shape. SWNT has a unique property that conductivity and light absorption spectrum differ depending on how the graphene sheet is wound, and is expected to be applied as a functional material in the future. In particular, since SWNT has a special function of saturable absorption under a predetermined condition, optical application to nonlinear optical elements and the like is considered promising.

例えば特開2003−121892号公報においては、SWNTを薄膜にしたものに対して、強い光を入射すると可飽和吸収が起こることが確認されている。特に、光のエネルギーがSWNTのバンドギャップエネルギーに一致する時に、その効果が顕著であることが確認されている。また、SWNTのバンドギャップの大きさは、SWNTの直径に対応していることが知られている(H. Kataura et al. Synth. Met., 103(1999)pp.2555-2558)。このため、可飽和吸収効果はSWNTの直径分布に反映される。例えば、ある特定エネルギーの光をSWNT薄膜に入射する場合、そのエネルギーに一致するバンドギャップを持ったSWNTが多いほど、大きな可飽和吸収効果を期待することができる。   For example, in Japanese Patent Application Laid-Open No. 2003-121892, it has been confirmed that saturable absorption occurs when strong light is incident on a thin SWNT. In particular, when the energy of light matches the band gap energy of SWNT, it has been confirmed that the effect is remarkable. Moreover, it is known that the band gap size of SWNT corresponds to the diameter of SWNT (H. Kataura et al. Synth. Met., 103 (1999) pp. 2555-2558). For this reason, the saturable absorption effect is reflected in the diameter distribution of SWNTs. For example, when light of a specific energy is incident on the SWNT thin film, a larger saturable absorption effect can be expected as the number of SWNTs having a band gap corresponding to the energy increases.

SWNTに対して可飽和吸収を出現させるためには、その直径を制御して直径分布を均一にする必要がある。一方、SWNTは、主にレーザ蒸発法、アーク放電法、及び気相化学蒸着法(CVD法)を用いて形成することができる。このうち、CVD法で生成されたSWNTが現在は多く市販されている。しかしながら、CVD法で生成されたSWNTの直径分布は不均一なので、赤外から紫外域において強いバンド間吸収を持つものは皆無であり、このようにして得たSWNTにおいては十分な可飽和吸収を実現することはできないでいた。   In order to make saturable absorption appear in SWNT, it is necessary to control the diameter to make the diameter distribution uniform. On the other hand, SWNTs can be formed mainly using a laser evaporation method, an arc discharge method, and a vapor phase chemical vapor deposition method (CVD method). Of these, many SWNTs produced by the CVD method are currently commercially available. However, since the diameter distribution of SWNT produced by the CVD method is not uniform, there is no strong interband absorption in the infrared to ultraviolet region, and the SWNT obtained in this way has sufficient saturable absorption. It couldn't be realized.

SWNTの直径を制御するに際しては、生成段階あるいは後処理によって行うことになるが、現段階においては、上述したようにSWNTの直径を生成段階で制御することは困難である。また、SWNTの直径を後処理によって制御する方法としては、例えば特開2004−210608号公報で開示されているように、光照射による方法などが提案されている。しかしながら、このような光照射を含めた後処理によってSWNTの直径を制御することについては未だ十分とは言えず、SWNTにおいて十分な可飽和吸収を実現することはできないでいた。   The SWNT diameter is controlled by a generation stage or post-processing, but at the current stage, it is difficult to control the SWNT diameter at the generation stage as described above. Further, as a method for controlling the diameter of SWNT by post-processing, for example, a method by light irradiation has been proposed as disclosed in JP-A-2004-210608. However, it is still not sufficient to control the diameter of SWNT by post-processing including such light irradiation, and it has not been possible to realize sufficient saturable absorption in SWNT.

特開2003−121892号公報JP 2003-121892 A 特開2004−210608号公報JP 2004-210608 A

本発明はSWNTの直径を後処理において制御することにより、その直径分布を均一化し、実用に足る十分な可飽和吸収を奏することができる方法を提供することを目的とする。   An object of the present invention is to provide a method capable of making the diameter distribution uniform by controlling the diameter of SWNT in the post-treatment and exhibiting saturable absorption sufficient for practical use.

上記目的を達成すべく、本発明は、
単層カーボンナノチューブに対して酸化処理を施す工程を具え、前記単層カーボンナノチューブの直径の細いものを選択的に酸化させて直径分布を狭小化し、前記単層カーボンナノチューブの可飽和吸収機能を向上させることを特徴とする、単層カーボンナノチューブの可飽和吸収機能の向上方法に関する。
In order to achieve the above object, the present invention provides:
A single-walled carbon nanotube is oxidized, and the single-walled carbon nanotube is selectively oxidized to narrow the diameter distribution to improve the saturable absorption function of the single-walled carbon nanotube. The present invention relates to a method for improving the saturable absorption function of single-walled carbon nanotubes.

本発明者らは、上記目的を達成すべく鋭意検討を実施した。その結果、単層カーボンナノチューブ(SWNT)に酸化処理を施し、その諸条件、例えば酸化時間、温度及び使用する酸化剤の種類などを適宜に制御し、選択することにより、直径の細いSWNTが直径の太いSWNTよりも選択的に酸化され、SWNTの直径分布が狭小化されることを見出した。この結果、得られたSWNTに十分な可飽和吸収機能が出現することを見出し、本発明を想到するに至った。   The inventors of the present invention have intensively studied to achieve the above object. As a result, a single-walled carbon nanotube (SWNT) is oxidized, and various conditions such as oxidation time, temperature, and type of oxidant to be used are appropriately controlled and selected. It was found that the diameter distribution of SWNT is narrowed more selectively than the thick SWNT. As a result, it was found that a saturable absorption function appears in the obtained SWNT, and the present invention has been conceived.

なお、前記酸化処理は、例えばSWNTを酸素含有雰囲気中に配置し、加熱処理を施すことによって実施することができる。また、所定の酸化剤を用い、これを含む雰囲気下にSWNTを配置することによって実施することができる。   In addition, the said oxidation process can be implemented by arrange | positioning SWNT in oxygen-containing atmosphere, for example, and performing a heat processing. Moreover, it can implement by arrange | positioning SWNT in the atmosphere containing this using a predetermined | prescribed oxidizing agent.

また、本発明の好ましい態様においては、SWNT中に含まれる金属触媒などの触媒成分を除去する工程を含む。さらには、SWNT中に含まれるSWNT構成以外の炭素不純物を除去する工程を含む。SWNT内にこのような残留触媒成分や炭素不純物が含まれていると、これらに起因した吸収や散乱などが生じ、SWNTが可飽和吸収を十分奏することができない場合がある。   Moreover, in the preferable aspect of this invention, the process of removing catalyst components, such as a metal catalyst contained in SWNT, is included. Furthermore, the process of removing carbon impurities other than the SWNT structure contained in SWNT is included. If such a residual catalyst component or carbon impurity is contained in the SWNT, absorption or scattering caused by these may occur, and the SWNT may not be able to sufficiently exhibit saturable absorption.

本発明の方法や、特に直径分布を不均一にする製造方法、具体的にはCVD法を含む製造方法によって得られたSWNTに適用することによって、SWNTの直径分布を極めて均一にし、十分な可飽和吸収を奏することができるようになる。   By applying to the SWNT obtained by the method of the present invention, in particular, the manufacturing method that makes the diameter distribution non-uniform, specifically, the manufacturing method including the CVD method, the SWNT diameter distribution becomes extremely uniform and sufficient Saturated absorption can be achieved.

以上説明したように、本発明によれば、SWNTの直径を後処理において制御することにより、その直径分布を均一化し、実用に足る十分な可飽和吸収を奏することができる方法を提供することができる。   As described above, according to the present invention, by controlling the diameter of SWNT in the post-processing, it is possible to provide a method capable of making the diameter distribution uniform and exhibiting saturable absorption sufficient for practical use. it can.

以下、本発明の詳細、その他の特徴及び利点について、発明を実施するための最良の形態に基づいて説明する。   Hereinafter, details of the present invention, other features and advantages will be described based on the best mode for carrying out the invention.

本発明の可飽和吸収の向上方法においては、最初に単層カーボンナノチューブ(SWNT)を準備し、このSWNTに対して酸化処理を施す。酸化処理は、例えばSWNTを酸素を含む雰囲気中に配置し、加熱処理を施すことによって実施することができる。具体的には、酸素を0.1%以上含む雰囲気中にSWNTを配置し、50−1000℃に加熱することによって実施することができる。なお、加熱処理時間は、SWNTの量、酸素濃度及び加熱時間などに依存して変化するが、好ましくは酸素濃度21%、加熱温度300℃、加熱時間30分とする。   In the method for improving saturable absorption of the present invention, first, single-walled carbon nanotubes (SWNT) are prepared, and this SWNT is subjected to oxidation treatment. The oxidation treatment can be performed, for example, by placing SWNTs in an atmosphere containing oxygen and performing heat treatment. Specifically, it can be carried out by placing SWNTs in an atmosphere containing 0.1% or more of oxygen and heating to 50-1000 ° C. The heat treatment time varies depending on the amount of SWNT, the oxygen concentration, the heating time, etc., but preferably the oxygen concentration is 21%, the heating temperature is 300 ° C., and the heating time is 30 minutes.

また、前記酸化処理は、所定の酸化剤を用いて行うこともできる。この場合は、SWNTを前記酸化剤を含む雰囲気中に配置することによって実施する。例えば、前記酸化剤が室温で固体状であれば、前記SWNTに前記酸化剤を直接接触させる、あるいは前記酸化剤を所定の溶媒中に溶解させることによって溶液とし、この溶液に対して所定時間浸漬させることによって酸化処理を行うことができる。   Further, the oxidation treatment can be performed using a predetermined oxidizing agent. In this case, the SWNT is placed in an atmosphere containing the oxidizing agent. For example, if the oxidizing agent is solid at room temperature, the SWNT is directly brought into contact with the oxidizing agent, or the oxidizing agent is dissolved in a predetermined solvent to form a solution and immersed in the solution for a predetermined time. By performing this, oxidation treatment can be performed.

さらに、前記酸化剤が室温で液体状であれば、SWNTを前記酸化剤中に直接浸漬させる、あるいは希釈させた酸化剤中に浸漬させることによって酸化処理を行うことができる。また、前記酸化剤が室温で気体状であれば、SWNTを前記酸化剤を含む気体雰囲気中に配置することによって行う。   Furthermore, if the oxidizing agent is liquid at room temperature, the oxidation treatment can be performed by immersing SWNTs directly in the oxidizing agent or in a diluted oxidizing agent. Moreover, if the said oxidizing agent is gaseous at room temperature, it will carry out by arrange | positioning SWNT in the gas atmosphere containing the said oxidizing agent.

いずれの場合においても、必要に応じて加熱処理を施すことができ、すなわち前記酸化剤を用いた酸化処理を加熱雰囲気中で行うことができる。また、使用する酸化剤の種類によっては室温以下の温度においても十分にSWNTを酸化することができる。具体的には、酸化剤を用いた酸化処理は0−200℃の温度範囲で行うことができる。   In any case, heat treatment can be performed as necessary, that is, oxidation treatment using the oxidizing agent can be performed in a heated atmosphere. Further, depending on the type of oxidizing agent used, SWNT can be sufficiently oxidized even at a temperature below room temperature. Specifically, the oxidation treatment using an oxidizing agent can be performed in a temperature range of 0 to 200 ° C.

上述した酸化剤としては、過酸化水素、フッ酸、オゾン、硝酸、硫酸、及び過マンガン酸カリウムからなる群より選ばれる少なくとも一種を用いることができる。   As the oxidant described above, at least one selected from the group consisting of hydrogen peroxide, hydrofluoric acid, ozone, nitric acid, sulfuric acid, and potassium permanganate can be used.

過マンガン酸カリウムは室温において固体であるため、過マンガン酸カリウムを用いた酸化処理は上記固体状の酸化剤を用いた場合の酸化処理操作に従って酸化処理を行う。過酸化水素、フッ酸、硝酸及び硫酸は、室温において液体であるため、上記液体状の酸化剤を用いた場合の酸化処理操作に従って酸化処理を行う。オゾンは室温で気体であるため、上記気体状の酸化剤を用いた場合の酸化処理操作に従って酸化処理を行う。   Since potassium permanganate is solid at room temperature, the oxidation treatment using potassium permanganate is performed according to the oxidation treatment operation in the case of using the solid oxidizing agent. Since hydrogen peroxide, hydrofluoric acid, nitric acid, and sulfuric acid are liquid at room temperature, the oxidation treatment is performed according to the oxidation treatment operation in the case of using the liquid oxidant. Since ozone is a gas at room temperature, the oxidation treatment is performed according to the oxidation treatment operation when the gaseous oxidant is used.

上述した酸化剤の中でも、特に過酸化水素及び過マンガン酸カリウムが好ましい。このような酸化剤は取り扱いが容易であって、SWNTを溶液中に浸漬した際にも、硝酸などの強酸を用いた場合に比べて、SWNTをほとんど劣化させることがなく、細いSWNTのみを効率良く酸化させて、直径分布を狭小化させることができる。   Among the oxidizing agents described above, hydrogen peroxide and potassium permanganate are particularly preferable. Such an oxidizing agent is easy to handle, and even when SWNTs are immersed in a solution, SWNTs are hardly deteriorated compared to the case of using a strong acid such as nitric acid, and only thin SWNTs are efficiently used. It can be oxidized well and the diameter distribution can be narrowed.

また、本発明においては、上述した酸化処理に加えて、SWNTに含まれる金属触媒などの触媒成分を除去し、SWNTを構成する以外の炭素不純物を除去することが好ましい。
このような残留触媒や炭素不純物がSWNT内に含まれていると、これらに起因した吸収や散乱などが生じ、SWNTが可飽和吸収を十分奏することができない場合がある。
In the present invention, in addition to the above-described oxidation treatment, it is preferable to remove a catalyst component such as a metal catalyst contained in SWNT and remove carbon impurities other than that constituting SWNT.
If such a residual catalyst or carbon impurity is contained in the SWNT, absorption or scattering caused by these may occur, and the SWNT may not sufficiently exhibit saturable absorption.

残留した金属触媒を除去するに際しては、塩酸や硫酸などの酸を用いて溶解除去する。また、炭素不純物を除去するに際しては、酸素含有雰囲気中で燃焼させて除去することができる。   When removing the remaining metal catalyst, it is dissolved and removed using an acid such as hydrochloric acid or sulfuric acid. Moreover, when removing carbon impurities, it can be removed by burning in an oxygen-containing atmosphere.

上述した操作に供するSWNTは、例えば光学素子として用いる場合、当然に利用したい可飽和吸収波長を含むものを準備する必要がある。SWNTは公知の方法によって製造することができ、例えばレーザ蒸着法、アーク放電法、及びCVD法などを用いて製造することができる。特にCVD法を利用した製造技術により作製されたSWNTは市販されているが、このようなSWNTは直径分布が広く、可飽和吸収機能を十分に示さない場合がある。したがって、本発明の方法は、このようなCVD法を用いた製造技術によって作製したSWNTの直径分布を狭小化させて、可飽和吸収機能を出現させるのに好ましく用いることができる。   For example, when the SWNT to be used for the above-described operation is used as an optical element, it is necessary to prepare a SWNT having a saturable absorption wavelength to be used. SWNTs can be manufactured by a known method, for example, using a laser vapor deposition method, an arc discharge method, a CVD method, or the like. In particular, SWNTs produced by a manufacturing technique using the CVD method are commercially available, but such SWNTs have a wide diameter distribution and may not sufficiently exhibit a saturable absorption function. Therefore, the method of the present invention can be preferably used for narrowing the diameter distribution of SWNTs produced by a manufacturing technique using such a CVD method and causing a saturable absorption function to appear.

最初に、CNI社より購入したSWNTを準備した。このSWNTは、鉄触媒に高温で一酸化炭素ガスを接触させ、熱分解させてSWNTを作製する、熱CVD法を利用したHiPco法(High pressure carbon monoxide method)によって得られるものである。   First, SWNT purchased from CNI was prepared. This SWNT is obtained by a HiPco method (High pressure carbon monoxide method) using a thermal CVD method in which a carbon monoxide gas is brought into contact with an iron catalyst at a high temperature and thermally decomposed to produce SWNT.

次いで、前記SWNT(SWNT1)を、300℃に保持された空気中に約30分間配置し、混入している鉄微粒子(鉄触媒)の周りの炭素物質を燃焼させた。次いで、前記SWNTを塩酸の中に分散させ、混入している鉄微粒子を塩酸溶液中に溶解させた。この後、鉄微粒子が溶解した塩酸溶液をメンブレンフィルタでろ過することで、前記メンブレンフィルタ上に鉄微粒子を除去したSWNTだけを残存させ、回収した(SWNT2)。   Next, the SWNT (SWNT1) was placed in air kept at 300 ° C. for about 30 minutes, and the carbon material around the iron fine particles (iron catalyst) mixed therein was burned. Next, the SWNTs were dispersed in hydrochloric acid, and the mixed iron fine particles were dissolved in a hydrochloric acid solution. Thereafter, the hydrochloric acid solution in which the iron fine particles were dissolved was filtered through a membrane filter, so that only the SWNTs from which the iron fine particles had been removed remained on the membrane filter and recovered (SWNT2).

次いで、回収した前記SWNT4mgを、濃度30%の過酸化水素水溶液30mLの中で1時間ほど超音波分散させた。次いで、得られたSWNT分散液を90℃に加熱し、過酸化水素による前記SWNTの酸化を促進させた。約25分間、過酸化水素による酸化処理を実施した後、前記分散液を室温まで冷却し、塩酸溶液中に分散させて、残っている鉄微粒子を再度除去した。その後、得られたSWNT分散液をろ過することにより、最終的なSWNT(SWNT3)を得た。   Next, 4 mg of the recovered SWNT was ultrasonically dispersed in 30 mL of a hydrogen peroxide solution having a concentration of 30% for about 1 hour. Next, the obtained SWNT dispersion was heated to 90 ° C. to promote oxidation of the SWNT by hydrogen peroxide. After an oxidation treatment with hydrogen peroxide for about 25 minutes, the dispersion was cooled to room temperature and dispersed in a hydrochloric acid solution, and the remaining iron fine particles were removed again. Then, final SWNT (SWNT3) was obtained by filtering the obtained SWNT dispersion.

図1は、上述した酸化処理過程にある3つのSWNT(SWNT1〜3)の光吸収スペクトルである。この図において、SWNTのバンド間吸収は、1000nmから2000nmまでに現れているピークに対応している。ピーク以外の成分は、可飽和吸収には寄与しない成分である。この図から、SWNTl、SWNT2に比べ、SWNT3の1560nmにおけるバンド間吸収が他の波長に比べて増加していることがわかる。   FIG. 1 is a light absorption spectrum of three SWNTs (SWNTs 1 to 3) in the above-described oxidation treatment process. In this figure, the interband absorption of SWNT corresponds to the peak appearing from 1000 nm to 2000 nm. Components other than the peak are components that do not contribute to saturable absorption. From this figure, it can be seen that the interband absorption at 1560 nm of SWNT3 is increased compared to other wavelengths compared to SWNTl and SWNT2.

図2は、SWNTの、吸光度と照射レーザ光強度との相関を示すグラフである。この図は、波長1560nmのレーザ光を入射させた場合において、規格化された吸光度のレーザ強度依存性を示したものである。図2から明らかなように、例えば70MW/cmの強度をもつ波長1560nmのレーザー光を入射したとき、SWNT1の吸光度が約0.89であり、SWNT2の吸光度が約0.88であるのに対し、SWNT3は約0.85程度にまで低下している。したがって、SWNT3は、1560nmにおいて可飽和吸収機能が向上していることが分かる。 FIG. 2 is a graph showing the correlation between the absorbance of SWNTs and the intensity of irradiated laser light. This figure shows the laser intensity dependence of the normalized absorbance when a laser beam having a wavelength of 1560 nm is incident. As is clear from FIG. 2, for example, when a laser beam having an intensity of 70 MW / cm 2 and a wavelength of 1560 nm is incident, the absorbance of SWNT1 is about 0.89 and the absorbance of SWNT2 is about 0.88. On the other hand, SWNT3 is reduced to about 0.85. Therefore, it can be seen that SWNT3 has an improved saturable absorption function at 1560 nm.

以上、本発明を具体例を挙げながら詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   The present invention has been described in detail with specific examples. However, the present invention is not limited to the above contents, and various modifications and changes can be made without departing from the scope of the present invention.

酸化処理過程にある単層カーボンナノチューブ(SWNT)の光吸収スペクトルである。It is a light absorption spectrum of the single-walled carbon nanotube (SWNT) in the oxidation process. 単層カーボンナノチューブ(SWNT)の、吸光度と照射レーザ光強度との相関を示すグラフである。It is a graph which shows the correlation with a light absorbency and irradiation laser beam intensity | strength of a single wall carbon nanotube (SWNT).

Claims (12)

単層カーボンナノチューブに対して酸化処理を施す工程を具え、前記単層カーボンナノチューブの直径の細いものを選択的に酸化させて直径分布を狭小化し、前記単層カーボンナノチューブの可飽和吸収機能を向上させることを特徴とする、単層カーボンナノチューブの可飽和吸収機能の向上方法。   A single-walled carbon nanotube is oxidized, and the single-walled carbon nanotube is selectively oxidized to narrow the diameter distribution to improve the saturable absorption function of the single-walled carbon nanotube. A method for improving the saturable absorption function of single-walled carbon nanotubes, characterized by comprising: 前記酸化処理は、前記単層カーボンナノチューブを、酸素が0.1%以上含まれた雰囲気中に配置し、50−1000℃の温度範囲で加熱することによって実施することを特徴とする、請求項1に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The oxidation treatment is performed by placing the single-walled carbon nanotubes in an atmosphere containing 0.1% or more of oxygen and heating in a temperature range of 50 to 1000 ° C. 2. A method for improving the saturable absorption function of the single-walled carbon nanotube according to 1. 前記酸化処理は、酸化剤を含む雰囲気中で実施することを特徴とする、請求項1に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of single-walled carbon nanotubes according to claim 1, wherein the oxidation treatment is performed in an atmosphere containing an oxidizing agent. 前記酸化剤は、過酸化水素、フッ酸、オゾン、硝酸、硫酸、及び過マンガン酸カリウムからなる群より選ばれる少なくとも一種であることを特徴とする、請求項3に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The single-walled carbon nanotube according to claim 3, wherein the oxidizing agent is at least one selected from the group consisting of hydrogen peroxide, hydrofluoric acid, ozone, nitric acid, sulfuric acid, and potassium permanganate. A method for improving the saturable absorption function. 前記酸化剤は、過酸化水素及び過マンガン酸カリウムの少なくとも一方であることを特徴とする、請求項4に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of single-walled carbon nanotubes according to claim 4, wherein the oxidizing agent is at least one of hydrogen peroxide and potassium permanganate. 前記酸化処理は、0−200℃の温度範囲で実施することを特徴とする、請求項3〜5のいずれか一に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of single-walled carbon nanotubes according to any one of claims 3 to 5, wherein the oxidation treatment is performed in a temperature range of 0 to 200 ° C. 前記単層カーボンナノチューブ内の触媒成分を除去する工程を具えることを特徴とする、請求項1〜6のいずれか一に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of single-walled carbon nanotubes according to any one of claims 1 to 6, further comprising a step of removing a catalyst component in the single-walled carbon nanotubes. 前記触媒成分は金属触媒であって、前記金属触媒の除去は酸による溶解除去によって実施することを特徴とする、請求項7に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of single-walled carbon nanotubes according to claim 7, wherein the catalyst component is a metal catalyst, and the removal of the metal catalyst is carried out by dissolving and removing with an acid. 前記単層カーボンナノチューブ内の、前記カーボンナノチューブを構成する以外の炭素不純物を除去する工程を具えることを特徴とする、請求項1〜8のいずれか一に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The saturable of the single-walled carbon nanotube according to any one of claims 1 to 8, further comprising a step of removing carbon impurities other than constituting the carbon nanotube in the single-walled carbon nanotube. How to improve the absorption function. 前記炭素不純物は、酸素含有雰囲気中で燃焼させて除去することを特徴とする、請求項9に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of single-walled carbon nanotubes according to claim 9, wherein the carbon impurities are removed by burning in an oxygen-containing atmosphere. 前記単層カーボンナノチューブはCVD法によって形成することを特徴とする、請求項1〜10のいずれか一に記載の単層カーボンナノチューブの可飽和吸収機能の向上方法。   The method for improving the saturable absorption function of a single-walled carbon nanotube according to any one of claims 1 to 10, wherein the single-walled carbon nanotube is formed by a CVD method. 請求項1〜11のいずれか一に記載の方法によって可飽和吸収機能が増大したカーボンナノチューブを含むことを特徴とする、光学素子。
An optical element comprising a carbon nanotube having a saturable absorption function increased by the method according to claim 1.
JP2005000351A 2005-01-05 2005-01-05 Method for improving saturable absorption function of single-walled carbon nanotube Expired - Fee Related JP4706055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000351A JP4706055B2 (en) 2005-01-05 2005-01-05 Method for improving saturable absorption function of single-walled carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000351A JP4706055B2 (en) 2005-01-05 2005-01-05 Method for improving saturable absorption function of single-walled carbon nanotube

Publications (2)

Publication Number Publication Date
JP2006188379A true JP2006188379A (en) 2006-07-20
JP4706055B2 JP4706055B2 (en) 2011-06-22

Family

ID=36795927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000351A Expired - Fee Related JP4706055B2 (en) 2005-01-05 2005-01-05 Method for improving saturable absorption function of single-walled carbon nanotube

Country Status (1)

Country Link
JP (1) JP4706055B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282468A (en) * 2005-04-01 2006-10-19 Tohoku Univ Tubular nano carbon and method for producing tubular nano carbon
US7662298B2 (en) 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
US8323784B2 (en) 2007-08-29 2012-12-04 Northwestern Universtiy Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2015017029A (en) * 2013-06-11 2015-01-29 東レ株式会社 Carbon nanotube aggregate and production method for the same
JP2015118348A (en) * 2013-12-20 2015-06-25 株式会社Ihi Saturable absorbing element, saturable absorbing element producing method, and laser apparatus
US9926195B2 (en) 2006-08-30 2018-03-27 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
JP2021519256A (en) * 2018-04-06 2021-08-10 ノースロップ グラマン システムズ コーポレーション Functional graphene and CNT sheet light absorber and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121892A (en) * 2001-10-18 2003-04-23 National Institute Of Advanced Industrial & Technology Optical element and method for manufacturing the same
WO2004059806A2 (en) * 2002-12-20 2004-07-15 Alnaire Laboratories Corporation Optical pulse lasers
JP2004210608A (en) * 2003-01-06 2004-07-29 Japan Science & Technology Agency Method of selecting carbon nanotube structure by light irradiation
JP2005343746A (en) * 2004-06-03 2005-12-15 Toyota Motor Corp Method for producing single-layer carbon nanotube and single layer carbon nanotube produced by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121892A (en) * 2001-10-18 2003-04-23 National Institute Of Advanced Industrial & Technology Optical element and method for manufacturing the same
WO2004059806A2 (en) * 2002-12-20 2004-07-15 Alnaire Laboratories Corporation Optical pulse lasers
JP2004210608A (en) * 2003-01-06 2004-07-29 Japan Science & Technology Agency Method of selecting carbon nanotube structure by light irradiation
JP2005343746A (en) * 2004-06-03 2005-12-15 Toyota Motor Corp Method for producing single-layer carbon nanotube and single layer carbon nanotube produced by the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662298B2 (en) 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
US8110125B2 (en) 2005-03-04 2012-02-07 Northwestern University Separation of carbon nanotubes in density gradients
JP2006282468A (en) * 2005-04-01 2006-10-19 Tohoku Univ Tubular nano carbon and method for producing tubular nano carbon
US9926195B2 (en) 2006-08-30 2018-03-27 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US10689252B2 (en) 2006-08-30 2020-06-23 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US11608269B2 (en) 2006-08-30 2023-03-21 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US8323784B2 (en) 2007-08-29 2012-12-04 Northwestern Universtiy Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2015017029A (en) * 2013-06-11 2015-01-29 東レ株式会社 Carbon nanotube aggregate and production method for the same
JP2015118348A (en) * 2013-12-20 2015-06-25 株式会社Ihi Saturable absorbing element, saturable absorbing element producing method, and laser apparatus
JP2021519256A (en) * 2018-04-06 2021-08-10 ノースロップ グラマン システムズ コーポレーション Functional graphene and CNT sheet light absorber and its manufacturing method
JP7315288B2 (en) 2018-04-06 2023-07-26 ノースロップ グラマン システムズ コーポレーション Functional graphene and CNT sheet light absorber and manufacturing method thereof

Also Published As

Publication number Publication date
JP4706055B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
Zhang et al. Photoreduction of graphene oxides: methods, properties, and applications
Qui et al. Multiwalled carbon nanotubes oxidized by UV/H2O2 as catalyst for oxidative dehydrogenation of ethylbenzene
JP3851276B2 (en) Structure selection method of carbon nanotubes by light irradiation
US20100080748A1 (en) Continuous method and apparatus of purifying carbon nanotubes
De Lima et al. Wavelength effect of ns-pulsed radiation on the reduction of graphene oxide
US8182783B2 (en) Rapid microwave process for purification of nanocarbon preparations
JP2009132604A (en) Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
BRPI0618737B1 (en) Fullerene-functionalized carbon nanotube, a method for producing one or more fullerene-functionalized carbon nanotubes, functional material, thick or thin film, a line, wire or layered or three-dimensional structure, and device
JP2005263607A (en) Cnt surface modification method and cnt
JP4706055B2 (en) Method for improving saturable absorption function of single-walled carbon nanotube
WO2017159350A1 (en) Adsorbent material
JP4706056B2 (en) Method for converting properties of single-walled carbon nanotube aggregates
Tung et al. Irradiation methods for engineering of graphene related two-dimensional materials
JP2009132605A (en) Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
WO2012056184A2 (en) Method of purifying carbon nanotubes
KR20090056787A (en) Method of selectively eliminating metallic cnt, semiconducting cnt and preparation method thereof using the same
Stroyuk et al. Photochemical processes involving graphene oxide
JP5449987B2 (en) Method for concentrating semiconducting single-walled carbon nanotubes
JP5007513B2 (en) Carbon nanotube purification method and purification apparatus
JP2005350349A (en) Apparatus for manufacturing monolayer carbon nanotube
JP3800093B2 (en) Carbon nanotube purification method
Hojati-Talemi et al. Effect of different microwave-based treatments on multi-walled carbon nanotubes
Fabbro et al. Local “repristinization” of oxidized single-walled carbon nanotubes by laser treatment
TWI245332B (en) Method of carbon nanomaterials purification by ozone
JP2004059326A (en) Process for manufacturing carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees