JP2006186072A - Manufacturing method of compound magnetic component - Google Patents

Manufacturing method of compound magnetic component Download PDF

Info

Publication number
JP2006186072A
JP2006186072A JP2004377258A JP2004377258A JP2006186072A JP 2006186072 A JP2006186072 A JP 2006186072A JP 2004377258 A JP2004377258 A JP 2004377258A JP 2004377258 A JP2004377258 A JP 2004377258A JP 2006186072 A JP2006186072 A JP 2006186072A
Authority
JP
Japan
Prior art keywords
ferrite
magnetic
heat treatment
particles
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004377258A
Other languages
Japanese (ja)
Inventor
Shinji Uchida
真治 内田
Kazuyoshi Shibata
一喜 柴田
Sanehiro Okuda
修弘 奥田
Takayuki Hirose
隆之 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004377258A priority Critical patent/JP2006186072A/en
Publication of JP2006186072A publication Critical patent/JP2006186072A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a compound magnetic component having higher permeability by forming an interface layer generated by the mutual diffusion of atoms in a boundary between a metallic magnetic particles and a ferrite film to reduce air gaps, and improving chemical unity to facilitate the formation of a magnetic path. <P>SOLUTION: The manufacturing method of the compound magnetic component consisting of metallic magnetic particle and ferrite comprises (1) a process for coating the metallic magnetic particles by ferrite, (2) a compression forming process for forming the obtained ferrite-coated metallic magnetic particles into a thin sheet with the thickness of 5 mm or less, and (3) a heat treatment process for effecting the heat treatment of the obtained formed body by heating the same uniformly from the front and rear surfaces thereof, in which process, the highest achieved temeprature is 500°C or above, and the temperature of 500°C or above is maintained for five minutes or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェライトにより金属磁性粒子を被覆した磁性材料を圧縮成形した後、熱処理により作製する複合磁気部品の製造方法に関する。本発明の製造方法により得られる磁気部品は、スイッチング電源などに搭載されるトランスやリアクトルなどに有用である。   The present invention relates to a method for manufacturing a composite magnetic component manufactured by heat-treating a magnetic material in which metal magnetic particles are coated with ferrite after compression molding. The magnetic component obtained by the manufacturing method of the present invention is useful for a transformer or a reactor mounted on a switching power supply or the like.

近年各種電子機器は、小型・軽量化されてきており、なおかつ低消費電力化が求められている。これに伴い、電子機器に搭載される電源として高効率かつ小型のスイッチング電源に対する要求が高まっている。特にノート型パソコンや携帯電話等の小型情報機器、薄型CRT、フラットパネルディスプレイに用いられるスイッチング電源では、小型・薄型化が強く求められている。   In recent years, various electronic devices have been reduced in size and weight, and there has been a demand for lower power consumption. In connection with this, the request | requirement with respect to a highly efficient and small switching power supply as a power supply mounted in an electronic device is increasing. In particular, switching power supplies used in small information devices such as notebook computers and mobile phones, thin CRTs, and flat panel displays are strongly required to be small and thin.

従来のスイッチング電源では、その主要な構成部品であるトランスやリアクトルなどの磁気部品が大きな体積を占めており、スイッチング電源を小型・薄型化するためには、これらの磁気部品の体積を縮小することが必要不可欠となっていた。   In conventional switching power supplies, magnetic components such as transformers and reactors, which are the main components, occupy a large volume. To reduce the size and thickness of switching power supplies, the volume of these magnetic components must be reduced. Has become indispensable.

従来、このような磁気部品の磁芯は、センダストやパーマロイ等の金属磁性材料や、フェライト等の酸化物磁性材料が使用されていた。   Conventionally, metal magnetic materials such as Sendust and Permalloy and oxide magnetic materials such as ferrite have been used for the magnetic cores of such magnetic components.

金属磁性材料は、一般に高い飽和磁束密度と透磁率を有するが、電気抵抗率が低いため、特に高周波数領域では、渦電流損失が大きくなってしまう。スイッチング電源では、回路を高周波駆動することにより、高効率化および小型化する傾向にあるが、上記の渦電流損失の影響から金属磁性材料をスイッチング電源用の磁気部品の磁芯として使用することは困難である。   Metallic magnetic materials generally have a high saturation magnetic flux density and magnetic permeability, but have a low electrical resistivity, so that eddy current loss increases particularly in a high frequency region. Switching power supplies tend to be highly efficient and miniaturized by driving the circuit at high frequency, but it is not possible to use metal magnetic materials as magnetic cores for magnetic components for switching power supplies due to the effects of eddy current loss. Have difficulty.

一方、フェライトに代表される酸化物磁性材料は、金属磁性材料に比べ電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかしながら、トランスやリアクトルを小型化した場合、コイルに流す電流は同じでも磁芯にかかる磁場は強くなってしまう。一般に、フェライトの飽和磁束密度は金属磁性材料に比べて小さく、スイッチング電源の磁気部品の磁芯として使用した場合、上記の理由によりその小型化には限界がある。   On the other hand, an oxide magnetic material typified by ferrite has a higher electrical resistivity than a metal magnetic material, and therefore, an eddy current loss generated even in a high frequency region is small. However, when the transformer or the reactor is downsized, the magnetic field applied to the magnetic core becomes strong even if the current flowing through the coil is the same. In general, the saturation magnetic flux density of ferrite is smaller than that of a metal magnetic material, and when used as a magnetic core of a magnetic component of a switching power supply, there is a limit to downsizing for the above reasons.

つまり、いずれの材料を用いても、スイッチング電源の磁気部品に対して要求される高周波行動と小型化の双方を満足させることは困難となっていた。   In other words, it has been difficult to satisfy both the high-frequency behavior and miniaturization required for the magnetic components of the switching power supply, regardless of which material is used.

最近、金属磁性材料および酸化物磁性材料の両者の長所を有する磁性材料として、飽和磁束密度および透磁率が高い金属磁性材料の表面に、電気抵抗率の高い酸化物磁性材料の皮膜を形成した磁性材料が提案されている(例えば、特許文献1参照。)。   Recently, as a magnetic material having the advantages of both metal magnetic material and oxide magnetic material, a magnetic film having a high electrical resistivity and a film of oxide magnetic material formed on the surface of a metal magnetic material having high saturation magnetic flux density and high magnetic permeability. Materials have been proposed (see, for example, Patent Document 1).

また、1〜10μmの粒子からなる金属磁性材料の表面をM−Fe(但しM=Ni、Mn、Zn、x≦2)で表されるスピネル組成の金属酸化物磁性材で被覆してなる高密度焼結磁性体が提案されている(例えば、特許文献2参照。)。 Further, the surface of the metallic magnetic material consisting of 1~10μm particles coated with M-Fe x O 4 (where M = Ni, Mn, Zn, x ≦ 2) metal oxide magnetic material of the spinel composition represented by A high-density sintered magnetic body is proposed (see, for example, Patent Document 2).

さらに、表面に超音波励起フェライトめっきによって形成されたフェライト層の被覆を有する金属または金属間化合物の強磁性体微粒子粉末が圧縮成形され、前記フェライト層を介して前記強磁性体粒子間に磁路を形成するものであることを特徴とする複合磁性材料が提案もある(例えば、特許文献3参照。)。   Further, a ferromagnetic fine particle powder of a metal or an intermetallic compound having a ferrite layer coating formed by ultrasonic excitation ferrite plating on the surface is compression-molded, and a magnetic path is formed between the ferromagnetic particles via the ferrite layer. There is also a proposal of a composite magnetic material characterized in that the material is formed (see, for example, Patent Document 3).

特開昭53−91397号公報JP-A-53-91397 特開昭56−38042号公報JP 56-38042 A 国際公開第03/015109パンフレットInternational Publication No. 03/015109 Pamphlet

前記フェライト被覆金属磁性粒子を圧縮成形した磁気部品において、高い透磁率を実現させるためには、金属磁性粒子間の磁路形成を妨げないようにしなければならない。そのためには、金属磁性粒子とフェライト被膜の界面に空隙がなく、かつ化学的に結合している必要がある。金属磁性粒子をフェライト被覆する方法としては、前述の特許文献3に記載の超音波励起フェライトめっき法があるが、この方法では、金属粒子表面のOH基を核としてFe等のイオンが吸着することによって反応が進むので、金属磁性粒子とフェライト被膜の化学的な結合性が十分とはいえない。また、フェライトの成長形態が完全な膜状ではなくて、微粒子が付着したような状態であるため、界面における空隙も少なくない。よって、フェライト被覆した粒子を圧縮成形しただけの複合磁気部品では、従来材料に比べて飛躍的に高い透磁率を得るには不十分であった。   In order to achieve a high magnetic permeability in a magnetic component obtained by compression molding the ferrite-coated metal magnetic particles, it is necessary not to prevent magnetic path formation between the metal magnetic particles. For this purpose, it is necessary that there are no voids at the interface between the metal magnetic particles and the ferrite coating and that they are chemically bonded. As a method for coating metal magnetic particles with ferrite, there is an ultrasonic excitation ferrite plating method described in Patent Document 3 described above. In this method, ions such as Fe are adsorbed using OH groups on the surface of the metal particles as nuclei. Since the reaction proceeds by this, the chemical bond between the metal magnetic particles and the ferrite coating is not sufficient. In addition, since the growth form of ferrite is not a complete film, and is in a state where fine particles are attached, there are not a few voids at the interface. Therefore, a composite magnetic component in which ferrite-coated particles are simply compression-molded is insufficient to obtain a significantly higher magnetic permeability than conventional materials.

本発明はこのような問題に鑑みてなされたもので、その目的とするところは、金属磁性粒子とフェライト被膜の境界に、原子の相互拡散による界面層を形成して空隙を少なくし、化学的結合性を向上させて、磁路の形成を容易にすることにより、より高い透磁率の複合磁気部品の製造方法を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to form an interface layer by interdiffusion of atoms at the boundary between the metal magnetic particles and the ferrite coating to reduce voids, An object of the present invention is to provide a method of manufacturing a composite magnetic component having a higher magnetic permeability by improving the coupling property and facilitating the formation of a magnetic path.

本発明は、上記課題に鑑みてなされたものであって、複合磁気部品の圧縮成形後、本発明の条件で熱処理することにより、透磁率が高まることを見出し、本発明に至った。   The present invention has been made in view of the above-described problems. It has been found that the magnetic permeability is increased by heat treatment under the conditions of the present invention after compression molding of a composite magnetic part, and the present invention has been achieved.

すなわち、本発明は、(1)金属磁性粒子をフェライトで被覆する工程と、(2)得られたフェライト被覆金属磁性粒子を厚さ5mm以下の薄板状に圧縮成形する工程と、(3)得られた成形体を、表裏面から均一に加熱することにより熱処理する熱処理工程であって、最高到達温度が500℃以上であり、500℃以上を保持する時間が5分以内である熱処理工程とを含むことを特徴とする金属磁性粒子とフェライトからなる複合磁気部品の製造方法を提供する。   That is, the present invention includes (1) a step of coating metal magnetic particles with ferrite, (2) a step of compression-molding the obtained ferrite-coated metal magnetic particles into a thin plate having a thickness of 5 mm or less, and (3) obtaining A heat treatment step in which the formed body is heat-treated by heating uniformly from the front and back surfaces, the highest attainment temperature being 500 ° C. or higher, and the time for maintaining 500 ° C. or higher being within 5 minutes; A method for producing a composite magnetic component comprising metal magnetic particles and ferrite is provided.

好ましくは、前記熱処理が、赤外線加熱により成形体の表裏面から均一に行うことであることを特徴とする。   Preferably, the heat treatment is performed uniformly from the front and back surfaces of the molded body by infrared heating.

また、好ましくは、前記熱処理が、2枚の熱板で成形体を表裏面から挟み込むことであることを特徴とする。   Preferably, the heat treatment is to sandwich the molded body from the front and back surfaces with two hot plates.

また、好ましくは、前記圧縮成形する工程で得られた薄板状の成形体が厚さ3mm以下であることを特徴とする。   Preferably, the thin plate-like molded body obtained in the compression molding step has a thickness of 3 mm or less.

また、好ましくは、前記熱処理の後に、2枚の冷却板により厚さ5mm以下の薄板状の成形体を表裏面から挟み込むことで降温することを特徴とする。   Preferably, after the heat treatment, the temperature is lowered by sandwiching a thin plate-shaped molded body having a thickness of 5 mm or less from the front and back surfaces by two cooling plates.

本発明によれば、金属磁性粒子とフェライト被膜の組成を適当に選択し、本発明の条件で熱処理をすることにより、金属磁性粒子とフェライト被膜の化学的結合性が向上し、空隙も少なくなる。このため、従来材料に比べて飛躍的に高い透磁率を有する複合磁性材料および複合磁気部品の実現が可能となる。   According to the present invention, by appropriately selecting the composition of the metal magnetic particles and the ferrite coating and performing the heat treatment under the conditions of the present invention, the chemical bondability between the metal magnetic particles and the ferrite coating is improved and the voids are reduced. . For this reason, it is possible to realize a composite magnetic material and a composite magnetic component having a remarkably high magnetic permeability as compared with conventional materials.

以下、本発明の複合磁気部品の製造方法の各工程について詳述する。   Hereafter, each process of the manufacturing method of the composite magnetic component of this invention is explained in full detail.

第1の工程は、(1)金属磁性粒子をフェライトで被覆する工程である。金属磁性材料としては、飽和磁化や磁気異方性などの磁気特性のほか、フェライトの被覆性、圧縮成形性などを考慮して選択することができる。例えば純鉄、鉄系合金、鉄−ケイ素合金、鉄−ニッケル合金、センダスト合金、コバルトおよびコバルト系合金、ニッケルおよびニッケル合金、各種アモルファス合金などの各種の軟磁性材料、あるいはNd−Fe−B、Sm−Coなどの磁気異方性の磁性材料など各種の金属磁性材料を用いることができる。これらの材料を、ガス還元法、固体還元法、熱分解法、電解法、機械的粉砕法、噴霧法(アトマイズ法)などの各種製法によって粒子状にして用いることができる。金属磁性粒子の形状は、球状、粒状、楕円体状、円板状、フレーク状、針状、鋭角状、樹枝状、繊維状、板状、立方体状その他各種形状が可能であり、これらを単独または複数種組み合わせて用いることができる。圧縮成形によって形状の変形を生じてもよい。金属磁性粒子の粒子サイズは、粒子内部での渦電流の発生が少なく、加圧成形時にフェライト被覆層の損傷が少なく、かつ高い電気抵抗率を保った成形体が容易に得られるような範囲とする。粒子内部での渦電流の発生が少なく、加圧成形時のフェライト被覆層の損傷を低減し、かつ高い電気抵抗率の成形体を得るには、平均粒子径が小さい方が有利である一方で、平均粒子径があまり小さくなると、磁気特性の確保および必要な比透磁率の獲得が困難になる。したがって、金属磁性粒子の粒子サイズは、100nm〜300μmが好ましく、1μm〜30μmの範囲がさらに好ましい。   The first step is (1) a step of coating metal magnetic particles with ferrite. The metal magnetic material can be selected in consideration of magnetic properties such as saturation magnetization and magnetic anisotropy, as well as ferrite coverage and compression moldability. For example, various soft magnetic materials such as pure iron, iron-based alloy, iron-silicon alloy, iron-nickel alloy, sendust alloy, cobalt and cobalt-based alloy, nickel and nickel alloy, various amorphous alloys, or Nd-Fe-B, Various metal magnetic materials such as a magnetic anisotropic magnetic material such as Sm—Co can be used. These materials can be used in the form of particles by various production methods such as a gas reduction method, a solid reduction method, a thermal decomposition method, an electrolysis method, a mechanical pulverization method, and a spray method (atomization method). The shape of the metal magnetic particles can be spherical, granular, ellipsoidal, disc-like, flake-like, needle-like, acute-angled, dendritic, fiber-like, plate-like, cube-like or any other shape. Alternatively, a plurality of types can be used in combination. The shape may be deformed by compression molding. The particle size of the metal magnetic particles is such that the generation of eddy currents inside the particles is small, the ferrite coating layer is less damaged during pressure molding, and a compact with high electrical resistivity can be easily obtained. To do. In order to reduce the generation of eddy currents inside the particles, reduce damage to the ferrite coating layer during pressure molding, and obtain a compact with high electrical resistivity, it is advantageous to have a small average particle diameter. If the average particle size is too small, it becomes difficult to ensure the magnetic properties and obtain the required relative permeability. Therefore, the particle size of the metal magnetic particles is preferably 100 nm to 300 μm, and more preferably 1 μm to 30 μm.

フェライトは、3価の鉄を含む複酸化物のことをいい、粒子間の電気抵抗を高めるには高い電気抵抗率を有するものが好ましい。そのようなフェライトの代表例としては、10〜10Ω・mの高い電気抵抗値を有するNiZnフェライト、Coフェライト、Mgフェライトなどがあげられる。また、金属磁性粒子表面を被覆するには、高い飽和磁化を有することが好ましい。高い電気抵抗率と高い飽和磁化とを併せ持つフェライトとしては、NiZnフェライト、Coフェライト、CoZnフェライトおよびこれらのフェライトを主成分とする複合フェライトが好ましい。 Ferrite refers to a double oxide containing trivalent iron, and preferably has a high electrical resistivity to increase the electrical resistance between particles. Typical examples of such ferrite include NiZn ferrite, Co ferrite, and Mg ferrite having a high electric resistance value of 10 4 to 10 5 Ω · m. Moreover, in order to coat | cover the metal magnetic particle surface, it is preferable to have a high saturation magnetization. As the ferrite having both high electrical resistivity and high saturation magnetization, NiZn ferrite, Co ferrite, CoZn ferrite, and composite ferrite containing these ferrites as main components are preferable.

被覆は、従来の被覆方法で行うことができる。被覆方法としては、例えば、特許文献1に記載の湿式フェライト製造法、特許文献3に記載の超音波フェライトめっき法、特開平11−1702号公報に記載の被覆方法および特開平04−226003号公報に記載のメカノフュージョン法などがあげられる。   The coating can be performed by a conventional coating method. As a coating method, for example, a wet ferrite manufacturing method described in Patent Document 1, an ultrasonic ferrite plating method described in Patent Document 3, a coating method described in Japanese Patent Application Laid-Open No. 11-1702, and Japanese Patent Application Laid-Open No. 04-22603. And the mechano-fusion method described in 1.

上記の方法を簡単に説明する。湿式フェライト製造法は、フェライト成分となる金属の硫酸塩溶液に金属磁性材料粒子を分散し、その溶液に水酸化ナトリウムをpHが12〜13になるまで添加してフェライト粒子を析出させ、この金属磁性材料と析出したフェライト粒子とを洗浄し、乾燥後に高温で焼結することによりフェライト被覆金属磁性粒子を製造する方法である。超音波フェライトめっき法は、超音波を印加しながら金属または金属間化合物の強磁性体微粒子をフェライトめっき反応液中に分散し、金属または金属間化合物の強磁性体微粒子の表面をフェライトめっきによりフェライト層で被覆するフェライト被覆工程と、フェライト層で被覆された金属または金属間化合物の強磁性体微粒子を圧縮成形する圧縮成形工程とを備えたことを特徴とする複合磁性材料の製造方法である。特許文献4に記載の被覆方法は、鉄基金属磁性粉末を含むアルカリ水溶液に、鉄の金属塩と、鉄以外の2価の金属塩1種以上とを所定の配合比率として溶解した水溶液を、非酸化性雰囲気中で添加した後、所定の温度に加熱しつつ、アルカリ水溶液を添加してpH7以上とし、その後、酸素を含む気体を吹き込み、前記鉄基金属磁性粉末の表面にフェライト酸化物の被膜を形成することを特徴とする鉄基金属−フェライト酸化物複合粉末の製造方法である。メカノフュージョンは、複数の異なる素材粒子間に、所定の機械的エネルギー、特に機械的歪力を加えてメカノケミカル的な反応を起こさせる技術により被覆する方法である。   The above method will be briefly described. In the wet ferrite manufacturing method, metal magnetic material particles are dispersed in a sulfate solution of a metal serving as a ferrite component, and sodium hydroxide is added to the solution until the pH reaches 12 to 13, thereby precipitating ferrite particles. In this method, the magnetic material and the precipitated ferrite particles are washed, dried, and sintered at a high temperature to produce ferrite-coated metal magnetic particles. The ultrasonic ferrite plating method disperses ferromagnetic fine particles of metal or intermetallic compound in a ferrite plating reaction solution while applying ultrasonic waves, and ferrite is applied to the surface of the ferromagnetic fine particles of metal or intermetallic compound. A method for producing a composite magnetic material, comprising: a ferrite coating step of covering with a layer; and a compression molding step of compression molding metal or intermetallic compound ferromagnetic fine particles coated with a ferrite layer. In the coating method described in Patent Document 4, an aqueous solution in which an iron metal salt and one or more divalent metal salts other than iron are dissolved in an alkaline aqueous solution containing iron-based metal magnetic powder as a predetermined blending ratio, After adding in a non-oxidizing atmosphere, while heating to a predetermined temperature, an alkaline aqueous solution is added to adjust the pH to 7 or higher, and then a gas containing oxygen is blown into the surface of the iron-based metal magnetic powder. A method for producing an iron-based metal-ferrite oxide composite powder characterized by forming a film. The mechanofusion is a method of coating a plurality of different material particles by a technique that causes a mechanochemical reaction by applying predetermined mechanical energy, particularly mechanical strain force.

上記方法により形成されるフェライト被覆の厚さは、圧縮成形後の成形体においてフェライト被覆層が保たれることにより粒子間の電気抵抗を高めることができる厚さであれば特に制限されない。その厚さは20nm以上であることが好ましく、50nm以上であることがさらに好ましい。しかしながら、フェライトの比率が大きくなると飽和磁化の大きい金属磁性材料を用いて複合化して飽和磁化の大きい複合磁性材料を得るという効果が小さくなってしまう。このため、複合磁性材料の体積比としては、フェライトの比率が50%以下であることが好ましく、20%以下であることがさらに好ましい。他方で高い電気抵抗率を得るには1%以上であることが好ましい。   The thickness of the ferrite coating formed by the above method is not particularly limited as long as it can increase the electrical resistance between particles by maintaining the ferrite coating layer in the compact after compression molding. The thickness is preferably 20 nm or more, and more preferably 50 nm or more. However, when the ferrite ratio increases, the effect of obtaining a composite magnetic material having a large saturation magnetization by combining with a metal magnetic material having a large saturation magnetization is reduced. For this reason, as a volume ratio of the composite magnetic material, the ferrite ratio is preferably 50% or less, and more preferably 20% or less. On the other hand, it is preferably 1% or more to obtain a high electrical resistivity.

第2の工程は、(2)得られたフェライト被覆金属磁性粒子を厚さ5mm以下の薄板状に圧縮成形する工程である。圧縮成形方法は、金型を用いて、例えば上下方向から加圧圧縮する単軸圧縮成形、圧縮圧延成形、微粒子をゴム型などにつめて全方向から加圧圧縮する静圧圧縮成形、これらを温間で行う温間単軸圧縮成形、温間静圧圧縮成形(WIP)、熱間で行う熱間単軸圧縮成形および熱間静圧圧縮成形(HIP)などを用いることができる。これらの圧縮成形は、1回または複数回行ってもよく、その際異なる圧縮成形方法を用いてもよい。圧縮温度は、大気雰囲気中でもよいが、成形性が向上する温度であって、フェライト被覆層が保たれる温度であれば特に制限させるものではない。成形が容易であり、かつフェライト層が保たれる温度は、200℃以上500℃未満、好ましくは300〜400℃である。加熱手段としては、抵抗加熱、輻射加熱、熱媒による伝導加熱、誘導加熱、高周波誘導加熱、放電プラズマ加熱などの当該技術において知られている任意の加熱手段を用いることができる。圧縮圧力は、良好な成形体が得られ、フェライト被覆層が保たれる圧力であれば特に制限されない。例えば200〜2000MPa、好ましくは400〜1000MPaである。   The second step is (2) a step of compression-molding the obtained ferrite-coated metal magnetic particles into a thin plate having a thickness of 5 mm or less. The compression molding method uses a mold, for example, uniaxial compression molding that compresses and compresses in the vertical direction, compression rolling molding, static pressure compression molding that compresses and compresses fine particles in a rubber mold, etc. from all directions, Warm uniaxial compression molding performed warm, warm hydrostatic compression molding (WIP), hot uniaxial compression molding performed hot, hot hydrostatic compression molding (HIP), and the like can be used. These compression moldings may be performed once or a plurality of times, and different compression molding methods may be used. The compression temperature may be in the air atmosphere, but is not particularly limited as long as the moldability is improved and the ferrite coating layer is maintained. The temperature at which molding is easy and the ferrite layer is maintained is 200 ° C. or higher and lower than 500 ° C., preferably 300 to 400 ° C. As the heating means, any heating means known in the art such as resistance heating, radiation heating, conduction heating with a heating medium, induction heating, high frequency induction heating, discharge plasma heating, etc. can be used. The compression pressure is not particularly limited as long as a good molded body is obtained and the ferrite coating layer is maintained. For example, it is 200 to 2000 MPa, preferably 400 to 1000 MPa.

圧縮成形の温度と圧力の関係は、成形時の温度が高いほど、金属磁性粒子の可塑性が増し、より低い圧力で成形できる関係にある。したがって、温度および圧力はこの関係にしたがって、適宜変更するとよい。成形の際には、ステアリン酸塩、ワックスなどの潤滑剤、および成形のために、ポリビニルアルコール、セルロースなどの補助剤を用いることができる。しかし、これらは、加温時に成形体から揮発するなどして複合磁性材料に残留しないものであることが望ましい。潤滑剤の場合は、ダイの内面など金型と粒子とが接触する部分に用いることが特に有効である。   The relationship between compression molding temperature and pressure is such that the higher the molding temperature, the more the plasticity of the metal magnetic particles increases, and the molding can be performed at a lower pressure. Therefore, the temperature and pressure may be appropriately changed according to this relationship. At the time of molding, a lubricant such as stearate and wax, and an auxiliary agent such as polyvinyl alcohol and cellulose can be used for molding. However, it is desirable that these do not remain in the composite magnetic material due to volatilization from the molded body during heating. In the case of a lubricant, it is particularly effective to use it in a portion where the mold and the particle are in contact such as the inner surface of the die.

必要な場合には、500℃未満で歪取りのためのアニール処理を行う。   If necessary, annealing treatment is performed at less than 500 ° C. to remove strain.

第3の工程は、(3)得られた複合磁気部品を、表裏面から均一に加熱することにより熱処理する熱処理工程であって、最高到達温度が500℃以上であり、500℃以上を保持する時間が5分以内で熱処理する工程である。フェライト被覆金属磁性粒子は、熱処理していない状態ではフェライトの成長形態が完全な膜状ではなく、フェライト微粒子が金属磁性粒子表面に付着したような状態であるため、フェライト被覆部分における空隙が存在する傾向がある。また、金属磁性粒子とフェライト被膜との境界面に空隙が存在する。その結果、製造される複合磁気製品の透磁率が低下することとなる。しかし、本発明のように、最高到達温度が500℃以上で熱処理を行うと、被覆したフェライト粒子間の結合(結晶成長)が生じる。それにより、フェライト被覆部分における空隙および金属磁性粒子とフェライト被膜の境界面の空隙が減少することとなる。そのため、金属磁性粒子間の磁気的結合が強くなり、透磁率が向上する。   The third step (3) is a heat treatment step in which the obtained composite magnetic component is heat-treated by heating uniformly from the front and back surfaces, and the maximum temperature reached is 500 ° C. or higher and is maintained at 500 ° C. or higher. This is a step of heat treatment within 5 minutes. Ferrite-coated metal magnetic particles have a ferrite growth form that is not completely film-like when not heat-treated, and the ferrite fine particles are attached to the surface of the metal magnetic particles, so there are voids in the ferrite-coated portion. Tend. There are also voids at the interface between the metal magnetic particles and the ferrite coating. As a result, the magnetic permeability of the manufactured composite magnetic product is lowered. However, when the heat treatment is performed at a maximum temperature of 500 ° C. or higher as in the present invention, bonding (crystal growth) between the coated ferrite particles occurs. Thereby, the space | gap in a ferrite coating part and the space | gap of the interface surface of a metal magnetic particle and a ferrite film will reduce. Therefore, the magnetic coupling between the metal magnetic particles is strengthened, and the magnetic permeability is improved.

最高到達温度は、500〜1000℃の範囲、好ましくは600〜800℃、さらに好ましくは650〜750℃である。一方、最高到達温度が500℃以上の熱処理を長時間行うと、フェライトと金属磁性粒子間で原子の相互拡散が発生することとなる。フェライトとしてNiZnを用いた磁気部品を透過電子顕微鏡(TEM)とエネルギー分散型X線分光法(EDX)によって分析した場合、被覆したフェライトの酸素と亜鉛が金属粒子に拡散しているのが観察された。そのため、長時間処理すると、原子の相互拡散によりフェライトが半導体化することで全体の抵抗率が低減し、渦電流損失が発生し、周波数特性が低下する。すなわち、長時間の加熱(すなわち500℃以上の保持時間が5分を越える時間)は周波数特性の悪化をもたらす。したがって、透磁率を向上するにはごく短時間の加熱が好ましい。適当な加熱時間は、5分以内、好ましくは1秒〜3分、さらに好ましくは30秒〜1分であるが、最高到達温度との関係によって変動する。これは、フェライト粒子間の結合が、ごく短時間で終了するのに対して、フェライトと金属磁性粒子間の原子の相互拡散が比較的ゆっくりとした反応であり、時間と共に拡散量が多くなっていくためである。500℃以上にさらされる時間を短時間にするには、温度変化を急激に行う必要がある。昇温速度および降温速度が共に、120℃/分以上、具体的には120℃/分〜1200℃/分の範囲、好ましくは150℃/分〜600℃/分、さらに好ましくは300℃/分〜600℃/分の急速熱処理(Rapid Thermal Annealing;RTA)が好ましい。   The maximum temperature reached is in the range of 500 to 1000 ° C, preferably 600 to 800 ° C, more preferably 650 to 750 ° C. On the other hand, when a heat treatment at a maximum temperature of 500 ° C. or higher is performed for a long time, atomic interdiffusion occurs between the ferrite and the metal magnetic particles. When magnetic parts using NiZn as ferrite are analyzed by transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDX), it is observed that oxygen and zinc of the coated ferrite are diffused into the metal particles. It was. For this reason, when the treatment is performed for a long time, the ferrite becomes a semiconductor by mutual diffusion of atoms, so that the entire resistivity is reduced, eddy current loss occurs, and the frequency characteristics are lowered. That is, long-time heating (that is, a time for which the holding time of 500 ° C. or higher exceeds 5 minutes) causes the frequency characteristics to deteriorate. Therefore, heating for a very short time is preferable to improve the magnetic permeability. The appropriate heating time is within 5 minutes, preferably 1 second to 3 minutes, more preferably 30 seconds to 1 minute, but varies depending on the relationship with the maximum temperature reached. This is a reaction in which the interdiffusion of atoms between ferrite and metal magnetic particles is relatively slow, whereas the bond between ferrite particles is completed in a very short time, and the amount of diffusion increases with time. It is to go. In order to shorten the time of exposure to 500 ° C. or more, it is necessary to rapidly change the temperature. Both the rate of temperature increase and the rate of temperature decrease are 120 ° C./min or more, specifically 120 ° C./min to 1200 ° C./min, preferably 150 ° C./min to 600 ° C./min, more preferably 300 ° C./min. Rapid thermal annealing (RTA) at ˜600 ° C./min is preferred.

ここでいう加熱時間、昇温速度および降温速度などの温度条件は、成形体を対象とするものであり、熱処理時の雰囲気温度を規定するものではない。熱容量のために、成形体の温度は雰囲気温度とは大きく異なるため、温度コントロールは成形体で行う。また成形体の温度は、大きさおよび形状などにより大きく異なる。そのため、例えば、成形体と同様の材質、形状のダミー成形体を作製し、そのダミー成形体に直接温度コントロールを行う熱電対を挿入し、本物の成形体の近くに設置するなどして温度コントロールを行うことが好ましい。加熱装置は、短時間で500℃以上の加熱が可能な装置であれば特に制限されない。   The temperature conditions such as the heating time, temperature increase rate, and temperature decrease rate here are for the molded body, and do not define the ambient temperature during the heat treatment. Because of the heat capacity, the temperature of the molded body is greatly different from the ambient temperature, so temperature control is performed on the molded body. Further, the temperature of the compact varies greatly depending on the size and shape. For this reason, for example, a dummy molded body having the same material and shape as the molded body is manufactured, a thermocouple for directly controlling the temperature is inserted into the dummy molded body, and the temperature is controlled by installing it near the real molded body. It is preferable to carry out. A heating apparatus will not be restrict | limited especially if it is an apparatus which can heat 500 degreeC or more in a short time.

高い透磁率を維持しつつ、周波数特性を満足させるためには、成形体内部までより速く、熱の出入りを行うことが好ましい。そのためには、成形体を薄くすることで、熱の入る面積および熱の出る面積を大きくすることが好ましい。大きい熱量を急速に加え、急速に取り去ろうとすると、成形体には熱容量があるので、成形体内部で温度差が生じやすい。厚い成形体では、表面付近と内部で、成形体の特性に違いが生じる。一方、薄板状の成形体では、表面から内部まで熱の分布が少なく、均一な特性の成形体を得ることができる。   In order to satisfy the frequency characteristics while maintaining high magnetic permeability, it is preferable that heat enters and exits faster into the molded body. For this purpose, it is preferable to increase the area where heat enters and the area where heat is generated by thinning the molded body. If a large amount of heat is rapidly applied and then removed rapidly, the molded body has a heat capacity, and thus a temperature difference tends to occur inside the molded body. In a thick molded body, there is a difference in the characteristics of the molded body near and inside the surface. On the other hand, in a thin plate-shaped molded body, there is little heat distribution from the surface to the inside, and a molded body with uniform characteristics can be obtained.

従って、本発明においては、熱処理を行う成形体は厚さ5mm以下の薄板状である必要があり、厚さ3mm以下であることが好ましい。薄板上成形体の厚みは特に限定されるものではないが、成形体の強度、取り扱い性等を考慮すると0.05mm以上であることが好ましい。   Accordingly, in the present invention, the molded body to be heat-treated needs to be a thin plate having a thickness of 5 mm or less, and preferably has a thickness of 3 mm or less. The thickness of the thin plate molded body is not particularly limited, but is preferably 0.05 mm or more in consideration of the strength, handleability, and the like of the molded body.

また、このような薄板状の成形体に急速にかつ均一に熱を入れ、熱を取り去ることが重要である。通常の電気炉では、急速な昇温、降温をすることができない。また、加熱した電気炉の中に成形体を投入し、取り出す方法や、加熱したトンネル内をベルトコンベアーで通過させるベルト炉などの方法では、基板の表裏面または基板の面方向に均一に伝熱できないため、薄板状の成形体を急速にかつ均一に熱を入れ、熱を取り去ることができない。   In addition, it is important to rapidly and uniformly heat such a thin plate-shaped molded body and remove the heat. A normal electric furnace cannot rapidly raise or lower the temperature. In addition, in methods such as putting a molded body into a heated electric furnace and taking it out, or using a belt furnace that passes the heated tunnel through a belt conveyor, heat is transferred uniformly to the front and back surfaces of the substrate or the surface of the substrate. Therefore, it is impossible to quickly and uniformly heat the thin plate-shaped molded body and remove the heat.

急速にかつ均一に熱を入れる方法としては、例えば、赤外線ランプにより赤外線を発生させ、薄板状成形体の表面に直接赤外線を当てる方法を好ましい方法として例示できる。その時、薄板状成形体の片面からだけでなく、表裏面から均一に赤外線をあてることが好ましく、この方法により、表面、内部、裏面まで熱の分布が少なく、均一な特性の成形体を得ることができる。   As a method for rapidly and uniformly applying heat, a preferable method is, for example, a method in which infrared rays are generated by an infrared lamp and infrared rays are directly applied to the surface of the thin plate-shaped molded body. At that time, it is preferable to apply infrared rays uniformly not only from one side of the thin plate-shaped molded body but also from the front and back surfaces, and by this method, a molded body having a uniform characteristic can be obtained with less heat distribution to the front surface, inside, and back surface. Can do.

また、急速にかつ均一に熱を入れる他の方法としては、熱板で挟み込む方式も好ましい方法として例示できる。成形体に対して十分に大きい熱容量を持つ2枚の熱板を用い、上下面から均一に熱板を押し当てることで、表面、内部、裏面まで熱の分布が少なく、均一な特性の成形体を得ることができる。   Further, as another method for rapidly and uniformly applying heat, a method of sandwiching with a hot plate can be exemplified as a preferable method. By using two hot plates with a sufficiently large heat capacity for the molded body and pressing the hot plate uniformly from the upper and lower surfaces, there is little heat distribution from the front surface, inside, and back surface, and the molded product has uniform characteristics. Can be obtained.

熱処理後の冷却は成形体の温度を120℃/分〜1200℃/分の範囲、好ましくは150℃/分〜600℃/分、さらに好ましくは300℃/分〜600℃/分の速度で降温できる方法であればいずれも採用できるが、急速にかつ均一に熱を取り去る好ましい方法として、別に用意した2枚の冷却板を上下面から均一に押し当てる方法を例示でき、これにより表面、内部、裏面まで熱の分布が少なく冷却することができる。   For cooling after the heat treatment, the temperature of the compact is lowered at a rate of 120 ° C / min to 1200 ° C / min, preferably 150 ° C / min to 600 ° C / min, more preferably 300 ° C / min to 600 ° C / min. Any method can be adopted, but as a preferable method of removing heat rapidly and uniformly, a method of uniformly pressing two separately prepared cooling plates from the upper and lower surfaces can be exemplified. It can be cooled with little heat distribution to the back side.

以上の製造方法を用いることにより、1kHz時の比透磁率が100以上であり、かつ、その透磁率が1kHz時の透磁率の80%に低下する時の周波数である透磁率のカットオフ周波数が10MHz以上である金属磁性粒子とフェライトからなる複合磁気部品が得られる。   By using the above manufacturing method, the relative permeability at 1 kHz is 100 or more, and the permeability cutoff frequency, which is the frequency when the permeability is reduced to 80% of the permeability at 1 kHz, is obtained. A composite magnetic component composed of metal magnetic particles of 10 MHz or more and ferrite can be obtained.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
フェライト被覆金属粒子粉末の作製は、上述した特許文献3に記載の超音波励起フェライトめっき法により、次のように行った
(Example 1)
Preparation of the ferrite-coated metal particle powder was performed as follows by the ultrasonic excitation ferrite plating method described in Patent Document 3 described above.

金属磁性材料の粒子としては、水アトマイズ法により作製したNi78Mo5Fe粒子(Niが78重量%、Moが5重量%、残りがFeからなる粒子)(平均粒子径8μm)を20g用いた。フェライトめっきの前処理として、これらの粒子をHO:300ml+47%HSO:1250μl+2mol/l HCl:1250μlの溶液中(液温70℃)に入れて、5分間超音波を印加した。 As the metal magnetic material particles, 20 g of Ni78Mo5Fe particles (particles composed of 78% by weight of Ni, 5% by weight of Mo, and the rest of Fe) (average particle size of 8 μm) prepared by a water atomization method were used. As a pretreatment for ferrite plating, these particles were placed in a solution of H 2 O: 300 ml + 47% H 2 SO 4 : 1250 μl + 2 mol / l HCl: 1250 μl (liquid temperature 70 ° C.), and ultrasonic waves were applied for 5 minutes.

その後、純水を入れたガラス製の反応容器中にNi78Mo5Fe粒子を移し替え、19.5kHzの超音波を印加した。この反応容器に反応液(HO:500ml+FeCl・4HO:3.98g+NiCl・6HO:1.19g+ZnCl:0.68g)および酸化液(HO:500ml+NaNO:1.00g)をそれぞれ3ml/分、2ml/分の速度で供給しながら、適宜アンモニア水を滴下することによりpHを10.0に保った。このめっき処理を60分間行った。めっき処理後、粒子を分級・乾燥させた。 Thereafter, Ni78Mo5Fe particles were transferred into a glass reaction vessel containing pure water, and 19.5 kHz ultrasonic waves were applied. In this reaction vessel, the reaction solution (H 2 O: 500 ml + FeCl 2 .4H 2 O: 3.98 g + NiCl 2 .6H 2 O: 1.19 g + ZnCl 2 : 0.68 g) and the oxidation solution (H 2 O: 500 ml + NaNO 2 : 1.00 g) ) Was supplied at a rate of 3 ml / min and 2 ml / min, respectively, and the pH was kept at 10.0 by appropriately dropping ammonia water. This plating process was performed for 60 minutes. After the plating treatment, the particles were classified and dried.

上記のフェライト被覆Ni78Mo5Fe粒子を超硬合金製の金型に充填し、10トン重/cm(980MPa)の一軸プレスにより内径36mmφ、外径50mmφ、厚さ1mmおよび3mmのリングコア形状に成形した。 The above-mentioned ferrite-coated Ni78Mo5Fe particles were filled in a cemented carbide mold and formed into a ring core shape having an inner diameter of 36 mmφ, an outer diameter of 50 mmφ, a thickness of 1 mm, and 3 mm by uniaxial pressing of 10 tons / cm 2 (980 MPa).

厚さ3mmのリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて複素透磁率μ=μ’+iμ”を10kHz〜10MHzの周波数領域で測定した。その実部μ’および虚部μ”の周波数依存性を示したものがそれぞれ図2の符号1と符号2である(なお、図2において、複素透磁率の実部μ’および虚部μ”は、真空透磁率との比で示した)。厚さ1mmのリングコアも3mmのリングコアと同様の透磁率の周波数依存性を示す。   The primary and secondary windings were each wound 5 turns on a 3 mm thick ring core, and the complex permeability μ = μ ′ + iμ ″ was measured in a frequency range of 10 kHz to 10 MHz with a BH analyzer. 2 and 2 indicate the frequency dependence of the imaginary part μ ″ (in FIG. 2, the real part μ ′ and the imaginary part μ ″ of the complex magnetic permeability are the vacuum permeability. The ring core with a thickness of 1 mm also shows the frequency dependency of the magnetic permeability similar to that of the ring core with a thickness of 3 mm.

厚さ1mmと3mmのリングコアを大気中で、図1のように、上下に赤外線ランプ12と赤外線反射板13を有する赤外線ランプアニール炉により、表裏面から均一に加熱するRTAを行った。昇温速度300℃/分、最高到達温度600℃、最高到達温度保持時間1秒、降温速度300℃/分(500℃以上の時間41秒)で、熱処理を行った。なお、図中14、15はそれぞれ搬送治具及び治具ガイドである。熱処理後の複素透磁率を上記と同様の条件で測定した。その実部μ’および虚部μ”の周波数依存性を示したものがそれぞれ図2の符号3から6である。なお、降温は冷風吹き付けにより行った。   As shown in FIG. 1, RTA was performed by heating the front and back surfaces of the ring cores having thicknesses of 1 mm and 3 mm uniformly from the front and back surfaces in an infrared lamp annealing furnace having an infrared lamp 12 and an infrared reflector 13 as shown in FIG. Heat treatment was performed at a temperature rising rate of 300 ° C./min, a maximum temperature of 600 ° C., a maximum temperature holding time of 1 second, and a temperature drop rate of 300 ° C./min (time of 500 ° C. or higher time 41 seconds). In the figure, reference numerals 14 and 15 denote a conveying jig and a jig guide, respectively. The complex permeability after the heat treatment was measured under the same conditions as described above. The frequency dependence of the real part μ ′ and the imaginary part μ ″ is indicated by reference numerals 3 to 6 in FIG. 2. The temperature was lowered by blowing cold air.

図2の符号1のように、熱処理前は60程度であった比透磁率(すなわち複素透磁率の実部μ’)が、厚さ1mmおよび3mmのものについては、熱処理をすることによって符号3、5のように1MHzまでフラットな周波数依存性を維持したまま、125に向上した。   As shown by reference numeral 1 in FIG. 2, when the relative permeability (that is, the real part μ ′ of the complex permeability) that was about 60 before the heat treatment is 1 mm and 3 mm in thickness, the heat treatment is performed to obtain the reference numeral 3. As shown in FIG. 5, the frequency dependence was improved to 125 while maintaining the flat frequency dependence up to 1 MHz.

(比較例1)
実施例1で得たフェライト被覆Ni78Mo5Fe粒子を超硬合金製の金型に充填し、10トン重/cm(980MPa)の一軸プレスにより内径36mmφ、外径50mmφ、厚さ7mmのリングコア形状に成形した。このリングコアに実施例1と同様に1次および2次巻線を巻回し、B−Hアナライザにて複素透磁率μ=μ’+iμ”を10kHz〜10MHzの周波数領域で測定したところ、厚さ3mmのリングコアと同様の周波数特性を示した。
(Comparative Example 1)
The ferrite-coated Ni78Mo5Fe particles obtained in Example 1 were filled into a cemented carbide mold and formed into a ring core shape having an inner diameter of 36 mmφ, an outer diameter of 50 mmφ, and a thickness of 7 mm by uniaxial pressing at 10 tons / cm 2 (980 MPa). did. The primary and secondary windings were wound around the ring core in the same manner as in Example 1, and the complex permeability μ = μ ′ + iμ ”was measured in a frequency range of 10 kHz to 10 MHz with a BH analyzer. The same frequency characteristic as that of the ring core was shown.

このリングコアにつき、実施例1と同様にして赤外線ランプアニール炉により、表裏面から均一に加熱するRTAを行い、熱処理後の複素透磁率を上記と同様の条件で測定したところ、図2符号7、8に見られるように1MHz以下でμ'が低下し、虚部μ”が大きくなり、損失が発生してしまうことが分かった。   This ring core was subjected to RTA that was uniformly heated from the front and back surfaces using an infrared lamp annealing furnace in the same manner as in Example 1, and the complex permeability after the heat treatment was measured under the same conditions as above. As can be seen from FIG. 8, μ ′ decreases at 1 MHz or less, the imaginary part μ ″ increases, and a loss occurs.

(比較例2)
実施例1で得たと同様の厚さ3mmのリングコアにつき、赤外線ランプアニール炉の上面の赤外線のみ稼動させ、サンプルの片面からのみランプ加熱を行った以外は実施例1と同様にして、RTAを行い、熱処理後の複素透磁率を上記と同様の条件で測定したところ、図2符号9、10に見られるように1MHz以下でμ'が低下し、虚部μ”が大きくなり、損失が発生してしまうことが分かった。
(Comparative Example 2)
RTA was performed in the same manner as in Example 1 except that only the infrared ray on the upper surface of the infrared lamp annealing furnace was operated for the same 3 mm-thick ring core as obtained in Example 1 and lamp heating was performed only from one side of the sample. When the complex permeability after heat treatment was measured under the same conditions as described above, as shown in FIGS. 9 and 10, μ ′ decreased below 1 MHz, the imaginary part μ ″ increased, and loss was generated. I found out.

(実施例2)
実施例1と同様の方法で、フェライトめっきを施した複合磁性粒子により、リングコア形状に圧縮成形した内径36mmφ、外形50mmφ、厚さ1mm及び3mmのリングコアを準備した。図3のような30mm厚さの2枚のセラミックス熱板16で表裏面から均一に加熱できる装置を作製し、RTAの検討を行った。なお、図中17は熱板ガイドである。すなわち、成形体11を、電気炉で400℃以下に予備加熱し、その状態で、図3のピン状のサンプル搬送冶具18に乗せ、上下面から均一に2枚の700℃に加熱した熱板16を押し当てた、熱板16が均一にサンプルにあたり、かつ、サンプルが変形しないよう、加圧は0.1MPaで行った。RTAは、昇温速度600℃/分、最高到達温度600℃、最高到達温度保持時間1秒、降温速度300℃/分(500℃以上の時間31秒)であった。
(Example 2)
Ring cores having an inner diameter of 36 mmφ, an outer diameter of 50 mmφ, a thickness of 1 mm, and a thickness of 3 mm were prepared by compression molding into a ring core shape using composite magnetic particles subjected to ferrite plating in the same manner as in Example 1. A device capable of uniformly heating from the front and back surfaces of the two ceramic hot plates 16 having a thickness of 30 mm as shown in FIG. 3 was manufactured, and RTA was examined. In the figure, reference numeral 17 denotes a hot plate guide. That is, the molded body 11 is preheated to 400 ° C. or lower in an electric furnace, and in that state, is placed on the pin-shaped sample transport jig 18 of FIG. 3 and heated to two 700 ° C. uniformly from the upper and lower surfaces. The pressure was applied at 0.1 MPa so that the hot plate 16 pressed against 16 uniformly hits the sample and the sample did not deform. RTA had a temperature rising rate of 600 ° C./min, a maximum temperature of 600 ° C., a maximum temperature holding time of 1 second, and a temperature drop rate of 300 ° C./min (time of 500 ° C. or more, 31 seconds).

上の熱処理品について、実施例1と同様に、B−Hアナライザにて複素透磁率を測定し評価した。複素透磁率の周波数特性の結果を図4に示す。
図4の符号1に示すように熱処理前は60程度であった比透磁率(すなわち複素透磁率の実部μ’)が、厚さ1mmおよび3mmのものについては、熱処理をすることによって符号3、5のように1MHzまでフラットな周波数依存性を維持したまま、125に向上した。
The upper heat-treated product was evaluated by measuring the complex permeability with a BH analyzer in the same manner as in Example 1. The result of the frequency characteristics of the complex permeability is shown in FIG.
As shown by reference numeral 1 in FIG. 4, when the relative permeability (that is, the real part μ ′ of the complex permeability) that was about 60 before the heat treatment is 1 mm and 3 mm in thickness, the heat treatment is performed to obtain the reference numeral 3. As shown in FIG. 5, the frequency dependence was improved to 125 while maintaining the flat frequency dependence up to 1 MHz.

(比較例3)
比較例1と同様にして得た厚さ7mmのリングコアにつき、実施例2と同様にして図3に示す熱板加熱により同様の条件でRTAを行い、熱処理後の複素透磁率を上記と同様の条件で測定したところ、図4符号7、8に見られるように1MHz以下でμ'が低下し、虚部μ”が大きくなり、損失が発生してしまうことが分かった。
(Comparative Example 3)
A 7 mm thick ring core obtained in the same manner as in Comparative Example 1 was subjected to RTA under the same conditions by heating the hot plate shown in FIG. 3 in the same manner as in Example 2, and the complex permeability after the heat treatment was the same as above. As a result of measurement under the conditions, it was found that μ ′ decreased below 1 MHz, the imaginary part μ ″ increased, and a loss occurred as shown in FIGS.

(比較例4)
実施例1で得たと同様の厚さ3mmのリングコアにつき、図3の熱板加熱装置の下面の熱板のみ稼動させ、上面の熱板は接触させずに、成形体の下面からのみ熱板加熱を行った以外は実施例1と同様にして、RTAを行い、熱処理後の複素透磁率を上記と同様の条件で測定したところ、図4符号9、10に見られるように1MHz以下でμ'が低下し、虚部μ”が大きくなり、損失が発生してしまうことが分かった。
(Comparative Example 4)
A ring core having a thickness of 3 mm similar to that obtained in Example 1 is operated only on the hot plate on the lower surface of the hot plate heating device of FIG. 3, and the hot plate is heated only from the lower surface of the molded body without contacting the upper hot plate. In the same manner as in Example 1 except that the RTA was performed and the complex permeability after the heat treatment was measured under the same conditions as described above. As shown in FIGS. As a result, the imaginary part μ ″ increases and loss occurs.

(実施例3)
実施例2と同様の方法で、フェライトめっきを施した複合磁性粒子により、リングコア形状に圧縮成形した内径36mmφ、外形50mmφ、厚さ1、3及び5mmのリングコアを準備し、実施例2で用いたと同様の熱板加熱装置と、図5のような30mm厚さの2枚のステンレス製の冷却板で表裏面から均一に冷却できる強制冷却装置を作製し、熱板加熱装置で急速加熱、強制冷却装置による急速冷却でRTAの検討を行った。
(Example 3)
A ring core having an inner diameter of 36 mmφ, an outer diameter of 50 mmφ, a thickness of 1, 3 and 5 mm compression-molded into a ring core shape by composite magnetic particles subjected to ferrite plating in the same manner as in Example 2 was prepared and used in Example 2. The same hot plate heating device and two stainless steel cooling plates with a thickness of 30 mm as shown in FIG. 5 are used to produce a forced cooling device that can be cooled uniformly from the front and back surfaces. Rapid heating and forced cooling are performed using the hot plate heating device. RTA was studied by rapid cooling with the equipment.

すなわち、成形体を、別の電気炉で400℃以下に予備加熱し、その状態で、図3の熱板加熱装置のピン状の搬送冶具18に乗せ、上下面から均一に2枚の700℃に加熱した熱板16を押し当てた、熱板が均一にサンプルにあたり、かつ、サンプルが変形しないよう、加圧は0.1MPaで行った。その後、ピン状の搬送冶具に乗せたまま、図5の強制冷却装置にセットし、室温の冷却板19を押し当てた。冷却板が均一にサンプルにあたり、かつ、サンプルが変形しないよう、加圧は0.1MPaで行った。RTAは、昇温速度600℃/分、最高到達温度600℃、最高到達温度保持時間1秒、降温速度300℃/分(500℃以上の時間31秒)であった。   That is, the molded body is preheated to 400 ° C. or less in another electric furnace, and in that state, is placed on the pin-shaped transport jig 18 of the hot plate heating apparatus of FIG. The hot plate 16 was pressed against the sample plate, and the hot plate was uniformly applied to the sample, and pressurization was performed at 0.1 MPa so that the sample was not deformed. Then, it was set in the forced cooling device of FIG. 5 while being placed on the pin-shaped transport jig, and the cooling plate 19 at room temperature was pressed against it. Pressurization was performed at 0.1 MPa so that the cooling plate uniformly hits the sample and the sample did not deform. RTA had a temperature rising rate of 600 ° C./min, a maximum temperature of 600 ° C., a maximum temperature holding time of 1 second, and a temperature drop rate of 300 ° C./min (time of 500 ° C. or more, 31 seconds).

実施例1と同様にして、B−Hアナライザにて熱処理品の複素透磁率を測定し評価した。複素透磁率の周波数特性の結果を図6に示す。
図6の符号1に示すように、熱処理前は60程度であった比透磁率(すなわち複素透磁率の実部μ’)が、熱処理をすることによって符号3、5、7のように厚さ1、3および5mmのものについっては1MHzまでフラットな周波数依存性を維持したまま、125に向上した。
In the same manner as in Example 1, the complex magnetic permeability of the heat-treated product was measured with a BH analyzer and evaluated. The result of the frequency characteristics of the complex permeability is shown in FIG.
As shown by reference numeral 1 in FIG. 6, the relative magnetic permeability (that is, the real part μ ′ of the complex magnetic permeability), which was about 60 before the heat treatment, is changed to a thickness as indicated by reference numerals 3, 5, and 7 by the heat treatment. The ones of 1, 3 and 5 mm were improved to 125 while maintaining flat frequency dependence up to 1 MHz.

(比較例5)
比較例1と同様にして得た厚さ7mmのリングコアにつき、実施例3と同様にして図3に示す熱板加熱装置、図5に示す強制冷却装置を用いて同様の条件でRTAを行い、熱処理後の複素透磁率を上記と同様の条件で測定したところ、図6符号7、8に見られるように1MHz以下でμ'が低下し、虚部μ”が大きくなり、損失が発生してしまうことが分かった。
(Comparative Example 5)
A 7 mm thick ring core obtained in the same manner as in Comparative Example 1 was subjected to RTA under the same conditions using the hot plate heating device shown in FIG. 3 and the forced cooling device shown in FIG. When the complex permeability after the heat treatment was measured under the same conditions as described above, as shown in FIGS. 7 and 8, μ ′ decreased at 1 MHz or less, the imaginary part μ ″ increased, and loss occurred. I understood that.

この結果から、フェライト被覆金属磁性粒子を圧縮成形後にRTA熱処理する場合、熱処理を行う成形体が厚さ5mm以下の薄板状である必要があることが分かった。さらに、RTA熱処理としては赤外線加熱により成形体の表裏面から均一に行う方法、または、2枚の熱板により成形体を表裏面から挟み込むことで行う方法を採用できることがわかった。さらには、成形体が厚さ5mm以下の薄板状であり、その熱処理の降温時に、2枚の冷却板により成形体を表裏面から挟み込むことで降温する方法を採用すれば、成形体の厚みが5mmの場合でも厚みが3mm以下の場合と遜色ない比透磁率の周波数依存性を示すことがわかった。この降温する方法を採用しない場合は成形体の厚さが3mm以下であることが好ましい。これらのRTA熱処理を採用することにより、比透磁率100以上で、カットオフ周波数10MHz以上と、飛躍的に高い透磁率を有するメガヘルツ対応の高周波磁気部品が得られることがわかる。   From this result, it was found that when the ferrite-coated metal magnetic particles are subjected to RTA heat treatment after compression molding, the molded body to be heat-treated needs to be a thin plate having a thickness of 5 mm or less. Furthermore, it was found that the RTA heat treatment can be carried out by a method in which the molded body is uniformly applied from the front and back surfaces by infrared heating, or a method in which the molded body is sandwiched from the front and back surfaces by two hot plates. Furthermore, if the molded body is a thin plate having a thickness of 5 mm or less and the temperature is lowered by sandwiching the molded body from the front and back surfaces with two cooling plates when the temperature of the heat treatment is lowered, the thickness of the molded body is reduced. It was found that even when the thickness was 5 mm, the frequency dependence of the relative permeability was inferior to that when the thickness was 3 mm or less. If this method of lowering temperature is not adopted, the thickness of the molded body is preferably 3 mm or less. By adopting these RTA heat treatments, it can be seen that a high-frequency magnetic component compatible with megahertz having a relative permeability of 100 or more and a cut-off frequency of 10 MHz or more and a remarkably high permeability can be obtained.

これにより、ノート型パソコン・小型携帯機器・薄型ディスプレイなどのスイッチング電源に向けた、高機能でかつ小型・薄型の磁気部品を作ることが可能となる。   This makes it possible to produce highly functional, small and thin magnetic components for switching power supplies such as notebook computers, small portable devices, and thin displays.

実施例1の赤外線ランプアニール炉の概念図である。1 is a conceptual diagram of an infrared lamp annealing furnace of Example 1. FIG. 熱処理前および、赤外線ランプアニール炉によるRTA処理後におけるフェライト被覆Ni78Mo5Fe粒子の複素透磁率の実部μ’および虚部μ”を周波数に対してプロットしたグラフを示す図である。It is a figure which shows the graph which plotted the real part micro 'and imaginary part mu "of the complex magnetic permeability of the ferrite covering Ni78Mo5Fe particle before heat processing and after RTA processing by an infrared lamp annealing furnace vs. frequency. 実施例2の熱板加熱装置の概念図である。It is a conceptual diagram of the hot plate heating apparatus of Example 2. 熱処理前および、熱板加熱装置によるRTA処理後におけるフェライト被覆Ni78Mo5Fe粒子の複素透磁率の実部μ’および虚部μ”を周波数に対してプロットしたグラフを示す図である。It is a figure which shows the graph which plotted the real part micro 'and imaginary part mu "of the complex magnetic permeability of the ferrite covering Ni78Mo5Fe particle before heat processing and after RTA processing with a hot plate heating device against frequency. 実施例3の強制冷却装置の概念図である。It is a conceptual diagram of the forced cooling device of Example 3. 熱処理前および、熱板加熱装置と強制冷却装置によるRTA処理後におけるフェライト被覆Ni78Mo5Fe粒子の複素透磁率の実部μ’および虚部μ”を周波数に対してプロットしたグラフを示す図である。It is a figure which shows the graph which plotted the real part micro 'and imaginary part mu "of the complex magnetic permeability of the ferrite covering Ni78Mo5Fe particle before heat processing and after RTA processing with a hot plate heating device and a forced cooling device against frequency.

符号の説明Explanation of symbols

11 成形体
12 赤外線ランプ
13 赤外線反射板
14 搬送冶具
15 冶具ガイド
16 熱板
17 熱板ガイド
18 搬送冶具
19 冷却板
20 冷却板ガイド
DESCRIPTION OF SYMBOLS 11 Molded body 12 Infrared lamp 13 Infrared reflector 14 Conveying jig 15 Jig guide 16 Hot plate 17 Hot plate guide 18 Conveying jig 19 Cooling plate 20 Cooling plate guide

Claims (5)

(1)金属磁性粒子をフェライトで被覆する工程と、
(2)得られたフェライト被覆金属磁性粒子を厚さ5mm以下の薄板状に圧縮成形する圧縮成形工程と、
(3)得られた成形体を、表裏面から均一に加熱することにより熱処理する熱処理工程であって、最高到達温度が500℃以上であり、500℃以上を保持する時間が5分以内である熱処理工程と
を含むことを特徴とする金属磁性粒子とフェライトからなる複合磁気部品の製造方法。
(1) a step of coating metal magnetic particles with ferrite;
(2) a compression molding step of compression-molding the obtained ferrite-coated metal magnetic particles into a thin plate having a thickness of 5 mm or less;
(3) A heat treatment step in which the obtained molded body is heat-treated by heating uniformly from the front and back surfaces, the maximum temperature reached is 500 ° C. or higher, and the time for holding 500 ° C. or higher is within 5 minutes. A method for producing a composite magnetic component comprising metal magnetic particles and ferrite, comprising a heat treatment step.
前記熱処理が、成形体の表裏面から均一に赤外線加熱することであることを特徴とする請求項1に記載の金属磁性粒子とフェライトからなる複合磁気部品の製造方法。   2. The method of manufacturing a composite magnetic component comprising metal magnetic particles and ferrite according to claim 1, wherein the heat treatment is performed by infrared heating uniformly from the front and back surfaces of the molded body. 前記熱処理が、2枚の熱板で成形体を表裏面から挟み込んで行うことであることを特徴とする請求項1に記載の金属磁性粒子とフェライトからなる複合磁気部品の製造方法。   2. The method of manufacturing a composite magnetic component comprising metal magnetic particles and ferrite according to claim 1, wherein the heat treatment is performed by sandwiching the formed body from the front and back surfaces with two hot plates. 前記圧縮成形工程で得られた薄板状の成形体が厚さ3mm以下であることを特徴とする請求項1〜3のいずれか1項に記載の金属磁性粒子とフェライトからなる複合磁気部品の製造方法。   4. The production of a composite magnetic component comprising metal magnetic particles and ferrite according to any one of claims 1 to 3, wherein the thin plate-like molded body obtained in the compression molding step has a thickness of 3 mm or less. Method. 前記熱処理の後に、2枚の冷却板により成形体を表裏面から挟み込むことで降温することを特徴とする請求項1〜3のいずれか1項に記載の金属磁性粒子とフェライトからなる複合磁気部品の製造方法。
The composite magnetic component comprising metal magnetic particles and ferrite according to any one of claims 1 to 3, wherein the temperature is lowered by sandwiching the formed body from the front and back surfaces by two cooling plates after the heat treatment. Manufacturing method.
JP2004377258A 2004-12-27 2004-12-27 Manufacturing method of compound magnetic component Pending JP2006186072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377258A JP2006186072A (en) 2004-12-27 2004-12-27 Manufacturing method of compound magnetic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377258A JP2006186072A (en) 2004-12-27 2004-12-27 Manufacturing method of compound magnetic component

Publications (1)

Publication Number Publication Date
JP2006186072A true JP2006186072A (en) 2006-07-13

Family

ID=36738970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377258A Pending JP2006186072A (en) 2004-12-27 2004-12-27 Manufacturing method of compound magnetic component

Country Status (1)

Country Link
JP (1) JP2006186072A (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391397A (en) * 1977-01-21 1978-08-11 Hitachi Ltd Material with high permeability
JPH02225322A (en) * 1989-02-23 1990-09-07 Daido Steel Co Ltd Magnetic material and production thereof
JPH0536514A (en) * 1991-07-26 1993-02-12 Matsushita Electric Ind Co Ltd Composite magnetic material
JPH0547541A (en) * 1991-08-21 1993-02-26 Tdk Corp Manufacture of magnetic core
JPH06267723A (en) * 1993-03-16 1994-09-22 Tdk Corp Composite soft magnetic material
JPH06306405A (en) * 1993-04-24 1994-11-01 Ii R D:Kk Production of composite compact magnetic core
JPH0778711A (en) * 1993-06-30 1995-03-20 Mitsui Petrochem Ind Ltd Magnetic core and manufacture thereof
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2003086415A (en) * 2001-09-12 2003-03-20 Aisin Seiki Co Ltd Soft magnetic particle for motor of electromagnetic actuator, manufacturing method therefor, soft magnetic molded body for motor or electromagnetic actuator, and manufacturing method therefor
WO2003038843A1 (en) * 2001-10-29 2003-05-08 Sumitomo Electric Sintered Alloy, Ltd. Composite magnetic material producing method
JP2004342943A (en) * 2003-05-16 2004-12-02 Fuji Electric Holdings Co Ltd Compressed powder core incorporating coils, its manufacturing method, transformer and reactor for power sources using the core, and their manufacturing method
JP2005142241A (en) * 2003-11-04 2005-06-02 Rikogaku Shinkokai Sendust particulates plated with ferrite solder plating, manufacturing method of its compact, the sendust particulates plated with ferrite solder, and its compact
JP2005150257A (en) * 2003-11-12 2005-06-09 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic material
JP2005311078A (en) * 2004-04-21 2005-11-04 Fuji Electric Holdings Co Ltd Composite magnetic component and manufacturing method thereof
JP2005310919A (en) * 2004-04-19 2005-11-04 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic component
JP2006128215A (en) * 2004-10-26 2006-05-18 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic component
JP2006128307A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Manufacturing method of soft magnetic compact
JP2006128216A (en) * 2004-10-26 2006-05-18 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic component

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391397A (en) * 1977-01-21 1978-08-11 Hitachi Ltd Material with high permeability
JPH02225322A (en) * 1989-02-23 1990-09-07 Daido Steel Co Ltd Magnetic material and production thereof
JPH0536514A (en) * 1991-07-26 1993-02-12 Matsushita Electric Ind Co Ltd Composite magnetic material
JPH0547541A (en) * 1991-08-21 1993-02-26 Tdk Corp Manufacture of magnetic core
JPH06267723A (en) * 1993-03-16 1994-09-22 Tdk Corp Composite soft magnetic material
JPH06306405A (en) * 1993-04-24 1994-11-01 Ii R D:Kk Production of composite compact magnetic core
JPH0778711A (en) * 1993-06-30 1995-03-20 Mitsui Petrochem Ind Ltd Magnetic core and manufacture thereof
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2003086415A (en) * 2001-09-12 2003-03-20 Aisin Seiki Co Ltd Soft magnetic particle for motor of electromagnetic actuator, manufacturing method therefor, soft magnetic molded body for motor or electromagnetic actuator, and manufacturing method therefor
WO2003038843A1 (en) * 2001-10-29 2003-05-08 Sumitomo Electric Sintered Alloy, Ltd. Composite magnetic material producing method
JP2004342943A (en) * 2003-05-16 2004-12-02 Fuji Electric Holdings Co Ltd Compressed powder core incorporating coils, its manufacturing method, transformer and reactor for power sources using the core, and their manufacturing method
JP2005142241A (en) * 2003-11-04 2005-06-02 Rikogaku Shinkokai Sendust particulates plated with ferrite solder plating, manufacturing method of its compact, the sendust particulates plated with ferrite solder, and its compact
JP2005150257A (en) * 2003-11-12 2005-06-09 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic material
JP2005310919A (en) * 2004-04-19 2005-11-04 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic component
JP2005311078A (en) * 2004-04-21 2005-11-04 Fuji Electric Holdings Co Ltd Composite magnetic component and manufacturing method thereof
JP2006128215A (en) * 2004-10-26 2006-05-18 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic component
JP2006128216A (en) * 2004-10-26 2006-05-18 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic component
JP2006128307A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Manufacturing method of soft magnetic compact

Similar Documents

Publication Publication Date Title
EP2518740B1 (en) Method for producing a reactor
CN101300646B (en) Soft magnetic material and dust core produced therefrom
CN105408967B (en) Compressed-core uses the coil component of the compressed-core and the manufacturing method of compressed-core
JP2006351946A (en) Method for manufacturing soft magnetic compact
JPWO2003015109A1 (en) Ferrite-coated fine metal particle compression molded composite magnetic material and method for producing the same
WO2005073989A1 (en) Dust core and method for producing same
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2009164401A (en) Manufacturing method of dust core
JP2008270368A (en) Dust core and method of manufacturing the same
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
US9093205B2 (en) Superparamagnetic iron oxide and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
US10910153B2 (en) Superparamagnetic iron cobalt alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP2009158802A (en) Manufacturing method of dust core
JP2005068526A (en) Method of producing composite magnetic particle powder molded body
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP2015026749A (en) Soft magnetic powder, powder-compact magnetic core, and soft magnetic alloy
JP2009295613A (en) Method of manufacturing dust core
JP2005311078A (en) Composite magnetic component and manufacturing method thereof
JP2006186072A (en) Manufacturing method of compound magnetic component
JP2006080166A (en) Dust core
WO2022121208A1 (en) Soft magnetic powder, preparation method therefor, and use thereof
JP2006128307A (en) Manufacturing method of soft magnetic compact
JP2007067219A (en) Composite magnetic material, magnetic component and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A521 Written amendment

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A131 Notification of reasons for refusal

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713