JP2006180698A - Electric motor, freezing/air-conditioning apparatus, manufacturing method of the electric motor, and metallic mold apparatus of the electric motor - Google Patents

Electric motor, freezing/air-conditioning apparatus, manufacturing method of the electric motor, and metallic mold apparatus of the electric motor Download PDF

Info

Publication number
JP2006180698A
JP2006180698A JP2006074864A JP2006074864A JP2006180698A JP 2006180698 A JP2006180698 A JP 2006180698A JP 2006074864 A JP2006074864 A JP 2006074864A JP 2006074864 A JP2006074864 A JP 2006074864A JP 2006180698 A JP2006180698 A JP 2006180698A
Authority
JP
Japan
Prior art keywords
mold
resin
electric motor
stator
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074864A
Other languages
Japanese (ja)
Other versions
JP4449930B2 (en
Inventor
Noriaki Matsunaga
訓明 松永
Takayuki Hanaki
隆行 花木
Katsumi Shibayama
勝巳 柴山
Tomoaki Oikawa
智明 及川
Yasuyoshi Tajima
庸賀 田島
Sadami Okugawa
貞美 奥川
Kazuya Omura
和也 尾村
Toshio Arai
利夫 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006074864A priority Critical patent/JP4449930B2/en
Publication of JP2006180698A publication Critical patent/JP2006180698A/en
Application granted granted Critical
Publication of JP4449930B2 publication Critical patent/JP4449930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems, wherein burr treatment is required in its manufacturing step, generation of a metallic mold corrosive gas, a long molding cycle, and the difficulty in thinning because of large molding shrinkage, in an insulator in the electric motor. <P>SOLUTION: An insulating insulator, between a core and a coil, is made of liquid crystal polyester resin mold with a melting point of 350°C or lower measured by DSC, crystallization latent heat of 10 J/g or lower, and the amount of gas generation of 200 ppm or lower at the melting point. The liquid crystal polyester resin mold contains at least one of 95 weight% or lower selected from among a fiber-like inorganic reinforcement material and an inorganic loading material, and stearic acid-based or fatty acid amide-based lubricant is not added or added 3.0 weight% or lower, while the gate size is 1.2 mm angle or smaller and the surface roughness of the wound spool portion is 10 μmRz or smaller. Furthermore, LCP resin of low crystallization latent heat is used and is molded thin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電動機の技術に関するもので、例えば冷媒圧縮機及びこの冷媒圧縮機を用いた冷凍空調機に係わり、この冷媒圧縮機に搭載される電動機に関する。   The present invention relates to a technology of an electric motor, and relates to, for example, a refrigerant compressor and a refrigeration air conditioner using the refrigerant compressor, and relates to an electric motor mounted on the refrigerant compressor.

近年冷蔵庫やエアコンの圧縮機用電動機などには、高効率化とコンパクト化の目的で、複数のティースにまたがらずに1つのティースの回りに集中的に巻線を巻く集中巻式固定子を採用した電動機が検討され、ティ−スと巻線間には絶縁材として樹脂成形品が用いられるのが一般的である。   In recent years, electric motors for compressors of refrigerators and air conditioners have a concentrated winding type stator that winds intensively around one tooth without straddling multiple teeth for the purpose of high efficiency and compactness. The adopted electric motor is studied, and a resin molded product is generally used as an insulating material between the tooth and the winding.

圧縮機内部には、冷媒を圧縮する圧縮要素部とこの圧縮要素を駆動させる電動機が内蔵され、−20℃以下から120℃を越える環境において、冷媒と冷凍機油が貯留され、この混合液に晒されながら使用される。冷凍機油は圧縮要素部のシ−ル、潤滑を行うと共に冷媒ガスと混合して冷凍回路内を循環しながら、毛細管などの絞り部を通過して蒸発器、圧縮機に戻る。このため絶縁材などの樹脂が冷凍機油に溶出すると、圧縮要素部のシ−ル性・潤滑性の低下、絞り部の閉塞などの問題を発生しうる可能性がある。   A compressor element for compressing the refrigerant and an electric motor for driving the compressor element are built in the compressor, and the refrigerant and the refrigerating machine oil are stored in an environment of −20 ° C. or lower to over 120 ° C. and exposed to the mixed liquid. Used while being. The refrigerating machine oil seals and lubricates the compression element part, mixes with the refrigerant gas, circulates in the refrigerating circuit, passes through the throttle part such as a capillary tube, and returns to the evaporator and the compressor. For this reason, if a resin such as an insulating material is eluted into the refrigerating machine oil, there is a possibility that problems such as a decrease in sealability and lubricity of the compression element portion and a blockage of the throttle portion may occur.

そこで圧縮機内部の電動機の絶縁部材として、熱的安定性、耐加水分解性等の化学的安定性が高く、冷媒および冷凍機油に対する耐久性に優れるポリフェニレンサルファイド(以下PPS樹脂)等を使用する検討が進められてきた。   Therefore, the use of polyphenylene sulfide (hereinafter referred to as PPS resin), which has high chemical stability such as thermal stability and hydrolysis resistance, and excellent durability against refrigerants and refrigerating machine oil, etc., as the insulating member of the motor inside the compressor Has been promoted.

従来の冷媒圧縮機の集中巻電動機の固定子および回転子の構造は、特許文献1に示す様に、固定子、この固定子ヨーク部の内周または外周方向に突出したティース部、ティ−スに直接巻装される巻線、巻線とティースとの絶縁を行う絶縁部材であるインシュレ−タ、回転子に埋設された永久磁石にて構成されている。   The structure of a stator and a rotor of a concentrated winding motor of a conventional refrigerant compressor is, as shown in Patent Document 1, a stator, a tooth portion protruding in the inner or outer peripheral direction of the stator yoke portion, and a tooth. The coil is directly wound around the coil, the insulator is an insulating member that insulates the winding from the teeth, and the permanent magnet is embedded in the rotor.

この集中巻電動機に使用されるインシュレ−タは、上下2分割され円環状固定子に挿入され、複数のティ−ス毎に分割されていないいわゆる一体タイプのインシュレ−タである。このインシュレ−タは、コイルが直接巻装される巻枠部と、巻枠長手延長方向において固定子の内径または外径側に配置される壁部と、その壁部には電線の結線を行うための端子箱とを備え、樹脂注入口であるゲ−トは壁部の先端に設けられている。   The insulator used in this concentrated winding motor is a so-called integrated type insulator that is divided into two parts, upper and lower, and inserted into an annular stator, and is not divided into a plurality of teeth. This insulator includes a winding frame portion in which a coil is directly wound, a wall portion arranged on the inner diameter or outer diameter side of the stator in the longitudinal extension direction of the winding frame, and wire connection to the wall portion. And a gate serving as a resin injection port is provided at the tip of the wall portion.

この絶縁部材は特許文献1に示す様に樹脂モールド成形品もしくはティース部と一体モールド化されたもので曲げ弾性率、曲げ強度や寸法を規定し、且つ、オリゴマの抽出量の少ないPPS、PA、PBT、LCPなどが検討されている。なおこの中の液晶ポリエステルであるLCPの組成物の特性に関しては特許文献2にて説明されている。   As shown in Patent Document 1, this insulating member is molded integrally with a resin molded product or a tooth part, defines a bending elastic modulus, bending strength and dimensions, and has a small amount of oligomer extraction PPS, PA, PBT, LCP, etc. are being studied. In addition, the characteristic of the composition of LCP which is liquid crystalline polyester in this is demonstrated by patent document 2. FIG.

特開2001−55979号公報(請求項1−3および請求項5、表1、図1、図2)Japanese Patent Laid-Open No. 2001-55979 (Claims 1-3 and 5, Table 1, FIG. 1, FIG. 2) 特開平10−46009号公報(0014欄乃至0018欄)JP-A-10-46009 (columns 0014 to 0018)

しかしながら、使用を検討されているPPS樹脂を用いてもオリゴマ−含有量の多いものは冷凍回路内で、オリゴマ−成分を溶出し、低温部に析出して回路を閉塞させる不具合があった。またPPS樹脂等は成分中に硫黄を含むため、溶融時に重合未反応成分等から硫黄を含んだ腐食性のガスを発生するため、金型寿命が短くなるなどの問題があった。   However, even if the PPS resin which is being considered for use is used, those having a high oligomer content have a problem that the oligomer component is eluted in the refrigeration circuit and precipitates in the low temperature portion to block the circuit. In addition, since PPS resin and the like contain sulfur in the components, corrosive gas containing sulfur is generated from the unreacted components and the like at the time of melting, so that there is a problem that the mold life is shortened.

成形品に使用される樹脂は一般に高結晶性の樹脂であり、成形時の金型温度を高くし、金型内で保持する時間を長くして結晶化を促進させる必要があり、成形サイクルが長いとういう課題があった。またこれらの樹脂はバリが生成しやすいため、剥離したバリによる冷凍回路閉塞を防止するために、成形品のバリ処理が不可欠であった。ショットブラスト等のバリ処理を行う場合にはストレスにより成形品にクラックの生ずる恐れがあり、絶縁機能として必要とされる以上の肉厚としなければ成らず、加工費、材料費が高くなるという課題があった。LCPなどの樹脂を使用しようとしても複雑な成形品を製造する量産に対し多くの問題があるとともに、材料費も高いという問題があった。   The resin used for the molded product is generally a highly crystalline resin, and it is necessary to increase the mold temperature during molding, to increase the holding time in the mold to promote crystallization, and the molding cycle is There was a long problem. Moreover, since these resins are easy to generate burrs, it was indispensable to burr the molded product in order to prevent the clogging of the refrigeration circuit due to the peeled burrs. When performing burr processing such as shot blasting, there is a risk that cracks may occur in the molded product due to stress, and it is necessary to make it thicker than necessary as an insulating function, which increases processing costs and material costs was there. Even if a resin such as LCP is used, there are many problems with mass production for producing complex molded products, and there is a problem that the material cost is high.

また、固定子ティ−スと巻線間の絶縁材として成形した樹脂をティースに挿入する方式において、部位により収縮量絶対値の差違が大きい樹脂では、鉄心と樹脂成形品との挿入クリアランスが不均一となり、収縮率の少ない部分のクリアランスは大きくなるため、巻線工程における巻線張力や振動による巻乱れから、巻き込まれる量が減少して、スロット面積に対する巻線断面の比率である占線率が低下し、すなわち電動機の効率が低下を引き起こす。逆に収縮率の大きい部位はクリアランスが小さいかマイナス公差となり、ティースへの挿入時や巻線工程での巻線張力によりに成形品にクラックを生じ、絶縁機能を満足させられない。そのため電動機の効率と絶縁耐力を両立するためには、樹脂成形品の収縮率を小さく留めるように成形時の冷却時間を長くするか、絶縁機能として必要とされる以上の肉厚としなければならないという課題があった。   In addition, in a method in which a resin molded as an insulating material between the stator teeth and the windings is inserted into the teeth, the insertion clearance between the iron core and the resin molded product is not good if the resin has a large difference in the absolute value of shrinkage depending on the part. As the clearance becomes uniform and the clearance of the portion with a small shrinkage rate becomes large, the amount of winding is reduced due to winding tension or vibration disturbance in the winding process, and the occupation ratio is the ratio of the winding cross section to the slot area. Decreases, that is, the efficiency of the motor decreases. On the other hand, a portion with a large shrinkage rate has a small clearance or a minus tolerance, and a crack is generated in the molded product due to winding tension at the time of insertion into a tooth or in a winding process, so that the insulating function cannot be satisfied. Therefore, in order to achieve both the efficiency of the motor and the dielectric strength, it is necessary to lengthen the cooling time at the time of molding so as to keep the shrinkage rate of the resin molded product small, or to make it thicker than necessary as an insulating function. There was a problem.

従来の集中巻式電動機に使用される絶縁材は、直接巻線が巻装される巻枠部と、巻枠長手延長方向において固定子の内径または外径側に設けた壁部と、内径または外径壁部に巻線の結線を行うための端子箱部より構成された樹脂成形品が用いられるが、樹脂注入口であるゲ−トを壁部頂部に設けた場合、多くのプレ−ト構成の金型での成形とする必要があり、金型構成部品点数が多く金型費用が嵩み製造時間がかかるという問題があった。以上の様に電動機の構造に対し、信頼性の高い絶縁物成形品を適用する場合安価で大量生産可能な製造が困難であるという問題があった。   Insulating materials used in conventional concentrated winding motors include a winding frame portion on which a direct winding is wound, a wall portion provided on the inner diameter or outer diameter side of the stator in the longitudinal extension direction of the winding frame, A resin molded product composed of a terminal box for connecting windings to the outer wall is used, but when a gate that is a resin inlet is provided on the top of the wall, many plates are used. There is a problem that it is necessary to mold with a mold having a configuration, the number of mold components is large, the mold cost is high, and the manufacturing time is long. As described above, there has been a problem that it is difficult to manufacture an electric motor structure that is inexpensive and can be mass-produced when a highly reliable insulating molded product is applied.

本発明は以上のような問題を解決するもので、高効率、且つ、信頼性が高く大量生産が可能な電動機を提案するものである。更に製造サイクルが短く生産性の良い電動機の製造方法を提案するものである。更に簡単な構成で寿命の長いこの電動機の金型装置を提案するものである。更に信頼性が高く性能の良い冷凍・空調装置を提案するものである。   The present invention solves the above problems, and proposes an electric motor that is highly efficient, reliable, and capable of mass production. Furthermore, the present invention proposes a method of manufacturing an electric motor with a short manufacturing cycle and good productivity. In addition, the present invention proposes a mold apparatus for an electric motor having a simple structure and a long life. Furthermore, we propose a refrigeration / air-conditioning system with high reliability and good performance.

本発明の電動機は、固定子を形成するヨークの内周または外周方向に突出した複数ティース部を有する鋼板を積層された鉄心と、ティ−ス部に直接巻装され通電されるコイルと、コイルとティース部間に設けられ絶縁を行う各ティース事に分割されティースに挿入される絶縁部材と、絶縁部材を形成する成形品であって繊維状無機強化材もしくは無機充填材を含有する高耐熱熱可塑性樹脂である液晶ポリエステル樹脂を成形して鉄心とコイルを絶縁する樹脂成形品と、を備え、樹脂成形品はティース部のコイルが軸方向に巻装される面の厚みを0.5ないし1.5mmとし、且つ、コイルが軸方向に巻装される面の表面粗さを10μmRz以下とする保圧圧力にて成形されるものである。   An electric motor according to the present invention includes an iron core in which steel plates having a plurality of tooth portions protruding in the inner or outer peripheral direction of a yoke forming a stator, a coil that is wound directly on the tooth portion and energized, and a coil And an insulating member that is provided between the teeth and divided into each tooth to be insulated and inserted into the teeth, and a molded product that forms the insulating member, and has high heat resistance including a fibrous inorganic reinforcing material or an inorganic filler And a resin molded product that insulates the iron core and the coil by molding a liquid crystalline polyester resin that is a plastic resin, and the resin molded product has a thickness of a surface on which the coil of the tooth portion is wound in the axial direction is 0.5 to 1 0.5 mm, and the surface on which the coil is wound in the axial direction is molded at a holding pressure of 10 μmRz or less.

本発明の電動機は、固定子を形成するヨークの内周または外周方向に突出した複数ティース部を有する鉄心と、ティ−ス部に直接巻装され通電されるコイルと、コイルとティース部間に設けられ絶縁を行う絶縁部材と、絶縁部材を形成する繊維状無機強化材もしくは無機充填材を含有する液晶ポリエステル樹脂を成形してティース部とコイルを絶縁する樹脂成形品と、を備え、金型にインサートされたティース部を覆う様に高耐熱熱可塑性樹脂を一体に成形する樹脂成形品は、ティース部のコイルが軸方向に巻装される面の厚みを0.3乃至0.9mmとし、且つ、コイルが軸方向に巻装される面の表面粗さを10μmRz以下とする保圧圧力にて成形されるものである。   An electric motor of the present invention includes an iron core having a plurality of tooth portions protruding in the inner or outer peripheral direction of a yoke forming a stator, a coil that is wound directly on the tooth portion and energized, and a coil and a tooth portion. An insulating member that is provided and insulates, and a resin molded product that insulates the teeth and the coil by molding a liquid crystalline polyester resin containing a fibrous inorganic reinforcing material or inorganic filler that forms the insulating member, and a mold The resin molded product that integrally molds the high heat-resistant thermoplastic resin so as to cover the tooth portion inserted in the tooth portion, the thickness of the surface on which the coil of the tooth portion is wound in the axial direction is 0.3 to 0.9 mm, And it shape | molds by the holding pressure which sets the surface roughness of the surface where a coil is wound to an axial direction to 10 micrometers Rz or less.

本発明の電動機の製造方法は、固定子を形成する鉄心に直接巻装され通電されるコイルと鉄心間に設けられ絶縁を行う絶縁部材を、繊維状無機強化材もしくは無機充填材を30−40重量%程度含有し熱可塑性樹脂である液晶ポリエステル樹脂を金型に注入し射出成形するステップと、樹脂注入後絶縁部材成形品の表面粗さが10μmRz以下となる保圧圧力にて保圧を行うステップと、成形された樹脂成形品もしくは固定子と一体となった樹脂成形品を冷却後金型から取り出すステップと、を備えたものである。   In the method of manufacturing an electric motor of the present invention, an insulating member that is provided between a coil that is directly wound and energized around an iron core that forms a stator and is insulated, and a fibrous inorganic reinforcing material or an inorganic filler is used for 30-40. A step of injecting a liquid crystal polyester resin, which is a thermoplastic resin containing about wt%, into a mold and injection-molding, and a pressure holding pressure at which the surface roughness of the molded product of the insulating member is 10 μm Rz or less after the resin injection And a step of removing the molded resin molded product or the resin molded product integrated with the stator from the mold after cooling.

本発明の電動機の金型装置は、固定子を形成する鉄心に直接巻装され通電されるコイルと前記鉄心間に設けられ絶縁を行う絶縁部材を、繊維状無機強化材もしくは無機充填材を30−40重量%程度含有し熱可塑性樹脂である液晶ポリエステル樹脂を注入し射出成形し樹脂成形品として成形する金型であって、固定金型側に樹脂成形品の巻枠頂部の形状をしたキャビティ、ランナー及びゲートを形成し、可動金型側に巻枠頂部より下側のキャビティを形成させる金型とし、固定金型と可動金型の分割位置に設けたゲートのサイズを1.2mm各以下の寸法としたものである。   The mold apparatus for an electric motor of the present invention includes a coil that is directly wound around an iron core that forms a stator and energized, and an insulating member that is provided between the iron core and that performs insulation, and a fibrous inorganic reinforcing material or an inorganic filler. A mold containing about 40% by weight of liquid crystalline polyester resin, which is a thermoplastic resin, injection-molded and molded as a resin molded product, the cavity having the shape of the top of the reel of the resin molded product on the fixed mold side , A runner and a gate are formed, and a mold is formed on the movable mold side to form a cavity below the top of the reel, and the size of the gate provided at the dividing position of the fixed mold and the movable mold is 1.2 mm or less. The dimensions are as follows.

この発明は、上記構成としたので、高効率かつ、絶縁信頼性が高い電動機が得られる。又信頼性の高い冷凍・空調装置が得られる。又信頼性が高い電動機を生産性の高い製造方法にて製造できる。又信頼性が高くメインテナンスの容易な電動機の金型装置が得られる。   Since the present invention has the above configuration, an electric motor with high efficiency and high insulation reliability can be obtained. In addition, a highly reliable refrigeration / air conditioning apparatus can be obtained. In addition, a highly reliable electric motor can be manufactured by a highly productive manufacturing method. In addition, it is possible to obtain a mold apparatus for an electric motor that is highly reliable and easy to maintain.

実施の形態1.
以下、本発明に係わる実施の形態を図1及び図2に基づいて説明する。図1はこの発明の実施の形態1における集中巻型電動機の断面図である。また、図2は図1のスロット部20を拡大した図である。固定子1は固定子バックヨーク2の内側に突出したティース3に巻線4がインシュレータ5を介して巻かれている。固定子コア12は一円状に形成され、巻線4は回転子6が無い状態で固定子コア12の内径側から巻線機のノズルが挿入されて、このノズルを動かすことによりインシュレータ5を介してティース3に直巻きされる。いわゆる集中巻で巻装される。固定子1に対向して固定子1の内側には磁石7が鉄心の中に埋め込まれた回転子6が回転可能に配置され図示していない軸受で支持される。なお図1の巻線4の説明を分かりやすくするため実物より大きくし、且つ一部しか記載していないが、本発明ではティース3間の溝に密に巻線を巻くことが出来る。なお図1では巻線4の中心部の記載を省略してあるが実際は密着して巻回してある。これにより溝の中央部にティース巻線絶縁用のスペースやし切り(図示せず)を除く範囲を巻線で埋められるので巻線のスペースファクターが良くなり効率の良い電動機が出来る。
Embodiment 1 FIG.
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS. 1 is a cross-sectional view of a concentrated winding electric motor according to Embodiment 1 of the present invention. FIG. 2 is an enlarged view of the slot portion 20 of FIG. In the stator 1, a winding 4 is wound around a tooth 3 protruding inside the stator back yoke 2 via an insulator 5. The stator core 12 is formed in a circular shape, and the winding 4 is inserted in the winding machine nozzle from the inner diameter side of the stator core 12 without the rotor 6, and the insulator 5 is moved by moving the nozzle. And is directly wound around the teeth 3. Wrapped in so-called concentrated winding. Opposite to the stator 1, a rotor 6 in which a magnet 7 is embedded in an iron core is rotatably arranged inside the stator 1 and supported by a bearing (not shown). In order to make the explanation of the winding 4 in FIG. 1 easier to understand, it is made larger than the actual one and only a part is shown, but in the present invention, the winding can be densely wound in the groove between the teeth 3. In FIG. 1, although the description of the central portion of the winding 4 is omitted, the winding is actually wound closely. As a result, the space excluding the space for insulation of the tooth winding and the area not shown (not shown) is filled with the winding in the center of the groove, so that the space factor of the winding is improved and an efficient electric motor can be obtained.

インシュレータ5は、エナメル線や絶縁被覆された巻線4と固定子12のヨーク部2やティース部3との間の絶縁を行なうために設けられるものである。圧縮機に用いるインシュレータ5としては、液晶ポリエステル樹脂(LCP樹脂)を用いる。このLCP樹脂とは、パラヒドロキシ安息香酸(4-HBA)、ヒドロキシナフトエ酸(2,6-HNA)を重合反応させて得られる熱可塑性樹脂である。このLCP樹脂は従来のインシュレータ材料に比べ、耐熱性や抽出性に優れ、成形時の溶融粘度が低く薄肉での流動特性に優れ、溶融状態から固化するまでの熱量移動量が少ないため、固化速度が非常に速くバリが生成しにくい、という特性とともに200℃以上の耐熱性(熱変形温度)を有している。   The insulator 5 is provided to insulate the enameled wire or the insulation-coated winding 4 and the yoke portion 2 or the tooth portion 3 of the stator 12. As the insulator 5 used for the compressor, a liquid crystal polyester resin (LCP resin) is used. This LCP resin is a thermoplastic resin obtained by polymerization reaction of parahydroxybenzoic acid (4-HBA) and hydroxynaphthoic acid (2,6-HNA). Compared to conventional insulator materials, this LCP resin has excellent heat resistance and extractability, low melt viscosity during molding, excellent flow characteristics when thin, and less heat transfer from the melted state to solidification. However, it has a heat resistance (heat distortion temperature) of 200 ° C. or higher, together with the property that burrs are very difficult to form.

そのため、この電動機を圧縮機の駆動用に使用して高温高圧状態で冷媒や冷凍機油に露出して長期間使用されたとしても信頼性を確保できる。冷媒として、ジフルオロメタン、1,1,1,2,2−ペンタフルオロエタン、1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン、クロロジフルオロメタン、二酸化炭素、アンモニア、ジメチルエ−テル、プロパン、ブタン、冷凍機油として、エステル系、エ−テル系、グリコ−ル系、アルキルベンゼン系、ポリαオレフィン系、ポリビニールエーテル系、ナフテン系鉱油、パラフィン系鉱油のいずれの組み合わせに対しても安定性が高く、圧縮機電動機のインシュレータとして適している。また、本実施の形態に記載したインシュレータ材料は、薄肉成形する必要があり、この材料は溶融流動性に優れることから有効である。   Therefore, even if this electric motor is used for driving a compressor and exposed to refrigerant or refrigeration oil in a high temperature and high pressure state, reliability can be ensured. As the refrigerant, difluoromethane, 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1-trifluoroethane, chlorodifluoromethane, carbon dioxide, ammonia , Dimethyl ether, propane, butane, refrigeration machine oil, any combination of ester, ether, glycol, alkylbenzene, poly α olefin, polyvinyl ether, naphthene mineral oil, paraffin mineral oil However, it is highly stable and suitable as an insulator for a compressor motor. Further, the insulator material described in the present embodiment needs to be formed into a thin wall, and this material is effective because it has excellent melt fluidity.

本発明に使用する液晶ポリエステル樹脂(LCP樹脂)製のインシュレ−タは、融点が350℃以下とし、これであれば成形を行う射出成形機などの熱負荷が少なく大量生産に問題が少ない。また、結晶化潜熱が10J/g以下とすると熱可塑射出成形機の金型の中で樹脂が固化する際の発熱を抑えることが出来、結晶化潜熱が倍以上のPPSに比べ良いし、この結果、金型に対する熱負荷が減らせるので金型寿命に対して有効であり,製造設備が簡単になり量産が容易になる。また溶融時の生成ガス量が200ppm以下(融点+30degの範囲)とすることにより金型の腐食をも抑えることが出来都合が良い。また、インシュレータの強度上から炭素繊維、ガラス繊維、炭化珪素繊維、芳香族ポリアミド繊維、チタン酸カリウムウィスカ−繊維、アルミナ粉、シリカ粉、硫化モリブデン粉、黒鉛粉のうちの少なくとも1つから選ばれる無機充填材を95重量%以下含有するものであって、10乃至50重量%含有するものが使い易い。このような樹脂には耐熱性や熱伝導性、あるいは費用的な問題からは充填材の含有率を増やすのが良いがあまり入れすぎると脆くなるなどの問題もあり10乃至50重量%含有するものが適当で、更に望ましくは30−40重量%程度を選択する。更にステアリン酸系金属塩の滑剤を添加しないか、3.0重量%以下添加した液晶ポリエステル成形品であり、コイルを直接巻装される巻枠部と、固定子の内径または外径側に配置される壁部と、その壁部には巻線の結線を行うための端子箱とを備え、内径または外径側の壁部の金型分割面近傍にサイドゲートを設け、ゲートサイズを1.2mm□以下とし、ゲ−トを凹形状部に設けている。固定子ティース部を覆い巻線が巻装される絶縁材の巻枠部の表面粗さを10μmRz以下としている。   An insulator made of a liquid crystal polyester resin (LCP resin) used in the present invention has a melting point of 350 ° C. or less, so that the heat load of an injection molding machine or the like for molding is small and there are few problems in mass production. Also, if the latent heat of crystallization is 10 J / g or less, heat generation when the resin solidifies in the mold of the thermoplastic injection molding machine can be suppressed, which is better than that of PPS with a latent heat of crystallization of more than double. As a result, the thermal load on the mold can be reduced, which is effective for the life of the mold, and the manufacturing equipment is simplified and mass production is facilitated. Further, when the amount of generated gas at the time of melting is 200 ppm or less (melting point +30 deg.), Corrosion of the mold can be suppressed, which is convenient. Further, in view of the strength of the insulator, at least one of carbon fiber, glass fiber, silicon carbide fiber, aromatic polyamide fiber, potassium titanate whisker fiber, alumina powder, silica powder, molybdenum sulfide powder, and graphite powder is selected. One containing 95% by weight or less of an inorganic filler and containing 10 to 50% by weight is easy to use. Such a resin should contain 10 to 50% by weight because of problems such as heat resistance, thermal conductivity, or cost, but it is better to increase the filler content, but if too much is added, it becomes brittle. Is preferably selected, and more preferably about 30-40% by weight. Furthermore, it is a liquid crystal polyester molded product with no addition of a stearic acid-based metal salt lubricant or 3.0% by weight or less, and is disposed on the winding frame portion on which the coil is directly wound and the inner or outer diameter side of the stator. And a terminal box for connecting the windings to the wall, and a side gate is provided in the vicinity of the mold dividing surface of the wall on the inner or outer diameter side. The gate is provided in the concave shape portion. The surface roughness of the frame portion of the insulating material covering the stator teeth portion and wound with the winding is set to 10 μmRz or less.

ここでいう液晶ポリマ(LCP)とは、液晶構造を発現する高分子で、溶融時に分子が配向して流動しない固体と、分子が配向せずランダムな状態で流動する液体との中間状態となるもので、溶融時にこの液晶性を示す樹脂であれば流動性が良く射出成形が容易になる。本発明の液晶ポリエステル樹脂はベンゼン環類を有するモノマーをエステル結合で繋いだ全芳香族の主鎖型タイプで、この剛直鎖の配向により耐熱性や強度特性が得やすい。この樹脂に無機充填材を30又は40%混合し、290゜Cの融点で溶解時の生成ガス量が150ppm/g以下のものを成形に使用する。   The liquid crystal polymer (LCP) here is a polymer that exhibits a liquid crystal structure, and is in an intermediate state between a solid in which molecules are aligned and do not flow during melting and a liquid in which molecules are not aligned and flow in a random state. However, a resin exhibiting liquid crystallinity when melted has good fluidity and facilitates injection molding. The liquid crystalline polyester resin of the present invention is a wholly aromatic main chain type in which monomers having benzene rings are connected by an ester bond, and heat resistance and strength characteristics are easily obtained by this rigid linear alignment. 30% or 40% of an inorganic filler is mixed with this resin, and a product having a melting point of 290 ° C. and a generated gas amount of 150 ppm / g or less when dissolved is used for molding.

図3は液晶ポリエステル樹脂とPPSとの特性比較を示す図であって、樹脂として液晶ポリエステル樹脂(LCP)は成形条件の変更を含め6種類と、参考用の従来例であるポリフェニレンサルファイド(以下PPS樹脂)を記載する。無機充填材はガラス繊維の充填量である。滑剤は射出成形時に金型から成形樹脂を外しやすくする離形材で、樹脂成形品を金型から外す時に抵抗が大きいと、樹脂が変形したり、かじりが発生するなどの問題が起こる。樹脂に含めるものと金型に吹きつけるものなどがあるが本発明の場合固化時の収縮が均一で樹脂自体の剛性が高いので離形しやすく離形材はほとんど使用しなくとも良いが、成形装置の軽量不安定を解決するため一部に内部離形剤を使用し、どのような成形装置のスクリュー形状でも使用できるようにしている。   FIG. 3 is a diagram showing a characteristic comparison between a liquid crystal polyester resin and PPS. As a resin, there are six types of liquid crystal polyester resins (LCP) including changes in molding conditions, and polyphenylene sulfide (hereinafter referred to as PPS) which is a conventional example for reference. Resin). The inorganic filler is a glass fiber filling amount. A lubricant is a release material that makes it easy to remove a molding resin from a mold during injection molding. If the resistance is high when a resin molded product is removed from the mold, problems such as resin deformation and galling occur. There are some that are included in the resin and others that are sprayed on the mold, but in the case of the present invention, the shrinkage during solidification is uniform and the rigidity of the resin itself is high, so it is easy to release, and almost no release material is required. In order to solve the light weight instability of the apparatus, an internal mold release agent is partially used so that the screw shape of any molding apparatus can be used.

図3の抽出量とはオリゴマ抽出量であって、高分子化合物は一般に分子量一万以上で規則的繰り返し構造を有しこの繰り返し数である数十から数百程度を重合体というが、この内、重合体が20程度までのものをオリゴマといい、このような低分子成分が冷媒や冷凍機油中に溶出してくる量のことである。オリゴマ抽出量が多いと冷媒回路中の低温部で析出し冷媒回路を詰まらせる原因となる。又熱可塑性樹脂は過熱すると溶融するが、融点はこの溶融温度で、この融点は、例えば示差走査熱量計(DSC)等で計測する。結晶化潜熱は、やはりDSCなどで溶融させた樹脂を一定速度で冷却降温したときに結晶ピークの面積から熱量を求めるもので、溶融後に固化する結晶性の樹脂はある温度で結晶化しこの時発熱するこの発熱量を言う。この発熱量が多いと冷却に時間がかかり、成形に時間がかかる。又熱可塑性樹脂は溶融時に微量ガスを発生する。これは樹脂製造段階で重合などが不充分で残留する未反応成分、末端基の反応による副生成物、不純物などが要因であったり、樹脂自体の微量熱分解で発生し、温度が高ければガス量も多くなる。このガス量が多いと金型へのスラグなどの付着も多くなり、腐食や摩耗が増加する。溶融時の生成ガス量によっては金型の腐食や摩耗で金型寿命が短くなる。   The extraction amount in FIG. 3 is an oligomer extraction amount. A high molecular compound generally has a molecular weight of 10,000 or more and has a regular repeating structure, and the number of repetitions of several tens to several hundreds is called a polymer. A polymer having up to about 20 polymers is called an oligomer, and is the amount of such low molecular components eluted into a refrigerant or refrigerator oil. If the amount of extracted oligomer is large, it will precipitate at a low temperature part in the refrigerant circuit and cause clogging of the refrigerant circuit. The thermoplastic resin melts when it is overheated, but the melting point is the melting temperature, and this melting point is measured by, for example, a differential scanning calorimeter (DSC). The latent heat of crystallization is to determine the amount of heat from the area of the crystal peak when the resin melted by DSC or the like is cooled and cooled at a constant rate. The crystalline resin that solidifies after melting is crystallized at a certain temperature and generates heat. Say this calorific value. When this calorific value is large, cooling takes time and molding takes time. The thermoplastic resin generates a trace gas when melted. This may be due to unreacted components remaining due to insufficient polymerization in the resin production stage, by-products and impurities from the reaction of the end groups, or a small amount of thermal decomposition of the resin itself. The amount also increases. When this amount of gas is large, adhesion of slag and the like to the mold increases, and corrosion and wear increase. Depending on the amount of gas generated at the time of melting, the mold life is shortened due to corrosion and wear of the mold.

保圧とは射出した後冷却を行うまでの圧力を保つ時間でこれが極端に長いと成形サイクルが長くなってしまい、量産時に問題となる。グリセリンBDV値とは電線の絶縁層の絶縁耐力を測定する方法で、グリセリン溶液中に浸漬させた電線に電圧をかけ絶縁破壊する電圧、break Down Voltageを測定するもので、この電圧が高いほど絶縁信頼性が高く、特に低い部分があるとそこを基点としたレアーショート発生の原因となる。電動機の巻線はその巻線工程で冶具やノズルなどに電線が接触し絶縁皮膜は傷がつくし、巻線が直接巻回されるインシュレーター5の表面粗度が粗いと電線皮膜にも劣化などの影響がある。成形の際保圧を行う。樹脂が固化時に収縮しこの時縮や凹部など,ヒケを発生しやすい。この時射出する樹脂にシリンダーを回転させて圧力を掛けつづけ,即ち保圧により樹脂の充填量を確保してヒケを防止する。保圧が低い場合は表面粗度も大きくなり絶縁の信頼性を考えた表面粗さ10μmRZをこすのでPPS樹脂を成形する時の保圧より大きくすることが望ましい。この保圧をかけて金型の表面の形状を樹脂に移す金型転写性を良くすることが出来,成形後の樹脂の表面粗度が上がる。図3は、このLCP樹脂による効果を検証した結果でバリの有無や巻線の電圧破壊値などの信頼性評価や成形時の条件選択が得られている。   Holding pressure is the time to maintain the pressure until injection is cooled after injection, and if this is extremely long, the molding cycle becomes long, which becomes a problem during mass production. The glycerin BDV value is a method of measuring the dielectric strength of the insulation layer of the electric wire. It measures the breakdown voltage by applying a voltage to the electric wire immersed in the glycerin solution and measures the breakdown voltage. The reliability is high, and if there is a particularly low part, it will cause the occurrence of a rare short circuit based on that part. In the winding of the electric motor, the wire contacts the jig or nozzle in the winding process, the insulating film is damaged, and if the insulator 5 on which the winding is directly wound is rough, the surface of the insulator 5 is rough and the wire film also deteriorates. There is an impact. Hold pressure during molding. Resin shrinks when solidified, and sinks such as shrinkage and recesses are likely to occur. At this time, the cylinder is rotated to apply pressure to the resin to be injected, that is, the resin filling amount is secured by holding pressure to prevent sink marks. When the holding pressure is low, the surface roughness increases and the surface roughness considering the reliability of insulation is 10 μm RZ. Therefore, it is desirable that the holding pressure is larger than the holding pressure when the PPS resin is molded. By applying this holding pressure, the mold transferability of transferring the shape of the mold surface to the resin can be improved, and the surface roughness of the resin after molding is increased. FIG. 3 shows the result of verifying the effect of this LCP resin, and evaluation of reliability such as the presence or absence of burrs and the voltage breakdown value of the winding, and selection of conditions during molding are obtained.

図3に示す様に、供試樹脂は、比較用としてPPS樹脂が1種、LCP樹脂が2種類であるが、LCPは成形条件(保圧)をそれぞれ3条件、と2条件に振って計6種について検証を行った。LCP樹脂は溶融粘度が低いため、成型機スクリュ−仕様によってはスクリュ−溝への食い込みが悪く、計量が安定しないことがある。これを防止する目的で滑剤を少量添加することがあるが、LCP−1cには脂肪酸アミド系の添加剤を、LCP−2にはステアリン酸系の添加剤をそれぞれ0.3wt%添加している。図3の各樹脂の成形品を粉砕して、クロロホルムによるソックスレ−抽出試験によりオリゴマ抽出量を評価した。LCP−1は抽出量がPPS樹脂の半分であり、LCP−2は添加剤を添加している分LCP−1より抽出量は増加するが、それでもPPS樹脂と同等であり、LCP樹脂は冷媒回路中の圧縮機に使用しても抽出物が冷凍回路を詰まらせるような不都合はなく、信頼性に優れることが分った。   As shown in FIG. 3, the test resin is one type of PPS resin and two types of LCP resin for comparison. The LCP is measured by changing the molding conditions (holding pressure) to 3 conditions and 2 conditions, respectively. Verification was performed for six types. Since the LCP resin has a low melt viscosity, depending on the specifications of the molding machine screw, the bite into the screw groove is poor and the measurement may not be stable. In order to prevent this, a small amount of lubricant may be added, but fatty acid amide-based additives are added to LCP-1c, and stearic acid-based additives are added to LCP-2 at 0.3 wt%, respectively. . The molded product of each resin in FIG. 3 was pulverized, and the oligomer extraction amount was evaluated by a soxhlet extraction test with chloroform. The extraction amount of LCP-1 is half that of the PPS resin, and the extraction amount of LCP-2 is larger than that of the LCP-1 since the additive is added, but it is still equivalent to the PPS resin, and the LCP resin is the refrigerant circuit. It was found that there was no inconvenience that the extract would clog the refrigeration circuit even if it was used for the compressor inside, and it was excellent in reliability.

次いでDSCにより各樹脂の融点を測定したが、いずれの樹脂も約290℃であることから、通常の射出成形機の耐熱性で十分対応可能である。またDSCにより結晶化潜熱を測定した。これは結晶性樹脂が溶融状態から固化するまでの間に発生する熱量を表すもので、この値が大きい場合は金型に保持して冷却する時間が多く必要で、この値が小さい場合は、容易に固化するので冷却時間は極短時間で良いことになる。この結果から、LCP樹脂は結晶化潜熱が3J/g以下と非常に小さいため冷却時間を短くしたハイサイクル成形が可能である。そして、各樹脂の溶融時の生成ガス量を測定したが、LCP樹脂はPPS樹脂に比べて生成ガス量が少なく、腐食性の硫黄成分も含んでいないため、金型メンテナンス頻度を減らせ、金型の長寿命化をはかれるというメリットを有している。   Next, the melting point of each resin was measured by DSC. Since all the resins are about 290 ° C., the heat resistance of a normal injection molding machine is sufficient. The latent heat of crystallization was measured by DSC. This represents the amount of heat generated until the crystalline resin solidifies from the molten state, and when this value is large, it takes a lot of time to hold and cool the mold, and when this value is small, Since it solidifies easily, the cooling time can be very short. From this result, since the latent heat of crystallization is as small as 3 J / g or less, the LCP resin can be subjected to high cycle molding with a short cooling time. And the amount of generated gas at the time of melting of each resin was measured, but since LCP resin has a smaller amount of generated gas than PPS resin and does not contain corrosive sulfur component, the frequency of mold maintenance can be reduced. Has the advantage of extending the service life.

次に各樹脂を同一の金型・成形機を用いてインシュレ−タ形状に成形し、ティ−ス端面に対向する巻枠頂部における、表面粗度を測定した。続いてインシュレ−タをティ−スに挿入し、例えば巻線は線径φ1.1を用て実際に巻線を施した後、1タ−ンづつ巻き解き、巻線のグリセリン中でのBDV値を測定することにより巻線の被膜へ与えるダメ−ジを検証した。この結果から同等保圧条件下ではLCP樹脂はPPS樹脂に比べて金型転写性が若干劣り、成形品の表面粗度が低く、巻線被膜へのダメ−ジも表面粗度に比例して悪い結果であった。しかし保圧圧力を上げて成形することにより、表面粗度が向上し、巻線被膜へのダメ−ジを少なく出来ることが分った。つまりインシュレ−タにLCP樹脂を用いて、巻線が巻装される巻枠部の表面粗度を10μmRZ以下とすることで、巻線被膜へダメ−ジを与えず、絶縁信頼性を確保できる。   Next, each resin was molded into an insulator shape using the same mold and molding machine, and the surface roughness at the top of the winding frame facing the tooth end surface was measured. Subsequently, an insulator is inserted into the tooth. For example, the winding is actually wound using a wire diameter of φ1.1, and then unwinding one turn at a time, and then the BDV in the glycerin of the winding. The damage given to the coating of the winding was verified by measuring the value. From these results, under the same pressure holding conditions, the LCP resin has a slightly inferior mold transfer property compared to the PPS resin, the surface roughness of the molded product is low, and the damage to the winding film is proportional to the surface roughness. It was a bad result. However, it has been found that by increasing the holding pressure and molding, the surface roughness is improved and the damage to the winding film can be reduced. In other words, by using LCP resin for the insulator and setting the surface roughness of the winding frame portion around which the winding is wound to 10 μmRZ or less, it is possible to ensure insulation reliability without giving damage to the winding film. .

図4,図5,図6は固定子ティース軸方向に2分割し、ティース3の軸方向端部からそれぞれティーすに差し込まれるインシュレ−タ5の構造を示す。図4,図5はインシュレータ5の半分を示し,ほとんど図4,図5と同一形状のインシュレータ5を反対側の軸方向端部から差し込み突合せ部を一部重ね合わせる構造。にして巻線を俵巻になるように巻くことにより鉄心との間の絶縁を構成できる。図4の左側にはバックヨーク2の方から見た平面図を,右側にはその側面図を記載しており,回転子側の内径側壁9aとヨーク側の外形側壁9bの間に電線を巻く巻枠8が示されている。この図4を上から見た図が図5の上部側の図で,回転子側から見た図が下部側の図である。インシュレータの軸方向端部には端子箱10が一体成形されており,インシュレ−タの内壁9aの根本近傍に軸方向に設けた段差13を有し,この段差13の凹部にゲ−ト11を設け、ゲ−トのサイズを1.2mm□以下としている。即ち内壁9aの軸方向に段差13を設けて、段差13の凹部における金型分割面位置にゲ−ト11を設けている。この構成によれば、金型を2プレ−ト構造にできるので部品点数を抑えてコストを抑えられる。さらにゲ−トサイズを1.2mm□以下とし、凹部に設けたため、切り離し性が良好であり、さらにゲ−ト残りがあったとしても凹の部分であるため、内壁の外側端面まで突出せず、内壁対向位置で微小ギャップを隔てて回転する、回転子に接触することがない。なおこの図は各ティ−ス毎に分割したインシュレ−タであるが、各ティ−ス毎に分割せず複数のティースに連続して円環状や円弧上の一部で繋がった一体形状のものであっても同じ効果を奏する。   4, 5, and 6 show the structure of the insulator 5 that is divided into two in the stator teeth axial direction and is inserted into the teeth from the axial ends of the teeth 3. 4 and 5 show a half of the insulator 5, and a structure in which the insulator 5 having almost the same shape as that of FIGS. 4 and 5 is inserted from the opposite axial end portion and a part of the butted portion is overlapped. Thus, the insulation between the iron core can be configured by winding the windings in a winding manner. A plan view seen from the back yoke 2 is shown on the left side of FIG. 4, and a side view thereof is shown on the right side. An electric wire is wound between the inner diameter side wall 9a on the rotor side and the outer side wall 9b on the yoke side. A reel 8 is shown. 4 is a diagram on the upper side of FIG. 5, and a diagram viewed from the rotor side is a diagram on the lower side. A terminal box 10 is integrally formed at the end of the insulator in the axial direction, and has a step 13 provided in the axial direction in the vicinity of the root of the inner wall 9a of the insulator. The gate size is 1.2 mm □ or less. That is, the step 13 is provided in the axial direction of the inner wall 9 a, and the gate 11 is provided at the mold dividing surface position in the recess of the step 13. According to this configuration, since the mold can have a two-plate structure, the number of parts can be reduced and the cost can be reduced. Furthermore, since the gate size is set to 1.2 mm □ or less and provided in the concave portion, the detachability is good, and even if there is a gate residue, it is a concave portion, so it does not protrude to the outer end surface of the inner wall, There is no contact with the rotor which rotates through a minute gap at the position facing the inner wall. This figure shows an insulator divided for each tooth. However, the insulator is not divided for each tooth and is connected to a plurality of teeth continuously by a ring or a part on an arc. However, the same effect is achieved.

図6は円環状の固定子の軸方向に対して上下に2分割したインシュレ−タの巻枠部8の縦断面模式図である。このインシュレ−タ内径壁部9aに設けた段差の凹形状部における金型分割面近傍の1箇所にサイドゲ−ト11を設け、2プレ−ト金型で成形を行っている。図6の最上部の巻き枠頂部をとおる中心線の上にこのゲート11が設けられている。また図6のDは巻枠部根本の固定子ティ−ス端面に接する部分においてティ−ス直行方向の幅を示し、dは巻枠部の先端におけるティ−ス直行方向の幅を示し、金型のD寸法はPPS樹脂と同一とすると、LCP樹脂は成形収縮率が小さいため(PPS樹脂に比べてd/Dの値が大きい)、金型からの離型時や、固定子ティ−ス3への挿入時に加わる応力が低くなり、巻枠部根本でのクラックが生じなかった。またPPS樹脂比べて巻枠8の肉厚を低減できる。さらに巻枠部根本幅を、PPS樹脂より小さくしても応力が増加しないため、固定子ティ−ス3とのクリアランスを小さくできる。すなわち巻線行程における巻線張力と巻線機振動によるインシュレ−タ5のブレ量が減り、巻線の整列性の向上、すなわち占線率を向上させられるので、電動機効率が向上するという良好な結果が得られた。   FIG. 6 is a schematic vertical cross-sectional view of an insulator winding frame 8 divided into two parts in the vertical direction with respect to the axial direction of the annular stator. A side gate 11 is provided at one location in the vicinity of the mold dividing surface in the stepped concave portion provided on the insulator inner wall 9a, and molding is performed using a two-plate mold. The gate 11 is provided on the center line passing through the top of the uppermost reel in FIG. In addition, D in FIG. 6 indicates the width in the teeth orthogonal direction at the portion of the winding frame portion in contact with the stator tooth end surface, d indicates the width in the teeth orthogonal direction at the tip of the winding frame portion, If the D dimension of the mold is the same as that of the PPS resin, the LCP resin has a small molding shrinkage (the value of d / D is larger than that of the PPS resin). The stress applied at the time of insertion into No. 3 was low, and no cracks occurred at the base of the reel. Further, the thickness of the winding frame 8 can be reduced as compared with the PPS resin. Further, since the stress does not increase even if the base width of the winding frame portion is made smaller than that of the PPS resin, the clearance with the stator teeth 3 can be reduced. That is, the amount of blurring of the insulator 5 due to winding tension and winding machine vibration in the winding stroke is reduced, and the alignment of the windings, that is, the occupancy rate can be improved, so that the motor efficiency is improved. Results were obtained.

図7は集中巻型電動機の固定子コアの製造方法について説明する。まず、図7(a)に示すような2種類のコア片20a,20bをフレす加工,即ち打ち抜きで形成する。例えば、磁性材料をプレス打ち抜きして2種類のコア片20a,20bを形成する。このコア片20a、20bには連結部22として、表面に凸部を裏面に凹部をそれぞれに設けている。   FIG. 7 illustrates a method for manufacturing a stator core of a concentrated winding electric motor. First, two types of core pieces 20a and 20b as shown in FIG. 7A are formed by fretting, that is, punching. For example, the magnetic material is press-punched to form two types of core pieces 20a and 20b. The core pieces 20a and 20b are each provided with a convex portion on the front surface and a concave portion on the back surface as the connecting portion 22.

次に、図7(b)に示すように2種類のコア片20a,20bを積層する。積層は次のように行なう。まず、同じ種類のコア片20aを複数個の直線状(帯状)に配列することによりコア部材21aを形成する。次に、コア部材21aの上に他の種類のコア片20bを帯状に配列して層を形成する。この時、コア片20bの裏面の凹部がコア片20aの表面の凸部に嵌合するように積層する。すなわち、積層方向に相隣るコア片の凸部と凹部とが嵌合される。さらにコア片20bからなるコア部材21bの上にコア片20aを帯状に配列する。この時もコア片20aの裏面の凹部がコア片20bの表面の凸部に嵌合するように積層する。このようにコア片20aからなるコア部材21aとコア片20bからなるコア部材21bとを互い違いに積層していき、固定子コア12を形成する。   Next, as shown in FIG. 7B, two types of core pieces 20a and 20b are stacked. Lamination is performed as follows. First, the core member 21a is formed by arranging the same kind of core pieces 20a in a plurality of straight lines (bands). Next, another type of core piece 20b is arranged in a strip shape on the core member 21a to form a layer. At this time, lamination is performed so that the concave portion on the back surface of the core piece 20b is fitted to the convex portion on the surface of the core piece 20a. That is, the convex part and the concave part of the core pieces adjacent to each other in the stacking direction are fitted. Further, the core pieces 20a are arranged in a strip shape on the core member 21b made of the core pieces 20b. At this time, lamination is performed so that the concave portion on the back surface of the core piece 20a is fitted to the convex portion on the surface of the core piece 20b. In this manner, the core member 21a made of the core piece 20a and the core member 21b made of the core piece 20b are alternately stacked to form the stator core 12.

このように形成された固定子コア12は、コア片20a,20bにそれぞれ設けられた凸部・凹部の連結部22を中心に、回転可能となる。その後、この固定子コア12のティースに絶縁部材としてのインシュレータ5を取り付ける。このインシュレータはLCP樹脂にて成形されたものである。インシュレータ5を取り付けた後、図7(c)の様に、固定子コア12を直線状(バックヨ−クが水平状態)、またはティ−ス歯先が開くようにバックヨ−クを180°以上に展開した状態に保持して、インシュレータ5を介してティース3の回りに巻線4を施す。その後、連結部22を回転することにより環状に形成する。このようにして最終的に図1に示す固定子を製造する。   The stator core 12 formed as described above can rotate around the connecting portions 22 of the convex portions and the concave portions provided in the core pieces 20a and 20b, respectively. Thereafter, the insulator 5 as an insulating member is attached to the teeth of the stator core 12. This insulator is formed of LCP resin. After the insulator 5 is attached, as shown in FIG. 7C, the stator core 12 is linear (back yoke is in a horizontal state), or the back yoke is set to 180 ° or more so that the tooth teeth are opened. The winding 4 is applied around the teeth 3 through the insulator 5 while being held in the developed state. Thereafter, the connecting portion 22 is rotated to form an annular shape. In this way, the stator shown in FIG. 1 is finally manufactured.

この電動機製造方法を採用することにより、巻線性が良く、より高効率な集中巻型電動機を提供できる。尚、この方法では、コア片20a,20bを形成してから、積層する手順で説明しているが、コア片20aを形成して積層し、その後コア片20bを形成して積層するというようにコア片の形成と積層を繰り返して行なうことで、固定子鉄心を形成するようにしてもよい。この固定子コアに対して、インシュレ−タをあらかじめ上下分割して、各ティ−ス毎に別ピ−スとして挿入する製造方式では、巻枠部の肉厚14は、樹脂流動性ら0.5mmが限界でそれより薄い場合は、挿入時や、巻線時の応力により巻枠根本にクラックが生じる。逆に1.5mm以上の肉厚とすると固定子スロット16の面積が減るため、電動機の効率が低下する。すなわち巻枠部の肉厚を0.5mmから1.5mmの範囲とすると生産性および効率に優れた電動機が提供できる。   By adopting this electric motor manufacturing method, it is possible to provide a concentrated winding electric motor with good winding performance and higher efficiency. In this method, the core pieces 20a and 20b are formed and then laminated. However, the core piece 20a is formed and laminated, and then the core piece 20b is formed and laminated. The stator core may be formed by repeatedly forming and stacking the core pieces. In the manufacturing method in which the insulator is divided into upper and lower parts in advance for each stator core and inserted as a separate piece for each tooth, the thickness 14 of the winding frame portion is 0. When 5 mm is the limit and thinner than that, cracks occur at the base of the winding frame due to stress during insertion or winding. On the contrary, if the wall thickness is 1.5 mm or more, the area of the stator slot 16 is reduced, so that the efficiency of the electric motor is lowered. That is, when the thickness of the winding frame portion is in the range of 0.5 mm to 1.5 mm, an electric motor excellent in productivity and efficiency can be provided.

次に、固定子コアを金型にインサ−トして、固定子ティ−スを覆うようにインシュレ−タを一体成形する場合について説明する。この方式によれば、あらかじめ上下分割したインシュレ−タを、各ティ−ス毎に別ピ−スとして挿入する方式に対して、固定子ティ−スとインシュレ−タのクリアランスはほぼゼロとなる。さらにガタ付きによる巻線性に乱れがないため、占積率が向上する。さらにインシュレータ毎にティース部に挿入する挿入行程がないため生産性が優れ、挿入時の応力による巻枠根本のクラック生成がないので絶縁特性を満たすためだけの最低限の巻枠肉厚とすればよいので、占積率を向上させられる。巻枠の肉厚としては、巻枠肉厚は0.2mmあれば絶縁特性を満たせることが出来る。逆に肉厚が1.5mmを越える固定子スロット16の面積が減るため、電動機の効率が低下する。すなわち巻枠部の肉厚0.2mmから1.5mmの範囲とすると生産性および効率に優れた電動機が提供できる。この様に固定子に一体に成形された絶縁成形体5は巻線時に余計な応力が加わることも無く,即ち絶縁と鉄心との間に隙間など応力の高くなる要素が存在しないため0.2ミリメートルの厚み以上であれば問題ないし,巻き枠の形状を鉄心形状にフィットさせて一体に出来、更に薄い形状を製造しやすいので、各種絶縁仕様やサイズ,形状など巻線の違いを考えても1.5ミリメートルよりも薄いもので良く、高々0.9ミリメートルの厚みがあれば巻線作業上も問題点は無くなると判断される。   Next, the case where the stator core is inserted into the mold and the insulator is integrally formed so as to cover the stator teeth will be described. According to this method, the clearance between the stator teeth and the insulator is almost zero as compared with the method in which the insulators divided in advance are inserted as separate teeth for each tooth. Furthermore, since there is no disturbance in the winding property due to backlash, the space factor is improved. Furthermore, because there is no insertion process for inserting each tooth into the teeth section, the productivity is excellent, and there is no generation of cracks at the base of the reel due to stress at the time of insertion. Since it is good, the space factor can be improved. As the thickness of the reel, if the reel thickness is 0.2 mm, the insulation characteristics can be satisfied. Conversely, since the area of the stator slot 16 having a wall thickness exceeding 1.5 mm is reduced, the efficiency of the motor is lowered. That is, when the thickness of the reel portion is in the range of 0.2 mm to 1.5 mm, an electric motor excellent in productivity and efficiency can be provided. The insulating molded body 5 formed integrally with the stator in this way is not subjected to excessive stress during winding, that is, there is no element that increases stress such as a gap between the insulation and the iron core. If the thickness is more than millimeters, there is no problem, the shape of the winding frame can be integrated with the iron core shape, and it is easy to manufacture a thinner shape, so even if you consider the differences in winding such as various insulation specifications, sizes, shapes, etc. It may be thinner than 1.5 millimeters, and if there is a thickness of at most 0.9 millimeters, it is judged that there will be no problem in winding work.

図8は固定子のバックヨーク部2、複数のティース部3、当該複数のティース部間を繋ぐ連結部22を有し、当該連結部22において折り曲げ可能なコア12の巻線方法説明図で、図8aはこの固定子を金型にインサ−トしてバックヨ−ク2と巻線4との絶縁を行うウェッジ15を、ティ−ス3の歯先と平行方向に薄肉形状にインシュレ−タ5ともに一体に成形する行程を示し、図8bは連結部22を可動させ各ティ−ス3先端側を開いてバックヨ−クを180°以上に展開した後に樹脂を加熱させた上で冶具等の機械的手段等用いてウェッジ15をティ−ス直角方向に変形を加え、その後ティ−ス3に直接巻線を行う工程を示し、図8cは巻線後に、変形させたウェッジ15を前記と同等方法により再度ティ−ス3直角方向に戻す工程を示し、展開したティ−ス3は連結部22を可動させて最終的に図1に示すような環状とする。この方式によれば、絶縁紙やシ−ト状絶縁樹脂等をティース間絶縁として挿入することなく固定子バックヨ−ク部2と巻線4との絶縁を確実にできるので、部品点数の削減ができる。   FIG. 8 is an explanatory view of a winding method of the core 12 that has a back yoke portion 2 of the stator, a plurality of teeth portions 3, and a connecting portion 22 that connects the plurality of teeth portions, and can be bent at the connecting portion 22. In FIG. 8a, a wedge 15 that insulates the back yoke 2 and the winding 4 by inserting this stator into a mold is formed into a thin wall shape in a direction parallel to the tooth tip of the tooth 3. Fig. 8b shows the process of integrally molding both, and the connecting portion 22 is moved to open the tips of the teeth 3 and the back yoke is expanded to 180 ° or more. FIG. 8c shows a process in which the wedge 15 is deformed in the direction perpendicular to the tooth by using a special means, and then the tooth 3 is directly wound, and FIG. Shows the process of returning to the direction perpendicular to the tooth 3 again, The developed teeth 3 are moved into the annular shape as shown in FIG. According to this method, since the insulation between the stator back yoke portion 2 and the winding 4 can be ensured without inserting insulating paper or sheet-like insulating resin as insulation between teeth, the number of parts can be reduced. it can.

図9はインシュレータ5を固定子コア12に挿入する工程を説明する説明図である。図8aの様に巻線が無い状態でコアに挿入されるので簡単な作業で行える。以上のような製造方法で製造される電動機は、電動機の低振動、低騒音化のためには電動機のスロット数および極数を多くすることが有効である。従来の集中巻式電動機は巻線占積率が低いため、極数を多くするのに限界があったが、本発明の集中巻式電動機は固定子スロットの占積率を高くできるので、スロット数および極数を多くしても効率の低下がないため、4ヶ以上の極数、より好ましくは6極とする事が可能で、小型で、性能が良いものが得られる。   FIG. 9 is an explanatory diagram for explaining a process of inserting the insulator 5 into the stator core 12. Since it is inserted into the core without winding as shown in FIG. In the electric motor manufactured by the manufacturing method as described above, it is effective to increase the number of slots and the number of poles of the electric motor in order to reduce the vibration and noise of the electric motor. Since the conventional concentrated winding motor has a low winding space factor, there is a limit to increasing the number of poles, but the concentrated winding motor of the present invention can increase the space factor of the stator slot, Even if the number and the number of poles are increased, the efficiency does not decrease, so the number of poles can be 4 or more, more preferably 6 poles, and a small size and good performance can be obtained.

図10は射出成形装置50の金型装置中でインシュレータ5を成形している状態を説明する説明図で,金型装置は固定金型37と可動金型36よりなる。図示していない射出成形装置から注入された上記で説明した樹脂の溶融品を、金型内の樹脂流動路であるスプルー34、ランナー35を通してゲート11から成形品5の形状を決めている金型内の空間へ供給される。固定金型と可動金型の境界である金型分割面はランナーと接続するゲート11の存在する面であり,この結果2プレート金型と出来るので部品点数の少ない製造装置が得られる。しかも3プレート金型機に比べ成形サイクル時間が短くなり大量生産にも有効である。もちろん3プレート金型など多くのプレートを有する金型にすればより複雑な形状やゲートを壁部先端に設けるなどゲート位置を自由に選択できる。   FIG. 10 is an explanatory view for explaining a state in which the insulator 5 is molded in the mold apparatus of the injection molding apparatus 50, and the mold apparatus includes a fixed mold 37 and a movable mold 36. A mold for determining the shape of the molded product 5 from the gate 11 through the sprue 34 and the runner 35 which are resin flow paths in the mold, and the molten product of the resin explained above injected from an injection molding apparatus (not shown) Supplied to the interior space. The mold dividing surface, which is the boundary between the fixed mold and the movable mold, is a surface where the gate 11 connected to the runner is present. As a result, a two-plate mold can be obtained, so that a manufacturing apparatus with a small number of parts is obtained. In addition, the molding cycle time is shorter than that of a 3-plate mold machine, which is effective for mass production. Of course, if a mold having many plates such as a three-plate mold is used, the gate position can be freely selected by providing a more complicated shape or gate at the tip of the wall.

図11に射出成形装置全体を説明する説明図を示す。射出成形機は計量されて一定量が決められた樹脂のペレットや粒体を投入するホッパー38から供給されたシリンダー39内で樹脂を溶融させスクリュー40で金型装置の方へ押し出す。射出成形機から固定金型37に押し込まれた溶融樹脂はスプルー34などの流道路から成形品60の空間へ注入される。可動金型36は固定盤42に対し固定金型37の方向へ駆動されて金型装置が一体となり,型締めが行われた後でこの樹脂の注入が射出されて行われる。樹脂注入後保圧され、冷却されて固化した後で可動金型36が固定盤42の方向へ成形品を固着したままゲートで破断して引き剥がされる。又後射出成形機も可動盤41により固定金型37から引き離される。成形品はピンにより可動金型から押し出されて取り出すことが出来る。   FIG. 11 is an explanatory diagram for explaining the entire injection molding apparatus. The injection molding machine melts the resin in a cylinder 39 supplied from a hopper 38 into which resin pellets and granules that have been weighed and determined in a predetermined amount are charged, and pushes the resin toward the mold apparatus with a screw 40. The molten resin pushed into the fixed mold 37 from the injection molding machine is injected into the space of the molded product 60 from the flow road such as the sprue 34. The movable mold 36 is driven in the direction of the fixed mold 37 with respect to the fixed platen 42 so that the mold apparatus is integrated, and after the mold is clamped, this resin is injected. After the resin is injected, the pressure is maintained, and after cooling and solidifying, the movable mold 36 is broken and peeled off at the gate while the molded product is fixed in the direction of the fixed platen 42. The post injection molding machine is also separated from the fixed mold 37 by the movable platen 41. The molded product can be removed by being pushed out of the movable mold by a pin.

射出成形は以上の様に、計量,型締め,射出,保圧,冷却,離型,製品取出し,の工程で1サイクルが構成される。第1サイクルの冷却工程中に第2サイクルの計量が開始されるので計量時間は射出成形サイクルに入れないとすると、型締めから製品取出しまでが1サイクルの時間となる。方締めと取り出し時間は成形装置能力と金型構造に依存するので、射出,保圧,冷却時間が樹脂特性に依存する。既に述べてきた様に,本発明のLCP樹脂を使うことによりこのサイクル時間を短縮でき,且つ,冷却などに大掛かりな成形装置を使わなくとも済み,簡単に量産が可能になる。   As described above, in injection molding, one cycle is constituted by the processes of measurement, mold clamping, injection, pressure holding, cooling, mold release, and product removal. Since the measurement of the second cycle is started during the cooling process of the first cycle, if the measurement time is not included in the injection molding cycle, the time from mold clamping to product removal is one cycle. Since the fastening time and the take-out time depend on the molding apparatus capability and the mold structure, the injection, holding pressure, and cooling time depend on the resin characteristics. As already described, by using the LCP resin of the present invention, this cycle time can be shortened, and it is not necessary to use a large molding apparatus for cooling and the like, and mass production can be easily performed.

以上のとおり,図10に示す装置で製造されるインシュレータ5は、ティース軸方向に分割したもので,巻線が巻かれる巻枠8と巻き線4がティース直角方向に線漏れするのを防止するため軸方向延長方向のコイルエンドに対向する位置に設けられた内径壁又は外形壁9a,9bより構成され,外形壁部には巻き線の結線を行うための端子箱10が設けられる。内径壁部には図5に示す様に1−2ミリメートル程度の段差13を設けこの引っ込んだ部分に1.2mm角より小さな面積のゲートを設けて、熱可塑性の液晶ポリエステル樹脂により成形されたものである。成形にあたっては金型分割面を図10の如くインシュレータ5の巻枠部8が固定子ティース端面に接する面で、巻き枠頂部の裏側の面と同一面で,ゲート11の近傍に設ける。固定金型37側にインシュレータ5の内外径壁部,巻枠頂部の形状をしたキャビティおよびランナー,ゲートを形成し,可動金型36側には巻枠部の頂部より下側の形状のキャビティを形成させる。これにより樹脂の注入をスムースに行え,且つ,製品の成形と離型が簡単に行える2プレート金型で樹脂成形品を製造できる。なお金型装置の場合大きな射出圧力が金型に作用するため,この力に耐える様に油圧やエアー圧により型締めを行う。   As described above, the insulator 5 manufactured by the apparatus shown in FIG. 10 is divided in the tooth axis direction, and prevents the winding frame 8 and the winding 4 around which the winding is wound from leaking in the direction perpendicular to the teeth. Therefore, the inner wall or outer wall 9a, 9b is provided at a position facing the coil end in the axially extending direction, and a terminal box 10 for connecting windings is provided on the outer wall. As shown in FIG. 5, a step 13 of about 1-2 millimeters is provided on the inner diameter wall portion, and a gate having an area smaller than 1.2 mm square is provided in the retracted portion, and is molded from a thermoplastic liquid crystal polyester resin. It is. In molding, the mold dividing surface is provided in the vicinity of the gate 11 on the same surface as the back surface of the top of the winding frame on the surface where the winding frame 8 of the insulator 5 is in contact with the end face of the stator teeth as shown in FIG. A cavity having a shape of the inner and outer diameter walls of the insulator 5 and the shape of the top of the winding frame, a runner, and a gate are formed on the fixed mold 37 side, and a cavity having a shape below the top of the winding frame is formed on the movable mold 36 side. Let it form. This makes it possible to produce a resin molded product with a two-plate mold that can smoothly inject the resin and that can easily mold and release the product. In the case of a mold device, a large injection pressure acts on the mold, so the mold is clamped by hydraulic pressure or air pressure to withstand this force.

金型のキャビティ内部に樹脂が充填された後冷却・固化によりインシュレータ5が形成される。次に型開きを行い可動金型に埋設されたイジェクトピンを突出させることにより製品およびランナ―から金型を取り出す。この際にイジェクトピンを製品側の巻枠頂部裏側の面とランナー部双方に設けて、ランナー側ピンにアンダーカット部を設け,ランナー側だけ保持しインシュレーたー成形品より離型を送らせて、即ちピン突出のタイミングをずらして製品をランナーより若干早め可動金型から切り離すことによりゲートへの力をあまりかけずにランナー35をゲート位置で切り離す工程を省略することが出来る。これによりゲート切り離し工程が不要になるだけでなく,ゲート切り離し後のゲート残りを短く抑えることが可能になりこのゲート残りが段差の凹部から突出せず、ゲート処理も不要に出来るので工程が簡素化でき生産性に優れた生産方式とすることが出来る。   After the resin is filled in the mold cavity, the insulator 5 is formed by cooling and solidification. Next, the mold is opened, and the mold is taken out from the product and the runner by protruding the eject pin embedded in the movable mold. At this time, eject pins are provided on both the back side of the top of the reel on the product side and the runner part, an undercut part is provided on the runner side pin, and only the runner side is held. That is, the step of separating the runner 35 at the gate position without applying much force to the gate can be omitted by shifting the pin protrusion timing and separating the product from the movable mold slightly earlier than the runner. This not only eliminates the need for a gate separation process, but also makes it possible to keep the gate remaining after the gate separation short, and this gate residue does not protrude from the recess in the step, making the gate process unnecessary, simplifying the process. And a production method with excellent productivity can be obtained.

以上の様に、固定子を形成する鉄心に直接巻装され通電されるコイルである巻線とヨークやティース間に設けられ絶縁を行う絶縁部材を、繊維状無機強化材もしくは無機充填材を含有する本発明の液晶ポリエステル樹脂を金型に注入して樹脂成形品を成形して製造する際、この液晶ポリエステル樹脂は融点が350゜C以下、融解時の生成ガス量が200ppm以下であって、結晶化潜熱が10J/g以下のものを前記金型に注入して熱可塑性射出成形するので、射出から成形品取出しまで簡単で早い電動機の製造方法が得られる。更に樹脂成形品のコイルの軸方向端部であるコイルエンドに対向する部分であって内径側もしくは外径側の壁部先端又は壁部根元部の成形品凹部に設けたゲートから液晶ポリエステル樹脂を注入するのでゲート処理工程なども省略できる。なお上記説明は内径側壁面に凹部を設け個々にゲートを持ってくる形状の説明をしたが外径側壁面の端子箱などの凹部であっても良いし,更に、固定子の内側に回転子を回転させる構造の電動機にて説明してきたが、アウターローター,即ち固定子を中心側に設け外側に回転子を配置する構造でも同様な形状,製造方法が可能であることは当然である。   As described above, an insulating member that is provided between a winding and a yoke or a tooth that is directly wound and energized on an iron core that forms a stator, and that includes a fibrous inorganic reinforcing material or an inorganic filler. When the liquid crystalline polyester resin of the present invention is injected into a mold to produce a resin molded product, the liquid crystalline polyester resin has a melting point of 350 ° C. or lower and a generated gas amount at melting of 200 ppm or lower, Since the one having a latent heat of crystallization of 10 J / g or less is injected into the mold and thermoplastic injection molding is performed, a simple and quick method for manufacturing an electric motor can be obtained from injection to removal of a molded product. Furthermore, liquid crystal polyester resin is applied from the gate provided at the end of the inner wall or the outer diameter of the wall or at the bottom of the wall of the molded product that is opposite to the coil end, which is the axial end of the coil of the resin molded product. Since the implantation is performed, a gate processing step can be omitted. In the above description, a concave portion is provided on the inner side wall surface and the gates are individually brought in. However, a concave portion such as a terminal box on the outer side wall surface may be used, and further, the rotor is provided inside the stator. However, it should be understood that the same shape and manufacturing method can be used for an outer rotor, that is, a structure in which a stator is provided at the center and a rotor is disposed outside.

図12,図13は本発明の液晶ポリエステル樹脂を使用した射出成形により成形品を製造する別の成形装置の構成を説明する説明図である。即ち固定子1を形成するヨーク2の内周または外周方向に突出した複数ティース部3を有する鉄心と、このティ−ス部3に直接巻装され通電されるコイルである巻線4と、コイル4とティース部3間に設けられ絶縁を行う絶縁部材であるインシュレータ5と、を備えた電動機を製造する際,絶縁部材5として、繊維状無機強化材もしくは無機充填材を含有する液晶ポリエステル樹脂を金型に注入して樹脂成形品を成形する時に、金型に固定子1をそのまま埋め込み,特にティース部3に直接樹脂が密着して一体となるようにキャビティにこのティースを挿入してから、液晶ポリエステル樹脂を注入し、前記固定子と前記樹脂成形品を一体に成形するものである。   12 and 13 are explanatory views for explaining the configuration of another molding apparatus for manufacturing a molded product by injection molding using the liquid crystalline polyester resin of the present invention. That is, an iron core having a plurality of tooth portions 3 projecting in the inner or outer peripheral direction of a yoke 2 forming the stator 1, a winding 4 that is a coil that is directly wound around the tooth portion 3 and energized, and a coil 4 and an insulator 5 that is an insulating member provided between the teeth portion 3 and the insulating member 5 is manufactured. As the insulating member 5, a liquid crystalline polyester resin containing a fibrous inorganic reinforcing material or an inorganic filler is used. When molding the resin molded product by injecting into the mold, the stator 1 is embedded in the mold as it is, and in particular, the teeth are inserted into the cavity so that the resin is in direct contact with the teeth portion 3 and integrated. Liquid crystal polyester resin is injected, and the stator and the resin molded product are integrally formed.

この製造方法では先に図8で説明した固定子1のヨ−ク2とコイル4との絶縁を行うウェッジ15を、固定子1のティ−ス部3の歯先と平行方向に薄肉形状に金型内で一体に射出成形を行なうことが出来る。このように電動機の固定子を形成する鉄心ティース部に直接巻装され通電されるコイルと鉄心間に設けられ絶縁を行う絶縁部材を形成するように、繊維状無機強化材もしくは無機充填材を含有する液晶ポリエステル樹脂を注入して樹脂成形品を成形する金型の場合,固定子の鉄心部分を覆うとともに、ティース部3の周囲にキャビティを設け,このキャビティを覆う様な構成としている。   In this manufacturing method, the wedge 15 for insulating the yoke 2 of the stator 1 and the coil 4 described above with reference to FIG. 8 is thinned in a direction parallel to the tooth tip of the tooth portion 3 of the stator 1. Injection molding can be performed integrally in the mold. Contains a fibrous inorganic reinforcing material or inorganic filler so as to form an insulating member that is provided between the coil and the core that is directly wound and energized in the iron core teeth forming the stator of the electric motor in this way. In the case of a mold for injecting a liquid crystal polyester resin to mold a resin molded product, the core portion of the stator is covered, and a cavity is provided around the teeth portion 3 so as to cover the cavity.

図12は金型の正面図で,図13は金型の側面図である。射出成形機のノズル51は固定盤42と接触しては樹脂を射出し,終わると離れる構造で,固定盤42からランナーストリッパー52,固定金型37に設けてある溶融樹脂の流路であるスプルー34,ランナー35を経由してゲート11からキャビティに樹脂が注入される。成形時は固定金型37に型締めされ一体にキャビティを形成する可動金型36はスライド金型36Aとスライド金型36Bが可動盤41にも受けられ記載していないインジェクションピンとともに、固定金型に型締め,型開きし、成形品を取り出す構成にしている。   FIG. 12 is a front view of the mold, and FIG. 13 is a side view of the mold. The nozzle 51 of the injection molding machine has a structure that injects the resin when it comes into contact with the fixed platen 42 and leaves when it is finished. 34, resin is injected from the gate 11 into the cavity via the runner 35. At the time of molding, the movable mold 36, which is clamped to the fixed mold 37 and integrally forms a cavity, is also received by the movable mold 41 with the slide mold 36A and the slide mold 36B together with the injection pins not shown. The mold is clamped and opened, and the molded product is taken out.

このインシュレータ一体成形金型による製造方法では図8の様に、先ず各ティース部を連結する連結部22により展開自在に稼動させてバックヨーク2を水平状態とする。図12の金型装置が型開きの状態で可動盤41にバックヨークを図の下側にして固定子コア1をスライド金型36Bの所定位置に固定する。このスライド金型Bは少なくとも1対設けられ例えば一方を固定し,他方を横方向にスライドさせてヨークを設定された位置である一方へ押し付けて両側から抑えこむ。次に固定子コア1の軸方向両端面を絶縁材5の空間を介して覆うスライド金型36Aも軸方向両側からスライドさせ固定子スロット部に挿入し,固定子スロット中央部で付き合わせる。ついで可動盤41、スライド金型36A,36Bの可動金型をを油圧やエアー圧にて駆動し固定金型に固定し、ランナーストリッパープレート52,固定盤共々型締めを行い,各方向における圧力を成形時の樹脂圧力以上の圧力で保持する。こうして固定子コア,スライド金型36A,36Bおよび固定金型によりインシュレータ形状で樹脂が注入される空間であるキャビティが形成される。   In the manufacturing method using this insulator-integrated mold, as shown in FIG. 8, first, the back yoke 2 is brought into a horizontal state by being operated in a deployable manner by connecting portions 22 that connect the respective tooth portions. With the mold apparatus of FIG. 12 in the mold open state, the stator core 1 is fixed at a predetermined position of the slide mold 36B with the back yoke on the movable platen 41 on the lower side of the figure. At least one pair of the slide molds B is provided, for example, one is fixed, the other is slid in the lateral direction, and the yoke is pressed against one of the set positions to be suppressed from both sides. Next, the slide mold 36A that covers both axial end surfaces of the stator core 1 through the space of the insulating material 5 is also slid from both axial sides and inserted into the stator slot portion, and attached at the center portion of the stator slot. Next, the movable platen 41 and the movable molds 36A and 36B are driven by hydraulic pressure or air pressure to be fixed to the fixed die, and the runner stripper plate 52 and the fixed platen are clamped together to adjust the pressure in each direction. Hold at a pressure higher than the resin pressure during molding. Thus, a cavity, which is a space in which resin is injected in an insulator shape, is formed by the stator core, the slide molds 36A and 36B, and the fixed mold.

続いて射出成形機のシリンダーノズルを固定盤の溶融樹脂入口であるスプールブッシュに接触させて液晶ポリエステル樹脂を射出する。スプルー34,ランナー35,ゲート11を通過した溶融樹脂はキャビティ内に流動して金型内の配管に通水するなどの冷却を行い,樹脂を固化して固定子コアとともにインシュレータ5を一体に成形させる。本発明のように流動性の良い樹脂を使用するが,更に加えて,ゲートは各ティース毎にインシュレータ内壁部分に例えば1ヶ所設け,樹脂流動長さコア積層厚さの半分とし,樹脂が射出され流動中に固化してショート不良となるのを防止している。図に示す様にスライド金型36A,36Bの間や固定金型とスライド金型間にウエッジ15のキャビティを設けることにより成形時にインシュレータ5と一緒にウェッジ15をどのような形状、例えば部分的に薄くするなどしても成形できる。なお図8の説明ではウェッジ位置を外径壁側だけに設ける構造を説明したがこの様に内径壁側にも簡単に設けることが出来る。   Subsequently, the liquid crystal polyester resin is injected by bringing the cylinder nozzle of the injection molding machine into contact with the spool bush which is the molten resin inlet of the stationary platen. The molten resin that has passed through the sprue 34, the runner 35, and the gate 11 flows into the cavity and is cooled by passing through the piping in the mold, and the resin is solidified to integrally mold the insulator 5 together with the stator core. Let Resin with good fluidity is used as in the present invention. In addition, for example, one gate is provided for each tooth on the inner wall of the insulator so that the resin flow length is half of the core lamination thickness, and the resin is injected. It prevents solidification during flow and short circuit failure. As shown in the figure, by providing a cavity of the wedge 15 between the slide molds 36A and 36B or between the fixed mold and the slide mold, the wedge 15 is formed in any shape, for example, partially together with the insulator 5 at the time of molding. It can be molded even if it is made thinner. In the description of FIG. 8, the structure in which the wedge position is provided only on the outer diameter wall side has been described. However, the wedge position can be easily provided on the inner diameter wall side as described above.

この様に、固定子のバックヨーク部、複数のティース部、複数のティース部間を繋ぐ連結部を有し、当該連結部において折り曲げ可能な固定子鉄心とし、固定子鉄心を金型装置にインサートして絶縁樹脂と一体に成形することにより、固定子ティース部の軸方向において巻線が巻装される面の絶縁材成形品の肉厚を0.3から0.9mmとすることが出来,さらに一層効率が良く信頼性の高い電動機を製造することができる。   In this manner, the stator has a back yoke portion, a plurality of teeth portions, and a connecting portion that connects the plurality of tooth portions, and a stator core that can be bent at the connecting portion is formed, and the stator core is inserted into the mold apparatus. Then, by molding integrally with the insulating resin, the thickness of the molded product of the insulating material on the surface around which the winding is wound in the axial direction of the stator teeth can be 0.3 to 0.9 mm. In addition, it is possible to manufacture an electric motor with higher efficiency and higher reliability.

なおウエッジ15を有する構造の場合の製造では,先ずバックヨ−クと巻線との絶縁を行うウェッジを、ティ−スの歯先と平行方向に薄肉形状に金型内で一体に射出成形を行う工程と、連結部を可動させ各ティ−ス先端側を開いてを水平方向以上に展開した後に樹脂の熱変形温度以上に過熱させるか、冶具等の機械的手段を用いてウェッジをティ−ス直角方向に変形を加えてからティ−スに直接巻線を行う工程と、巻線後に変形させたウェッジを前記と同等方法により再度ティ−ス直角方向に戻し、展開したティ−スを間接部を可動させて環状とする工程による作業により製造することが出来る。   In the case of manufacturing the structure having the wedge 15, first, a wedge for insulating the back yoke from the winding is integrally molded in the mold in a thin shape in a direction parallel to the tooth tip of the tooth. Process and move the connecting part, open each tooth tip side and expand it in the horizontal direction and then heat it above the thermal deformation temperature of the resin, or use a mechanical means such as a jig to tooth the wedge. A process in which the teeth are wound directly after being deformed in the right-angle direction, and the wedge deformed after the winding is returned to the teeth in the right-angle direction by the same method as described above, and the developed teeth are indirect. Can be manufactured by an operation by a process of moving the ring to an annular shape.

上記は連結部22を有し展開可能な固定子を水平方向に伸ばしてから射出成形したが,円環状の固定子を金型にインサートして絶縁樹脂と一体に成形することも可能であり,これにより固定子ティース部を覆い、ティ−ス部の軸方向において巻線が巻装される面の絶縁材成形品の肉厚を0.3から0.9mmと薄い絶縁にすることが出来る。水平展開状態で巻線を巻く作業では無理な力をかけることなく簡単な作業のため絶縁の厚みは絶縁耐力だけで決めることが出来0.2mm以上とより薄く出来るが,円環状固定子にコイルを巻く作業には巻線機の複雑な作業により力の方向が変わるなど絶縁に加わる負担を考え0.3mm以上の薄さが必要である。   The above is the injection molding after extending the deployable stator having the connecting portion 22 in the horizontal direction, but it is also possible to insert the annular stator into the mold and integrally molded with the insulating resin, As a result, the stator tooth portion is covered, and the thickness of the insulating material molded product on the surface around which the winding is wound in the axial direction of the tooth portion can be made as thin as 0.3 to 0.9 mm. In the work of winding the winding in the horizontal deployment state, the insulation thickness can be determined by the dielectric strength alone because it is a simple work without applying excessive force, but it can be made thinner than 0.2 mm. For the work of winding the wire, it is necessary to have a thickness of 0.3 mm or more in consideration of the load applied to the insulation such as the direction of the force is changed by the complicated work of the winding machine.

別の金型装置の説明を図16乃至図19にて示す。図16は型締めしている金型装置のキャビティにインシュレータ5が成形機ノズルより射出された溶融樹脂が固化している状態を示す。射出された溶融金属は溶解プラスチックを移送する経路71を通りランナー35からゲート11を介し金型本体の型板に角穴又は丸穴を掘り込み穴に嵌めこまれたコア入れ子74、75のなかに設けられたキャビティに充填され固化されてインシュレータ5となる。この時途中の通路にもスプルー34やランナー35の如く溶融金属が充填されて固化する。この状態ではエジェクタープレート下79に埋設されたロック押だしピン82は,頭部の下方にクリアランスdを設けている。エジェクタープレート上下78、79が、成形機の動力を伝達するシャフトであるエジェクターロッド81により上昇した時に、このクリアランスdの距離まで押だしピン82は動作しない。そのため同じくエジェクタープレート78、79により押し出されるエジェクターピン77に比べランナーロックピン76は動き出しが遅くなり動作タイミングが遅れることになる。即ちランナーロックピン76はエジェクターピン77とは時間差を置いて動作することになる。また型開きの時ランナーを可動側にひきつけスプールブッシュからスプールを引き抜くとともに製品とランナーをゲート11で切り離す役目であるランナーロックピン76を押し出してランナー35を金型から取り出す役割であるロックピン押だしピン82の上部は図16B部詳細に記す如くランナー35のアンダーカット部にはまり込む形状をしている。ランナーに食い込み可動側固に保持されるようであればアンダーカットで無くとも良い。エジェクタープレート78,79は押し出し装置が可動するためのスペースを造るスペーサーブロック80の範囲内で動くことが出来る。   A description of another mold apparatus is shown in FIGS. FIG. 16 shows a state in which the molten resin injected from the nozzle of the molding machine 5 is solidified in the cavity of the mold apparatus being clamped. The injected molten metal passes through a path 71 for transporting the molten plastic, and through the runner 35 through the gate 11, a square hole or a round hole is dug in the mold plate of the mold body, and the core inserts 74 and 75 are fitted in the holes. The insulator 5 is filled and solidified into the cavity provided in the structure. At this time, the passage in the middle is filled with molten metal like the sprue 34 and the runner 35 and solidifies. In this state, the lock push-out pin 82 embedded in the lower ejector plate 79 has a clearance d below the head. When the ejector plates 78 and 79 are raised by the ejector rod 81 which is a shaft for transmitting the power of the molding machine, the push-out pin 82 does not operate up to the distance of this clearance d. Therefore, compared to the ejector pin 77 pushed out by the ejector plates 78 and 79, the runner lock pin 76 starts moving later and the operation timing is delayed. That is, the runner lock pin 76 operates with a time difference from the ejector pin 77. At the time of mold opening, the runner is pulled to the movable side, the spool is pulled out from the spool bush, and the runner lock pin 76, which serves to separate the product from the runner at the gate 11, is pushed out and the runner 35 is removed from the mold. The upper portion of the pin 82 has a shape that fits into the undercut portion of the runner 35 as described in detail in FIG. 16B. The undercut is not necessary as long as the runner bites into the runner and is held firmly. The ejector plates 78 and 79 can move within a spacer block 80 that creates space for the pusher to move.

図17は図16から金型が開く工程を説明する図で、可動金型が成形機の動力により下のほうへ開く型開きを示している。金型の可動側と固定側が切り離されることにより溶融金属が固化した樹脂成形製品であるインシュレータ5,ランナー35,スプルー34などはそのまま可動側金型に接着した状態で残り,固定側から離型される。   FIG. 17 is a diagram for explaining the process of opening the mold from FIG. 16 and shows the mold opening in which the movable mold is opened downward by the power of the molding machine. Insulator 5, runner 35, sprue 34, etc., which are resin molded products with molten metal solidified by separating the movable side and fixed side of the mold, remain attached to the movable side mold and are released from the fixed side. The

図18は可動側金型から成形品を離型させる動作を説明する図で,離型のため製品突き出し動作を油圧などにより駆動されるエジェクタロッド81が行う。このエジェクタロッド81がエジェクタプレート78、79を固定側へ動かしエジェクタピン77が成形品5を金型から先ずクリアランスd寸法だけ押し出す。この時ランナー35はランナーロックピン76により保持されているので、製品5とランナー35はゲート位置で自動的に切断される。先に説明した様にゲートを1.2mm角以下としているので、ピンによる押し出しのみで容易に成形品とランナーは切断される。逆にいうと寸法dはこの切断を行える寸法以上にすれば良い。図19は製品およびランナー他を取り出す説明図で,エジェクタープレート78,79が更に上昇するとゲート位置で切断されたランナーはロックピンにより金型から押し出されるので簡単に取出しが可能となる。この様に射出成形製品と金型内の経路などの溶融固化品であるランナーなどとは離型に時間差を持たせることにより成形サイクルが簡単になる。当然製品も金型から押し出され、ロボットアームによりチャックして取り出せる位置に着た時に製品と,スプルーをつけたランナーは同時に取り出しが可能となる。このような構成により簡単で短時間の射出成形サイクルを行うことが出来る。   FIG. 18 is a diagram for explaining the operation of releasing the molded product from the movable mold, and the ejector rod 81 driven by hydraulic pressure or the like performs the product ejecting operation for releasing. The ejector rod 81 moves the ejector plates 78 and 79 to the fixed side, and the ejector pin 77 first pushes the molded product 5 out of the mold by the clearance d. At this time, since the runner 35 is held by the runner lock pin 76, the product 5 and the runner 35 are automatically cut at the gate position. As described above, since the gate is set to 1.2 mm square or less, the molded product and the runner are easily cut only by extrusion with a pin. In other words, the dimension d may be larger than the dimension that enables this cutting. FIG. 19 is an explanatory view for taking out products, runners and the like. When the ejector plates 78 and 79 are further raised, the runner cut at the gate position is pushed out from the mold by the lock pin, so that it can be easily taken out. In this way, the molding cycle is simplified by providing a time difference in mold release between the injection molded product and the runner which is a melt-solidified product such as a path in the mold. Of course, the product and the runner with sprue can be taken out at the same time when the product is pushed out of the mold and is put in a position where it can be chucked out by the robot arm. With such a configuration, a simple and short injection molding cycle can be performed.

図14にてPPS樹脂とLCP樹脂の成形サイクルの比較を説明する。先に説明した様に成形サイクルは型締め,射出,保圧,冷却,離型、製品取出しの各工程での作業が行われるが,本発明の液晶ポリエステル樹脂では結晶化潜熱が大幅に小さく,結晶化樹脂は冷却時の固化するまでの熱量が小さいので発熱が小さく冷却時間が大幅に低下していることがわかる。他の工程は大差ないとしても金型の冷却が早く成形サイクルが大幅に短く出来るので製品が短時間で得られ,簡単に量産が可能となる。以上の様に本発明は、高効率、且つ、信頼性が高く大量生産が可能な電動機が得られる。更に製造サイクルが短く大量生産に適した電動機の製造方法を得ることが出来る。更に簡単な構成で寿命の長いこの電動機の金型装置となるものである。   A comparison of molding cycles of PPS resin and LCP resin will be described with reference to FIG. As explained above, the molding cycle involves the processes of mold clamping, injection, holding pressure, cooling, mold release, and product removal, but the liquid crystal polyester resin of the present invention has a much lower latent heat of crystallization, It can be seen that the crystallized resin has a small amount of heat until solidification at the time of cooling, so that the heat generation is small and the cooling time is greatly reduced. Even if there is not much difference in other processes, the mold can be cooled quickly and the molding cycle can be significantly shortened, so that the product can be obtained in a short time and mass production can be easily performed. As described above, the present invention provides an electric motor that is highly efficient, reliable, and capable of mass production. Furthermore, the manufacturing method of the electric motor with a short manufacturing cycle suitable for mass production can be obtained. In addition, the mold device for the electric motor having a simple configuration and a long life is obtained.

図15には本発明の電動機を冷凍サイクルにおける圧縮機に使用した場合の冷媒回路図を示す。図は圧縮機30、蒸発器31、凝縮器32、絞り33から構成される冷凍回路を示し、圧縮機30は密閉構造の容器の内部に圧縮機高部を駆動する電動機が内蔵されており、本発明の集中巻式電動機を搭載している。この冷媒回路では圧縮機で圧縮され高温高圧のガス冷媒とされ、凝縮機32で冷媒の温度が低下し液体化した後で、絞り33で圧力が低下し,蒸発器で蒸発してほぼガス状態となって再び圧縮機に戻されるが、内蔵された電動機にはこのような冷媒や圧縮機構などを回転させるなどの潤滑油が常に浸漬された状態となる。この回路内に冷媒、冷凍機油を内包し、冷媒としてジフルオロメタン、1,1,1,2,2−ペンタフルオロエタン、1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン、クロロジフルオロメタン、二酸化炭素、アンモニア、ジメチルエ−テル、プロパン、ブタンのうち少なくとも一種と、冷凍機油として、エステル系、エ−テル系、グリコ−ル系、アルキルベンゼン系、ポリαオレフィン系、ポリビニールエーテル系、ナフテン系鉱油、パラフィン系鉱油のうち少なくとも一種とを組み合わせて使用したても、運転中の温度や圧力の状態でこれらの冷媒や潤滑油により電動機の絶縁物が影響を受けても、本発明の電動機ではスラッジ生成等の問題を起すことなくによる回路閉塞がなく長期信頼性に優れる冷凍空調機を得ることが出来る。更に本発明の電動機の回転子に、燒結永久磁石またはプラスチック系のフェライト永久磁石又は希土類永久磁石が用いられた場合でも冷媒や冷凍機の影響が無く、且つ電動機の効率がより高くなり,絶縁性能を確保でき,信頼性が高い電動機や冷凍空調装置が得られる。   FIG. 15 shows a refrigerant circuit diagram when the electric motor of the present invention is used in a compressor in a refrigeration cycle. The figure shows a refrigeration circuit composed of a compressor 30, an evaporator 31, a condenser 32, and a throttle 33, and the compressor 30 has an electric motor for driving the high part of the compressor built in a sealed container. The concentrated winding electric motor of the present invention is mounted. In this refrigerant circuit, the refrigerant is compressed by a compressor into a high-temperature and high-pressure gas refrigerant, and after the refrigerant temperature is lowered and liquefied by the condenser 32, the pressure is lowered by the throttle 33 and evaporated by the evaporator to be almost in a gas state. Then, it is returned to the compressor again, but the built-in electric motor is always immersed in lubricating oil such as rotating such a refrigerant or a compression mechanism. This circuit contains refrigerant and refrigerating machine oil, and difluoromethane, 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1-trimethyl as refrigerant. At least one of fluoroethane, chlorodifluoromethane, carbon dioxide, ammonia, dimethyl ether, propane, and butane, and as refrigeration oil, ester-based, ether-based, glycol-based, alkylbenzene-based, poly-α-olefin-based, Even when used in combination with at least one of polyvinyl ether, naphthenic mineral oil, and paraffinic mineral oil, the insulation of the motor is affected by these refrigerants and lubricants at the temperature and pressure during operation. However, in the electric motor of the present invention, there is no circuit blockage caused by problems such as sludge generation, and the refrigeration air conditioner has excellent long-term reliability. Get it can be. Furthermore, even when a sintered permanent magnet, a plastic ferrite permanent magnet, or a rare earth permanent magnet is used for the rotor of the motor of the present invention, there is no influence of the refrigerant or the refrigerator, and the efficiency of the motor becomes higher, and the insulation performance. And a highly reliable electric motor and refrigeration air conditioner can be obtained.

以上の様に本発明の電動機は、積層鋼板により形成される円環状バックヨークと当該バックヨークの内周または外周方向に突出した複数ティース部を有する鉄心と、ティ−スとティ−スに直接巻装されるコイルと、このコイルとティースとの絶縁を行う絶縁部材(インシュレ−タ)から構成された固定子を有する集中巻式電動機において、絶縁材が、DSCにより測定される融点が350℃以下、結晶化潜熱が10J/g以下、溶融時の生成ガス量が200ppm以下(融点+30degの範囲)、炭素繊維、ガラス繊維、炭化珪素繊維、芳香族ポリアミド繊維、チタン酸カリウムウィスカ−繊維、アルミナウィスカ−繊維等の繊維状無機強化材、もしくはシリカ粉、硫化モリブデン粉、黒鉛粉等の無機充填材のうちから選ばれる少なくとも1つを95重量%以下含有し、滑剤を添加しないか、ステアリン酸系または脂肪酸アミド系の滑剤を3.0重量%以下添加した液晶ポリエステル成形品であり、信頼性が高く製造が簡単である。   As described above, the electric motor of the present invention has an annular back yoke formed of laminated steel sheets, an iron core having a plurality of teeth portions protruding in the inner or outer peripheral direction of the back yoke, and directly on the teeth and teeth. In a concentrated winding electric motor having a stator composed of a coil to be wound and an insulating member (insulator) that insulates the coil from teeth, the insulating material has a melting point of 350 ° C. measured by DSC. In the following, the latent heat of crystallization is 10 J / g or less, the amount of produced gas at the time of melting is 200 ppm or less (melting point +30 deg), carbon fiber, glass fiber, silicon carbide fiber, aromatic polyamide fiber, potassium titanate whisker fiber, alumina 95 of at least one selected from fibrous inorganic reinforcing materials such as whisker fibers, or inorganic fillers such as silica powder, molybdenum sulfide powder, and graphite powder. It is a liquid crystal polyester molded product that is contained in an amount of not more than% by weight and does not contain a lubricant or that contains a stearic acid-based or fatty acid amide-based lubricant added in an amount of not more than 3.0% by weight.

又本発明では、絶縁材はコイルを直接巻装される巻枠部と、固定子の内径または外径側に配置される壁部と、その壁部には巻線の結線を行うための端子箱を備え、内径または外径側のいずれかの壁部にサイドゲ−トを設け、ゲートサイズを1.2mm□以下としており結線も簡単で、見栄えの良いものが得られる。   Further, in the present invention, the insulating material is a winding frame portion on which the coil is directly wound, a wall portion arranged on the inner diameter or outer diameter side of the stator, and a terminal for connecting a winding to the wall portion. A box is provided, side gates are provided on either the inner diameter or outer diameter side wall, the gate size is 1.2 mm □ or less, the connection is simple, and a good appearance can be obtained.

また、固定子ティース部を覆い巻線が巻装される絶縁材の巻枠部の表面粗さを10μmRz以下としたので絶縁信頼性が高い。 Moreover, since the surface roughness of the winding frame portion of the insulating material covering the stator teeth portion and wound with the winding is 10 μmRz or less, the insulation reliability is high.

また、円環状の固定子の軸方向に対して上下に2分割した絶縁材成形品を挿入し、固定子ティース部の軸方向において巻線が巻装される面の成形品肉厚を0.5から1.5mmとし、内径または外径側の壁部に段差を設けて、段差の凹形状部における金型分割面近傍の1箇所にサイドゲ−トを設け、2プレ−ト金型で成形したので、製造装置が簡単で安価となる。   Also, an insulating molded product divided into two parts in the vertical direction with respect to the axial direction of the annular stator is inserted, and the thickness of the molded product on the surface on which the winding is wound in the axial direction of the stator teeth portion is set to 0. 5 to 1.5 mm, provided with a step on the inner or outer wall, provided with a side gate at one location near the mold dividing surface in the stepped concave part, and molded with a two-plate mold As a result, the manufacturing apparatus is simple and inexpensive.

また、固定子のバックヨーク部、複数のティース部、当該複数のティース部間を繋ぐ連結部を有し、当該連結部において折り曲げ可能な固定子鉄心とし、各ティース部に対して一対の上下分割された絶縁材成形品を挿入し、固定子ティース部を覆い、ティ−ス部の軸方向において巻線が巻装される面の絶縁材成形品の肉厚を0.5から1.5mmとし、内径または外径側の壁部に段差を設けて、段差の凹形状部における金型分割面の1箇所にゲ−トを設け、2プレ−ト金型で成形したので,効率の良いモーターを生産性良く生産できる。   In addition, the stator has a back yoke portion, a plurality of teeth portions, and a connecting portion that connects the plurality of teeth portions, and a stator iron core that can be bent at the connecting portion, and a pair of upper and lower divisions for each teeth portion. The insulation molded product is inserted, covers the stator teeth, and the thickness of the insulation molded product on the surface on which the winding is wound in the axial direction of the teeth is 0.5 to 1.5 mm. An efficient motor because a step is provided on the inner or outer diameter side wall, a gate is provided at one location of the mold dividing surface in the concave portion of the step, and molding is performed with a two-plate mold. Can be produced with high productivity.

また、円環状の固定子をインサートして絶縁樹脂と一体に成形し、固定子ティース部を覆い、ティ−ス部の軸方向において巻線が巻装される面の絶縁材成形品の肉厚を0.3から0.9mmとすることにより、高効率な電動機とすることができる。   Also, insert an annular stator and integrally mold it with insulating resin, cover the stator teeth, and the thickness of the insulation molding on the surface where the winding is wound in the axial direction of the teeth By setting 0.3 to 0.9 mm, a highly efficient electric motor can be obtained.

また、固定子のバックヨーク部、複数のティース部、当該複数のティース部間を繋ぐ連結部を有し、当該連結部において折り曲げ可能な固定子鉄心とし、固定子鉄心をインサートして絶縁樹脂と一体に成形し、固定子ティース部の軸方向において巻線が巻装される面の絶縁材成形品の肉厚を0.2から0.9mmと出来,一層効率を改善できる。   In addition, the stator has a back yoke portion, a plurality of teeth portions, and a connecting portion that connects the plurality of teeth portions, and a stator core that can be bent at the connecting portion. The thickness of the molded product of the insulating material on the surface on which the winding is wound in the axial direction of the stator teeth can be 0.2 to 0.9 mm, and the efficiency can be further improved.

また、バックヨ−クと巻線との絶縁を行うウェッジを、ティ−スの歯先と平行方向に薄肉形状に金型内で一体に射出成形を行う第一の工程と、連結部を可動させ各ティ−ス先端側を開いてを水平方向以上に展開した後に樹脂の熱変形温度以上に過熱させるか、冶具等の機械的手段を用いてウェッジをティ−ス直角方向に変形を加えてからティ−スに直接巻線を行う第2の工程と、巻線後に変形させたウェッジを前記と同等方法により再度ティ−ス直角方向に戻し、展開したティ−スを間接部を可動させて環状とする第3の工程により製造することにより,より信頼性の高い絶縁性能を簡単に得られる。   In addition, a first step of performing injection molding integrally in the mold in a thin shape in a direction parallel to the tooth tip of the tooth is performed on the wedge that insulates the back yoke and the winding. After opening the tip end of each tooth and expanding it beyond the horizontal direction, either heat it above the thermal deformation temperature of the resin or use a mechanical means such as a jig to deform the wedge in the direction perpendicular to the tooth. The second step of directly winding the teeth, and the wedge deformed after the winding is returned to the teeth in the direction perpendicular to the teeth by the same method as described above, and the unfolded teeth are moved by moving the indirect portion into an annular shape. Thus, a more reliable insulation performance can be easily obtained.

本発明の実施の形態の電動機断面図。The motor sectional view of an embodiment of the invention. 本発明の図1のスロット部分を拡大した説明図。Explanatory drawing which expanded the slot part of FIG. 1 of this invention. 本発明の実施の携帯における樹脂である液晶ポリエステル樹脂と従来の樹脂であるPPSとの特性比較を示す図。The figure which shows the characteristic comparison with liquid crystal polyester resin which is resin in implementation of this invention, and PPS which is conventional resin. 本発明の実施の形態におけるインシュレ−タ正面図および側面図。The insulator front view and side view in an embodiment of the invention. 本発明の実施の形態におけるインシュレ−タのゲ−ト位置と端子箱を示す図。The figure which shows the gate position and terminal box of the insulator in embodiment of this invention. 本発明の実施の形態における電動機のインシュレ−タの巻枠の縦断面模式図。The longitudinal cross-sectional schematic diagram of the winding frame of the insulator of the electric motor in embodiment of this invention. 本発明の実施の形態における固定子の製造方法を示す図。The figure which shows the manufacturing method of the stator in embodiment of this invention. 本発明の実施の形態における固定子の製造方法を示す図。The figure which shows the manufacturing method of the stator in embodiment of this invention. 本発明の実施の形態における固定子の製造方法を示す図。The figure which shows the manufacturing method of the stator in embodiment of this invention. 本発明の実施の形態における固定子の製造方法および装置を示す図。The figure which shows the manufacturing method and apparatus of the stator in embodiment of this invention. 本発明の実施の形態における射出成形装置を説明する説明図。Explanatory drawing explaining the injection molding apparatus in embodiment of this invention. 本発明の実施の形態における製造装置を説明する図。The figure explaining the manufacturing apparatus in embodiment of this invention. 本発明の実施の形態における製造装置を説明する図。The figure explaining the manufacturing apparatus in embodiment of this invention. 本発明の実施の形態における成形サイクル比較図。The molding cycle comparison figure in embodiment of this invention. 本発明の実施の形態における冷凍空調機の冷媒回路説明図。The refrigerant circuit explanatory drawing of the refrigerating air conditioner in embodiment of this invention. 本発明の実施の形態における金型説明図。Explanatory drawing of the metal mold | die in embodiment of this invention. 本発明の実施の形態における金型説明図。Explanatory drawing of the metal mold | die in embodiment of this invention. 本発明の実施の形態における金型説明図。Explanatory drawing of the metal mold | die in embodiment of this invention. 本発明の実施の形態における金型説明図。Explanatory drawing of the metal mold | die in embodiment of this invention.

符号の説明Explanation of symbols

1 固定子、 2 固定子バックヨ−ク、 3 ティ−ス、 4 巻線、 5 インシュレ−タ、 6 回転子、 7 永久磁石、 8 巻枠、 9 壁部、 10 端子箱、 11 ゲ−ト、 12 固定子コア、 13 壁部段差、 14 巻枠肉厚、 15 ウエッジ、 16 スロット、 20a,20b コア片、 21 コア部材、 22 連結部、 30 圧縮機、 31 蒸発器、 32 凝縮器、 33 絞り部, 34 スプルー、 35 ランナー、 36 可動金型, 37 固定金型、 38 ホッパー、 39 シリンダ, 40 スクリュー, 41 可動盤, 42 固定盤, 50 金型装置, 51 ノズル, 52 ランナストリッパー、 71 溶融プラスチックを移送する経路, 74 キャビティ側入れ子, 75 コア入れ子, 76 ランナーロックピン, 77 エジェクターピン, 80 スペーサーブロック, 81 エジェクターロッド, 82 ロック押だしピン。   1 Stator, 2 Stator Back Yoke, 3 Teeth, 4 Winding, 5 Insulator, 6 Rotor, 7 Permanent Magnet, 8 Winding Frame, 9 Wall, 10 Terminal Box, 11 Gate, 12 Stator Core, 13 Wall Step, 14 Winding Wall Thickness, 15 Wedge, 16 Slot, 20a, 20b Core Piece, 21 Core Member, 22 Connecting Portion, 30 Compressor, 31 Evaporator, 32 Condenser, 33 Restrictor Part, 34 sprue, 35 runner, 36 movable mold, 37 fixed mold, 38 hopper, 39 cylinder, 40 screw, 41 movable platen, 42 fixed platen, 50 mold apparatus, 51 nozzle, 52 runnas stripper, 71 molten plastic , 74 cavity side nesting, 75 core nesting, 76 runner Pin, 77 ejector pin, 80 spacer block, 81 ejector rod, 82 lock push pin.

Claims (9)

固定子を形成するヨークの内周又は外周方向に突出した複数ティース部を有する鋼板を積層された鉄心と、前記ティース部に直接巻装され通電されるコイルと、前記コイルとティース部間に設けられ絶縁を行う各ティースごとに分割され前記ティースに挿入される絶縁部材と、前記絶縁部材を形成する成形品であって繊維状無機強化材若しくは無機充填材を含有する高耐熱熱可塑性樹脂である液晶ポリエステル樹脂を成形して前記鉄心と前記コイル間を絶縁する樹脂成形品と、を備え、前記樹脂成形品は、前記ティース部の前記コイルが軸方向に卷装される面の厚みを0.5乃至1.5mmとし、且つ、前記コイルが軸方向に巻装される面の表面粗さを10μmRz以下とする保圧圧力にて成形されることを特徴とする電動機。 An iron core in which steel plates having a plurality of tooth portions projecting in the inner or outer peripheral direction of the yoke forming the stator are laminated, a coil that is wound directly on the tooth portion and energized, and provided between the coil and the tooth portion. An insulating member that is divided for each tooth that is insulated and inserted into the tooth, and a molded product that forms the insulating member, and is a high heat-resistant thermoplastic resin containing a fibrous inorganic reinforcing material or an inorganic filler. A resin molded product that insulates the iron core and the coil by molding a liquid crystal polyester resin, and the resin molded product has a thickness of a surface on which the coil of the tooth portion is mounted in an axial direction of 0. An electric motor characterized by being formed at a holding pressure of 5 to 1.5 mm and a surface roughness of a surface on which the coil is wound in the axial direction being 10 μmRz or less. 前記各ティース毎に分割される絶縁部材は、前記ティース部の前記コイルが軸方向に巻装される面を上下方向に分割することを特徴とする請求項1記載の電動機。 2. The electric motor according to claim 1, wherein the insulating member divided for each tooth divides the surface of the tooth portion on which the coil is wound in the axial direction in the vertical direction. 固定子を形成するヨークの内周又は外周方向に突出した複数ティース部を有する鉄心と、前記ティース部に直接巻装され通電されるコイルと、前記コイルとティース部間に設けられ絶縁を行う絶縁部材と、前記絶縁部材を形成する繊維状無機強化材若しくは無機充填材を含有する高耐熱熱可塑性樹脂である液晶ポリエステル樹脂を成形して前記ティース部と前記コイル間を絶縁する樹脂成形品と、を備え、金型にインサートされた前記ティース部を覆うように前記高耐熱熱可塑性樹脂を一体に成形する前記樹脂成形品は、前記ティース部の前記コイルが軸方向に卷装される面の厚みを0.3乃至0.9mmとし、且つ、前記コイルが軸方向に巻装される面の表面粗さを10μmRz以下とする保圧圧力にて成形されることを特徴とする電動機。 An iron core having a plurality of tooth portions projecting in the inner or outer peripheral direction of the yoke forming the stator, a coil that is wound directly on the tooth portion and energized, and an insulation provided between the coil and the tooth portion for insulation. A resin molded article that forms a liquid crystal polyester resin that is a high heat-resistant thermoplastic resin containing a member and a fibrous inorganic reinforcing material or inorganic filler that forms the insulating member, and insulates between the teeth portion and the coil; The resin molded product that integrally molds the high heat-resistant thermoplastic resin so as to cover the teeth portion inserted in the mold is a thickness of a surface on which the coil of the teeth portion is mounted in the axial direction. The electric motor is formed with a holding pressure of 0.3 to 0.9 mm and a surface roughness of a surface on which the coil is wound in the axial direction is 10 μmRz or less. 前記樹脂成形品は繊維状無機強化材若しくは無機充填材を30−40重量%程度含有することを特徴とする請求項1又は2又は3記載の電動機。 4. The electric motor according to claim 1, wherein the resin molded article contains about 30 to 40% by weight of a fibrous inorganic reinforcing material or an inorganic filler. 前記樹脂成形品が成形される際の前記保圧圧力はPPS樹脂を射出成形する際の保圧圧力より大きいことを特徴とする請求項1又は2又は3記載の電動機。 4. The electric motor according to claim 1, wherein the holding pressure when the resin molded product is molded is larger than the holding pressure when the PPS resin is injection-molded. 回転子に、焼結永久磁石又はプラスチック系のフェライト磁石又は希土類永久磁石が用いられたことを特徴とする請求項1乃至5の少なくともいずれかに記載の電動機。 6. The electric motor according to claim 1, wherein a sintered permanent magnet, a plastic ferrite magnet, or a rare earth permanent magnet is used for the rotor. 請求項1乃至5の少なくともいずれかに記載の電動機を搭載した圧縮機を使用し、凝縮器、絞り機構、蒸発器により構成され、冷媒がジフオロメタン、1、1、1、2、2―ペンタフルオロエタン、1、1、1、2―テトラフルオロエタン、1、1、1―トリフルオロエタン、クロロジフルオロメタン、二酸化炭素、アンモニア、ジメチルエーテル、プロパン、ブタンの内の少なくとも一種であり、冷凍機油が、エステル系、エーテル系、グリコール系、アルキルベンゼン系、ポリαオレフィン系、ポリビニールエーテル系、ナフテン系鉱油、パラフィン系鉱油の少なくとも一種であることを特徴とする冷凍・空調装置。 A compressor equipped with the electric motor according to any one of claims 1 to 5, comprising a condenser, a throttle mechanism, and an evaporator, wherein the refrigerant is difluoromethane, 1, 1, 1, 2, 2-pentafluoro. It is at least one of ethane, 1,1,1,2-tetrafluoroethane, 1,1,1,1-trifluoroethane, chlorodifluoromethane, carbon dioxide, ammonia, dimethyl ether, propane, and butane. A refrigeration / air-conditioning apparatus characterized by being at least one of ester-based, ether-based, glycol-based, alkylbenzene-based, poly-α-olefin-based, polyvinyl ether-based, naphthene-based mineral oil, and paraffin-based mineral oil. 固定子を形成する鉄心に直接巻装され通電されるコイルと前記鉄心間に設けられ絶縁を行う絶縁部材を、繊維状無機強化材もしくは無機充填材を30−40重量%程度含有し熱可塑性樹脂である液晶ポリエステル樹脂を金型に注入し射出成形するステップと、樹脂注入後絶縁部材成形品の表面粗さが10μmRz以下となる保圧圧力にて保圧を行うステップと、成形された樹脂成形品若しくは固定子と一体になった樹脂成形品を冷却後金型内から取り出すステップと、を備えたことを特徴とする電動機の製造方法。 A thermoplastic resin comprising about 30-40% by weight of a fibrous inorganic reinforcing material or an inorganic filler, an insulating member provided between the iron core that is directly wound and energized on the iron core forming the stator and is insulated. A step of injecting a liquid crystalline polyester resin into a mold and injection molding, a step of holding pressure at a holding pressure at which the surface roughness of the insulating member molded product is 10 μmRz or less after the resin injection, and a molded resin molding And a step of taking out the resin molded product integrated with the product or the stator from the mold after cooling. 固定子を形成する鉄心に直接巻装され通電されるコイルと前記鉄心間に設けられ絶縁を行う絶縁部材を、繊維状無機強化材もしくは無機充填材を30−40重量%程度含有し熱可塑性樹脂である液晶ポリエステル樹脂を注入し射出成形し樹脂成形品として形成する金型であって、固定金型側に前記樹脂成形品の巻枠頂部の形状をしたキャビティ、ランナー及びゲートを形成し、可動金型側に前記巻枠頂部より下側のキャビティを形成させる金型とし、前記固定金型と前記可動金型の分割位置に設けた前記ゲートのサイズを1.2mm角以下の寸法としたことを特徴とする電動機の金型装置。 A thermoplastic resin comprising about 30-40% by weight of a fibrous inorganic reinforcing material or an inorganic filler, an insulating member provided between the iron core that is directly wound and energized on the iron core forming the stator and is insulated. A mold in which liquid crystal polyester resin is injected and molded by injection molding to form a resin molded product, and a cavity, a runner, and a gate are formed on the fixed mold side in the shape of the top of the reel of the resin molded product. The mold is such that a cavity below the top of the winding frame is formed on the mold side, and the size of the gate provided at the dividing position of the fixed mold and the movable mold is a size of 1.2 mm square or less. A mold apparatus for an electric motor.
JP2006074864A 2006-03-17 2006-03-17 Electric motor, refrigeration / air conditioner, and electric motor manufacturing method Expired - Lifetime JP4449930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074864A JP4449930B2 (en) 2006-03-17 2006-03-17 Electric motor, refrigeration / air conditioner, and electric motor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074864A JP4449930B2 (en) 2006-03-17 2006-03-17 Electric motor, refrigeration / air conditioner, and electric motor manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002376363A Division JP3801132B2 (en) 2002-12-26 2002-12-26 Electric motor, refrigeration / air conditioner, and electric motor manufacturing method

Publications (2)

Publication Number Publication Date
JP2006180698A true JP2006180698A (en) 2006-07-06
JP4449930B2 JP4449930B2 (en) 2010-04-14

Family

ID=36734248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074864A Expired - Lifetime JP4449930B2 (en) 2006-03-17 2006-03-17 Electric motor, refrigeration / air conditioner, and electric motor manufacturing method

Country Status (1)

Country Link
JP (1) JP4449930B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172928A (en) * 2007-01-11 2008-07-24 Toyota Motor Corp Resin molding device and method for stator
JP2008199806A (en) * 2007-02-14 2008-08-28 Yaskawa Electric Corp Mold stator, manufacturing method therefor, and mold motor
JP2008223621A (en) * 2007-03-13 2008-09-25 Mitsubishi Electric Corp Compressor and refrigeration cycle apparatus
WO2009113465A2 (en) 2008-03-10 2009-09-17 Toyota Jidosha Kabushiki Kaisha Split stator and method of manufacturing the split stator
JP2011254689A (en) * 2010-06-04 2011-12-15 Toyota Motor Corp Insulation member and manufacturing method for stator
JP2014195345A (en) * 2013-03-28 2014-10-09 Kayaba Ind Co Ltd Motor and manufacturing method thereof
JP2016192831A (en) * 2015-03-30 2016-11-10 株式会社ミツバ Winding method, winding device and winding object
JP2018042400A (en) * 2016-09-08 2018-03-15 ダイキン工業株式会社 Stator, motor, and compressor
CN108233579A (en) * 2016-12-09 2018-06-29 本田技研工业株式会社 The stator of slot coil and electric rotating machine
WO2020217375A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Stator, motor, fan, air conditioning device, and stator manufacturing method
JP2022530519A (en) * 2019-05-28 2022-06-29 ▲広▼▲東▼威▲靈▼汽▲車▼部件有限公司 Core assembly, motors, compressors and vehicles
JP7282241B1 (en) 2022-07-19 2023-05-26 三菱電機株式会社 Insulator and method for manufacturing rotating electric machine
WO2024016314A1 (en) * 2022-07-22 2024-01-25 Ticona Llc Stator core for an electric power system
WO2024138504A1 (en) * 2022-12-29 2024-07-04 Ticona Llc Bobbin for electric power system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172928A (en) * 2007-01-11 2008-07-24 Toyota Motor Corp Resin molding device and method for stator
JP2008199806A (en) * 2007-02-14 2008-08-28 Yaskawa Electric Corp Mold stator, manufacturing method therefor, and mold motor
JP2008223621A (en) * 2007-03-13 2008-09-25 Mitsubishi Electric Corp Compressor and refrigeration cycle apparatus
WO2009113465A2 (en) 2008-03-10 2009-09-17 Toyota Jidosha Kabushiki Kaisha Split stator and method of manufacturing the split stator
KR101193355B1 (en) * 2008-03-10 2012-10-19 도요타지도샤가부시키가이샤 Split stator member and method of manufacturing the split stator member
US8427017B2 (en) 2008-03-10 2013-04-23 Toyota Jidosha Kabushiki Kaisha Split stator member and method of manufacturing the split stator member
JP2011254689A (en) * 2010-06-04 2011-12-15 Toyota Motor Corp Insulation member and manufacturing method for stator
JP2014195345A (en) * 2013-03-28 2014-10-09 Kayaba Ind Co Ltd Motor and manufacturing method thereof
JP2016192831A (en) * 2015-03-30 2016-11-10 株式会社ミツバ Winding method, winding device and winding object
JP2018042400A (en) * 2016-09-08 2018-03-15 ダイキン工業株式会社 Stator, motor, and compressor
WO2018047462A1 (en) * 2016-09-08 2018-03-15 ダイキン工業株式会社 Stator, motor, and compressor
US11355981B2 (en) 2016-09-08 2022-06-07 Daikin Industries, Ltd. Stator, motor, and compressor having an integrally molded insulator
US10461588B2 (en) 2016-12-09 2019-10-29 Honda Motor Co., Ltd. Slot coil and stator for electric rotary machine
CN108233579A (en) * 2016-12-09 2018-06-29 本田技研工业株式会社 The stator of slot coil and electric rotating machine
CN108233579B (en) * 2016-12-09 2020-06-02 本田技研工业株式会社 Slot coil and stator of rotating electric machine
AU2019442093B2 (en) * 2019-04-25 2022-10-27 Mitsubishi Electric Corporation Stator, motor, fan, air conditioner, and manufacturing method of stator
JPWO2020217375A1 (en) * 2019-04-25 2021-10-14 三菱電機株式会社 Manufacturing method of stator, motor, blower, air conditioner and stator
JP7109658B2 (en) 2019-04-25 2022-07-29 三菱電機株式会社 Stator, motor, blower, air conditioner, and stator manufacturing method
WO2020217375A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Stator, motor, fan, air conditioning device, and stator manufacturing method
JP2022530519A (en) * 2019-05-28 2022-06-29 ▲広▼▲東▼威▲靈▼汽▲車▼部件有限公司 Core assembly, motors, compressors and vehicles
JP7317143B2 (en) 2019-05-28 2023-07-28 ▲広▼▲東▼威▲靈▼汽▲車▼部件有限公司 Core assemblies, motors, compressors and vehicles
US11876421B2 (en) 2019-05-28 2024-01-16 Guangdong Welling Auto Parts Co., Ltd. Iron core assembly, motor, compressor and vehicle
JP7282241B1 (en) 2022-07-19 2023-05-26 三菱電機株式会社 Insulator and method for manufacturing rotating electric machine
JP2024012914A (en) * 2022-07-19 2024-01-31 三菱電機株式会社 Insulator, and manufacturing method of rotary electric machine
WO2024016314A1 (en) * 2022-07-22 2024-01-25 Ticona Llc Stator core for an electric power system
WO2024138504A1 (en) * 2022-12-29 2024-07-04 Ticona Llc Bobbin for electric power system

Also Published As

Publication number Publication date
JP4449930B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4449930B2 (en) Electric motor, refrigeration / air conditioner, and electric motor manufacturing method
JP3801132B2 (en) Electric motor, refrigeration / air conditioner, and electric motor manufacturing method
KR101095240B1 (en) Split stator segment manufacturing method
JP5043313B2 (en) Outer stator of reciprocating motor and manufacturing method thereof
JP3679305B2 (en) Refrigerant compressor
WO2001031768A1 (en) Linear motor coil assembly and method for manufacturing the same
CN104344605A (en) Heat pump device
US20060115551A1 (en) Injection-mold pin
CN101971459A (en) Split stator and method of manufacturing the split stator
US6527971B1 (en) Rare-earth bonded magnet, rare-earth bonded magnet composition, and method of manufacturing the rare-earth bonded magnet
US9962876B2 (en) Ring-shaped insert molded article
JP2009261220A (en) Method of manufacturing stator
CN106653266B (en) The manufacturing method of non-planar magnet
EP0452581B1 (en) Dies for extrusion moulding
JP5093362B2 (en) Stator manufacturing method and stator
CA3024701A1 (en) Method of manufacturing core product
JP2017055509A (en) Electric motor element manufacturing method, electric motor element, electric motor and device
US20080238239A1 (en) Coil member, motor and manufacturing method for coil member
JPH06236807A (en) Resin-bonded magnet and its manufacture
JP3728924B2 (en) Method for manufacturing bonded magnet
JPH08273959A (en) Method for manufacturing rare earth resin coupling type magnet
JP2019072956A (en) Molding die of resin molding
JP3569896B2 (en) Polyamide-based plastic magnetic material and magnet made therefrom
WO2004022306A1 (en) Method of composite injection molding and mold
JP2005045917A (en) Sintered ring magnet rotor and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R151 Written notification of patent or utility model registration

Ref document number: 4449930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term