JP3679305B2 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP3679305B2
JP3679305B2 JP2000082829A JP2000082829A JP3679305B2 JP 3679305 B2 JP3679305 B2 JP 3679305B2 JP 2000082829 A JP2000082829 A JP 2000082829A JP 2000082829 A JP2000082829 A JP 2000082829A JP 3679305 B2 JP3679305 B2 JP 3679305B2
Authority
JP
Japan
Prior art keywords
insulating member
winding
mold
insulating
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000082829A
Other languages
Japanese (ja)
Other versions
JP2001268835A (en
Inventor
聡 小山
昌一郎 北市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2000082829A priority Critical patent/JP3679305B2/en
Publication of JP2001268835A publication Critical patent/JP2001268835A/en
Application granted granted Critical
Publication of JP3679305B2 publication Critical patent/JP3679305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば冷凍機や空気調和機の冷凍サイクルを構成する冷媒圧縮機に係わり、特に、電動機部の巻線に対する絶縁部材に関する。
【0002】
【従来の技術】
たとえば冷凍機や空気調和機に用いられる圧縮機は、冷媒を圧縮する圧縮機構部と、この圧縮機構部を駆動する固定子と回転子を備えた電動機部とから構成される。
【0003】
上記電動機部において、冷凍サイクル運転の省エネルギおよび快適性を追求すべく、2極あるいは4極三相の巻線が施され、インバータ電源で駆動されるものが多用される傾向にある。
【0004】
たとえば、特開平10−288180号公報においては、冷媒圧縮機の電動機部についての技術が開示されている。ここでは、電動機部を構成する固定子として、固定子鉄心を構成するティース部に絶縁部材(コイルボビンとも呼ばれる)を嵌め込み、この絶縁部材を介してティース部に巻線を施す、いわゆる集中巻きと呼ばれる方式が採用されている。
【0005】
一方、特願平11−227539号には、絶縁部材をモールドする際の樹脂注入口(ゲート)の位置と数量、樹脂モールド素材の選択および具体的な材料特性、内側鍔部と巻き胴部との交差するコーナー部のR形状、適用される冷媒と冷凍機油の組み合せなどの技術が開示されている。
【0006】
すなわち、上記絶縁部材は、断面矩形状のティース部に嵌め込まれる矩形枠体からなる胴部と、この胴部の内周縁と外周縁とに沿って一体的に設けられる内側鍔部および外側鍔部とからなる。
【0007】
このような絶縁部材をモールド成形するのにあたって、樹脂注入口を備えたモールド金型は、固定側金型に内側鍔部と外側鍔部が構成され、可動側金型に胴部のティース絶縁部が掘り込まれて、内外鍔部と胴部を構成する巻き胴部とティース絶縁部が一体形成される。
【0008】
このため、個々の製品形状に対応した絶縁部材をモールド成形するための金型が用いられ、固定側金型と可動側金型との分割面(パーティング面)は、巻き胴部とティース絶縁部が交差する近傍に構成されている。
【0009】
【発明が解決しようとする課題】
しかしながら、絶縁部材の胴部の巻き胴部とティース絶縁部が交差するコーナー部において、巻線が巻回される際の張力で絶縁部材と巻線が強く接触してしまい、巻線絶縁被膜の損傷や、巻線の押圧による絶縁部材の損傷(圧縮窪み)などが生じ易い。そして、このため巻線の絶縁不良や、着磁工程時にかかる大きな力により絶縁部材の損傷箇所を起点とする内側鍔部の折損があった。
【0010】
また、絶縁部材のティース絶縁部は薄肉のためにモールド金型からの取り出し(離型)が困難で、上記巻き胴部とティース絶縁部が交差するコーナー部でのクラック発生により、絶縁部材の絶縁不良があった。さらに、固定側金型と可動側金型との合せ面(パーティング面)の隙間で生じたバリによって、巻線の絶縁被膜を損傷する問題があった。
【0011】
また、固定子鉄心と回転子の厚みだけを変更した電動機部においても、一体形の絶縁部材はティース絶縁部の長さが決まっていて、同一形状寸法の絶縁部材をそのまま用いることができなかった。
【0012】
本発明は、上記事情を考慮してなされたものであり、その目的とするところは、高い信頼性と生産性に優れる電動機を備えた冷媒圧縮機を提供しようとするものである。
【0013】
【課題を解決するための手段】
上記目的を満足するため本発明の冷媒圧縮機は、冷媒を圧縮して吐出する圧縮機構部と、この圧縮機構部を駆動する固定子および回転子とから構成される電動機部を備えた冷媒圧縮機において、上記固定子は、円環状継鉄であるヨーク部に一体に複数個のティース部を放射状に設置し、各々のティース部に絶縁部材を介して巻線を巻装してなり、上記絶縁部材は、樹脂モールド成形品であり、内側鍔部と外側鍔部、およびこれら内,外側鍔部を連結し巻線が巻装される胴部とから構成され,上記胴部のコーナー部に、上記巻線の線径の1/2以上かつ4倍以下の半径のR面取りを設けたことを特徴とする。
【0022】
以上のごとき課題を解決する手段を採用することにより、巻線の絶縁被膜と絶縁部材の損傷が改善され、絶縁不良や着磁した際の絶縁部材の折損を防止でき、固定子鉄心厚みの異なる製品にも同一形状の絶縁部材を採用できて生産性が向上し、信頼性の向上に繋げられる。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0024】
図1に示す、1は密閉形の冷媒圧縮機であり、2はアキュムレータである。冷媒圧縮機1は、密閉ケース3内の下部に圧縮機構部4が設けられ、上部には電動機部5が設けられる。これら圧縮機構部4と電動機部5とは回転軸6を介して連結される。
【0025】
上記電動機部5は、密閉ケース3の内面に固定された固定子8と、この固定子8の内側に所定の隙間を介して配置され、かつ上記回転軸6が介挿される回転子9とから構成される。
【0026】
上記圧縮機構部4は、回転軸6の下部に仕切り板10を介して上下に配設された2つのシリンダ11A,11Bを備えている。上部シリンダ11Aは、その上面部が主軸受12に取付固定される。下部シリンダ11Bの下面部には副軸受13が取付固定される。
【0027】
シリンダ11A,11Bの上下面は、上記仕切り板10および主軸受12と副軸受13で区画され、その内部にシリンダ室15a,15bが形成される。それぞれのシリンダ室15a,15bには、回転軸6の回転にともなってローラを偏心回転駆動するとともに、ベーンによってシリンダ室を高圧側と低圧側に仕切る、いわゆるロータリ式圧縮機構16A,16Bが構成される。両シリンダ11A,11B内のシリンダ室15a,15bは、それぞれ導通管17a,17bを介して上記アキュームレータ2に連通される。
【0028】
一方、上記密閉ケース3の上面部には吐出冷媒管19が接続され、図示しない凝縮器に連通される。上記アキュームレータ2の上面部には吸込み冷媒管21が接続され、図示しない蒸発器に連通される。上記凝縮器と上記蒸発器との間には膨張機構が接続されていて、冷媒圧縮機1−凝縮器−膨張機構−蒸発器を介して上記アキュームレータ2に順次連通する冷凍サイクルが構成される。
【0029】
図2(a)(b)は、上記電動機部5の平面視と正面視の図であり、固定子8の内側に回転子9が配置される。上記固定子8は、円環状継鉄であるヨーク部32と、このヨーク部の内側に所定間隔を存して放射状に設置される複数(6個)のティース部33とから構成され、鋼板を積層してなる固定子鉄心30備えている。
【0030】
上記ティース部33は、後述するように絶縁部材40で覆われていて、この絶縁部材を介して巻線31が施されている。なお、図2(a)において絶縁部材40を省略して巻線31を示し、図2(b)において固定子鉄心30の上下端面から絶縁部材40の一部が突出する状態を示す。
【0031】
上記固定子8におけるスロット(ティース部33)の数を6個とし、かつ上記回転子9の極数を4極に設定するよう、固定子鉄心30に対する巻線31が施されている。
【0032】
上記回転子9は、ヨーク部35と、このヨーク部35内に埋設される複数(4個)の永久磁石36からなる。上記永久磁石36は無着磁の状態で組み立てられ、電動機部5として組み立てられたあと着磁化される。
【0033】
図3に、6個のティース部33に対し、それぞれの上部側と下部側から嵌め込まれる単体タイプの絶縁部材40Aを示していて、これら絶縁部材は全部で12個用意される。
【0034】
上記絶縁部材40Aは、内側鍔部Aと外側鍔部Bおよび、これら内外側鍔部A,B相互を連結する胴部Cとから構成される。特に、胴部Cを断面にした状態でほぼコ字状に形成されていて、組み立てられたとき上記ティース部33の端面に密接する部分を巻き胴部cと呼び、この巻き胴部の両端に一体に設けられ上記ティース部33の両側面に沿う一対の面をティース絶縁部d,dと呼び、fはこれらティース絶縁部dの先端である。
【0035】
同図の、▲1▼〜▲4▼の×印は、絶縁部材40をモールド成形する際の樹脂注入口であるゲートの位置を示していて、上記内側鍔部Aと外側鍔部Bとの少なくともいずれか一方に対向して設けられる。
【0036】
また、図4に示すような絶縁部材40Bであってもよい。この絶縁部材40Bの場合は、6個全てのティース部33に亘って、かつ上部側から嵌め込まれる上部側絶縁部材40Baと下部側から嵌め込まれる下部側絶縁部材40Bbとからなる全体タイプであって、したがって2個あればよい。
【0037】
図5(a)は、全体タイプの絶縁部材40Bを構成する、上記ティース部33の上部側から嵌め込まれる上部側絶縁部材40Baの平面視を示し、同図(b)に同図(a)のb−b断面を示す。
【0038】
図6(a)は、全体タイプの絶縁部材40Bを構成する、上記ティース部33の下部側から嵌め込まれる下部側絶縁部材40Bbの平面視を示し、同図(b)に同図(a)のb−b断面を示す。図7は、全体タイプの絶縁部材40Bであって、そのうちの上部側絶縁部材40Baの斜視図である。
【0039】
上,下部側絶縁部材40Ba,40Bbは、図5(a)、図6(a)および図7に示すように、内側鍔部Aと外側鍔部Bおよび、これら内外側鍔部A,B相互を連結する胴部Cとから構成される。
【0040】
特に、図5(b)、図6(b)に示すように、上記胴部Cを断面にした状態で、上記ティース部33の一端面に密接する面を巻き胴部cと呼び、ティース部の両側面に沿う対向する面をティース絶縁部dと呼び、fはティース絶縁部dの先端をなす。
【0041】
先に説明した絶縁部材40(詳しくは、40A,40B 以下同)において、詳細は図5(b)と図6(b)に示すように、巻き胴部cとティース絶縁部dの境目をなすコーナー部41に、上記巻線31の線径の1/2以上のR面取りを設けたことを特徴としている。
【0042】
以上の絶縁部材40の効果を確認するために、コーナー部41のR面取りの大きさを種々変えた絶縁部材に巻線を施し、この巻線の絶縁被膜の損傷程度と、巻線断面の変形状態と、コーナー部における窪み変形、および着磁後の内側鍔部Aの折損状態などを評価した。
【0043】
具体的に、絶縁部材40を固定子鉄心30を構成するティース部33に嵌め込んだうえで巻線31を巻回する巻線作業は、一定のテンションと巻速度を設定して行われる。このとき、絶縁部材40の内側鍔部Aにかかる荷重は50〜100kgfである。
【0044】
また、絶縁部材40A,40Bの素材として、PPS樹脂(ポリフェニレンサルファイド)材が選択されている。
【0045】
巻線31の線径はφ1.0mmであり、図8(b)に示すように、コーナー部41のR面取りを、R:0.1、R:0.3、R:0.5、R:1.0、R:2.0(mm)の5種類で実施した。
【0046】
図9(a)〜(d)は、上記条件で得られた評価の詳細を説明している。すなわち、図9(a)において、巻線後の巻線31を被覆する絶縁被膜42の破損態観察をなした。図9(b)において、巻線後の巻線31の、はじめの線径に対する変形量を測定した。図9(c)において、絶縁部材40のコーナー部41の窪み量を測定し、同図(g)に図9(c)のg−g断面を示す。図9(d)において、着磁後の内側鍔部A根元でのクラック有無を確認した。
【0047】
以上の4項目での評価を実施し、以下の表1に、評価結果をまとめた。なお、巻線後の巻線変形と、コーナー部41の窪みは、表1の▲3▼R:0.5(mm)の仕様を1.0としたときの相対値で示している。
【0048】
【表1】

Figure 0003679305
【0049】
以上の結果から、▲3▼から▲5▼の仕様によれば、巻線31表面の絶縁被膜42の破損が無く、巻線31と絶縁部材40の変形が小さくてすむ。また、着磁後の内側鍔部Aの根元にクラック発生が無いことが分かった。
【0050】
一方、▲1▼と▲2▼の仕様によれば、R面取り寸法が小さいために、上記コーナー部41で応力集中を受け、絶縁被膜42の破損と、巻線31の変形があり、かつコーナー部41での窪みが大となる。さらに、着磁の際に内側鍔部Aが回転子9側に倒れようとする力に対して窪み部に応力集中し、この窪みが起点となってクラックが発生することが分かった。
【0051】
つまり、R面取りを線径の1/2(0.5部)以上に設定することによって、巻線時の応力集中を緩和して、信頼性を高められる。ただし、必要以上にR面取りを大きくすると、コーナー部41の厚みが薄くなり、絶縁部材40の強度低下を招くため、R面取りは線径の1/2から4倍の範囲が好ましい。
【0052】
図10に示すような構成であってもよい。
ここでは、絶縁部材40を構成する胴部Cにおける巻き胴部cの表面が緩やかな凸面状をなす凸部44に形成されている。上記凸部44は、巻線31を巻回する際に接触する高さ(凸高さ)を有している。
【0053】
先に図8(a)に示すように、通常構成では、巻き胴部cと巻線31との間に巻線隙間43ができて、そのためコーナー部41に応力が集中してしまう。ところが、図10に示す凸部44を形成することによって、凸部が巻線31の張力の一部を受け、先に説明したような巻線隙間が生じることがない。したがって、コーナー部41に対する巻線31の接触力が緩和し、かつ巻線の絶縁被覆42の損傷を防止し、コーナー部41の窪みを防止できる。
【0054】
上記凸部44は、巻き胴部cの両側コーナー部41相互間の距離と、コーナー部41のR形状や、巻線31の線径および弾性力と、巻線31の張力などの諸条件によって設定されるが、巻線31と絶縁部材40の接触長さが長いほど効果が大きい。
【0055】
なお、凸部44の断面形状として、図10に示すような全面に亘って緩やかな円弧状が好ましいが、これに限定されるものではなく、図11(a)に示すような中央部のみの凸部44aであってもよく、逆に、図11(b)に示すように中央部を凹陥形成し、その両側を凸部44bとしても、同様の効果が得られる。
【0056】
また、図12および図13に示すように、ここでは、図12に示すように、ティース絶縁部dの先端fで、かつこの先端の基部側の厚みT1と、上記コーナー部41の厚みT2との関係を、T1>T2に設定した。
【0057】
以上の寸法設定をなしたうえで、図13に示すように、上部側絶縁部材40Baと下部側絶縁部材40Bbを嵌め込む。これら絶縁部材の先端f相互を重ね合わせた重ね代fが互いに接触することによって、重ね代同士が押さえ付けられ、この重ね代f間の隙間を埋めることから、絶縁特性が向上する。
【0058】
先に説明したT1>T2の関係によって、特にT1が巻線31を巻回したときの接触厚みとなる。すなわち、この厚みT1を有することによって、巻線31の張力の一部を受け、コーナー部41に対する巻線の接触力を緩和して、上述した凸部44と同様の効果が得られる。なお、巻き胴部cの断面形状として、上記凸部44と同じ緩やかな円弧状の面とすれば、さらに有効となる。
【0059】
さらに、図12および図13に示す構成であってもよい。すなわち、先に、図10でも説明したように巻き胴部cの凸部44の厚さTcと、ティース絶縁部dの先端f基端側厚みT1の関係が、Tc>T1に設定される。
【0060】
これは、上部側絶縁部材40Baと下部側絶縁部材40Bbとのコーナー部41相互間の距離が巻き胴部cの両側コーナー部41相互間の距離より長いことから、T1が小さくても巻線31は十分に接触できる。
【0061】
一方、巻き胴部cの厚みTcは、絶縁部材コーナー部41のR面取りを大きく取るためと、上記コーナー部41間の距離が短いために凸部44の高さを高くすることが必要なことから、Tcは厚くなければならない。そのため、Tc>T1の設定によって、さらに効果が発揮される。
【0062】
なお、再び図1および図2(a)に示すように、上記電動機部5としての直流モーターでは、回転子9の永久磁石36に対して組立て時に着磁の必要がある。ただし、この着磁の際に、着磁電流が固定子8の巻線31に流れて、巻線31の電磁力により絶縁部材40の鍔部に変形が生じことがある。
【0063】
このとき、絶縁部材40に形成される窪みが起点となってクラックが発生していたが、表1の結果に示すように、上述の特性を備えた絶縁部材40を採用することにより、電磁力による割れを防止して良好な結果を得た。
【0064】
さらに、別の手段を、図14(a)〜(c)と、図15(a)(b)に示している。
はじめに、図15から説明すると、同図(a)は射出成形加工の概略構成であり、射出成形加工機60と、モールド金型46と、モールド金型を構成する可動側金型47および固定側金型48と、各金型47,48の分割面49(パーティング面)などを示している。同図(b)は、上記モールド金型46のみを拡大して示している。
【0065】
上記射出成形加工機60による射出成形加工から説明すると、射出成形加工機60に接続されるホッパー63へ樹脂素材を投入する。加工機のシリンダ61内ではスクリュー62が回転し、ホッパー63に投入した樹脂素材を先端側へ送る。この途中で、シリンダ61の肉厚内に埋設されるヒーターHにより、投入された樹脂素材が加熱溶融される。上記スクリュー62の回転後退で溶融した弗素樹脂が先端側に溜められ、かつスクリュー62の直進で溶融弗素樹脂がモールド金型46へ注入される。
【0066】
モールド金型46においては、溶融樹脂が冷やされ固化する温度に設定されている。加工機60からモールド金型46を構成する固定側金型48の注入路53を介して注入された溶融樹脂は、ゲートである注入口54からキャビティ内に導かれ、ここで集溜し、かつ所定の時間設定にもとづいて冷却固化して絶縁部材40が成形されることとなる。なお、上記ゲートである注入口54の位置は、胴部Cのうちの内側鍔部Aもしくは外側鍔部Bの、少なくともいずれか一方に設けている。
【0067】
キャビティ内で溶融樹脂が冷却され固化したタイミングをとって可動側金型47が後退駆動され、分割面49の位置で可動側金型47と固定側金型48が分割される。その際、注入口54は成形された絶縁部材40と切り離される。
【0068】
可動側金型47に残った絶縁部材40に対して、突き出しプレート52が前進し、ここに設けられる突き出しピン50が絶縁部材40を押し出してモールド金型46から取り出す。
【0069】
さらに説明すると、同図(b)に示すように、上記固定側金型48は第1の分割金型48aと第2の分割金型48bとに分割化されていて、これら分割金型48a,48bを互いに開くことによって上記注入路53を取り出せる。
【0070】
そして、これら分割金型48a,48bから上記絶縁部材40と注入路53にある冷却固化した樹脂を取り除いたあとに、可動側金型47と固定側金型48を閉じ、再度同じ工程を繰り返すこととなる。
【0071】
図14(a)〜(c)は、ティース絶縁部dを構成する部分の金型分割面49の状態を示す一部断面図である。ティース絶縁部dの先端eに相当する位置に分割面49が設けられている。
【0072】
ティース絶縁部dの厚み方向の形状として、図14(b)に示される固定側金型48と可動側金型47の分割と、図14(c)に示される絶縁部材40の取り出しに必要な傾斜(テーパー)が設けられる。したがって、このティース絶縁部dの厚みは、巻き胴部c<先端eの関係であり、このような分割面49を設けることによって、絶縁部材40が金型から取り出される際の抵抗が減少してクラックの発生を防止できる。
【0073】
具体的には、上記固定子鉄心30は磁性鋼板の積層で構成されるために、ティース部33のコーナーに面取り等の加工ができず、このコーナーに位置する絶縁部材40のコーナー部41もまた大きな面取りを施すことかできない。モールド成形した絶縁部材40を金型から取り出す際の抵抗が大きいと、上記コーナー部41に集中応力が発生してクラックの要因となる。
【0074】
しかしながら、ここでは上記した分割面49の存在によって、可動側金型47が開くと同時にティース絶縁部dの片面が開放される。そして、可動側金型47に残った絶縁部材40を突き出しピン50で押し上げて取出すようになっているために、可動側金型47と絶縁部材40の摩擦抵抗が大幅に低減し、コーナー部41への負荷が減少してクラック発生を防止する。
【0075】
さらにまた、分割面49に生じるバリ51が、巻線30がストレスを最も受けるコーナー部41から離れた位置に形成されることから、製造過程でたとえバリ51が残ったとしても巻線30に対するストレスは小さく、絶縁被膜42の損傷などの不良発生を防止できる。
【0076】
なお、バリの除去処理について言うならば、バリ51が先端eに発生するために、ティース絶縁部d内などの奥まった位置に生じるバリに比較すれば、バリ取り処理が容易である。また、この金型構成により請求項3のティース絶縁部dの厚みT1>T2の関係が容易に形成できる。
【0077】
上述の分割面49は、絶縁部材40ティース絶縁部dの先端eに近ければ近いほど効果は大きい。最先端に分割面49を設けることが望ましいが、図13に示される上,下部側から嵌め込まれる上下部絶縁部材40Ba,40Bbには重ね代fの形成が必要であり、この重ね代fの形状によっては金型構成上困難になる場合もある。
【0078】
比較例としての金型構成を、図16に示す。すなわち、以下のような金型構成も考えられる。
こでは分割面49がコーナー部41近傍に設けられ、ティース絶縁部dが全て可動側金型47に形成されている。したがって、絶縁部材40を可動側金型47から取出すのに必要な傾斜を設けるためにティース絶縁部dの厚みは、巻き胴部c<先端e(T1<T2)の関係となってしまう。
【0079】
また、固定子鉄心30と巻線31の絶縁距離を大きく取れないために、この厚みは小さく、かつ傾斜も小さくする必要がある。そのため、絶縁部材40が可動側金型47から取出される際の抵抗が大きく、コーナー部にクラックが生じる虞れがある。
【0080】
また、図17に示すように、図14(a)〜(c)で説明した金型構成を前提として、固定側金型48で形成される絶縁部材表面粗さ46aと、可動側金型47で形成される絶縁部材表面粗さ46bの関係を、44a<44bとなるように設定している。
【0081】
基本的に、絶縁部材40の表面粗さは金型表面粗さが転写されるために、金型の表面粗さで決定される。具体的には、固定側金型48の表面粗さを小に設定すれば、絶縁部材40の表面粗さ46aが小さくなる。
【0082】
このような設定から、固定側金型48と可動側金型47との金型開きの際に、固定側金型48に対する絶縁部材40の摩擦抵抗が小さくなり、絶縁部材40へのストレスが減少する。コーナー部41への負荷が減少してクラック発生を防止する。絶縁部材の表面粗さ46aが小さい面に巻線31が巻回されるので、巻線絶縁被膜42の損傷を防止する効果もある。
【0083】
さらに、図18(a)(b)に示すように、上部側と下部側から嵌め込まれる絶縁部材40Ba,40Bb相互の先端部において、重ね代fの重なり合う距離55を、図18(a)では2mmとし、図18(b)では10mmとしている。
【0084】
上記固定子鉄心30は、磁性鋼板を積層して構成されるために、厚み方向に製造バラツキが生じ易い。そのため、上述の重ね代fは製造バラツキの寸法公差と重なり合う距離55を加味した長さ56として設定される。
【0085】
ここで、先に説明したようにティース絶縁部dの厚みT1,T2の関係を、T1>T2とし、重ね代fを巻線31で押さえ込むことから、図18(a)で示すような距離2mmであっても所定の絶縁特性が得られた。
【0086】
また、重ね代fの厚みを大きく取ることが可能となり、樹脂が流れ易くなることから、図18(b)に示すように、距離55を10mmまで延ばしても成形加工が可能である。よって、重ね代fの重なり合う距離55は、絶縁特性と成形加工性とのバランスから、2mm〜10mmの範囲までとするとよい。
【0087】
なお、先に図16で説明した比較例としての金型構成において、ティース絶縁部厚みの関係がT1<T2の場合は、重ね代と巻線に隙間が生じ絶縁特性が低下するため、距離を4mmに設定する必要があった。
【0088】
また、重ね代の厚みが小さくなることから樹脂が流れず、距離は成形加工上から6mmが限界である。つまり、絶縁特性の面からは距離を長く確保したいが、成形加工上では距離に制限があり、固定子鉄心の製造バラツキを極力押さえる必要があった。
【0089】
よって、上述の実施の形態のように、距離55を2〜10mmの範囲で構成することにより、固定子鉄心30の製造バラツキが大きくても対応でき、製造性が向上した。
【0090】
また、図19に示すようにしてもよい。
【0091】
すなわち、上部側と下部側から嵌め込まれるような絶縁部材40Ba1,40Bb1と合致する重ね代fを有する別体の中間絶縁部材57を設けている。この中間絶縁部材57は、ティース挿入部dと同形状の断面を有し、上下部側絶縁部材40Ba1,40Bb1が重なり合う、重ね代fが形成されている。これらの間に中間絶縁部材57を介在することによって、固定子鉄心33の厚みが増しても、新らたにモールド金型を用意する必要がなく、絶縁部材40Bをそのまま使用することができる。
【0092】
これら電動機部5は、圧縮機構部4の効率向上をなし、トルク不足を固定子鉄心33の厚みで補う。このため、中間絶縁部材57を設けることで、絶縁部材40Bの使用範囲が広がり製造性に優れる。
【0093】
【発明の効果】
上記説明したように本発明によれば、巻線の絶縁被膜と絶縁部材の損傷が改善され、絶縁不良や着磁した際の絶縁部材の折損を防止でき、固定子鉄心厚みの異なる製品にも同一形状の絶縁部材を採用できて生産性が向上し、信頼性の向上に繋げられるなどの効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す、冷媒圧縮機の断面。
【図2】同実施の形態の、電動機部の平面図と正面図。
【図3】同実施の形態の、分割タイプの絶縁部材の正面図。
【図4】同実施の形態の、異なる仕様の絶縁部材およびゲート位置を示す図。
【図5】同実施の形態の、全体タイプで上部側絶縁部材の平面図と部分断面図。
【図6】同実施の形態の、全体タイプで下部側絶縁部材の平面図と部分断面図。
【図7】同実施の形態の、全体タイプで上部側絶縁部材の斜視図。
【図8】同実施の形態の、ティース部に嵌め込まれるティース絶縁部の一部断面図と、コーナー部のRを説明する面。
【図9】同実施の形態の、破損状態を説明する斜視図と、正面図および部分断面図。
【図10】同実施の形態の、絶縁部材の凸部を示す部分断面図。
【図11】同実施の形態の、絶縁部材の他の変形例の凸部を示す部分断面図。
【図12】同実施の形態の、絶縁部材のティース絶縁部厚みを示す部分断面図。
【図13】同実施の形態の、上下部絶縁部材を互いに嵌め込んだ状態での、ティース絶縁部厚みを示す部分断面図。
【図14】同実施の形態の、モールド金型構成と、モールド成形時における動作を示す部分断面図。
【図15】同実施の形態の、射出成形加工機とモールド金型を示す断面図と、モールド金型の断面図。
【図16】比較例としての、モールド金型構成と、モールド成形時における動作を示す部分断面図。
【図17】同実施の形態の、モールド金型と絶縁部材の表面状態を説明する部分断面図。
【図18】同実施の形態の、絶縁部材の上下部側の重なりを示す部分断面図。
【図19】同実施の形態の、別体の絶縁部材の構成を示す部分断面図。
【符号の説明】
4…圧縮機構部、
8…固定子、
9…回転子、
5…電動機部、
32…ヨーク部、
33…ティース部、
30…固定子鉄心、
40…絶縁部材、
40A…絶縁部材、
40B…絶縁部材、
31…巻線、
A…内側鍔部、
B…外側鍔部、
C…胴部、
c…巻き胴部、
d…ティース絶縁部、
41…コーナー部、
44…凸部、
47…可動側金型、
48…固定側金型、
57…中間絶縁部材。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant compressor constituting a refrigeration cycle of a refrigerator or an air conditioner, for example, and particularly relates to an insulating member for a winding of an electric motor unit.
[0002]
[Prior art]
For example, a compressor used in a refrigerator or an air conditioner includes a compression mechanism unit that compresses refrigerant, and an electric motor unit that includes a stator and a rotor that drive the compression mechanism unit.
[0003]
In the electric motor section, in order to pursue energy saving and comfort in refrigeration cycle operation, two-pole or four-pole three-phase windings are used, and those driven by an inverter power supply tend to be used frequently.
[0004]
For example, Japanese Patent Laid-Open No. 10-288180 discloses a technique regarding an electric motor part of a refrigerant compressor. Here, as a stator that constitutes the motor part, an insulating member (also called a coil bobbin) is fitted into a tooth part that constitutes the stator core, and winding is applied to the tooth part via this insulating member, so-called concentrated winding. The method is adopted.
[0005]
On the other hand, in Japanese Patent Application No. 11-227539, the position and quantity of a resin injection port (gate) when molding an insulating member, selection of resin mold material and specific material characteristics, an inner collar part and a winding drum part Techniques such as the R shape of the corner portion where the two intersect and the combination of the applied refrigerant and refrigerating machine oil are disclosed.
[0006]
That is, the insulating member includes a trunk portion made of a rectangular frame fitted into a teeth portion having a rectangular cross section, and an inner flange portion and an outer flange portion that are integrally provided along the inner and outer peripheral edges of the barrel portion. It consists of.
[0007]
When molding such an insulating member, a mold having a resin inlet has an inner flange portion and an outer flange portion formed on the fixed mold, and the teeth insulating portion of the trunk portion on the movable mold. Is engraved to integrally form a winding drum portion and a tooth insulating portion constituting the inner and outer flange portions and the trunk portion.
[0008]
For this reason, a mold for molding an insulating member corresponding to each product shape is used, and the dividing surface (parting surface) between the fixed mold and the movable mold is insulated from the winding drum section and the teeth. It is constructed in the vicinity where the parts intersect.
[0009]
[Problems to be solved by the invention]
However, at the corner portion where the winding body portion of the body portion of the insulating member intersects with the tooth insulation portion, the insulation member and the winding wire strongly contact with each other due to the tension when the winding wire is wound, and the winding insulation film Damage or damage (compression dent) of the insulating member due to the pressing of the winding is likely to occur. For this reason, there was a breakage of the inner flange portion starting from the damaged portion of the insulating member due to a poor insulation of the winding or a large force applied during the magnetization process.
[0010]
In addition, since the teeth insulating portion of the insulating member is thin, it is difficult to take out (release) it from the mold, and the insulation of the insulating member is caused by the occurrence of cracks at the corner where the winding drum portion and the teeth insulating portion intersect. There was a defect. Furthermore, there is a problem that the insulating coating of the winding is damaged by burrs generated in the gap between the mating surfaces (parting surfaces) of the fixed side mold and the movable side mold.
[0011]
In addition, even in an electric motor portion in which only the thickness of the stator core and the rotor is changed, the length of the teeth insulating portion is determined for the integral insulating member, and the insulating member having the same shape and dimension cannot be used as it is. .
[0012]
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a refrigerant compressor including an electric motor having high reliability and excellent productivity.
[0013]
[Means for Solving the Problems]
  In order to satisfy the above object, the present inventionRefrigerant compressor compresses refrigerantIn the refrigerant compressor provided with an electric motor unit composed of a compression mechanism unit that discharges and a stator and a rotor that drive the compression mechanism unit, the stator is attached to a yoke unit that is an annular yoke. A plurality of teeth portions are integrally installed in a radial pattern, and windings are wound around each tooth portion via an insulating member. The insulating member is a resin molded product, and includes an inner flange portion and an outer flange portion. And a body part that connects the inner and outer flanges and is wound with a winding.The corner of the trunk has a radius that is not less than 1/2 and not more than 4 times the wire diameter of the winding.An R chamfer is provided.
[0022]
By adopting the means to solve the above problems, damage to the insulating film of the winding and the insulating member is improved, insulation failure and breakage of the insulating member when magnetized can be prevented, and the stator core thickness is different. Insulating members with the same shape can also be used for products, improving productivity and improving reliability.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0024]
In FIG. 1, 1 is a hermetic refrigerant compressor, and 2 is an accumulator. The refrigerant compressor 1 is provided with a compression mechanism portion 4 at the lower portion in the sealed case 3 and an electric motor portion 5 at the upper portion. The compression mechanism unit 4 and the electric motor unit 5 are connected via a rotating shaft 6.
[0025]
The electric motor unit 5 includes a stator 8 fixed to the inner surface of the sealed case 3 and a rotor 9 disposed inside the stator 8 via a predetermined gap and having the rotating shaft 6 inserted therein. Composed.
[0026]
The compression mechanism unit 4 includes two cylinders 11A and 11B that are arranged below the rotary shaft 6 with a partition plate 10 interposed therebetween. The upper cylinder 11A is attached and fixed to the main bearing 12 at the upper surface. The auxiliary bearing 13 is attached and fixed to the lower surface portion of the lower cylinder 11B.
[0027]
The upper and lower surfaces of the cylinders 11A and 11B are partitioned by the partition plate 10, the main bearing 12 and the auxiliary bearing 13, and cylinder chambers 15a and 15b are formed therein. The cylinder chambers 15a and 15b are configured with so-called rotary compression mechanisms 16A and 16B that drive the rollers eccentrically as the rotary shaft 6 rotates and partition the cylinder chamber into a high pressure side and a low pressure side by vanes. The Cylinder chambers 15a and 15b in both cylinders 11A and 11B are communicated with the accumulator 2 through conducting tubes 17a and 17b, respectively.
[0028]
On the other hand, a discharge refrigerant pipe 19 is connected to the upper surface of the sealed case 3 and communicates with a condenser (not shown). A suction refrigerant pipe 21 is connected to the upper surface of the accumulator 2 and communicates with an evaporator (not shown). An expansion mechanism is connected between the condenser and the evaporator, and a refrigeration cycle is formed that sequentially communicates with the accumulator 2 via the refrigerant compressor 1 -condenser-expansion mechanism-evaporator.
[0029]
FIGS. 2A and 2B are a plan view and a front view of the electric motor unit 5, and the rotor 9 is disposed inside the stator 8. The stator 8 includes a yoke portion 32 that is an annular yoke, and a plurality (six) of teeth portions 33 that are radially disposed inside the yoke portion at a predetermined interval. A laminated stator core 30 is provided.
[0030]
As will be described later, the teeth portion 33 is covered with an insulating member 40, and a winding 31 is provided through the insulating member. 2A shows the winding 31 with the insulating member 40 omitted, and FIG. 2B shows a state in which a part of the insulating member 40 protrudes from the upper and lower end surfaces of the stator core 30.
[0031]
Windings 31 for the stator core 30 are provided so that the number of slots (tooth portions 33) in the stator 8 is six and the number of poles of the rotor 9 is set to four.
[0032]
The rotor 9 includes a yoke portion 35 and a plurality (four) of permanent magnets 36 embedded in the yoke portion 35. The permanent magnet 36 is assembled in a non-magnetized state, and is magnetized after being assembled as the motor unit 5.
[0033]
FIG. 3 shows a single-type insulating member 40A fitted into the six teeth portions 33 from the upper side and the lower side, and twelve of these insulating members are prepared in total.
[0034]
The insulating member 40A includes an inner flange portion A, an outer flange portion B, and a body portion C that connects the inner and outer flange portions A and B to each other. In particular, a portion that is formed in a substantially U shape in a cross-sectional state of the body portion C and that is in close contact with the end surface of the tooth portion 33 when assembled is called a winding body portion c, and is attached to both ends of the winding body portion. A pair of surfaces that are integrally provided along both side surfaces of the tooth portion 33 are referred to as tooth insulating portions d and d, and f is a tip of the tooth insulating portion d.
[0035]
In the figure, the x marks of (1) to (4) indicate the position of the gate which is a resin injection port when the insulating member 40 is molded, and there is no difference between the inner flange portion A and the outer flange portion B. It is provided so as to face at least one of them.
[0036]
Further, an insulating member 40B as shown in FIG. 4 may be used. In the case of this insulating member 40B, it is an overall type composed of an upper insulating member 40Ba fitted from the upper side and a lower insulating member 40Bb fitted from the lower side over all six tooth portions 33, Therefore, it is sufficient if there are two.
[0037]
Fig.5 (a) shows the planar view of upper side insulation member 40Ba inserted from the upper side of the said teeth part 33 which comprises the insulation member 40B of the whole type, The same figure (b) of the figure (a) is shown. A bb cross section is shown.
[0038]
FIG. 6A shows a plan view of a lower insulating member 40Bb that is fitted from the lower side of the tooth portion 33, which constitutes an overall type of insulating member 40B, and FIG. A bb cross section is shown. FIG. 7 is a perspective view of an overall type insulating member 40B, of which an upper insulating member 40Ba.
[0039]
As shown in FIGS. 5 (a), 6 (a), and 7, the upper and lower side insulating members 40Ba and 40Bb are provided with an inner flange portion A and an outer flange portion B, and the inner and outer flange portions A and B. And a body portion C connecting the two.
[0040]
In particular, as shown in FIGS. 5 (b) and 6 (b), a surface that is in close contact with one end surface of the tooth portion 33 in a state in which the body portion C is in cross section is referred to as a winding body portion c. The opposing surfaces along the both side surfaces are referred to as a tooth insulating portion d, and f is the tip of the tooth insulating portion d.
[0041]
Insulating member 40 described above(For details, refer to 40A and 40B, the same applies hereinafter.) As shown in detail in FIGS. 5 (b) and 6 (b), the winding is applied to the corner portion 41 that forms the boundary between the winding body portion c and the teeth insulating portion d. It is characterized by providing an R chamfer that is 1/2 or more of the wire diameter of the wire 31.
[0042]
In order to confirm the effect of the insulating member 40 described above, a winding is applied to an insulating member in which the R chamfer size of the corner portion 41 is variously changed, the degree of damage to the insulating coating of the winding, and the deformation of the winding cross section. The state, the dent deformation at the corner, the broken state of the inner flange A after magnetization, and the like were evaluated.
[0043]
Specifically, the winding work of winding the winding 31 after fitting the insulating member 40 in the teeth portion 33 constituting the stator core 30 is performed by setting a constant tension and a winding speed. At this time, the load applied to the inner flange A of the insulating member 40 is 50 to 100 kgf.
[0044]
Further, a PPS resin (polyphenylene sulfide) material is selected as the material for the insulating members 40A and 40B.
[0045]
The wire diameter of the winding 31 is φ1.0 mm, and as shown in FIG. 8B, the R chamfering of the corner portion 41 is R: 0.1, R: 0.3, R: 0.5, R : 1.0 and R: 2.0 (mm).
[0046]
FIGS. 9A to 9D illustrate details of the evaluation obtained under the above conditions. That is, in FIG. 9A, the damaged state of the insulating coating 42 covering the winding 31 after winding was observed. In FIG. 9B, the amount of deformation of the winding 31 after winding with respect to the initial wire diameter was measured. In FIG.9 (c), the hollow amount of the corner part 41 of the insulating member 40 is measured, and the gg cross section of FIG.9 (c) is shown to the same figure (g). In FIG. 9 (d), the presence / absence of a crack at the root of the inner flange A after magnetization was confirmed.
[0047]
The above four items were evaluated, and the evaluation results are summarized in Table 1 below. Note that the deformation of the winding after the winding and the depression of the corner portion 41 are shown as relative values when the specification of (3) R: 0.5 (mm) in Table 1 is 1.0.
[0048]
[Table 1]
Figure 0003679305
[0049]
From the above results, according to the specifications (3) to (5), the insulation coating 42 on the surface of the winding 31 is not damaged, and the deformation of the winding 31 and the insulating member 40 can be small. It was also found that no crack occurred at the base of the inner flange A after magnetization.
[0050]
On the other hand, according to the specifications (1) and (2), since the R chamfer dimension is small, there is stress concentration at the corner portion 41, the insulating coating 42 is damaged, the winding 31 is deformed, and the corner The dent in the part 41 becomes large. Furthermore, it has been found that the stress is concentrated in the dent portion with respect to the force that the inner flange portion A tends to fall toward the rotor 9 during magnetization, and cracks are generated starting from this dent.
[0051]
In other words, by setting the R chamfer to 1/2 (0.5 part) or more of the wire diameter, stress concentration during winding can be relaxed and reliability can be improved. However, if the R chamfer is increased more than necessary, the corner portion 41 becomes thin and the strength of the insulating member 40 is reduced. Therefore, the R chamfer is preferably in the range of 1/2 to 4 times the wire diameter.
[0052]
  A configuration as shown in FIG. 10 may be used.
  Here, the surface of the winding drum portion c in the drum portion C constituting the insulating member 40 is formed as a convex portion 44 having a gentle convex shape. The convex portion 44 has a height (convex height) that comes into contact with the winding 31 when it is wound.
[0053]
As shown in FIG. 8A, in the normal configuration, a winding gap 43 is formed between the winding body c and the winding 31, and stress concentrates on the corner portion 41. However, by forming the convex portion 44 shown in FIG. 10, the convex portion receives a part of the tension of the winding 31 and the winding gap as described above does not occur. Therefore, the contact force of the winding 31 with respect to the corner portion 41 is relaxed, the damage to the insulating coating 42 of the winding is prevented, and the depression of the corner portion 41 can be prevented.
[0054]
The convex portion 44 depends on various conditions such as the distance between both corner portions 41 of the winding body portion c, the R shape of the corner portion 41, the wire diameter and elastic force of the winding 31, and the tension of the winding 31. The effect is greater as the contact length between the winding 31 and the insulating member 40 is longer.
[0055]
Note that the cross-sectional shape of the convex portion 44 is preferably a gentle arc shape over the entire surface as shown in FIG. 10, but is not limited to this, and only the central portion as shown in FIG. Convex part 44a may be sufficient, and conversely, as shown in FIG. 11B, the same effect can be obtained by forming a concave part at the center part and forming convex parts 44b on both sides thereof.
[0056]
  Also, as shown in FIGS. 12 and 13, hereAs shown in FIG. 12, the relationship between the thickness T1 of the tip end f of the tooth insulating portion d and the base side of the tip and the thickness T2 of the corner portion 41 is set to T1> T2.
[0057]
After the above dimension setting, as shown in FIG. 13, the upper side insulating member 40Ba and the lower side insulating member 40Bb are fitted. When the overlap margins f obtained by overlapping the tips f of the insulating members contact each other, the overlap margins are pressed down and the gap between the overlap margins f is filled, so that the insulation characteristics are improved.
[0058]
Due to the relationship of T1> T2 described above, the contact thickness is particularly when T1 winds the winding 31. That is, by having this thickness T1, a part of the tension of the winding 31 is received, and the contact force of the winding with respect to the corner portion 41 is relaxed, and the same effect as the above-described convex portion 44 is obtained. In addition, if the cross-sectional shape of the winding drum portion c is the same gentle arc-shaped surface as the convex portion 44, it is more effective.
[0059]
  Furthermore, FIG. 12 and FIG.The configuration shown in FIG.That is, as described above with reference to FIG. 10, the relationship between the thickness Tc of the convex portion 44 of the winding drum portion c and the distal end f proximal side thickness T1 of the tooth insulating portion d is set to Tc> T1.
[0060]
This is because the distance between the corner portions 41 of the upper-side insulating member 40Ba and the lower-side insulating member 40Bb is longer than the distance between the both-side corner portions 41 of the winding body portion c. Can touch well.
[0061]
On the other hand, the thickness Tc of the winding body portion c needs to increase the height of the convex portion 44 because the R chamfering of the insulating member corner portion 41 is large and the distance between the corner portions 41 is short. Therefore, Tc must be thick. Therefore, the effect is further exhibited by setting Tc> T1.
[0062]
  In additionAgain, FIG. 1 and FIG. 2 (a)As shown inIn the DC motor as the electric motor unit 5, the permanent magnet 36 of the rotor 9 needs to be magnetized at the time of assembly. However, during this magnetization, a magnetizing current may flow through the winding 31 of the stator 8, and deformation of the flange portion of the insulating member 40 may occur due to the electromagnetic force of the winding 31.
[0063]
At this time, cracks were generated starting from the depression formed in the insulating member 40. As shown in the results of Table 1, by adopting the insulating member 40 having the above-described characteristics, electromagnetic force Good results were obtained by preventing cracking due to.
[0064]
  In addition, another means14 (a) to 14 (c) and FIGS. 15 (a) and 15 (b).
  First, referring to FIG. 15, FIG. 15A is a schematic configuration of an injection molding process, and includes an injection molding machine 60, a mold die 46, a movable die 47 and a fixed side constituting the mold die. A mold 48 and a dividing surface 49 (parting surface) of each mold 47 and 48 are shown. FIG. 4B shows only the mold 46 in an enlarged manner.
[0065]
To explain from the injection molding process by the injection molding machine 60, the resin material is put into the hopper 63 connected to the injection molding machine 60. The screw 62 rotates in the cylinder 61 of the processing machine, and the resin material put into the hopper 63 is sent to the tip side. In the middle of this, the charged resin material is heated and melted by the heater H embedded in the thickness of the cylinder 61. The fluorine resin melted by the rotation and retraction of the screw 62 is accumulated on the tip side, and the molten fluorine resin is injected into the mold 46 by the straight advance of the screw 62.
[0066]
In the mold 46, the temperature is set so that the molten resin is cooled and solidified. The molten resin injected from the processing machine 60 through the injection path 53 of the fixed mold 48 constituting the mold 46 is introduced into the cavity from the injection port 54 serving as a gate, and collected here. The insulating member 40 is molded by cooling and solidifying based on a predetermined time setting. Note that the position of the injection port 54 serving as the gate is provided in at least one of the inner flange portion A and the outer flange portion B of the trunk portion C.
[0067]
At the timing when the molten resin is cooled and solidified in the cavity, the movable mold 47 is driven backward, and the movable mold 47 and the fixed mold 48 are divided at the position of the dividing surface 49. At that time, the injection port 54 is separated from the molded insulating member 40.
[0068]
The protruding plate 52 moves forward with respect to the insulating member 40 remaining in the movable mold 47, and the protruding pin 50 provided here pushes out the insulating member 40 and removes it from the mold 46.
[0069]
More specifically, as shown in FIG. 4B, the fixed mold 48 is divided into a first divided mold 48a and a second divided mold 48b, and the divided mold 48a, The injection path 53 can be taken out by opening 48b.
[0070]
Then, after the insulating member 40 and the cooled and solidified resin in the injection path 53 are removed from the divided molds 48a and 48b, the movable mold 47 and the fixed mold 48 are closed, and the same process is repeated again. It becomes.
[0071]
14 (a) to 14 (c) are partial cross-sectional views showing the state of the mold dividing surface 49 of the portion constituting the tooth insulating portion d. A dividing surface 49 is provided at a position corresponding to the tip e of the tooth insulating portion d.
[0072]
As the shape in the thickness direction of the tooth insulation part d, it is necessary for dividing the fixed side mold 48 and the movable side mold 47 shown in FIG. 14B and for taking out the insulating member 40 shown in FIG. 14C. An inclination (taper) is provided. Therefore, the thickness of the tooth insulating portion d is in the relationship of the winding drum portion c <the tip e, and by providing such a dividing surface 49, the resistance when the insulating member 40 is taken out from the mold is reduced. Generation of cracks can be prevented.
[0073]
Specifically, since the stator core 30 is composed of laminated magnetic steel plates, the corner of the tooth portion 33 cannot be chamfered or the like, and the corner portion 41 of the insulating member 40 located at this corner is also Can only be chamfered. If the resistance at the time of taking out the molded insulating member 40 from the mold is large, concentrated stress is generated in the corner portion 41 and causes cracking.
[0074]
However, here, due to the presence of the dividing surface 49 described above, one side of the tooth insulating portion d is opened simultaneously with the opening of the movable mold 47. Since the insulating member 40 remaining in the movable mold 47 is pushed out by the protruding pin 50, the frictional resistance between the movable mold 47 and the insulating member 40 is greatly reduced, and the corner portion 41 Reduces the load to prevent cracking.
[0075]
Furthermore, since the burr 51 generated on the dividing surface 49 is formed at a position farthest from the corner portion 41 where the winding 30 receives the stress most, even if the burr 51 remains in the manufacturing process, the stress on the winding 30 is increased. And the occurrence of defects such as damage to the insulating coating 42 can be prevented.
[0076]
In terms of the burr removing process, the burr 51 is generated at the tip e. Therefore, the burr removing process is easier as compared with a burr generated in a deep position such as in the tooth insulating portion d. Further, with this mold configuration, the relationship of the thickness T1> T2 of the teeth insulating portion d of claim 3 can be easily formed.
[0077]
The above-described dividing surface 49 is more effective as it is closer to the tip e of the insulating member 40 teeth insulating portion d. Although it is desirable to provide the dividing surface 49 at the forefront, as shown in FIG. 13, the upper and lower insulating members 40Ba and 40Bb fitted from the lower side need to be formed with an overlap margin f, and the shape of the overlap margin f Depending on the mold configuration, it may be difficult.
[0078]
A mold configuration as a comparative example is shown in FIG. That is, the following mold configuration is also conceivable.
Here, the dividing surface 49 is provided in the vicinity of the corner portion 41, and the teeth insulating portions d are all formed on the movable-side mold 47. Therefore, in order to provide an inclination necessary for taking out the insulating member 40 from the movable mold 47, the thickness of the tooth insulating portion d has a relationship of the winding drum portion c <tip e (T1 <T2).
[0079]
In addition, since the insulation distance between the stator core 30 and the winding 31 cannot be increased, it is necessary to reduce the thickness and the inclination. Therefore, the resistance when the insulating member 40 is taken out from the movable mold 47 is large, and there is a possibility that a crack may occur in the corner portion.
[0080]
  Moreover, as shown in FIG. 17, it demonstrated with FIG. 14 (a)-(c).Assuming the mold configuration, the relationship between the insulating member surface roughness 46a formed by the fixed mold 48 and the insulating member surface roughness 46b formed by the movable mold 47 is such that 44a <44b. It is set.
[0081]
Basically, the surface roughness of the insulating member 40 is determined by the surface roughness of the mold because the mold surface roughness is transferred. Specifically, if the surface roughness of the stationary mold 48 is set to be small, the surface roughness 46a of the insulating member 40 becomes small.
[0082]
From this setting, when the fixed side mold 48 and the movable side mold 47 are opened, the frictional resistance of the insulating member 40 with respect to the fixed side mold 48 is reduced, and the stress on the insulating member 40 is reduced. To do. The load on the corner portion 41 is reduced to prevent the occurrence of cracks. Since the winding 31 is wound on a surface having a small surface roughness 46a of the insulating member, there is also an effect of preventing the winding insulating film 42 from being damaged.
[0083]
  further18 (a) and 18 (b)likeThe overlapping distance 55 of the overlap margin f at the front ends of the insulating members 40Ba and 40Bb fitted from the upper side and the lower side is 2 mm in FIG. 18 (a) and 10 mm in FIG. 18 (b).
[0084]
Since the stator core 30 is formed by laminating magnetic steel plates, manufacturing variations are likely to occur in the thickness direction. For this reason, the above-mentioned overlap allowance f is set as a length 56 in consideration of the distance 55 overlapping with the dimensional tolerance of the manufacturing variation.
[0085]
Here, as described above, since the relationship between the thicknesses T1 and T2 of the tooth insulating portion d is T1> T2 and the overlap margin f is pressed by the winding 31, the distance 2 mm as shown in FIG. Even so, a predetermined insulation characteristic was obtained.
[0086]
Further, since the thickness of the overlap allowance f can be increased and the resin can easily flow, as shown in FIG. 18B, molding can be performed even if the distance 55 is extended to 10 mm. Therefore, the overlapping distance 55 of the overlap allowance f is preferably in the range of 2 mm to 10 mm from the balance between the insulating characteristics and the moldability.
[0087]
In addition, in the mold configuration as the comparative example described above with reference to FIG. 16, when the relationship between the thicknesses of the tooth insulation portions is T1 <T2, a gap is generated between the overlap allowance and the winding, and the insulation characteristics are lowered. It was necessary to set to 4 mm.
[0088]
Moreover, since the thickness of the overlap allowance becomes small, the resin does not flow, and the distance is limited to 6 mm from the viewpoint of molding. In other words, it is necessary to secure a long distance from the surface of the insulation characteristics, but the distance is limited in the molding process, and it is necessary to suppress the manufacturing variation of the stator core as much as possible.
[0089]
Therefore, by configuring the distance 55 in the range of 2 to 10 mm as in the above-described embodiment, it is possible to cope with large manufacturing variations of the stator core 30 and the productivity is improved.
[0090]
  Also, Shown in FIG.You may do it.
[0091]
That is, the insulating member 40B that is fitted from the upper side and the lower side.a1, 40Bb1A separate intermediate insulating member 57 having an overlap f that matches with the above is provided. The intermediate insulating member 57 has a cross section having the same shape as the tooth insertion portion d, and the upper and lower side insulating members 40B.a1, 40Bb1The overlap margin f is formed. By interposing the intermediate insulating member 57 between them, even if the thickness of the stator core 33 is increased, it is not necessary to prepare a new mold, and the insulating member 40B can be used as it is.
[0092]
These electric motor parts 5 improve the efficiency of the compression mechanism part 4 and compensate for the lack of torque with the thickness of the stator core 33. For this reason, by providing the intermediate insulating member 57, the use range of the insulating member 40B is expanded and the productivity is excellent.
[0093]
【The invention's effect】
As described above, according to the present invention, damage to the insulating coating of the winding and the insulating member can be improved, insulation failure and breakage of the insulating member when magnetized can be prevented, and products with different stator core thicknesses can be prevented. An insulating member having the same shape can be employed, thereby improving productivity and improving reliability.
[Brief description of the drawings]
FIG. 1 is a sectional view of a refrigerant compressor showing an embodiment of the present invention.
FIG. 2 is a plan view and a front view of an electric motor unit according to the embodiment.
FIG. 3 is a front view of a split type insulating member according to the embodiment;
FIG. 4 is a diagram showing insulating members and gate positions having different specifications according to the embodiment;
FIGS. 5A and 5B are a plan view and a partial cross-sectional view of an upper-side insulating member of the overall type according to the embodiment;
FIGS. 6A and 6B are a plan view and a partial cross-sectional view of a lower-side insulating member of the overall type according to the embodiment;
FIG. 7 is a perspective view of the upper-side insulating member of the overall type according to the embodiment;
FIG. 8 is a partial cross-sectional view of the tooth insulating portion fitted into the tooth portion and a surface for explaining R of the corner portion according to the embodiment;
FIG. 9 is a perspective view, a front view, and a partial cross-sectional view for explaining a damaged state of the embodiment.
FIG. 10 is a partial cross-sectional view showing a convex portion of an insulating member according to the embodiment.
FIG. 11 is a partial cross-sectional view showing a convex portion of another modification of the insulating member according to the embodiment.
FIG. 12 is a partial cross-sectional view showing the thickness of a tooth insulating portion of the insulating member according to the embodiment.
FIG. 13 is a partial cross-sectional view showing the thickness of the teeth insulating portion when the upper and lower insulating members are fitted into each other according to the embodiment;
FIG. 14 is a partial cross-sectional view showing the mold configuration and the operation during molding according to the embodiment.
FIG. 15 is a sectional view showing an injection molding machine and a mold according to the embodiment, and a sectional view of the mold.
FIG. 16 is a partial cross-sectional view showing a mold configuration and an operation during molding as a comparative example.
FIG. 17 is a partial cross-sectional view illustrating a surface state of a mold and an insulating member according to the embodiment.
FIG. 18 is a partial cross-sectional view showing the overlapping of the upper and lower sides of the insulating member according to the embodiment.
FIG. 19 is a partial cross-sectional view showing a configuration of a separate insulating member according to the embodiment.
[Explanation of symbols]
4 ... compression mechanism,
8 ... Stator,
9 ... rotor,
5 ... Electric motor part,
32 ... Yoke part,
33 ... Teeth club,
30 ... Stator core,
40. Insulating member,
40A ... insulating member,
40B ... insulating member,
31 ... Winding,
A ... Inner buttock,
B ... Outer buttocks,
C ... trunk,
c ... winding body,
d: Teeth insulation,
41 ... Corner,
44 ... convex part,
47. Movable side mold,
48 ... fixed side mold,
57: Intermediate insulating member.

Claims (1)

冷媒を圧縮して吐出する圧縮機構部と、この圧縮機構部を駆動する固定子および回転子とから構成される電動機部を備えた冷媒圧縮機において、
上記固定子は、円環状継鉄であるヨーク部に一体に、複数個のティース部を放射状に設置し、各々のティース部に絶縁部材を介して巻線を巻装し、
上記絶縁部材は、樹脂モールド成形品であり、内側鍔部と外側鍔部、およびこれら内,外側鍔部を連結し巻線が巻装される胴部とから構成され、
上記胴部のコーナー部に、上記巻線の線径の1/2以上かつ4倍以下の半径のR面取りを設けたことを特徴とする冷媒圧縮機。
In a refrigerant compressor provided with an electric motor unit composed of a compression mechanism unit that compresses and discharges a refrigerant, and a stator and a rotor that drive the compression mechanism unit,
The stator is integrally formed with a yoke portion, which is an annular yoke, and a plurality of teeth portions are installed radially, and windings are wound around each tooth portion via an insulating member,
The insulating member is a resin molded product, and is composed of an inner flange portion and an outer flange portion, and a trunk portion in which a winding is wound by connecting the inner and outer flange portions.
A refrigerant compressor characterized in that an R chamfer having a radius not less than 1/2 and not more than 4 times the wire diameter of the winding is provided at a corner portion of the body portion .
JP2000082829A 2000-03-23 2000-03-23 Refrigerant compressor Expired - Lifetime JP3679305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082829A JP3679305B2 (en) 2000-03-23 2000-03-23 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082829A JP3679305B2 (en) 2000-03-23 2000-03-23 Refrigerant compressor

Publications (2)

Publication Number Publication Date
JP2001268835A JP2001268835A (en) 2001-09-28
JP3679305B2 true JP3679305B2 (en) 2005-08-03

Family

ID=18599577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082829A Expired - Lifetime JP3679305B2 (en) 2000-03-23 2000-03-23 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JP3679305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056427A2 (en) 2007-10-31 2009-05-06 Nissan Motor Co., Ltd. Insulating bobbin for stator of rotary machine
EP3961870A4 (en) * 2019-04-25 2022-04-27 Mitsubishi Electric Corporation Stator, motor, fan, air conditioning device, and stator manufacturing method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004010956U1 (en) * 2004-07-13 2005-11-24 Minebea Co., Ltd., Kitasaku Device for insulating stator slots
JP4371936B2 (en) * 2004-07-30 2009-11-25 本田技研工業株式会社 Coil for rotating electrical machine
JP4655764B2 (en) * 2005-06-06 2011-03-23 トヨタ自動車株式会社 Rotating electric machine
DE102006009440A1 (en) * 2006-03-01 2007-09-06 Siemens Ag Electric machine with plastic-coated pole teeth and corresponding method
JP4786380B2 (en) * 2006-03-24 2011-10-05 本田技研工業株式会社 Insulation structure of rotating electrical machine
JP4656028B2 (en) * 2006-09-08 2011-03-23 ダイキン工業株式会社 Motor and compressor
JP2008079485A (en) * 2006-09-25 2008-04-03 Mitsubishi Electric Corp Stator in dynamo-electric machine and manufacturing method of same
JP5113428B2 (en) * 2007-05-31 2013-01-09 日本電産サンキョー株式会社 Stator and motor
JP5056252B2 (en) * 2007-08-08 2012-10-24 日本精工株式会社 Coil mechanism of rotating motor
JP5056253B2 (en) * 2007-08-08 2012-10-24 日本精工株式会社 Plate member for coil mechanism of rotary motor
JP2010088142A (en) * 2008-09-29 2010-04-15 Daikin Ind Ltd Insulator and armature core
JP2010263675A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Armature
JP2011030378A (en) * 2009-07-27 2011-02-10 Panasonic Corp Stator and electrical apparatus
JP5617566B2 (en) * 2010-11-29 2014-11-05 三菱電機株式会社 Rotating electric machine and rotating electric machine stator
CN104718684B (en) * 2012-10-15 2017-11-07 三菱电机株式会社 Molding type motor and air conditioner
JP6025584B2 (en) * 2013-01-30 2016-11-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Electric motor and fluid compressor provided with the electric motor
CN104065192A (en) * 2014-07-04 2014-09-24 太仓东元微电机有限公司 Novel insulation protective jacket
CN104079097A (en) * 2014-07-04 2014-10-01 太仓东元微电机有限公司 Insulation protective sleeve for motor stator
JP6574345B2 (en) * 2015-06-25 2019-09-11 アイチエレック株式会社 Electric motor and compressor
JP6574346B2 (en) * 2015-06-25 2019-09-11 アイチエレック株式会社 Electric motor and compressor
JP2018019564A (en) * 2016-07-29 2018-02-01 株式会社マキタ Coil forming method for power tool motor, power tool
JP7009188B2 (en) * 2017-12-05 2022-01-25 東芝キヤリア株式会社 Motors, sealed compressors and refrigeration cycle equipment
JP7109573B2 (en) * 2018-10-23 2022-07-29 三菱電機株式会社 Insulating structure for rotating electric machine and method for manufacturing insulating structure for rotating electric machine
JP2020102959A (en) * 2018-12-21 2020-07-02 株式会社マキタ Electric work machine and method for forming coil to stator in motor for electric work machine
JP7307591B2 (en) * 2019-05-24 2023-07-12 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Stators, motors, compressors, and refrigerators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056427A2 (en) 2007-10-31 2009-05-06 Nissan Motor Co., Ltd. Insulating bobbin for stator of rotary machine
US8035268B2 (en) 2007-10-31 2011-10-11 Nissan Motor Co., Ltd. Insulating bobbin for stator of rotary machine
EP3961870A4 (en) * 2019-04-25 2022-04-27 Mitsubishi Electric Corporation Stator, motor, fan, air conditioning device, and stator manufacturing method
AU2019442093B2 (en) * 2019-04-25 2022-10-27 Mitsubishi Electric Corporation Stator, motor, fan, air conditioner, and manufacturing method of stator

Also Published As

Publication number Publication date
JP2001268835A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP3679305B2 (en) Refrigerant compressor
JP6656428B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
JP5043313B2 (en) Outer stator of reciprocating motor and manufacturing method thereof
JP4036148B2 (en) Electric motor and electric compressor
US6967420B2 (en) Electrical machine having a rotor specially adapted to high speeds
US10797540B2 (en) Stator, motor, compressor, and refrigeration air conditioner
US7075203B2 (en) Electric motor and method for producing a rotor for such an electric motor
EP1734639A2 (en) Flux barrier type synchronous reluctance motor and rotor thereof
US6339876B1 (en) Method for assembling an inner core/cylinder block assembly for linear compressor
CN102638118A (en) Rotor, sealed compressor, and refrigerating cycle device
CN101083408A (en) Closed compressor and manufacturing method therefor
JP2004096978A (en) Permanent magnet embedded motor and rotary compressor
CN108539946B (en) Manufacturing method of stator of fractional slot concentrated winding permanent magnet brushless motor
JP4397466B2 (en) Permanent magnet rotating electric machine
JP6656429B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
CN106385121A (en) Low loss combined radial flux amorphous alloy motor
EP3576261B1 (en) Motor and compressor that uses same
US20090079291A1 (en) Interphase insulating sheet of rotating electric machine, method for manufacturing interphase insulating sheet, and electric compressor
GB2564263A (en) Rotor, electric motor, compressor, and refrigerator/air-conditioner
JPH1014147A (en) Rotary machine having circumferentially magnetized rotor and manufacture thereof
JP2004135380A (en) Motor and rotary compressor
JPH10243595A (en) Sealed stator for small motor and its manufacture
CN206135571U (en) Radial magnetic flow metallic glass motor of low -loss combination formula
JP4295499B2 (en) Mold motor and method for manufacturing mold motor
JP2013146186A (en) Assembly method of rotor for motor, motor and compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050512

R150 Certificate of patent or registration of utility model

Ref document number: 3679305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term