JP2006179428A - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP2006179428A
JP2006179428A JP2004374195A JP2004374195A JP2006179428A JP 2006179428 A JP2006179428 A JP 2006179428A JP 2004374195 A JP2004374195 A JP 2004374195A JP 2004374195 A JP2004374195 A JP 2004374195A JP 2006179428 A JP2006179428 A JP 2006179428A
Authority
JP
Japan
Prior art keywords
nickel
nickel oxyhydroxide
positive electrode
type
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004374195A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文生 加藤
Hidekatsu Izumi
秀勝 泉
Chuya Okada
忠也 岡田
Yasuo Mukai
保雄 向井
Shigeto Noya
重人 野矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004374195A priority Critical patent/JP2006179428A/en
Publication of JP2006179428A publication Critical patent/JP2006179428A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline battery having an excellent discharge property at discharge both in a low load and a high load, by optimizing a material and a physical property of a cathode activator. <P>SOLUTION: The alkaline battery contains powdered nickel oxyhydroxide and manganese dioxide as activators, and the nickel oxyhydroxide fulfills following physical properties : (1) Crystal structure is a mixed phase of β-type and γ-type, and integrated intensity I<SB>γ</SB>of a diffraction peak of a powder X-ray diffraction at (003) plane of the γ-type and the integrated intensity I<SB>β</SB>of the diffraction peak at (001) plane of the β-type fulfill an equation: 0.1≤I<SB>γ</SB>/(I<SB>β</SB>+I<SB>γ</SB>)≤0.5. (2) Average valence of nickel is 3.05 to 3.30. (3) The nickel oxyhydroxide contain 1 to 10 mol% of aluminum. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オキシ水酸化ニッケルおよび二酸化マンガンを活物質とする正極合剤を用いて、インサイドアウト構造を採用した一次電池としてのアルカリ電池(ニッケルマンガン電池)に関する。   The present invention relates to an alkaline battery (nickel manganese battery) as a primary battery adopting an inside-out structure using a positive electrode mixture containing nickel oxyhydroxide and manganese dioxide as active materials.

アルカリ電池は、正極端子を兼ねる有底円筒状の正極ケースの中に、正極ケースに密着して二酸化マンガンを含む中空円筒状のペレット状正極合剤を配置し、その中央にセパレータを介してゲル状の亜鉛負極を配置したインサイドアウト型の構造を有する。
近年のデジタル機器の普及に伴い、機器の負荷電力は増大している。このため、デジタル機器の電源に用いられる電池は優れた強負荷放電性能を有することが要望されている。強負荷放電特性を向上させる方法としては、電池の正極合剤にオキシ水酸化ニッケルを混合することが提案されており(特許文献1)、この電池が実用化されて広く普及するに到っている。
In alkaline batteries, a hollow cylindrical pellet positive electrode mixture containing manganese dioxide in close contact with the positive electrode case is placed in a bottomed cylindrical positive electrode case that also serves as a positive electrode terminal, and a gel is interposed through a separator in the center. It has an inside-out type structure in which a zinc negative electrode is arranged.
With the spread of digital devices in recent years, the load power of devices has increased. For this reason, the battery used for the power supply of a digital device is requested | required to have the outstanding heavy load discharge performance. As a method for improving the heavy load discharge characteristics, it has been proposed to mix nickel oxyhydroxide with the positive electrode mixture of the battery (Patent Document 1), and this battery has been put into practical use and has come into widespread use. Yes.

オキシ水酸化ニッケルには、特許文献2で挙げられているようなアルカリ蓄電池用途の球状ないしは鶏卵状の水酸化ニッケルを原料として、次亜塩素酸ナトリウム水溶液等の酸化剤で酸化したものを用いることができる。電池内への正極合剤の充填密度を向上させるために、嵩密度(タップ密度)の大きいβ型の球状水酸化ニッケルを酸化処理して、得られたβ型を主構造とした球状オキシ水酸化ニッケルがよく用いられる。
また、正極の利用率を高めるために、アルカリ蓄電池用途として特許文献3で挙げられているようなコバルト・亜鉛等を結晶中に固溶させた球状水酸化ニッケルを原料に用いることができる。
For nickel oxyhydroxide, use spherical or egg-shaped nickel hydroxide for alkaline storage battery applications as described in Patent Document 2 and oxidized with an oxidizing agent such as sodium hypochlorite aqueous solution. Can do. In order to improve the packing density of the positive electrode material mixture in the battery, β-type spherical nickel hydroxide having a large bulk density (tap density) is oxidized, and the resulting β-type spherical oxywater is the main structure. Nickel oxide is often used.
In addition, in order to increase the utilization rate of the positive electrode, spherical nickel hydroxide in which cobalt, zinc, etc., as listed in Patent Document 3 for alkaline storage battery use, are dissolved in the crystal can be used as a raw material.

一次電池用途のオキシ水酸化ニッケルに関しては、球状であること(特許文献4)、結晶中に亜鉛・コバルトを固溶させること(特許文献5)、特定範囲の比表面積のものを用いること(特許文献6)、不純物の含有量を規制すること(特許文献7)、電解二酸化マンガンと合わせた平均粒子径を規制すること(特許文献8)等が提案されている。しかし、これらの提案は、基本的にアルカリ蓄電池用正極に関する周知の技術を一次電池に適用したものである。   Regarding nickel oxyhydroxide used for primary batteries, it is spherical (Patent Document 4), zinc / cobalt is dissolved in crystals (Patent Document 5), and has a specific surface area within a specific range (Patent Document 5) Document 6), regulating the content of impurities (Patent Document 7), regulating the average particle diameter combined with electrolytic manganese dioxide (Patent Document 8), and the like have been proposed. However, these proposals basically apply a well-known technique relating to a positive electrode for an alkaline storage battery to a primary battery.

一方、アルカリ蓄電池では、実用化されていないが、特許文献9および10等において、結晶内にマンガンやアルミニウム等を固溶させたオキシ水酸化ニッケル粒子を正極活物質とし、ニッケルの価数が、2価から3価超(3.5価程度)までの間で変化する充放電反応を可能にして高容量化を図ることが提案されている。なお、このような高次のオキシ水酸化物を形成し得る材料を一次電池に用いる試みは、これまで殆ど行われていなかった。
特開昭57−72266号公報 特開平4-80513号公報 特開平7−77129号公報 特開2002−8650号公報 特開2002−203546号公報 特開2003−31213号公報 特開2003−123745号公報 特開2003−123747号公報 特許第3239076号明細書 特開平11−345613号公報
On the other hand, in an alkaline storage battery, although not put into practical use, in Patent Documents 9 and 10, etc., nickel oxyhydroxide particles in which manganese or aluminum or the like is dissolved in a crystal is used as a positive electrode active material, and the valence of nickel is It has been proposed to achieve a high capacity by enabling a charge / discharge reaction that varies between divalent to over trivalent (about 3.5). Heretofore, almost no attempt has been made to use a material capable of forming such a higher-order oxyhydroxide for a primary battery.
JP-A-57-72266 Japanese Patent Laid-Open No. 4-80513 JP-A-7-77129 JP 2002-8650 A JP 2002-203546 A JP 2003-3213 A JP 2003-123745 A JP 2003-123747 A Japanese Patent No. 3239076 Japanese Patent Laid-Open No. 11-345613

上述のような正極合剤中にオキシ水酸化ニッケルを含有させたアルカリ電池(ニッケルマンガン電池)は高負荷放電特性に優れているが、オキシ水酸化ニッケルの理論容量(1電子反応と仮定した場合、約290mAh/g)が二酸化マンガンの理論容量(1電子反応と仮定した場合、約308mAh/g)よりも小さい。このため、正極利用率が高い低負荷放電特性では、ニッケルマンガン電池は、二酸化マンガンのみを正極活物質に用いたアルカリマンガン乾電池よりも容量が小さくなる。これに対して、ニッケルマンガン電池の低負荷放電特性を改善するためには、高価数のオキシ水酸化ニッケル(γ型等)を用いて、オキシ水酸化ニッケル自体の容量を高める(1電子超の反応を活用する)のが有効と考えられる。   Alkaline batteries (nickel manganese batteries) containing nickel oxyhydroxide in the positive electrode mixture as described above are excellent in high-load discharge characteristics, but the theoretical capacity of nickel oxyhydroxide (when assuming a one-electron reaction) , About 290 mAh / g) is smaller than the theoretical capacity of manganese dioxide (about 308 mAh / g, assuming a one-electron reaction). For this reason, in the low load discharge characteristic with a high positive electrode utilization factor, the nickel manganese battery has a smaller capacity than the alkaline manganese battery using only manganese dioxide as the positive electrode active material. On the other hand, in order to improve the low load discharge characteristics of the nickel manganese battery, the capacity of the nickel oxyhydroxide itself is increased by using an expensive number of nickel oxyhydroxide (γ type or the like). It is considered effective to utilize the reaction).

この点に着目して、本発明者らは、各種異元素を固溶させた水酸化ニッケル(オキシ水酸化ニッケル)を一次電池用正極材料に用いることについて種々検討を行った。その結果、マンガンが固溶したβ−水酸化ニッケルを原料に用いて得られた高酸化状態のγ−オキシ水酸化ニッケルを正極材料に用いた場合に、アルカリ電池(ニッケルマンガン電池)の低負荷放電特性が向上することを見出した。
しかし、このような高酸化状態にあるγ−オキシ水酸化ニッケルを活用する場合においても、依然として以下の(a)および(b)ような一次電池(ニッケルマンガン電池)用途特有の問題点が存在しており、実用化に至っていない。
Focusing on this point, the present inventors have made various studies on the use of nickel hydroxide (nickel oxyhydroxide) in which various different elements are dissolved as a positive electrode material for primary batteries. As a result, when the highly oxidized γ-nickel oxyhydroxide obtained by using β-nickel hydroxide in which manganese is dissolved as a raw material is used as the positive electrode material, the load of the alkaline battery (nickel manganese battery) is low. It has been found that the discharge characteristics are improved.
However, even when γ-nickel oxyhydroxide in such a highly oxidized state is utilized, there are still problems peculiar to the use of primary batteries (nickel manganese batteries) such as the following (a) and (b). It has not been put into practical use.

(a)原料のβ−水酸化ニッケルを酸化してγ−オキシ水酸化ニッケルに変換する際に体積が大幅に増大するため、粒子の破砕(微細化)や嵩密度(タップ密度)の低下が起こる。このため、正極合剤ペレットを成型する際の作業性が著しく悪くなり、量産が困難となる。
(b)マンガン等が固溶したγ−オキシ水酸化ニッケルは、通常のβ−オキシ水酸化ニッケルよりも酸化還元電位がかなり低くなる。また、放電時に、γ型からβ型へ結晶構造が変化することにより、正極活物質の体積が減少する傾向があるため、正極合剤中に導電剤として含まれる黒鉛による電気的接続(導電網)が破壊される。これらの理由により、特に高負荷放電性能が低下する傾向にある。
そこで、本発明は、上記従来の問題を解決するために、正極活物質の材料や物性を最適化することにより、低負荷および高負荷のいずれの放電においても優れた放電特性を有するアルカリ電池を提供することを目的とする。
(A) When the raw material β-nickel hydroxide is oxidized and converted to γ-nickel oxyhydroxide, the volume is greatly increased, so that the particles are crushed (miniaturized) and the bulk density (tap density) is reduced. Occur. For this reason, workability | operativity at the time of shape | molding a positive mix pellet is deteriorated remarkably, and mass production becomes difficult.
(B) The oxidation-reduction potential of γ-nickel oxyhydroxide in which manganese or the like is dissolved is considerably lower than that of ordinary β-nickel oxyhydroxide. In addition, since the volume of the positive electrode active material tends to decrease due to the change in crystal structure from γ type to β type during discharge, electrical connection (conductivity network) with graphite contained as a conductive agent in the positive electrode mixture. ) Is destroyed. For these reasons, particularly high-load discharge performance tends to decrease.
Therefore, in order to solve the above conventional problems, the present invention provides an alkaline battery having excellent discharge characteristics in both low load and high load discharges by optimizing the material and physical properties of the positive electrode active material. The purpose is to provide.

本発明のアルカリ電池は、活物質と導電剤を含み、活物質が粉末状のオキシ水酸化ニッケルおよび二酸化マンガンを含む正極合剤と、活物質として亜鉛を含む負極と、前記正極合剤と負極とを隔離するセパレータと、アルカリ水溶液からなる電解液とを具備し、
前記オキシ水酸化ニッケルが以下の(1)〜(3)の物性を満たすことを特徴とする。
(1)結晶構造がβ型とγ型の混相であり、粉末X線回折におけるγ型の(003)面に基づく回折ピークの積分強度Iγと、β型の(001)面に基づく回折ピークの積分強度Iβとが、関係式:Iγ/(Iβ+Iγ)=0.1〜0.5を満たす。
(2)平均ニッケル価数が3.05〜3.30である。
(3)アルミニウムを1〜10mol%含有する。
上記の正極活物質を用いることにより、低負荷および高負荷のいずれの放電においても優れた放電特性を有するアルカリ電池が得られる。なお、上記(3)におけるアルミニウムの含有量は、オキシ水酸化ニッケル中のニッケルとアルミニウムとの合計量に対するアルミニウム量の割合を示す。
The alkaline battery of the present invention includes an active material and a conductive agent, the active material containing powdered nickel oxyhydroxide and manganese dioxide, a negative electrode containing zinc as an active material, the positive electrode mixture and the negative electrode And a separator that separates the electrolyte, and an electrolytic solution composed of an alkaline aqueous solution,
The nickel oxyhydroxide satisfies the following physical properties (1) to (3).
(1) The crystal structure is a mixed phase of β-type and γ-type, and the integrated intensity I γ of the diffraction peak based on the γ-type (003) plane in powder X-ray diffraction and the diffraction peak based on the β-type (001) plane and integrated intensity I beta is the relationship: meet I γ / (I β + I γ) = 0.1~0.5.
(2) The average nickel valence is 3.05 to 3.30.
(3) 1-10 mol% of aluminum is contained.
By using the above positive electrode active material, an alkaline battery having excellent discharge characteristics in both low-load and high-load discharges can be obtained. In addition, content of aluminum in said (3) shows the ratio of the amount of aluminum with respect to the total amount of nickel and aluminum in nickel oxyhydroxide.

正極合剤の成型性、電池缶内部への充填性、および電池内での電解液の含浸性が向上するため、前記オキシ水酸化ニッケルが、さらに以下の(4)〜(6)の物性を満たすのが好ましい。
(4)体積基準の平均粒子径が10〜25μmである。
(5)タップ密度が1.8g/cm以上である。
(6)BET比表面積が5〜20m/gである。
なお、上記(5)におけるタップ密度は、試料粉末を入れた容器を300回タッピングした時の試料粉末の嵩密度を示す。
In order to improve the moldability of the positive electrode mixture, the filling property inside the battery can, and the impregnation property of the electrolyte in the battery, the nickel oxyhydroxide further has the following physical properties (4) to (6). It is preferable to satisfy.
(4) The volume-based average particle size is 10 to 25 μm.
(5) The tap density is 1.8 g / cm 3 or more.
(6) The BET specific surface area is 5 to 20 m 2 / g.
In addition, the tap density in said (5) shows the bulk density of sample powder when the container in which sample powder was put is tapped 300 times.

前記オキシ水酸化ニッケルと二酸化マンガンとの混合重量比が10〜80:85〜15であるのが好ましい。
前記正極合剤が、前記導電剤として黒鉛を3〜10重量%含むのが好ましい。
The mixing weight ratio of nickel oxyhydroxide and manganese dioxide is preferably 10 to 80:85 to 15.
The positive electrode mixture preferably contains 3 to 10% by weight of graphite as the conductive agent.

本発明によれば、正極活物質の材料および物性を最適化することにより、低負荷および高負荷のいずれの放電においても優れた放電特性が得られる。   According to the present invention, by optimizing the material and physical properties of the positive electrode active material, excellent discharge characteristics can be obtained in both low-load and high-load discharges.

本発明は、活物質と導電剤を含み、前記活物質が粉末状のオキシ水酸化ニッケルおよび二酸化マンガンを含む正極合剤と、活物質として亜鉛を含む負極と、前記正極合剤と負極とを隔離するセパレータと、アルカリ水溶液からなる電解液とを具備し、前記オキシ水酸化ニッケルが以下の(1)〜(3)の物性を満たすアルカリ電池に関する。
(1)結晶構造がβ型とγ型の混相であり、粉末X線回折におけるγ型の(003)面に基づく回折ピークの積分強度Iγと、β型の(001)面に基づく回折ピークの積分強度Iβとが、関係式:Iγ/(Iβ+Iγ)=0.1〜0.5を満たす。
(2)平均ニッケル価数が3.05〜3.30である。
(3)アルミニウムを1〜10mol%含有する。
なお、上記(3)におけるアルミニウムの含有量は、オキシ水酸化ニッケル中のニッケルとアルミニウムとの合計量に対するアルミニウム量の割合を示す。
The present invention includes an active material and a conductive agent, wherein the active material includes powdered nickel oxyhydroxide and manganese dioxide, a negative electrode containing zinc as an active material, and the positive electrode mixture and the negative electrode. The present invention relates to an alkaline battery comprising a separator to be isolated and an electrolytic solution made of an alkaline aqueous solution, wherein the nickel oxyhydroxide satisfies the following physical properties (1) to (3).
(1) The crystal structure is a mixed phase of β-type and γ-type, and the integrated intensity I γ of the diffraction peak based on the γ-type (003) plane in powder X-ray diffraction and the diffraction peak based on the β-type (001) plane and integrated intensity I beta is the relationship: meet I γ / (I β + I γ) = 0.1~0.5.
(2) The average nickel valence is 3.05 to 3.30.
(3) 1-10 mol% of aluminum is contained.
In addition, content of aluminum in said (3) shows the ratio of the amount of aluminum with respect to the total amount of nickel and aluminum in nickel oxyhydroxide.

ここで、図1は、結晶構造がβ型およびγ型の混相からなるオキシ水酸化ニッケルのX線回折パターンの一例を示す。β型およびγ型の混相からなるオキシ水酸化ニッケルでは、図1に示すようにγ型の(003)面に基づく回折ピークおよびβ型の(001)面に基づく回折ピークが現れる。この2つの回折ピークが(1)の条件を満たすと、オキシ水酸化ニッケルを作製すると、原料である水酸化ニッケルの酸化時の体積増加が少なくなり、得られるオキシ水酸化ニッケルの粒子破砕や嵩密度の低下が抑制され、正極合剤成型時の作業性が向上する。   Here, FIG. 1 shows an example of an X-ray diffraction pattern of nickel oxyhydroxide having a β-type and γ-type crystal structure. In nickel oxyhydroxide comprising a β-type and γ-type mixed phase, as shown in FIG. 1, a diffraction peak based on the γ-type (003) plane and a diffraction peak based on the β-type (001) plane appear. When these two diffraction peaks satisfy the condition (1), when nickel oxyhydroxide is produced, the volume increase during oxidation of the raw material nickel hydroxide is reduced, and the resulting nickel oxyhydroxide is crushed and bulked. A decrease in density is suppressed, and workability at the time of molding the positive electrode mixture is improved.

また、条件(1)のオキシ水酸化ニッケルの平均ニッケル価数は3.05〜3.30であり、結晶構造がβ型のみのオキシ水酸化ニッケル(3.00価)よりも高いため、条件(1)のオキシ水酸化ニッケルを用いた電池では優れた低負荷放電特性が得られる。
γ/(Iβ+Iγ)値が0.1未満(平均ニッケル価数が3.05未満)であると、十分に高い容量が得られない。一方、Iγ/(Iβ+Iγ)値が0.5を超える(平均ニッケル価数が3.30を超える)と、放電時の活物質粒子の体積変化が大きくなり、高負荷放電特性が低下する。
Moreover, since the average nickel valence of the nickel oxyhydroxide of the condition (1) is 3.05 to 3.30 and the crystal structure is higher than the β-type nickel oxyhydroxide (3.00 valence), the condition The battery using the nickel oxyhydroxide (1) has excellent low load discharge characteristics.
When the I γ / (I β + I γ ) value is less than 0.1 (average nickel valence is less than 3.05), a sufficiently high capacity cannot be obtained. On the other hand, if the I γ / (I β + I γ ) value exceeds 0.5 (the average nickel valence exceeds 3.30), the volume change of the active material particles during discharge becomes large, and the high-load discharge characteristics are descend.

また、上記の(3)におけるアルミニウムは、アルミニウムを固溶させた水酸化ニッケルを原料に使用することにより、酸化により得られるオキシ水酸化ニッケル中に固溶状態で含まれる。水酸化ニッケルは、アルミニウムが固溶すると多孔度が増大するため、酸化によりγ型オキシ水酸化ニッケルが生成して結晶格子のサイズが増大しても、それによる体積変化は粒子内で緩和され、粒子の破砕を抑制することができる。   Moreover, the aluminum in said (3) is contained in the solid solution state in the nickel oxyhydroxide obtained by oxidation by using the nickel hydroxide which made aluminum solid solution as a raw material. When nickel hydroxide is dissolved in aluminum, the porosity increases. Therefore, even if γ-type nickel oxyhydroxide is generated by oxidation and the size of the crystal lattice increases, the resulting volume change is mitigated within the particles. Particle crushing can be suppressed.

さらに、アルミニウムが固溶したオキシ水酸化ニッケルは、γ型結晶構造を含んでいても、酸化還元電位がβ−オキシ水酸化ニッケルよりも高い。また、このγ型結晶構造は、放電時に、β型結晶構造(体積減少)でなく、α型結晶構造(体積増加)に変化する傾向が強いため、正極活物質粒子間の電気的接触(黒鉛による導電網)が、比較的良好に維持される。このため、上記の条件(3)を満たすオキシ水酸化ニッケルを活物質として用いたアルカリ電池では、優れた高負荷放電特性が得られる。
アルミニウムの含有量が1mol%未満であると、アルミニウムによる効果が不十分となる。一方、アルミニウムの含有量が10mol%を超えると、相対的にオキシ水酸化ニッケル中に含まれるニッケル量が減少し、十分に高い容量が得られない。
Further, nickel oxyhydroxide in which aluminum is solid-dissolved has a higher oxidation-reduction potential than β-nickel oxyhydroxide even though it contains a γ-type crystal structure. In addition, this γ-type crystal structure has a strong tendency to change to an α-type crystal structure (volume increase) instead of a β-type crystal structure (volume decrease) at the time of discharge. Is maintained relatively well. For this reason, in the alkaline battery using nickel oxyhydroxide satisfying the above condition (3) as an active material, excellent high-load discharge characteristics can be obtained.
The effect by aluminum will become inadequate that content of aluminum is less than 1 mol%. On the other hand, if the aluminum content exceeds 10 mol%, the amount of nickel contained in the nickel oxyhydroxide is relatively reduced, and a sufficiently high capacity cannot be obtained.

また、粉末状のオキシ水酸化ニッケルが、さらに下記(4)〜(6)の条件を満たすのが好ましい。
(4)体積基準の平均粒子径が10〜25μmである。
(5)タップ密度が1.8g/cm以上である。
(6)BET比表面積が5〜20m/gである。
なお、上記(5)におけるタップ密度は、試料粉末を入れた容器を300回タッピングした時の試料粉末の嵩密度を示す。これにより、正極合剤の成型性、電池缶内部への充填性、および電池内での電解液の含浸性が向上する。
Further, it is preferable that the powdered nickel oxyhydroxide further satisfies the following conditions (4) to (6).
(4) The volume-based average particle size is 10 to 25 μm.
(5) The tap density is 1.8 g / cm 3 or more.
(6) The BET specific surface area is 5 to 20 m 2 / g.
In addition, the tap density in said (5) shows the bulk density of sample powder when the container in which sample powder was put is tapped 300 times. Thereby, the moldability of the positive electrode mixture, the filling property inside the battery can, and the impregnation property of the electrolytic solution in the battery are improved.

体積基準の平均粒子径が10μm未満であると、正極合剤の強度が低下し、生産上好ましくない。一方、体積基準の平均粒子径が25μmを超えると、正極合剤の成型が困難となる。
タップ密度が1.8g/cm未満であると、正極合剤の電池缶内への充填性が悪くなり、高密度(高容量)の正極合剤が得られにくくなる。タップ密度は2.4g/cm以下であるのがより好ましい。
BET比表面積は5m/g未満であると、電池内の正極合剤における電解液の含浸性が低下し、十分な電池性能を引き出すことができない。一方、BET比表面積は20m/gを超えると、正極合剤における電解液の含浸性が高くなりすぎるため、注液時に正極合剤が膨潤する等の作業上の不具合が生じやすい。
When the volume-based average particle diameter is less than 10 μm, the strength of the positive electrode mixture is lowered, which is not preferable for production. On the other hand, when the volume-based average particle diameter exceeds 25 μm, it becomes difficult to mold the positive electrode mixture.
When the tap density is less than 1.8 g / cm 3 , the filling property of the positive electrode mixture into the battery can deteriorates, and it becomes difficult to obtain a high-density (high capacity) positive electrode mixture. The tap density is more preferably 2.4 g / cm 3 or less.
When the BET specific surface area is less than 5 m 2 / g, the impregnation property of the electrolyte in the positive electrode mixture in the battery is lowered, and sufficient battery performance cannot be brought out. On the other hand, when the BET specific surface area exceeds 20 m 2 / g, the impregnation property of the electrolytic solution in the positive electrode mixture becomes too high, so that problems such as swelling of the positive electrode mixture during injection tend to occur.

前記オキシ水酸化ニッケルと二酸化マンガンとの混合重量比が10〜80:85〜15であるのが好ましい。二酸化マンガンとオキシ水酸化ニッケルとを比較した場合、二酸化マンガンの方が単位重量あたりの容量(mAh/g)、電池缶内への充填性、および材料価格などの点において優れるが、一方で、放電電圧および強負荷放電特性についてはオキシ水酸化ニッケルの方が優れている。電池全体としての特性や価格のバランスを考えると、正極合剤中のオキシ水酸化ニッケルと二酸化マンガンとの混合重量比率を上記の範囲とするのが好ましい。   The mixing weight ratio of nickel oxyhydroxide and manganese dioxide is preferably 10 to 80:85 to 15. When comparing manganese dioxide and nickel oxyhydroxide, manganese dioxide is superior in terms of capacity per unit weight (mAh / g), fillability in the battery can, and material price, Nickel oxyhydroxide is superior in terms of discharge voltage and heavy load discharge characteristics. Considering the balance of characteristics and price as the whole battery, it is preferable to set the mixing weight ratio of nickel oxyhydroxide and manganese dioxide in the positive electrode mixture within the above range.

前記正極合剤は、前記導電剤として黒鉛を3〜10重量%含むのが好ましい。正極用導電剤としては、黒鉛以外にも各種カーボンブラックや繊維状炭素などを用いてもよいが、正極合剤ペレットを成型しやすい点から黒鉛を用いるのが好ましい。このとき、正極合剤中の正極活物質の体積エネルギー密度を十分に高めるのと、強負荷放電特性を向上させる点から、正極合剤中の黒鉛の含有量を上記の範囲とするのが好ましい。   The positive electrode mixture preferably contains 3 to 10% by weight of graphite as the conductive agent. As the conductive agent for the positive electrode, various carbon blacks, fibrous carbons, and the like may be used in addition to graphite. However, it is preferable to use graphite from the viewpoint that the positive electrode mixture pellet can be easily molded. At this time, it is preferable that the content of graphite in the positive electrode mixture is within the above range from the viewpoint of sufficiently increasing the volume energy density of the positive electrode active material in the positive electrode mixture and improving the heavy load discharge characteristics. .

以下、本発明の実施例について詳細に説明する。
《実施例1》
(A)オキシ水酸化ニッケル粉末の作製
攪拌翼を備えた反応槽に、所定濃度の硫酸ニッケル(II)水溶液、硫酸アルミニウム(III)水溶液、水酸化ナトリウム水溶液、およびアンモニア水を、pHを調整しながらポンプで供給し、十分に攪拌して水酸化ニッケル粒子を析出・成長させた。得られた粒子を水洗し、真空乾燥させて原料の粉末状の水酸化ニッケルAを得た。このとき、水酸化ニッケルA中のアルミニウムの含有量は、ニッケルとアルミニウムの総量に対して5mol%となるように調整した。
Examples of the present invention will be described in detail below.
Example 1
(A) Preparation of nickel oxyhydroxide powder In a reaction vessel equipped with a stirring blade, adjust the pH of nickel (II) sulfate aqueous solution, aluminum sulfate (III) aqueous solution, sodium hydroxide aqueous solution, and aqueous ammonia to a predetermined concentration. While being fed with a pump, nickel hydroxide particles were precipitated and grown with sufficient agitation. The obtained particles were washed with water and vacuum dried to obtain raw material powdery nickel hydroxide A. At this time, the content of aluminum in nickel hydroxide A was adjusted to 5 mol% with respect to the total amount of nickel and aluminum.

また、硫酸アルミニウム(III)水溶液の代わりに硫酸マンガン(II)水溶液または硫酸コバルト(II)水溶液を用いた以外は、上記と同様の方法により、それぞれ水酸化ニッケルB(組成:Ni0.95Mn0.05(OH))および水酸化ニッケルC(組成:Ni0.95Co0.05(OH))を作製した。
さらに、上記と同じ手順で、硫酸アルミニウム(III)水溶液等を用いず、異種金属元素を含まない水酸化ニッケルDも作製した。
なお、得られた原料の水酸化ニッケルA〜Dはいずれもβ型の結晶構造を有し、体積基準の平均粒子径が約20μmであり、タップ密度が約2.2g/cmであり、BET比表面積が10〜12m/gであった。なお、これらの構造解析および各物性値の測定は、後述するオキシ水酸化ニッケルの場合と同様の方法により行った。
Further, nickel hydroxide B (composition: Ni 0.95 Mn) was prepared in the same manner as above except that a manganese sulfate (II) aqueous solution or a cobalt sulfate (II) aqueous solution was used instead of the aluminum sulfate (III) aqueous solution. 0.05 (OH) 2 ) and nickel hydroxide C (composition: Ni 0.95 Co 0.05 (OH) 2 ) were prepared.
Furthermore, in the same procedure as described above, nickel hydroxide D containing no foreign metal element was prepared without using an aluminum (III) sulfate aqueous solution or the like.
The raw material nickel hydroxides A to D all have a β-type crystal structure, the volume-based average particle diameter is about 20 μm, and the tap density is about 2.2 g / cm 3 . The BET specific surface area was 10 to 12 m 2 / g. The structural analysis and measurement of each physical property value were performed by the same method as in the case of nickel oxyhydroxide described later.

次に、水酸化ニッケルA200gを3mol/Lの水酸化ナトリウム水溶液1L中に投入し、酸化剤として次亜塩素酸ナトリウム水溶液(有効塩素濃度:10重量%)を加えながら攪拌し、得られたオキシ水酸化ニッケル粒子を十分に水洗後、60℃で真空乾燥(24時間)させて粉末状のオキシ水酸化ニッケルAを得た。
また、水酸化ニッケルAの代わりに水酸化ニッケルB〜Dを用いた以外は上記と同様の方法により、それぞれ粉末状のオキシ水酸化ニッケルB〜Dを得た。
さらに、水酸化ニッケルD200gを0.01mol/L(弱アルカリ性)の水酸化ナトリウム水溶液1L中に投入し、次亜塩素酸ナトリウム水溶液(有効塩素濃度:10重量%)を加えて化学酸化させた後、水洗し、真空乾燥させて粉末状のオキシ水酸化ニッケルE(標準材)を得た。
Next, 200 g of nickel hydroxide A was put into 1 L of a 3 mol / L sodium hydroxide aqueous solution, and stirred while adding an aqueous sodium hypochlorite solution (effective chlorine concentration: 10% by weight) as an oxidizing agent. The nickel hydroxide particles were sufficiently washed with water and then vacuum dried at 60 ° C. (24 hours) to obtain powdered nickel oxyhydroxide A.
Further, powdery nickel oxyhydroxides B to D were obtained in the same manner as above except that nickel hydroxides B to D were used instead of nickel hydroxide A.
Furthermore, after putting nickel hydroxide D200g in 0.01L / L (weak alkalinity) sodium hydroxide aqueous solution 1L and adding sodium hypochlorite aqueous solution (effective chlorine concentration: 10 weight%), and performing chemical oxidation. Then, it was washed with water and dried in vacuum to obtain powdered nickel oxyhydroxide E (standard material).

上記の粉末状オキシ水酸化ニッケルA〜Eに関して、以下のような評価を行った。
体積基準の平均粒子径は、粒度分布測定装置((株)日機装製のマイクロトラックFRA)を用いて測定した。タップ密度は、(株)セイシン企業製のタップデンサーKYT−3000を用いて測定した。なお、ここでのタップ密度は、粉末を入れた容器を300回タッピングした時の粉末の嵩密度とした。BET比表面積は、(株)島津製作所製のASAP2010を用いて測定した。
また、構造解析は、粉末X線回折装置(理学(株)製のRINT2500)を用いて行った。そして、得られたX線回折パターンから、γ−オキシ水酸化ニッケルの(003)面に基づく回折ピーク(7Å付近)の積分強度Iγと、β−オキシ水酸化ニッケルの(001)面に基づく回折ピーク(4.5〜5Å付近)の積分強度Iβの値とから、オキシ水酸化ニッケル全体におけるγ−オキシ水酸化ニッケルの比率Iγ/(Iβ+Iγ)を算出した。
The following evaluations were performed on the above powdery nickel oxyhydroxides A to E.
The volume-based average particle size was measured using a particle size distribution measuring device (Microtrack FRA manufactured by Nikkiso Co., Ltd.). The tap density was measured using a tap denser KYT-3000 manufactured by Seishin Corporation. In addition, the tap density here was taken as the bulk density of the powder when the container containing the powder was tapped 300 times. The BET specific surface area was measured using ASAP2010 manufactured by Shimadzu Corporation.
The structural analysis was performed using a powder X-ray diffractometer (RINT2500 manufactured by Rigaku Corporation). Then, based on the obtained X-ray diffraction pattern, the integrated intensity I γ of the diffraction peak (near 7Å) based on the (003) plane of γ -nickel oxyhydroxide and the (001) plane of β-nickel oxyhydroxide from the value of the integrated intensity I beta of the diffraction peak (around 4.5~5Å), was calculated / ratio I gamma of γ- nickel oxyhydroxide in the whole nickel oxyhydroxide (I β + I γ).

また、オキシ水酸化ニッケルの平均ニッケル価数は、以下に手順を示す化学測定によって求めた。
(イ)オキシ水酸化ニッケル中の金属重量比率の測定
硝酸水溶液中に所定量のオキシ水酸化ニッケルを加えて加熱し、溶解させた。この溶液について、VARIAN社製のVISTA−RLを用いてICP発光分析を行い、オキシ水酸化ニッケルに含まれる金属重量比率(ニッケル、アルミニウム、マンガン、およびコバルトの含有比率)を求めた。
Moreover, the average nickel valence of nickel oxyhydroxide was calculated | required by the chemical measurement which shows the procedure below.
(I) Measurement of metal weight ratio in nickel oxyhydroxide A predetermined amount of nickel oxyhydroxide was added to an aqueous nitric acid solution and heated to be dissolved. This solution was subjected to ICP emission analysis using VISTA-RL manufactured by VARIAN, and the metal weight ratio (content ratio of nickel, aluminum, manganese, and cobalt) contained in nickel oxyhydroxide was determined.

(ロ)酸化還元滴定による平均ニッケル価数の測定
オキシ水酸化ニッケルにヨウ化カリウムと硫酸を加え、十分に攪拌してオキシ水酸化ニッケルを完全に溶解させた。なお、この過程において、価数の高いニッケルイオン、マンガンイオン、コバルトイオンは、ヨウ化カリウムをヨウ素に酸化し、自身は2価に還元される。アルミニウムイオンは3価のままであり、価数は変化しない。続いて、生成・遊離したヨウ素を0.1mol/Lのチオ硫酸ナトリウム水溶液で滴定した。このときの滴定量は上記のような2価より価数の大きいニッケルイオン、マンガンイオン、コバルトイオンの量に依存する。そこで、(イ)で求めた金属重量比率の値を用い、オキシ水酸化ニッケルB中のマンガンの価数については4価、オキシ水酸化ニッケルC中のコバルトの価数については3.5価と仮定して、それぞれオキシ水酸化ニッケルの平均ニッケル価数を見積もった。
(B) Measurement of average nickel valence by oxidation-reduction titration Potassium iodide and sulfuric acid were added to nickel oxyhydroxide and sufficiently stirred to completely dissolve nickel oxyhydroxide. In this process, nickel ions, manganese ions, and cobalt ions having high valences oxidize potassium iodide to iodine and reduce themselves to bivalence. Aluminum ions remain trivalent and the valence does not change. Subsequently, the produced and liberated iodine was titrated with a 0.1 mol / L sodium thiosulfate aqueous solution. The titration amount at this time depends on the amount of nickel ions, manganese ions, and cobalt ions having a valence larger than the above divalent. Therefore, using the value of the metal weight ratio obtained in (a), the valence of manganese in nickel oxyhydroxide B is tetravalent, and the valence of cobalt in nickel oxyhydroxide C is 3.5. Assuming that the average nickel valence of nickel oxyhydroxide was estimated.

これらの測定結果をまとめて表1に示す。原料の水酸化ニッケルにアルミニウム、マンガン、およびコバルトをそれぞれ固溶させたオキシ水酸化ニッケルA〜Cでは、異種金属を含まないオキシ水酸化ニッケルDと比較して、同一条件の化学酸化でもγ型結晶構造の比率が増大し、平均ニッケル価数が大きいことわかった。また、オキシ水酸化ニッケルEは、ほぼ純粋なβ−オキシ水酸化ニッケルであることがわかった。   These measurement results are summarized in Table 1. In nickel oxyhydroxides A to C in which aluminum, manganese, and cobalt are each solid-dissolved in nickel hydroxide as a raw material, compared with nickel oxyhydroxide D that does not contain a foreign metal, γ-type can be obtained even under chemical oxidation under the same conditions. It was found that the crystal structure ratio increased and the average nickel valence was large. Moreover, it turned out that the nickel oxyhydroxide E is a substantially pure (beta) -nickel oxyhydroxide.

Figure 2006179428
Figure 2006179428

(B)アルカリ電池の作製
上記で得られたオキシ水酸化ニッケル粉末を用いてアルカリ乾電池を作製した。ここで、図2は本発明のアルカリ乾電池の一部を断面にした正面図である。ニッケルメッキされた鋼板からなり、内面に黒鉛塗装膜72が形成された正極ケース71の内部に、主構成材料である二酸化マンガンおよびオキシ水酸化ニッケル、ならびにアルカリ電解液を含む短筒状の正極合剤73を複数個挿入し、これらを正極ケース71内で再加圧して正極ケース71の内面に密着させた。
(B) Production of alkaline battery An alkaline dry battery was produced using the nickel oxyhydroxide powder obtained above. Here, FIG. 2 is a front view of a part of the alkaline dry battery of the present invention. A short cylindrical positive electrode assembly containing manganese dioxide and nickel oxyhydroxide as main constituent materials and an alkaline electrolyte is contained in a positive electrode case 71 made of a nickel-plated steel plate and having a graphite coating film 72 formed on the inner surface. A plurality of agents 73 were inserted, and these were re-pressurized in the positive electrode case 71 to adhere to the inner surface of the positive electrode case 71.

そして、正極合剤73の中空内面および正極ケース71の底部内面にセパレ−タ74および絶縁キャップ75を挿入した後、セパレ−タ74と正極合剤73を湿潤させる目的で電解液を注液した。電解液には、40重量%の水酸化カリウム水溶液を用いた。注液後、セパレータ74の内側にゲル状負極76を充填した。ゲル状負極76には、ゲル化剤としてのポリアクリル酸ナトリウム、上記と同様の電解液、および負極活物質としての亜鉛粉末からなるものを用いた。   And after inserting the separator 74 and the insulation cap 75 in the hollow inner surface of the positive electrode mixture 73 and the bottom inner surface of the positive electrode case 71, the electrolyte solution was injected for the purpose of wetting the separator 74 and the positive electrode mixture 73. . A 40 wt% aqueous potassium hydroxide solution was used as the electrolytic solution. After the injection, the gelled negative electrode 76 was filled inside the separator 74. As the gelled negative electrode 76, a material comprising sodium polyacrylate as a gelling agent, an electrolytic solution similar to the above, and zinc powder as a negative electrode active material was used.

続いて、負極集電体70をゲル状負極76の中央に差し込んだ。なお、負極集電体70は、樹脂製の封口板77、負極端子を兼ねる底板78、および絶縁ワッシャ79と一体化に組み立てられている。そして、正極ケース1の開口端部を、封口板77の周縁端部を介して底板78の周縁部にかしめることにより、正極ケース1の開口部を密封した。次いで、正極ケース71の外表面を外装ラベル711で被覆した。こうして単三形アルカリ乾電池を完成させた。   Subsequently, the negative electrode current collector 70 was inserted into the center of the gelled negative electrode 76. The negative electrode current collector 70 is assembled integrally with a resin sealing plate 77, a bottom plate 78 that also serves as a negative electrode terminal, and an insulating washer 79. And the opening part of the positive electrode case 1 was sealed by crimping the opening edge part of the positive electrode case 1 to the peripheral part of the bottom plate 78 via the peripheral edge part of the sealing board 77. FIG. Next, the outer surface of the positive electrode case 71 was covered with an exterior label 711. Thus, an AA alkaline battery was completed.

上記において正極合剤は、二酸化マンガン、オキシ水酸化ニッケルAおよび黒鉛を重量比50:45:5の割合で混合し、得られた混合粉100重量部に対して電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒し、得られた粒状物を中空円筒型に加圧成型することにより得られた。この正極合剤と、40重量%の水酸化カリウム水溶液からなる電解液を用いてアルカリ乾電池Aを組み立てた。
また、オキシ水酸化ニッケルAの代わりにオキシ水酸化ニッケルB〜Eを用いた以外は、上記と同様の方法により、それぞれ電池B〜Eを組み立てた。
In the above, the positive electrode mixture was prepared by mixing manganese dioxide, nickel oxyhydroxide A and graphite in a weight ratio of 50: 45: 5, and mixing 1 part by weight of the electrolyte with 100 parts by weight of the obtained mixed powder. Thereafter, the mixture was uniformly agitated and mixed with a mixer to adjust the particle size to a constant particle size, and the obtained granular material was pressure-molded into a hollow cylindrical shape. An alkaline battery A was assembled using this positive electrode mixture and an electrolytic solution composed of a 40% by weight potassium hydroxide aqueous solution.
Further, batteries B to E were assembled in the same manner as described above except that nickel oxyhydroxides B to E were used instead of nickel oxyhydroxide A.

[電池の評価]
低負荷放電特性の評価をするために、製造直後の電池A〜Eを、それぞれ20℃で50mA(低負荷)の定電流で連続放電させ、電池電圧が0.9Vに至るまでの放電容量を測定した。また、強負荷放電特性を評価するために、製造直後の電池A〜Eを、それぞれ20℃で1000mAの定電流で連続放電させ、電池電圧が終止電圧0.9Vに至るまでの放電容量を測定した。
これらの測定結果を表2にまとめる。なお、各電池の放電容量は、電池Eの放電容量を100とした指数として表した。
[Battery evaluation]
In order to evaluate the low-load discharge characteristics, the batteries A to E immediately after manufacture are continuously discharged at a constant current of 50 mA (low load) at 20 ° C., and the discharge capacity until the battery voltage reaches 0.9V is obtained. It was measured. Also, in order to evaluate the heavy load discharge characteristics, the batteries A to E immediately after manufacture were continuously discharged at a constant current of 1000 mA at 20 ° C., respectively, and the discharge capacity until the battery voltage reached a final voltage of 0.9 V was measured. did.
These measurement results are summarized in Table 2. In addition, the discharge capacity of each battery was represented as an index with the discharge capacity of battery E as 100.

Figure 2006179428
Figure 2006179428

表2より、平均ニッケル価数が3.0価以上であるオキシ水酸化ニッケルA〜Dを用いた電池A〜Dでは、いずれも50mA(低負荷)放電時の放電容量は増加するが、1000mA(高負荷)放電時の放電容量は、アルミニウムが固溶したオキシ水酸化ニッケルを用いた電池A以外で容量低下することがわかった。このように高負荷放電特性が低下する理由としては、マンガンやコバルト等が固溶したγ−オキシ水酸化ニッケルまたは異種金属を含まないγ−オキシ水酸化ニッケルの酸化還元電位が、β−オキシ水酸化ニッケルよりも低い点や、これらのγ−オキシ水酸化ニッケルが放電に際してγ型からβ型への構造変化(体積減少)を起こす傾向が強く、放電時に黒鉛による正極活物質粒子間の電気的接触(導電網)が破壊される点が考えられる。   From Table 2, in batteries A to D using nickel oxyhydroxides A to D having an average nickel valence of 3.0 or more, the discharge capacity at 50 mA (low load) discharge increases, but 1000 mA. It was found that the discharge capacity at the time of (high load) discharge decreased except for the battery A using nickel oxyhydroxide in which aluminum was dissolved. The reason why the high-load discharge characteristic is lowered is that the oxidation-reduction potential of γ-nickel oxyhydroxide in which manganese, cobalt, or the like is dissolved, or γ-nickel oxyhydroxide not containing a different metal is β-oxywater. The point lower than nickel oxide and the tendency of these γ-nickel oxyhydroxides to undergo structural change (volume reduction) from γ type to β type during discharge is strong. It is conceivable that the contact (conductive net) is destroyed.

これに対して、アルミニウムが固溶したオキシ水酸化ニッケルAは、γ型構造を含んでいても、酸化還元電位がβ−オキシ水酸化ニッケルよりも高く、かつγ型構造の放電にともなう構造変化が、γ型→β型(体積減少)でなくγ型→α型(体積増加)となる傾向が強い。これは、放電時に結晶内のアルミニウムの価数が変化しないことによる。このため、黒鉛による正極活物質粒子間の電気的接触(導電網)が良好に維持され、他の高次オキシ水酸化ニッケルで見られるような、高負荷放電時の特性低下を引き起こすことがない。以上のように、本発明のアルカリ電池では、低負荷および高負荷のいずれの放電時においても優れた放電特性が得られる。   On the other hand, nickel oxyhydroxide A in which aluminum is in solid solution has a higher oxidation-reduction potential than β-nickel oxyhydroxide even if it contains a γ-type structure, and changes in structure due to discharge of the γ-type structure. However, it tends to be γ type → α type (volume increase) instead of γ type → β type (volume decrease). This is because the valence of aluminum in the crystal does not change during discharge. For this reason, the electrical contact (conductive network) between the positive electrode active material particles by graphite is maintained well, and does not cause deterioration in characteristics during high-load discharge as seen in other high-order nickel oxyhydroxides. . As described above, in the alkaline battery of the present invention, excellent discharge characteristics can be obtained during both low load and high load discharges.

《実施例2》
本実施例では、オキシ水酸化ニッケルの酸化度(Iγ/(Iβ+Iγ)値および平均ニッケル価数)について検討した。
実施例1の水酸化ニッケルA200gを0.01mol/Lの水酸化ナトリウム水溶液1L中に投入し、これに次亜塩素酸ナトリウム水溶液(有効塩素濃度:10重量%)を加えて水酸化ニッケルAを化学酸化させた後、得られたオキシ水酸化ニッケル粒子を十分に水洗後、60℃で24時間真空乾燥させて粉末状のオキシ水酸化ニッケルA1を得た。
また、原料の水酸化ニッケルAを分散させる水酸化ナトリウム水溶液の濃度を1mol/L、3mol/L、5mol/L、および7mol/Lに変えること以外は上記と同様の方法により、粉末状のオキシ水酸化ニッケルA2〜A5をそれぞれ作製した。
Example 2
In this example, the oxidation degree (I γ / (I β + I γ ) value and average nickel valence) of nickel oxyhydroxide was examined.
200 g of nickel hydroxide A of Example 1 was put into 1 L of 0.01 mol / L sodium hydroxide aqueous solution, and sodium hypochlorite aqueous solution (effective chlorine concentration: 10% by weight) was added thereto to add nickel hydroxide A. After chemical oxidation, the obtained nickel oxyhydroxide particles were sufficiently washed with water and then vacuum dried at 60 ° C. for 24 hours to obtain powdered nickel oxyhydroxide A1.
In addition, the powdery oxy-oxygen was prepared in the same manner as described above except that the concentration of the sodium hydroxide aqueous solution in which the raw material nickel hydroxide A was dispersed was changed to 1 mol / L, 3 mol / L, 5 mol / L, and 7 mol / L. Nickel hydroxides A2 to A5 were prepared respectively.

そして、得られたオキシ水酸化ニッケルA1〜A5について実施例1と同様に分析を行った。その結果を表3に示す。原料を分散させる水酸化ナトリウムの濃度が高いほど、Iγ/(Iβ+Iγ)値が大きくなり、平均ニッケル価数が増大することがわかった。このように、原料を分散させる水酸化ナトリウム水溶液の濃度を変化させることにより、得られるオキシ水酸化ニッケルの酸化度(Iγ/(Iβ+Iγ)値および平均ニッケル価数)を制御できることがわかった。 And it analyzed similarly to Example 1 about obtained nickel oxyhydroxide A1-A5. The results are shown in Table 3. It was found that the higher the concentration of sodium hydroxide that disperses the raw material, the greater the I γ / (I β + I γ ) value and the higher the average nickel valence. Thus, by changing the concentration of the sodium hydroxide aqueous solution in which the raw material is dispersed, the oxidation degree (I γ / (I β + I γ ) value and average nickel valence) of the obtained nickel oxyhydroxide can be controlled. all right.

Figure 2006179428
Figure 2006179428

次に、オキシ酸化ニッケルAの代わりに上記のオキシ水酸化ニッケル粉末A1〜A5を用いた以外は、実施例1と同様の方法により電池A1〜A5を作製し、放電特性を評価した。これらの結果を表4にまとめる。なお、表4中の各電池の放電容量は、電池Eの放電容量を100とした指数で表した。   Next, batteries A1 to A5 were prepared in the same manner as in Example 1 except that the above nickel oxyhydroxide powders A1 to A5 were used instead of nickel oxyoxide A, and the discharge characteristics were evaluated. These results are summarized in Table 4. In addition, the discharge capacity of each battery in Table 4 is represented by an index with the discharge capacity of the battery E being 100.

Figure 2006179428
Figure 2006179428

γ/(Iβ+Iγ)値が0.1〜0.5、および平均ニッケル価数が3.05〜3.30の範囲のオキシ水酸化ニッケルを用いた電池A2〜A4では、低負荷放電および高負荷放電のいずれも高い放電容量が得られた。Iγ/(Iβ+Iγ)値が0であり、ほぼ純粋なβ型結晶構造であるオキシ水酸化ニッケルA1を用いた電池では、平均ニッケル価数が高くないので容量は増大せず、異種元素(アルミニウム)が固溶するために放電に寄与するニッケル量が少なくなり容量が低下した。一方、Iγ/(Iβ+Iγ)値が0.72であり、平均ニッケル価数が3.36である酸化度が極端に高いオキシ水酸化ニッケルA5を用いた電池A5では、ニッケル価数が高いので低負荷放電時の放電容量は増加するが、高負荷放電特性は改善されなかった。これは、オキシ水酸化ニッケル中のγ型結晶構造の比率が高すぎて、放電時の正極合剤の体積変化が大きくなり、高負荷放電時に正極活物質粒子間の電気的接触が十分に保てなくなるためと推察される。 In the battery A2~A4 I γ / (I β + I γ) value is 0.1 to 0.5, and an average nickel valence with nickel oxyhydroxide in the range of 3.05 to 3.30, the low load High discharge capacity was obtained for both discharge and high load discharge. In a battery using nickel oxyhydroxide A1 having an I γ / (I β + I γ ) value of 0 and an almost pure β-type crystal structure, the average nickel valence is not high, so the capacity does not increase, Since the element (aluminum) was dissolved, the amount of nickel contributing to the discharge decreased and the capacity decreased. On the other hand, in battery A5 using nickel oxyhydroxide A5 having an extremely high degree of oxidation with an I γ / (I β + I γ ) value of 0.72 and an average nickel valence of 3.36, the nickel valence is However, the discharge capacity during low load discharge increases, but the high load discharge characteristics are not improved. This is because the ratio of the γ-type crystal structure in nickel oxyhydroxide is too high, and the volume change of the positive electrode mixture during discharge becomes large, and the electrical contact between the positive electrode active material particles is sufficiently maintained during high-load discharge. It is guessed that it will disappear.

《実施例3》
本実施例では、オキシ水酸化ニッケル中に固溶させるアルミニウムの量について検討した。
攪拌翼を備えた反応槽に、所定濃度の硫酸ニッケル(II)水溶液、硫酸アルミニウム(III)水溶液、水酸化ナトリウム水溶液、およびアンモニア水を、pHを調整しながらポンプで供給し、十分に攪拌して水酸化ニッケル粒子を析出・成長させた。得られた粒子を水洗し、真空乾燥させて原料の粉末状の水酸化ニッケルを得た。
このとき、水酸化ニッケル中のアルミニウムの含有量が、金属イオンの総量に対して0.5、1、3、7、10、および12mol%となるようにそれぞれ調整し、組成の異なる水酸化ニッケルX1〜X6を得た。
これらの水酸化ニッケルX1〜X6の粉末を実施例1と同様の方法により分析した結果、水酸化ニッケルX1〜X6はいずれもβ型の結晶構造を有し、体積基準の平均粒子径が約20μm、タップ密度が約2.2g/cm、BET比表面積が10〜12m/gであった。
Example 3
In this example, the amount of aluminum to be dissolved in nickel oxyhydroxide was examined.
A nickel sulfate (II) aqueous solution, aluminum sulfate (III) aqueous solution, sodium hydroxide aqueous solution, and aqueous ammonia with a predetermined concentration are supplied to a reaction vessel equipped with a stirring blade by a pump while adjusting the pH, and sufficiently stirred. Thus, nickel hydroxide particles were deposited and grown. The obtained particles were washed with water and vacuum dried to obtain raw material powdered nickel hydroxide.
At this time, the content of aluminum in nickel hydroxide was adjusted to be 0.5, 1, 3, 7, 10, and 12 mol% with respect to the total amount of metal ions, respectively, and nickel hydroxide having different compositions X1 to X6 were obtained.
As a result of analyzing the powders of these nickel hydroxides X1 to X6 by the same method as in Example 1, all of the nickel hydroxides X1 to X6 have a β-type crystal structure, and the volume-based average particle diameter is about 20 μm. The tap density was about 2.2 g / cm 3 and the BET specific surface area was 10 to 12 m 2 / g.

次に、200gの水酸化ニッケルX1を3mol/Lの水酸化ナトリウム水溶液1L中に投入し、これに次亜塩素酸ナトリウム水溶液(有効塩素濃度:10重量%)を十分加えて化学酸化させた後、得られたオキシ水酸化ニッケル粒子を十分に水洗後、60℃で24時間真空乾燥させて粉末状のオキシ水酸化ニッケルX1を得た。また、水酸化ニッケルX1の代わりに水酸化ニッケルX2〜X6を用いた以外はすべて上記と同様の方法により、オキシ水酸化ニッケルX2〜X6を得た。
オキシ水酸化ニッケルX1〜X6について実施例1と同様の方法により分析した結果を表5に示す。
Next, 200 g of nickel hydroxide X1 was put into 1 L of a 3 mol / L sodium hydroxide aqueous solution, and a sodium hypochlorite aqueous solution (effective chlorine concentration: 10% by weight) was sufficiently added thereto for chemical oxidation. The obtained nickel oxyhydroxide particles were sufficiently washed with water and then vacuum-dried at 60 ° C. for 24 hours to obtain powdered nickel oxyhydroxide X1. Further, nickel oxyhydroxides X2 to X6 were obtained by the same method as above except that nickel hydroxides X2 to X6 were used instead of nickel hydroxide X1.
Table 5 shows the results of analyzing nickel oxyhydroxides X1 to X6 by the same method as in Example 1.

Figure 2006179428
Figure 2006179428

次に、オキシ水酸化ニッケルAの代わりに上記のオキシ水酸化ニッケル粉末X1〜X6を用いた以外は、実施例1と同様の方法により電池X1〜X6を作製し、放電特性を評価した。これらの結果を表6にまとめる。なお、表6中の各電池の放電容量は、電池Eの放電容量を100とした指数で表した。   Next, batteries X1 to X6 were produced in the same manner as in Example 1 except that the above nickel oxyhydroxide powders X1 to X6 were used instead of nickel oxyhydroxide A, and the discharge characteristics were evaluated. These results are summarized in Table 6. In addition, the discharge capacity of each battery in Table 6 is represented by an index with the discharge capacity of battery E as 100.

Figure 2006179428
Figure 2006179428

アルミニウムの含有量が1〜10mol%のオキシ水酸化ニッケルを用いた電池X2〜X5では、低負荷および高負荷のいずれの放電時においても高い放電容量が得られた。アルミニウムの含有量が0.5mol%のオキシ水酸化ニッケルX1では、酸化度が低く、放電特性が低下した。また、アルミニウムの含有量が12mol%のオキシ水酸化ニッケルX6では、酸化度は十分高いが放電に寄与するニッケル量が少ないため放電容量が低下した。   In the batteries X2 to X5 using nickel oxyhydroxide having an aluminum content of 1 to 10 mol%, a high discharge capacity was obtained at both low load and high load discharges. In nickel oxyhydroxide X1 having an aluminum content of 0.5 mol%, the degree of oxidation was low, and the discharge characteristics deteriorated. Further, in the nickel oxyhydroxide X6 having an aluminum content of 12 mol%, the oxidation capacity was sufficiently high, but the discharge capacity was reduced because the amount of nickel contributing to the discharge was small.

《実施例4》
本実施例では、正極合剤中の二酸化マンガンとオキシ水酸化ニッケルとの混合比率について検討した。
二酸化マンガン、オキシ水酸化ニッケルAおよび黒鉛を表7に示す割合で混合した以外は、実施例1と同様の方法により正極合剤Y1〜Y10を得た。これらの正極合剤Y1〜Y10を用いて、実施例1と同様の方法により、それぞれ電池Y1〜Y10を組み立て、放電特性を評価した。これらの結果を表7に示す。なお、表7中の各電池の放電容量は、電池Eの放電容量を100とした指数で表した。
Example 4
In this example, the mixing ratio of manganese dioxide and nickel oxyhydroxide in the positive electrode mixture was examined.
Positive electrode mixtures Y1 to Y10 were obtained in the same manner as in Example 1 except that manganese dioxide, nickel oxyhydroxide A, and graphite were mixed in the ratio shown in Table 7. Using these positive electrode mixtures Y1 to Y10, batteries Y1 to Y10 were assembled in the same manner as in Example 1, and the discharge characteristics were evaluated. These results are shown in Table 7. In addition, the discharge capacity of each battery in Table 7 is represented by an index with the discharge capacity of the battery E being 100.

Figure 2006179428
表7より、電池Y9およびY10では、50mA(低負荷)放電時の放電容量が低下し、電池Y1では、1000mA(高負荷)放電時の放電容量が低下することがわかった。これらのことから、正極合剤中のオキシ水酸化ニッケルと二酸化マンガンとの混合重量比が10〜80:85〜15が好ましいことがわかった。
Figure 2006179428
From Table 7, it was found that in batteries Y9 and Y10, the discharge capacity at 50 mA (low load) discharge decreased, and in battery Y1, the discharge capacity at 1000 mA (high load) discharge decreased. From these results, it was found that the mixing weight ratio of nickel oxyhydroxide and manganese dioxide in the positive electrode mixture is preferably 10 to 80:85 to 15.

《実施例5》
本実施例では、正極合剤中の黒鉛(導電剤)の含有量について検討した。
二酸化マンガンとオキシ水酸化ニッケルAを重量比1:1の割合で混合した。そして、正極合剤中の含有量が表8中に示す値となるように導電剤として黒鉛を添加した。二酸化マンガン、オキシ水酸化ニッケル、および黒鉛を上記のように混合した以外は、実施例1と同様の方法により正極合剤を得た。これらの正極合剤を用いて、実施例1と同様の方法により電池Z1〜Z8を組み立て、放電特性を評価した。これらの結果を表8に示す。なお、表8中の各電池の放電容量は、電池Eの放電容量を100とした指数で表した。
Example 5
In this example, the content of graphite (conductive agent) in the positive electrode mixture was examined.
Manganese dioxide and nickel oxyhydroxide A were mixed at a weight ratio of 1: 1. Then, graphite was added as a conductive agent so that the content in the positive electrode mixture would be the value shown in Table 8. A positive electrode mixture was obtained in the same manner as in Example 1 except that manganese dioxide, nickel oxyhydroxide, and graphite were mixed as described above. Using these positive electrode mixtures, batteries Z1 to Z8 were assembled in the same manner as in Example 1, and the discharge characteristics were evaluated. These results are shown in Table 8. In addition, the discharge capacity of each battery in Table 8 is represented by an index with the discharge capacity of battery E as 100.

Figure 2006179428
Figure 2006179428

表8より、正極合剤中の黒鉛の含有量が3重量%未満である電池Z1およびZ2では、正極合剤内の正極活物質粒子間の電気的接触(導電網)が不十分となるため、1000mA(高負荷)放電時に十分な放電容量が得られず、黒鉛の含有量が10重量%を超える電池Z8では、相対的に正極活物質量が少なくなるため、正極活物質利用率の高い50mA(低負荷)放電時の放電容量が低下することがわかった。以上の結果から、正極合剤中の黒鉛の含有量が3〜10重量%であるのが好ましいことがわかった。   From Table 8, in batteries Z1 and Z2 in which the content of graphite in the positive electrode mixture is less than 3% by weight, electrical contact (conductive network) between the positive electrode active material particles in the positive electrode mixture becomes insufficient. In the battery Z8 in which sufficient discharge capacity cannot be obtained during discharge of 1000 mA (high load) and the graphite content exceeds 10% by weight, the amount of the positive electrode active material is relatively small, and thus the utilization rate of the positive electrode active material is high. It was found that the discharge capacity at 50 mA (low load) discharge was reduced. From the above results, it was found that the graphite content in the positive electrode mixture is preferably 3 to 10% by weight.

なお、上記の実施例では、アルミニウムが固溶したオキシ水酸化ニッケルの平均粒子径を約20μmとし、BET比表面積を13〜15m/g程度としたが、本発明はこれに限定されない。正極合剤を作製する際の成型性を考慮すると平均粒子径を10〜25μmの範囲に設定し、電池内での正極合剤の電解液含浸性を考慮するとBET比表面積を5〜20m/gの範囲に設定するのがよいと考えられる。また、上記の実施例ではアルミニウムが固溶したオキシ水酸化ニッケルを作製するための原料にβ型結晶構造の水酸化ニッケルを使用したが、本発明はこれに限定されない。例えばアルミニウムが固溶したα型とβ型の混晶構造の水酸化ニッケルを原料に用いても、ほぼ同様の特性を有するアルカリ電池を得ることが可能である。 In the above embodiment, the average particle diameter of nickel oxyhydroxide in which aluminum is dissolved is about 20 μm and the BET specific surface area is about 13 to 15 m 2 / g, but the present invention is not limited to this. Considering the moldability when producing the positive electrode mixture, the average particle size is set in the range of 10 to 25 μm, and the BET specific surface area is set to 5 to 20 m 2 / in consideration of the electrolyte impregnation property of the positive electrode mixture in the battery. It is considered to be good to set in the range of g. In the above embodiment, nickel hydroxide having a β-type crystal structure is used as a raw material for producing nickel oxyhydroxide in which aluminum is dissolved, but the present invention is not limited to this. For example, even when α-type and β-type mixed crystal nickel hydroxide in which aluminum is solid-solved is used as a raw material, an alkaline battery having substantially the same characteristics can be obtained.

また、上記の実施例では導電剤に黒鉛を用いたが、各種カーボンブラックや繊維状炭素を単独ないしは黒鉛と混合して使用しても、上記と同様の本発明の効果が得られる。
さらに、上記の実施例では、有底円筒状の正極ケース内に中空円筒状の正極合剤ペレット、セパレータ、およびゲル状負極を配置した、いわゆるインサイドアウト型のアルカリ乾電池を作製したが、本発明はボタン型、角型等の他の構造の電池にも適応することが可能である。
In the above embodiment, graphite is used as the conductive agent. However, the same effects of the present invention can be obtained by using various carbon blacks or fibrous carbons alone or mixed with graphite.
Further, in the above-described example, a so-called inside-out type alkaline dry battery in which a hollow cylindrical positive electrode mixture pellet, a separator, and a gelled negative electrode are arranged in a bottomed cylindrical positive electrode case is manufactured. Can be applied to batteries having other structures such as a button type and a square type.

本発明のアルカリ電池は、高負荷および低負荷のいずれの放電においても優れた放電特性を有するため、電子機器や携帯機器等の電源として負荷電力に関係なく幅広い用途に対して好適に用いられる。   Since the alkaline battery of the present invention has excellent discharge characteristics in both high-load and low-load discharges, it is suitably used for a wide range of applications as a power source for electronic devices and portable devices regardless of load power.

β型およびγ型の混晶構造のオキシ水酸化ニッケルのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the nickel oxyhydroxide of (beta) type | mold and (gamma) type mixed crystal structure. 本発明の実施例におけるアルカリ乾電池の一部を断面にした正面図である。It is the front view which made a part of alkaline dry battery in the example of the present invention a section.

符号の説明Explanation of symbols

71 正極ケース
72 黒鉛塗装膜
73 正極合剤
74 セパレータ
75 絶縁キャップ
76 ゲル状負極
77 樹脂製封口板
78 底板
79 絶縁ワッシャ
70 負極集電体
711 外装ラベル
71 Positive electrode case 72 Graphite coating film 73 Positive electrode mixture 74 Separator 75 Insulating cap 76 Gel negative electrode 77 Resin sealing plate 78 Bottom plate 79 Insulating washer 70 Negative electrode current collector 711 Exterior label

Claims (4)

活物質と導電剤を含み、前記活物質が粉末状のオキシ水酸化ニッケルおよび二酸化マンガンを含む正極合剤と、活物質として亜鉛を含む負極と、前記正極合剤と負極とを隔離するセパレータと、アルカリ水溶液からなる電解液とを具備するアルカリ電池であって、
前記オキシ水酸化ニッケルが以下の(1)〜(3)の物性を満たすことを特徴とするアルカリ電池。
(1)結晶構造がβ型とγ型の混相であり、粉末X線回折パターンにおけるγ型の(003)面に基づく回折ピークの積分強度Iγと、β型の(001)面に基づく回折ピークの積分強度Iβとが、関係式:Iγ/(Iβ+Iγ)=0.1〜0.5を満たす。
(2)平均ニッケル価数が3.05〜3.30である。
(3)アルミニウムを1〜10mol%含有する。
A positive electrode mixture including an active material and a conductive agent, wherein the active material includes powdered nickel oxyhydroxide and manganese dioxide; a negative electrode including zinc as an active material; and a separator that separates the positive electrode mixture and the negative electrode; An alkaline battery comprising an electrolytic solution comprising an alkaline aqueous solution,
The alkaline battery characterized in that the nickel oxyhydroxide satisfies the following physical properties (1) to (3).
(1) The crystal structure is a mixed phase of β-type and γ-type, and the integrated intensity I γ of the diffraction peak based on the γ-type (003) plane in the powder X-ray diffraction pattern and the diffraction based on the β-type (001) plane The integrated intensity I β of the peak satisfies the relational expression: I γ / (I β + I γ ) = 0.1 to 0.5.
(2) The average nickel valence is 3.05 to 3.30.
(3) 1-10 mol% of aluminum is contained.
前記オキシ水酸化ニッケルが、さらに以下の(4)〜(6)の物性を満たす請求項1記載のアルカリ電池。
(4)体積基準の平均粒子径が10〜25μmである。
(5)タップ密度が1.8g/cm以上である。
(6)BET比表面積が5〜20m/gである。
The alkaline battery according to claim 1, wherein the nickel oxyhydroxide further satisfies the following physical properties (4) to (6).
(4) The volume-based average particle size is 10 to 25 μm.
(5) The tap density is 1.8 g / cm 3 or more.
(6) The BET specific surface area is 5 to 20 m 2 / g.
前記オキシ水酸化ニッケルと二酸化マンガンとの混合重量比が10〜80:85〜15である請求項1または2記載のアルカリ電池。   The alkaline battery according to claim 1 or 2, wherein a mixing weight ratio of the nickel oxyhydroxide and manganese dioxide is 10 to 80:85 to 15. 前記正極合剤が、前記導電剤として黒鉛を3〜10重量%含む請求項1または2記載のアルカリ電池。   The alkaline battery according to claim 1, wherein the positive electrode mixture contains 3 to 10 wt% of graphite as the conductive agent.
JP2004374195A 2004-12-24 2004-12-24 Alkaline battery Withdrawn JP2006179428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374195A JP2006179428A (en) 2004-12-24 2004-12-24 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374195A JP2006179428A (en) 2004-12-24 2004-12-24 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2006179428A true JP2006179428A (en) 2006-07-06

Family

ID=36733307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374195A Withdrawn JP2006179428A (en) 2004-12-24 2004-12-24 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2006179428A (en)

Similar Documents

Publication Publication Date Title
JP4425100B2 (en) Alkaline battery
JPWO2005104272A1 (en) Alkaline primary battery and method for producing positive electrode material thereof
CN100431212C (en) Alkali battery
CN100428538C (en) Alkaline battery
JPWO2005045958A1 (en) Method for producing alkaline battery and positive electrode material for alkaline battery
WO2006001210A1 (en) Alkaline cell
JP2004111389A (en) PRIMARY BATTERY CONSISTING OF Ni COMPOUND POSITIVE ELECTRODE MATERIAL
JP4599659B2 (en) Nickel zinc battery
JP2005056733A (en) Alkaline battery and manufacturing method for cathode active material for alkaline batteries
KR100904349B1 (en) Alkaline battery
JP2006313678A (en) Alkaline primary cell and its manufacturing method
JP2006179428A (en) Alkaline battery
WO2005015666A1 (en) Alkaline battery
JP2005310752A (en) Alkaline battery
JP2005071991A (en) Alkaline battery
JP4307864B2 (en) Sealed alkaline zinc primary battery
JP2003123746A (en) Alkaline zinc battery
JP2002203546A (en) Beta-type oxynickel hydroxide and its manufacturing method, positive electrode active substance, as well as nickel-zinc battery
JP2006221831A (en) Alkaline dry cell
JP4240871B2 (en) Alkaline zinc battery
JP2003017042A (en) Sealed alkaline-zinc primary battery
JP2006179429A (en) Alkaline dry battery
JP4374430B2 (en) Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same
JP2003123747A (en) Alkaline zinc battery
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101108