JP4374430B2 - Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same - Google Patents

Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same Download PDF

Info

Publication number
JP4374430B2
JP4374430B2 JP10856399A JP10856399A JP4374430B2 JP 4374430 B2 JP4374430 B2 JP 4374430B2 JP 10856399 A JP10856399 A JP 10856399A JP 10856399 A JP10856399 A JP 10856399A JP 4374430 B2 JP4374430 B2 JP 4374430B2
Authority
JP
Japan
Prior art keywords
alkaline electrolyte
positive electrode
electrolyte battery
silver
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10856399A
Other languages
Japanese (ja)
Other versions
JP2000299103A (en
Inventor
将 西佐古
有一 伊藤
長寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP10856399A priority Critical patent/JP4374430B2/en
Publication of JP2000299103A publication Critical patent/JP2000299103A/en
Application granted granted Critical
Publication of JP4374430B2 publication Critical patent/JP4374430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、従来のAg2Oより電気抵抗が低く、銀の使用量の少ないアルカリ電解液電池用正極活物質およびそれを用いたアルカリ電解液電池に関するものである。
【0002】
【従来の技術】
アルカリ電解液電池、例えば酸化銀電池は正極活物質として、従来酸化銀Ag2Oを用いていたが、Ag2Oは導電性が低く、電池の内部抵抗が高くなり電池の放電容量の低下をもたらすため、Ag2Oを部分的に還元して金属銀を析出させ導電性を持たせたり、正極合剤に黒鉛のような導電性の物質を導電補助剤として添加したりして使われていた。
【0003】
【発明が解決しようとする課題】
しかしながら、析出した金属銀は作用物質ではないため、内部抵抗の問題が解消されても、電池の放電容量の低下をもたらす。また、導電補助剤を添加するとその嵩密度が小さいため正極合剤中でかなりの体積を占めることになる。従ってその内部抵抗の問題が解消されても、正極活物質である酸化銀の占める割合が減少し、電池の放電容量が減少してしまう。
一方、近年電子機器、時計用の電源として小型化、及び長期信頼性のニーズが高まっており今後も酸化銀電池等のアルカリ電解液電池の高性能化の要求に応えていく必要がある。しかし、上記の問題点により放電容量の低下がみられており導電補助剤の必要のない導電性酸化銀等の正極活物質が必要である。
また、近年の技術の進歩にともなって、アルカリ電解液電池、例えば酸化銀電池材料コストの中で、正極活物質である酸化銀の占める割合が年々増加していき、原材料中の銀を少なくさせることが必要になってきた。
したがって本発明の目的は、正極合剤の放電容量あたりの高価な銀の使用量を削減可能であるとともに、正極合剤として黒鉛のような導電補助剤を添加せずに、または少量添加するだけで、放電容量が高容量の電池を得ることの可能な、アルカリ電解液電池用の正極活物質とその製造方法およびそれを用いたアルカリ電解液電池を提供することにある。
【0004】
【課題を解決するための手段】
そこで本発明者は上述の従来の問題を解決すべく鋭意努力した結果、湿式反応時に銀塩とコバルト塩を所定の量的割合で添加し、その際に酸化剤を作用させることにより銀とコバルトの含む酸化物を調製し正極活物質とすることで、正極合剤の放電容量あたりの高価な銀の使用量を削減可能であるとともに、正極合剤として黒鉛のような導電補助剤を添加せずに、または少量添加するだけで、放電容量が高容量の電池を得ることが可能となり、前記課題が解決できることを見出し本発明に到達した。
すなわち本発明は第1に、Ag:Coがモル比で0.9:0.1〜0.4:0.6(ただしAgとCoのモル比の合計を1.0とする)の割合となるように銀塩とコバルト塩とをアルカリ水溶液と混合し、得られる懸濁液に酸化剤を作用させることにより調製することを特徴とするアルカリ電解液電池用正極活物質の製造方法;第2に、前記アルカリ水溶液と混合した銀塩が、前記懸濁液中で、平均価数が+1.1以上の酸化銀となることを特徴とする第1に記載のアルカリ電解液電池用正極活物質の製造方法;第3に、Ag、Coを、モル比でAg:Co=0.9:0.1〜0.4:0.6(ただしAgとCoのモル比の合計を1.0とする)の割合で含む酸化物であることを特徴とするアルカリ電解液電池用正極活物質;第4に、前記第1〜3のいずれかに記載の正極活物質を用いたことを特徴とするアルカリ電解液電池を提供するものである。
【0005】
【発明の実施の形態】
製法としては、第1段階としてアルカリと酸化剤の共存液中に硝酸銀を添加し、平均価数が+1よりも大きな酸化銀を得る。より好ましくは平均価数が、+1.1以上、さらに好ましくは+1.5以上の酸化銀とする。特に好ましいのは全てが+2価酸化銀になることが望ましいが、実際には+2価酸化銀の含有率が高い、+1価酸化銀と+2価酸化銀との混合物として析出した懸濁液を得ることが多い。
第2段階としてこの懸濁液中に、硝酸銀に対して硝酸コバルトを所定の割合で、例えば、モル比で、Ag:Co=1:1となるように添加する。ここで主にコバルトオキシ水酸化物が生成する。このときに酸化銀の還元等の変化は生じない。この段階の終了pHは10以上であることが望ましい。
第3段階としてこのアルカリ溶液中で酸化銀とコバルトオキシ水酸化物とが反応してコバルト酸銀を生成する。反応途中での+1価酸化銀の明瞭な増加はみられなかった。
第1段階から第3段階までの反応はアルカリと酸化剤の共存下で行われる。この沈殿生成物を十分洗浄し、100℃以下の温度で乾燥して黒色粉末を得る。
本発明で得られた反応生成物はX線回折により銀とコバルトの複合酸化物のAgCoO2であることが確認された。
以下さらに詳細な条件を示す。
第1段階から第3段階までに用いる上記アルカリとしては、通常のアルカリが使用可能であるが、特に苛性アルカリ、例えばKOH、NaOH、LiOH等が好ましい。これは、酸化銀を得るためには強アルカリが好ましいからである。その意味からもpHは10以上が好ましい。
上記第1段階で得られる懸濁液中の酸化銀の平均価数を+1.1以上、より好ましくは+1.5以上とすることにより、酸化銀の価数を上げることでコバルトとの反応性を高め、最終的にAgCoO2、あるいはAgとCoを含む酸化物を、特別な装置による煩雑な操作を必要とせずに、常圧のもとで100℃以下の温度で得ることが可能となる。
上記酸化剤としては、通常の酸化剤が使用可能であり、例えばK22、KMnO、H22、オゾン、NaClO等が使用可能である。
酸化剤の添加は、上記のように第1段階でアルカリと共存させておいてもよいが、酸化銀が析出した後の第2段階で硝酸コバルトを添加する前に酸化剤を添加しても、第3段階で酸化剤を添加しても、いずれでもよい。
上記添加する硝酸銀と添加する硝酸コバルトの割合は、モル比で、Ag:Co=0.9:0.1〜0.4:0.6の範囲であり、より好ましくは、Ag:Co=0.45:0.55〜0.55:0.45である。Ag:Co=0.9:0.1よりCoの含有量が低いと、十分な導電性が得られないため、またAgの使用量を充分低減できないため、好ましくない。また、Ag:Co=0.4:0.6よりCoの含有量が高いと放電曲線の平坦性が充分得られないため好ましくない。これらの点からも、Ag:Co=0.45:0.55〜0.55:0.45が特に好ましい。
硝酸銀と添加する硝酸コバルトの割合が、モル比で、Ag:Co=0.5:0.5よりCoが多い場合は、Ag:Co=0.55:0.45までは、AgCoO2にCoが固溶していると考えられる。Ag:Co=0.9:0.1〜0.5:0.5の範囲では、Ag2O、AgCoO2相の混合相、あるいはAgとCoを含む酸化物となる。
乾燥温度は、ある程度低い方が乾燥中の凝集が少なくなり好ましい。その点からも、また必要な乾燥エネルギーが少量に抑えることができる点からも、100℃以下の温度か好ましい。凝集を抑える点からは、真空乾燥するのがより好ましい。
最終的得られたAgCoO2、あるいはAgとCoを含む酸化物は、Ag2Oに比べて、導電性の良好なものであった。
このようにして得られたAgCoO2、あるいはAgとCoを含む酸化物粉末の電池特性を、該粉末を用いて、例えば、図1に示す構造の酸化銀電池を作製し、以下の方法で評価した。
一例として、得られた粉末に炭素を0.5重量%添加して混合し、これを5トン/cm2の圧力で成形し直径11mmのペレットを作製し、これを正極剤1として正極缶2に入れ、電解液として35重量%KOH水溶液を数滴滴下した。セロハンと綿不織布からなるセパレーター3を正極剤1の上に置く。亜鉛アマルガムと微量のアクリル酸系のゲル化剤とKOH35重量%溶液とを混合し負極剤5とした。負極剤5を負極缶6に充填し、正極缶2とはナイロンガスケット4を介してかしめ機によって結合した。正極缶2には内側のステンレスにニッケルメッキしたものを用い、負極缶6には外側がニッケル、内側が銅、中間がステンレスであるような複合材を用いた。電池の大きさは、直径が11.6mm、高さが約3mmである。これは公称容量80mAhの一酸化銀電池に近似する。容量は15kΩの抵抗を用いて放電させて測定した。終了電圧は1.2Vとした。
本発明で得られた複合酸化物を用いるアルカリ電解液電池は、AgCoO2の重量エネルギー密度は理論密度として270mAh/g前後と言われているが、理論密度相当に見合うだけのエネルギーが得られた。従来の酸化銀Ag2Oと比較しても遜色がなく、さらにAgの使用量の少ない電池とすることができる。
【0006】
【実施例1】
1モルのK228を含む10モル/LのNaOH溶液1.0Lに1モル/Lの硝酸銀溶液を200cc添加し、10分間撹拌保持した。その後、同様に撹拌しながら1モル/Lの硝酸コバルト溶液200ccを添加した。このときのpHは13〜14として。この酸化銀とコバルト化合物を含む液を40℃で10時間撹拌した後、生成沈殿物を溶液から分離し、十分洗浄して35℃で風乾した。更に、100℃で加熱乾燥した後この試料をサンプルミルにて粉砕し黒色粉末を得た。
【0007】
このようにして得られた粉末の電池特性を、該粉末を用いて図1に示す構造の酸化銀電池を作製し、以下の方法で評価した。
得られた粉末に炭素を0.5重量%添加して混合し、これを5トン/cm2の圧力で成形し直径11mmのペレットを作製し、これを正極剤1として正極缶2に入れ、電解液として35%KOH水溶液を数滴滴下した。セロハンと綿不織布からなるセパレーター3を正極剤1の上に置く。亜鉛アマルガムと微量のアクリル酸系のゲル化剤とKOH35重量%溶液とを混合し負極剤5とした。負極剤5を負極缶6に充填し、正極缶2とはナイロンガスケット4を介してかしめ機によって結合した。正極缶2には内側のステンレスにニッケルメッキしたものを用い、負極缶6には外側がニッケル、内側が銅、中間がステンレスであるような複合材を用いた。電池の大きさは、直径が11.6mm、高さが約3mmである。これは公称容量80mAhの一酸化銀電池に近似する。容量は15kΩの抵抗を用いて放電させて測定した。終了電圧は1.2Vとした。
本発明で得られた複合酸化物は初期電圧が1.63Vの範囲を示した。
【0008】
【実施例2】
実施例1と同様の条件で得た生成物を風乾した後真空中80℃で乾燥した。電池特性の評価は実施例1と同様の方法で測定した。
【0009】
【実施例3】
5モルのKMnO4を含む10モル/LのNaOH溶液1.0Lに1モル/Lの硝酸銀溶液を200cc添加し、10分間撹拌保持した。その後、同様に撹拌しながら1モル/Lの硝酸コバルト溶液200ccを添加した。この酸化銀とコバルト化合物を含む液を70℃で10時間撹拌した後、生成沈殿物を溶液から分離し、十分洗浄して35℃で風乾した。更に、100℃で加熱乾燥した後この試料をサンプルミルにて粉砕し黒色粉末を得た。
【0010】
【実施例4】
1モルのK228を含む10モル/LのNaOH溶液1.0Lに1モル/Lの硝酸銀溶液を200cc添加し、10分間撹拌保持した。その後、同様に撹拌しながら0.5モル/Lの硝酸コバルト溶液200ccを添加した。以下実施例1と同様の方法で行った。
【0011】
【実施例5】
1モルのK228を含む10モル/LのNaOH溶液1.0Lに0.9モル/Lの硝酸銀溶液を200cc添加し、10分間撹拌保持した。その後、同様に撹拌しながら0.1モル/Lの硝酸コバルト溶液200ccを添加した。以下実施例1同様の方法で行った。
【0012】
【実施例6】
実施例1と同様の方法で作製した粉末を5トン/cm2の圧力で成形し直径11mm、厚み0.7mmのペレットを作製した。以下実施例1と同様の方法で電池特性を測定した。
【0013】
【実施例7】
実施例4と同様の方法で作製した粉末を5トン/cm2の圧力で成形し直径11mm、厚み0.7mmのペレットを作製した。以下実施例1と同様の方法で電池特性を測定した。
実施例2〜7においても実施例1と同様に理論エネルギー密度に見合うだけのエネルギーが得られた。
【0014】
【比較例】
酸化銀Ag2Oを用いて実施例1と同様の方法で電池を作製し、その電池特性をみた。
銀の使用量はAgCoO2に比較して重量で約40%多い。
初期電圧は1.54V、電池容量は80mAhであった。
【0015】
【発明の効果】
本発明の複合酸化物粉末は正極活物質として使用することにより、従来の酸化銀電池Ag2Oより銀の使用量を少なくすることができ、かつ高い電池容量を安定して発現できるアルカリ電解液電池を提供する事ができた。
【図面の簡単な説明】
【図1】本発明の導電性複合酸化物を正極活物質として用いた酸化銀電池の電池特性の評価を行うために作製した電池の構造を示す断面図である。
【符号の説明】
1 正極剤
2 正極缶
3 セパレーター
4 ガスケット
5 負極剤
6 負極缶
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for an alkaline electrolyte battery that has a lower electrical resistance than conventional Ag 2 O and uses less silver, and an alkaline electrolyte battery using the same.
[0002]
[Prior art]
Alkaline electrolyte batteries, such as silver oxide batteries, conventionally used silver oxide Ag 2 O as the positive electrode active material. However, Ag 2 O has low conductivity, increases the internal resistance of the battery, and decreases the discharge capacity of the battery. Therefore, Ag 2 O is partially reduced to deposit metal silver to give conductivity, or a conductive material such as graphite is added to the positive electrode mixture as a conductive auxiliary agent. It was.
[0003]
[Problems to be solved by the invention]
However, since the deposited silver metal is not an active substance, the discharge capacity of the battery is reduced even if the problem of internal resistance is solved. Further, when a conductive auxiliary agent is added, its bulk density is small, so that a considerable volume is occupied in the positive electrode mixture. Therefore, even if the problem of the internal resistance is solved, the proportion of silver oxide, which is the positive electrode active material, decreases, and the discharge capacity of the battery decreases.
On the other hand, in recent years, there has been a growing need for downsizing and long-term reliability as a power source for electronic devices and watches, and it will be necessary to meet the demand for higher performance of alkaline electrolyte batteries such as silver oxide batteries. However, the discharge capacity is reduced due to the above problems, and a positive electrode active material such as conductive silver oxide which does not require a conductive auxiliary agent is required.
In addition, with the advancement of technology in recent years, the proportion of silver oxide, which is a positive electrode active material, increases year by year in the alkaline electrolyte battery, for example, silver oxide battery material cost, and the silver in the raw material is reduced It has become necessary.
Therefore, the object of the present invention is to reduce the amount of expensive silver used per discharge capacity of the positive electrode mixture and to add a small amount without adding a conductive auxiliary agent such as graphite as the positive electrode mixture. Then, it is providing the positive electrode active material for alkaline electrolyte batteries which can obtain a battery with a high discharge capacity, its manufacturing method, and an alkaline electrolyte battery using the same.
[0004]
[Means for Solving the Problems]
Accordingly, as a result of diligent efforts to solve the above-mentioned conventional problems, the present inventors added silver salt and cobalt salt in a predetermined quantitative ratio during wet reaction, and at that time, an oxidant was allowed to act on the silver and cobalt. As a positive electrode active material, the amount of expensive silver used per discharge capacity of the positive electrode mixture can be reduced and a conductive additive such as graphite can be added as a positive electrode mixture. The inventors have found that a battery having a high discharge capacity can be obtained by adding a small amount without adding a small amount, and the present invention has been found to solve the above problems.
That is, according to the present invention, first, the ratio of Ag: Co in a molar ratio of 0.9: 0.1 to 0.4: 0.6 (provided that the total molar ratio of Ag and Co is 1.0) A method for producing a positive electrode active material for an alkaline electrolyte battery, comprising: mixing a silver salt and a cobalt salt with an alkaline aqueous solution and allowing an oxidant to act on the resulting suspension; 2. The positive electrode active material for an alkaline electrolyte battery according to claim 1, wherein the silver salt mixed with the alkaline aqueous solution becomes silver oxide having an average valence of +1.1 or more in the suspension. Third, Ag and Co are mixed at a molar ratio of Ag: Co = 0.9: 0.1 to 0.4: 0.6 (provided that the total molar ratio of Ag and Co is 1.0). A positive electrode active material for an alkaline electrolyte battery, characterized by comprising: There is provided an alkaline electrolyte battery characterized by using the positive electrode active material according to any one to three of the.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As a manufacturing method, silver nitrate is added to the coexisting liquid of an alkali and an oxidizing agent as a first step to obtain silver oxide having an average valence larger than +1. More preferably, the silver oxide has an average valence of +1.1 or more, more preferably +1.5 or more. Particularly preferred is that all become +2 silver oxide, but in practice, a suspension containing a high content of +2 silver oxide and precipitated as a mixture of +1 silver oxide and +2 silver oxide is obtained. There are many cases.
As a second step, cobalt nitrate is added to this suspension at a predetermined ratio, for example, molar ratio, Ag: Co = 1: 1 with respect to silver nitrate. Here, cobalt oxyhydroxide is mainly produced. At this time, no change such as reduction of silver oxide occurs. The final pH at this stage is preferably 10 or more.
As a third step, silver oxide and cobalt oxyhydroxide react in this alkaline solution to produce silver cobaltate. There was no clear increase in + 1valent silver oxide during the reaction.
The reaction from the first stage to the third stage is performed in the presence of an alkali and an oxidizing agent. This precipitated product is sufficiently washed and dried at a temperature of 100 ° C. or lower to obtain a black powder.
The reaction product obtained in the present invention was confirmed to be AgCoO 2 which is a composite oxide of silver and cobalt by X-ray diffraction.
More detailed conditions are shown below.
As the alkali used in the first stage to the third stage, a normal alkali can be used, but caustic alkali such as KOH, NaOH, LiOH and the like are particularly preferable. This is because strong alkali is preferable to obtain silver oxide. In that sense, the pH is preferably 10 or more.
Reactivity with cobalt by increasing the valence of silver oxide by setting the average valence of silver oxide in the suspension obtained in the first step to +1.1 or more, more preferably +1.5 or more. Finally, it is possible to obtain AgCoO 2 or an oxide containing Ag and Co at a temperature of 100 ° C. or lower under normal pressure without requiring a complicated operation with a special apparatus. .
As the oxidizing agent, a conventional oxidizing agent can be used, for example, K 2 S 2 O 8, KMnO 4, H 2 O 2, ozone, NaClO and the like can be used.
The oxidant may be added together with the alkali in the first stage as described above, but the oxidant may be added before the cobalt nitrate is added in the second stage after the silver oxide is deposited. The oxidizing agent may be added in the third stage, either of which may be used.
The ratio of the silver nitrate to be added to the cobalt nitrate to be added is in the range of Ag: Co = 0.9: 0.1 to 0.4: 0.6, more preferably Ag: Co = 0. .45: 0.55-0.55: 0.45. If the content of Co is lower than Ag: Co = 0.9: 0.1, sufficient conductivity cannot be obtained, and the amount of Ag used cannot be sufficiently reduced, which is not preferable. Further, if the content of Co is higher than Ag: Co = 0.4: 0.6, the flatness of the discharge curve cannot be obtained sufficiently, which is not preferable. Also from these points, Ag: Co = 0.45: 0.55-0.55: 0.45 is particularly preferable.
When the ratio of silver nitrate and cobalt nitrate to be added is more than Ag: Co = 0.5: 0.5 in terms of molar ratio, AgCoCo is mixed with AgCoO 2 until Ag: Co = 0.55: 0.45. Is considered to be a solid solution. In the range of Ag: Co = 0.9: 0.1 to 0.5: 0.5, a mixed phase of Ag 2 O, AgCoO 2 phase, or an oxide containing Ag and Co is obtained.
The drying temperature is preferably lower to some extent because aggregation during drying is reduced. In view of this point and the point that the necessary drying energy can be suppressed to a small amount, a temperature of 100 ° C. or lower is preferable. From the viewpoint of suppressing aggregation, vacuum drying is more preferable.
The finally obtained AgCoO 2 or an oxide containing Ag and Co had better conductivity than Ag 2 O.
The battery characteristics of the thus obtained AgCoO 2 or oxide powder containing Ag and Co are used to produce, for example, a silver oxide battery having the structure shown in FIG. 1 and evaluated by the following method. did.
As an example, 0.5% by weight of carbon is added to the obtained powder and mixed, and this is molded at a pressure of 5 ton / cm 2 to produce a pellet having a diameter of 11 mm. Then, several drops of 35 wt% KOH aqueous solution were dropped as an electrolytic solution. A separator 3 made of cellophane and cotton nonwoven fabric is placed on the positive electrode agent 1. A negative electrode agent 5 was prepared by mixing zinc amalgam, a trace amount of an acrylic acid-based gelling agent and a 35 wt% solution of KOH. The negative electrode agent 5 was filled in the negative electrode can 6, and was bonded to the positive electrode can 2 through a nylon gasket 4 by a caulking machine. The positive electrode can 2 was made of nickel plated on the inner stainless steel, and the negative electrode can 6 was made of a composite material having nickel on the outer side, copper on the inner side and stainless steel on the middle. The size of the battery is 11.6 mm in diameter and about 3 mm in height. This approximates a silver monoxide battery with a nominal capacity of 80 mAh. The capacity was measured by discharging using a 15 kΩ resistor. The end voltage was 1.2V.
In the alkaline electrolyte battery using the composite oxide obtained in the present invention, the weight energy density of AgCoO 2 is said to be around 270 mAh / g as the theoretical density, but energy sufficient for the theoretical density was obtained. . Compared with conventional silver oxide Ag 2 O, the battery is not inferior, and a battery with a small amount of Ag can be obtained.
[0006]
[Example 1]
200 cc of a 1 mol / L silver nitrate solution was added to 1.0 L of a 10 mol / L NaOH solution containing 1 mol of K 2 S 2 O 8, and the mixture was stirred for 10 minutes. Thereafter, 200 cc of a 1 mol / L cobalt nitrate solution was added while stirring in the same manner. The pH at this time is 13-14. After the liquid containing silver oxide and the cobalt compound was stirred at 40 ° C. for 10 hours, the produced precipitate was separated from the solution, washed sufficiently, and air-dried at 35 ° C. Further, after heat drying at 100 ° C., this sample was pulverized by a sample mill to obtain a black powder.
[0007]
The battery characteristics of the powder thus obtained were evaluated by the following method, using the powder to produce a silver oxide battery having the structure shown in FIG.
Carbon was added to the obtained powder in an amount of 0.5% by weight, and this was molded at a pressure of 5 ton / cm 2 to produce a pellet with a diameter of 11 mm. Several drops of 35% KOH aqueous solution were dropped as an electrolytic solution. A separator 3 made of cellophane and cotton nonwoven fabric is placed on the positive electrode agent 1. A negative electrode agent 5 was prepared by mixing zinc amalgam, a trace amount of an acrylic acid-based gelling agent and a 35 wt% solution of KOH. The negative electrode agent 5 was filled in the negative electrode can 6, and was bonded to the positive electrode can 2 through a nylon gasket 4 by a caulking machine. The positive electrode can 2 was made of nickel plated on the inner stainless steel, and the negative electrode can 6 was made of a composite material having nickel on the outer side, copper on the inner side and stainless steel on the middle. The size of the battery is 11.6 mm in diameter and about 3 mm in height. This approximates a silver monoxide battery with a nominal capacity of 80 mAh. The capacity was measured by discharging using a 15 kΩ resistor. The end voltage was 1.2V.
The composite oxide obtained by the present invention showed an initial voltage in the range of 1.63V.
[0008]
[Example 2]
The product obtained under the same conditions as in Example 1 was air dried and then dried at 80 ° C. in vacuum. The battery characteristics were evaluated by the same method as in Example 1.
[0009]
[Example 3]
200 cc of a 1 mol / L silver nitrate solution was added to 1.0 L of a 10 mol / L NaOH solution containing 5 mol of KMnO 4, and the mixture was held for 10 minutes with stirring. Thereafter, 200 cc of a 1 mol / L cobalt nitrate solution was added while stirring in the same manner. After the liquid containing silver oxide and cobalt compound was stirred at 70 ° C. for 10 hours, the produced precipitate was separated from the solution, washed sufficiently, and air-dried at 35 ° C. Further, after heat drying at 100 ° C., this sample was pulverized by a sample mill to obtain a black powder.
[0010]
[Example 4]
200 cc of a 1 mol / L silver nitrate solution was added to 1.0 L of a 10 mol / L NaOH solution containing 1 mol of K 2 S 2 O 8, and the mixture was stirred for 10 minutes. Thereafter, 200 cc of a 0.5 mol / L cobalt nitrate solution was added with stirring in the same manner. Thereafter, the same method as in Example 1 was performed.
[0011]
[Example 5]
200 cc of a 0.9 mol / L silver nitrate solution was added to 1.0 L of a 10 mol / L NaOH solution containing 1 mol of K 2 S 2 O 8, and the mixture was stirred for 10 minutes. Thereafter, 200 cc of a 0.1 mol / L cobalt nitrate solution was added while stirring in the same manner. Thereafter, the same method as in Example 1 was performed.
[0012]
[Example 6]
A powder produced by the same method as in Example 1 was molded at a pressure of 5 ton / cm 2 to produce a pellet having a diameter of 11 mm and a thickness of 0.7 mm. The battery characteristics were then measured in the same manner as in Example 1.
[0013]
[Example 7]
The powder produced by the same method as in Example 4 was molded at a pressure of 5 ton / cm 2 to produce a pellet having a diameter of 11 mm and a thickness of 0.7 mm. The battery characteristics were then measured in the same manner as in Example 1.
In Examples 2 to 7, as in Example 1, energy sufficient for the theoretical energy density was obtained.
[0014]
[Comparative example]
A battery was produced in the same manner as in Example 1 using silver oxide Ag 2 O, and the battery characteristics were examined.
The amount of silver used is about 40% higher by weight than AgCoO 2 .
The initial voltage was 1.54 V and the battery capacity was 80 mAh.
[0015]
【The invention's effect】
By using the composite oxide powder of the present invention as a positive electrode active material, the amount of silver used can be reduced as compared with the conventional silver oxide battery Ag 2 O, and an alkaline electrolyte capable of stably expressing a high battery capacity. I was able to provide batteries.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a cross-sectional view showing the structure of a battery prepared for evaluating battery characteristics of a silver oxide battery using the conductive composite oxide of the present invention as a positive electrode active material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode agent 2 Positive electrode can 3 Separator 4 Gasket 5 Negative electrode agent 6 Negative electrode can

Claims (5)

Ag:Coがモル比で0.9:0.1〜0.4:0.6(ただしAgとCoのモル比の合計を1.0とする)の割合となるように銀塩とコバルト塩とをアルカリ水溶液と混合し、次いで得られる懸濁液を酸化することを特徴とするアルカリ電解液電池用正極活物質の製造方法。  Silver salt and cobalt salt so that Ag: Co has a molar ratio of 0.9: 0.1 to 0.4: 0.6 (where the sum of the molar ratios of Ag and Co is 1.0). Is mixed with an alkaline aqueous solution, and then the resulting suspension is oxidized to produce a positive electrode active material for an alkaline electrolyte battery. 前記アルカリ水溶液と混合した銀塩が、前記懸濁液中で、銀の平均価数が+1.1以上の酸化銀となることを特徴とする請求項1に記載のアルカリ電解液電池用正極活物質の製造方法。  2. The positive electrode active for an alkaline electrolyte battery according to claim 1, wherein the silver salt mixed with the alkaline aqueous solution becomes a silver oxide having an average valence of silver of +1.1 or more in the suspension. A method for producing a substance. Ag、Coを、モル比でAg:Co=0.9:0.1〜0.4:0.6(ただしAgとCoのモル比の合計を1.0とする)の割合で含み且つAgの平均価数が+1よりも大きな複合酸化物であることを特徴とするアルカリ電解液電池用正極活物質。Ag, and Co, Ag molar ratio: Co = 0.9: 0.1~0.4: 0.6 ( provided that the sum of the molar ratio of Ag and Co and 1.0) unrealized and at a rate of A positive electrode active material for an alkaline electrolyte battery, wherein the composite oxide has an average valence of Ag larger than +1 . Ag、Coを、モル比でAg:Co=1:1の割合で含むAgCoO 2 であることを特徴とするアルカリ電解液電池用正極活物質。A positive electrode active material for an alkaline electrolyte battery, which is AgCoO 2 containing Ag and Co in a molar ratio of Ag: Co = 1: 1 . 請求項1〜4のいずれかに記載の正極活物質を用いたことを特徴とするアルカリ電解液電池。An alkaline electrolyte battery using the positive electrode active material according to claim 1 .
JP10856399A 1999-04-15 1999-04-15 Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same Expired - Lifetime JP4374430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10856399A JP4374430B2 (en) 1999-04-15 1999-04-15 Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10856399A JP4374430B2 (en) 1999-04-15 1999-04-15 Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same

Publications (2)

Publication Number Publication Date
JP2000299103A JP2000299103A (en) 2000-10-24
JP4374430B2 true JP4374430B2 (en) 2009-12-02

Family

ID=14488009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10856399A Expired - Lifetime JP4374430B2 (en) 1999-04-15 1999-04-15 Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same

Country Status (1)

Country Link
JP (1) JP4374430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904457B2 (en) * 2005-03-31 2012-03-28 Dowaエレクトロニクス株式会社 Alkaline battery positive electrode material, method for producing the same, and alkaline battery positive electrode material

Also Published As

Publication number Publication date
JP2000299103A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
CN100405639C (en) Alkaline cell with improved cathode comprising silver copper oxides
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
US6114063A (en) Alkaline storage battery and method for treating surface of positive electrode active material thereof
JP2007103111A (en) Alkaline primary battery and manufacturing method of nickel oxyhydroxide
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
CA2533075C (en) Nickel-manganese battery comprising manganese dioxide and nickel oxyhydroxide
US3297433A (en) Process for preparing a cadmium electrode material for use in electric storage devices
JP2005056733A (en) Alkaline battery and manufacturing method for cathode active material for alkaline batteries
JP2004111389A (en) PRIMARY BATTERY CONSISTING OF Ni COMPOUND POSITIVE ELECTRODE MATERIAL
JP4374430B2 (en) Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same
US7691531B2 (en) Alkaline primary battery including a spherical nickel oxyhydroxide
JP2002093413A (en) Battery
JPWO2006040907A1 (en) Alkaline battery
JP2005310752A (en) Alkaline battery
JP2006313678A (en) Alkaline primary cell and its manufacturing method
JP2005071991A (en) Alkaline battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP3082348B2 (en) Nickel-hydrogen battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JPH0576745B2 (en)
JP4328890B2 (en) Pellet for positive electrode of alkaline battery
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof
JP2006236692A (en) Nickel hydrogen storage battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term