JP2006179378A - Backup sealed lead-acid battery for automobile - Google Patents

Backup sealed lead-acid battery for automobile Download PDF

Info

Publication number
JP2006179378A
JP2006179378A JP2004372985A JP2004372985A JP2006179378A JP 2006179378 A JP2006179378 A JP 2006179378A JP 2004372985 A JP2004372985 A JP 2004372985A JP 2004372985 A JP2004372985 A JP 2004372985A JP 2006179378 A JP2006179378 A JP 2006179378A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
sealed lead
backup
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372985A
Other languages
Japanese (ja)
Inventor
Isao Amamiya
功 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004372985A priority Critical patent/JP2006179378A/en
Publication of JP2006179378A publication Critical patent/JP2006179378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a backup sealed lead-acid battery for an automobile wherein the reduction of an electrolyte caused by float-charging and being left unused is suppressed, and discharge characteristics are enhanced. <P>SOLUTION: In this backup sealed led-acid battery for the automobile, 0.01-0.4 wt.% of carbon is added to a negative electrode material, the ratio of the height of a negative electrode plate A to the distance B between positive and negative electrodes (A/B) is set to 35-95, and the weight of a positive electrode active material is set to 1.0-1.15 times of the weight of the negative electrode active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フロート用途で使用されるバックアップ用蓄電池の寿命延長のための自動車バックアップ用密閉形鉛蓄電池に関するものである。 The present invention relates to a sealed lead-acid battery for automobile backup for extending the life of a backup battery used for float applications.

従来、密閉形鉛蓄電池は、産業用や自動車用をはじめとして幅広い分野の機器の電源として使用されている。産業用や自動車用の用途に適した密閉形鉛蓄電池の長寿命化技術は、活物質の負極側にリグニンやカーボンを添加したり(例えば特許文献1)、セパレータとして繊維表面を粗面化処理したガラス繊維を用いたり(特許文献2)することなどが行われている。 Conventionally, sealed lead-acid batteries have been used as a power source for a wide range of equipment including industrial and automotive applications. The technology for extending the life of sealed lead-acid batteries suitable for industrial and automotive applications is to add lignin or carbon to the negative electrode side of the active material (for example, Patent Document 1), or to roughen the fiber surface as a separator For example, using the glass fiber (patent document 2).

近年、自動車の電装化に伴い蓄電池に対する要求は高まり、蓄電池の役割は益々重要となっている。このような背景の中、蓄電池を複数個使用することで蓄電池の信頼性を更に高めようとする傾向がある。例えば、メイン蓄電池が万が一走行中にダウンしたときに働くバックアップ電源としての役割を果たす別の蓄電池が必要となっている。なお、メイン蓄電池がダウンしたときのためにバックアップ用として補助の蓄電池を備えるという考えは従来知られている(特許文献3)。 In recent years, the demand for storage batteries has increased along with the electrification of automobiles, and the role of storage batteries has become increasingly important. In such a background, there is a tendency to further increase the reliability of the storage battery by using a plurality of storage batteries. For example, another storage battery that serves as a backup power source that works when the main storage battery goes down during traveling is required. In addition, the idea of providing an auxiliary storage battery for backup when the main storage battery is down is known (Patent Document 3).

特開2002−042794号公報JP 2002-042794 A 特開2002−304977号公報JP 2002-304977 A 実開昭52−169722号全文明細書Full text of Shokai 52-169722

しかしながらバックアップ用電池は、車の運転時にフロート充電されるが、運転を休止したときは充電されずに放置された状態となる。フロート充電と休止を繰り返す環境で、バックアップ用電池はいつでも正常な状態を保つ必要がある。バックアップ用電池を寒冷地で使用する場合、電池にとって過酷な条件となる。また据置形蓄電池とは異なり、常時満充電状態を保つことは不可能であり、密閉形蓄電池の場合、極板のサルフェーションによる放電性能の低下が起こる。サルフェーションの影響は、放置による自己放電によるもの以外に、フロート充電や自己放電による電解液の減少によっても起こる。中でも、自己放電によるサルフェーションは、充電をすればある程度解消はされるが、電解液の減少によるサルフェーションは、充電をしても充電効率の低下により殆んど解消されることは無い。 However, the backup battery is float-charged during driving of the car, but is left uncharged when driving is stopped. In an environment where the float charging and the rest are repeated, the backup battery must always be kept in a normal state. When a backup battery is used in a cold region, it is a severe condition for the battery. Further, unlike a stationary storage battery, it is impossible to keep a fully charged state at all times. In the case of a sealed storage battery, the discharge performance is reduced due to the sulfation of the electrode plate. The influence of sulfation is caused not only by self-discharge due to neglect but also by decrease in electrolyte due to float charge or self-discharge. Among them, sulfation due to self-discharge is eliminated to some extent by charging, but sulfation due to a decrease in electrolyte is hardly eliminated due to a decrease in charging efficiency even if charging is performed.

従来方法での鉛蓄電池の改良では、フロート充電による減液を抑えようとすると、低温放電特性や放置特性が低下する。また、放置特性を良くするとフロート充電特性が低下し、やはり低温高率放電特性も低下する。フロート充電および放置特性を改良すると共に、低温高率放電特性を維持するという試みは今まで無かった。 In the improvement of the lead storage battery by the conventional method, the low-temperature discharge characteristic and the leaving characteristic are deteriorated if it is attempted to suppress the liquid reduction due to the float charge. Further, when the leaving characteristics are improved, the float charging characteristics are lowered, and the low temperature high rate discharge characteristics are also lowered. Until now, there has been no attempt to improve the float charging and leaving characteristics and maintain the low temperature and high rate discharge characteristics.

このような背景の下、フロート充電と放置による電解液の減少を抑え、且つ放電特性を向上させた自動車バックアップ用密閉形鉛蓄電池の改良が望まれている。 Under such a background, it is desired to improve a sealed lead-acid battery for automobile backup that suppresses a decrease in the electrolyte due to float charging and leaving it and has improved discharge characteristics.

本発明は、電池性能の低下は極板のサルフェーションによる影響が大きく、これはフロート充電と放置の繰り返しによる電解液の減少、且つ放電性能の低下であると考える。自動車バックアップ用密閉形鉛蓄電池において、サルフェーションによる劣化要因を取り除くべく、本発明は請求項1記載のように、正極板と負極板を備え、負極板にカーボンを0.01〜0.4wt%添加し、且つ負極板高さAと正・負極板間距離Bとの比(A/B)を35〜95としたものである。更に請求項2記載のように、負極活物質重量に対する正極活物質重量を1.15〜1.0倍とすることを特徴としたものである。 According to the present invention, the deterioration of the battery performance is greatly influenced by the sulfation of the electrode plate, which is considered to be the decrease of the electrolytic solution and the decrease of the discharge performance due to repeated float charging and standing. In a sealed lead-acid battery for automobile backup, in order to remove the deterioration factor due to sulfation, the present invention comprises a positive electrode plate and a negative electrode plate as claimed in claim 1, and 0.01 to 0.4 wt% of carbon is added to the negative electrode plate. The ratio (A / B) between the negative electrode plate height A and the positive / negative electrode plate distance B is set to 35 to 95. Furthermore, as described in claim 2, the positive electrode active material weight is 1.15 to 1.0 times the negative electrode active material weight.

密閉形鉛蓄電池の場合、負極に添加するカーボン量を増やすと、負極の分極が低下し放電特性は良くなるが、フロート充電を行うと充電電流が増加し減液量が増加してしまう。逆に添加するカーボン量を減らすと、放置特性とフロート充電による減液量は抑えられるが、負極の分極は増大しフロート充電時の正極が充電不足となり放電特性は低下する。 In the case of a sealed lead-acid battery, when the amount of carbon added to the negative electrode is increased, the polarization of the negative electrode is reduced and the discharge characteristics are improved. However, when float charging is performed, the charging current increases and the amount of liquid reduction increases. Conversely, if the amount of carbon added is reduced, the standing characteristics and the amount of liquid decrease due to float charging can be suppressed, but the polarization of the negative electrode increases, the positive electrode during float charging becomes insufficiently charged, and the discharge characteristics deteriorate.

また、密閉反応効率を高くするため負極板高さAと正・負極板間距離Bとの比、即ちA/Bの値を変化させ、A/B比を35より小さくすると密閉反応効率は急激に低下する。逆にA/B比を95より大きくすると、負極の下部が充電不足となりサルフェーションが進行したり、セバレータの浸透短絡が多く、且つセパレータの含液量が少なくなり放電特性が低下したりする。 In order to increase the sealing reaction efficiency, the ratio of the negative electrode plate height A to the positive / negative electrode plate distance B, that is, the value of A / B is changed. To drop. Conversely, when the A / B ratio is greater than 95, the lower part of the negative electrode becomes insufficiently charged and sulfation proceeds, the sebator has a large penetration short circuit, and the liquid content of the separator decreases, resulting in a decrease in discharge characteristics.

本発明では、バックアップ用密閉形鉛蓄電池においてフロート充電による減液特性および放置特性の両方を同時に改善でき、寒冷地でも放電特性を良好な状態で維持することができるので、優れた寿命特性を得ることが可能である。 In the present invention, in the sealed lead-acid battery for backup, both the liquid-reducing characteristics due to float charging and the leaving characteristics can be improved at the same time, and the discharge characteristics can be maintained in a good state even in a cold region, so that excellent life characteristics are obtained. It is possible.

鉛粉を水や硫酸と混練して活物質ペーストを調整し、これを基板に充填塗布して正極板と負極板を作製する。この際、負極板は鉛紛と共に所定量のカーボン粉末を添加して混練し活物質ペーストを調整する。得られた正極板と負極板の複数枚を、セパレータを介して交互に積層して極板群を作製し、これを電槽内に極板群収納し該電槽へ蓋を施し極板群に含浸する程度の電解液を注液して密閉形鉛蓄電池を作製した。 Lead powder is kneaded with water or sulfuric acid to prepare an active material paste, which is filled and applied to a substrate to produce a positive electrode plate and a negative electrode plate. At this time, the negative electrode plate is added with a predetermined amount of carbon powder together with lead powder and kneaded to prepare an active material paste. A plurality of the positive electrode plates and the negative electrode plates thus obtained are alternately laminated via separators to produce an electrode plate group, and the electrode plate group is housed in the battery case and the battery case is covered with the electrode plate group. A sealed lead-acid battery was produced by injecting an electrolyte solution to such an extent that it was impregnated.

この際、電槽により所定の圧力、例えば20〜30kgf/dm2程度の圧力(群圧)が掛かるように極板群の厚さおよび電槽内寸法を調整すると共に、電槽内に収納した極板群の正極板と負極板の極板間距離が所定の距離となるようにセパレータの厚み等により調整した。
尚、負極板には更にリグニン等の添加剤を添加しても良い。
At this time, the thickness of the electrode plate group and the dimensions in the battery case are adjusted so that a predetermined pressure, for example, a pressure (group pressure) of about 20 to 30 kgf / dm 2 is applied by the battery case, and the electrode stored in the battery case. It adjusted with the thickness of the separator, etc. so that the distance between the electrode plates of the positive electrode plate and the negative electrode plate of the plate group might be a predetermined distance.
An additive such as lignin may be added to the negative electrode plate.

公知のPb−Ca−Sn−Al合金で鋳造して得た格子基板に、正極及び負極それぞれの活物質ペーストを充填し、熟成した未化成板を作製した。この極板を比重1.10の希硫酸中で化成を行い水洗及び乾燥した後に正極3枚と負極4枚をガラス繊維を主体とするセパレータを介して交互に積層して極板群を製作し、隔壁により内部が6個のセル室に区画形成された電槽にそれぞれ収納し、各セル間の極板群を互いに直列接続し、該電槽に蓋を施して12V、6Ahの密閉形鉛蓄電池を作製した。 A lattice substrate obtained by casting with a known Pb—Ca—Sn—Al alloy was filled with active material paste for each of the positive electrode and the negative electrode, and an aged unformed plate was produced. This electrode plate is formed in dilute sulfuric acid having a specific gravity of 1.10, washed with water and dried, and thereafter, three positive electrodes and four negative electrodes are alternately laminated through a separator mainly composed of glass fibers to produce a plate group. , Each of which is housed in a battery case that is partitioned into six cell chambers by partition walls, the electrode plate groups between the cells are connected in series, and the battery case is covered to provide a 12V, 6Ah sealed lead A storage battery was produced.

そして負極板の活物質ペースト中には表1に示すように添加するカーボン量を0.08〜1wt%と異ならせた負極板を用いると共に、正・負極板間距離Bを一定とし、負極板高さを変えて、負極板高さAと正・負極板間距離Bの比(A/B)を30〜110と種種変えてそれぞれの密閉形鉛蓄電池を作製し、本発明品A1、A2、B1、B2と比較電池A1〜A5、B1、B4、B5、C1、C4、C5、D1〜D5の各種密閉形鉛蓄電池を得た。 In the active material paste of the negative electrode plate, as shown in Table 1, a negative electrode plate in which the amount of carbon added is different from 0.08 to 1 wt% is used, and the distance B between the positive and negative electrode plates is made constant. By changing the height, the ratio (A / B) of the negative electrode plate height A and the positive / negative electrode plate distance B (A / B) was changed from 30 to 110 to produce each sealed lead-acid battery, and the products A1 and A2 of the present invention. B1, B2, and comparative batteries A1 to A5, B1, B4, B5, C1, C4, C5, and D1 to D5 were obtained in various sealed lead-acid batteries.

尚、負極板の高さとは、極板に形成された集電部として耳が形成された辺と、これと対向する辺間の長さを言う。また、正極板の高さは、負極板の高さに併せて変化させた。   The height of the negative electrode plate refers to the length between the side where the ears are formed as the current collector formed on the electrode plate and the side opposite to the side. Moreover, the height of the positive electrode plate was changed in accordance with the height of the negative electrode plate.

(寿命試験1)
得られた密閉形鉛蓄電池を満充電して温度を35℃に一定に保ち、13.65Vの定電圧でフロート充電を4時間行い、その後充電を20時間休止して開回路状態とすることを1サイクルとする加速寿命試験を繰り返して行い、30サイクル毎(1ヶ月毎)に蓄電池を−15℃にして20Aの電流で10秒間放電し、そのときの電圧を測定し、10秒後の放電電圧が7Vに達したときを寿命とする寿命試験を実施した。その結果は表2に示す通りである。表2では、最も寿命の長かったものを100としその相対比で表した。
(Life test 1)
Fully charge the obtained sealed lead-acid battery to keep the temperature constant at 35 ° C, perform float charging at a constant voltage of 13.65 V for 4 hours, and then stop charging for 20 hours to make an open circuit state. Accelerated life test is repeated for one cycle, and every 30 cycles (every month), the storage battery is set to −15 ° C. and discharged at a current of 20 A for 10 seconds, the voltage at that time is measured, and the discharge after 10 seconds. A life test was carried out with the life when the voltage reached 7V. The results are as shown in Table 2. In Table 2, the product with the longest life was assumed to be 100 and expressed as a relative ratio.

更に、上記寿命試験終了後の各電池を解体し、電解液の減液率を測定した結果を表3に示した。ここで減液率は、注液量に対する減水量の割合である。表3には同時に寿命となった劣化の要因を記載した。 Furthermore, Table 3 shows the results of disassembling each battery after the end of the life test and measuring the liquid reduction rate of the electrolyte. Here, the liquid reduction rate is a ratio of the water reduction amount to the liquid injection amount. Table 3 shows the causes of deterioration at the same time.

表2に示すように寿命性能は、カーボン添加量0.01〜0.4wt%で且つA/Bの値を35〜95とした本発明品A1、A2、B1、B2が他の比較電池に対し特に優れていることが分かる。   As shown in Table 2, the life performance of the present invention products A1, A2, B1, and B2 in which the carbon addition amount is 0.01 to 0.4 wt% and the A / B value is 35 to 95 is another comparative battery. On the other hand, it turns out that it is especially excellent.

また表3に示すように、減液率も本発明品が優れていることが分かり、減液特性が優れていることが分かる。そして、カーボン添加量が少ない比較電池A1、B1、C1は正極のサルフェーションによる短絡が、また、カーボン添加量が多い比較電池A5、B5、C5は負極のサルフェーションによる短絡がそれぞれ劣化の要因であった。また、極板高さAと正・負極板間距離Bの比(A/B)が大きい比較電池D1〜D5は、両極のサルフェーションによる短絡が劣化の原因であった。   Further, as shown in Table 3, it can be seen that the liquid reducing rate is excellent in the product of the present invention, and the liquid reducing characteristics are excellent. The comparative batteries A1, B1, and C1 with a small amount of carbon added were short-circuited due to sulfation of the positive electrode, and the comparative batteries A5, B5, and C5 with a large amount of carbon added were short-circuited due to sulfation of the negative electrode. . Further, the comparative batteries D1 to D5 having a large ratio (A / B) between the electrode plate height A and the positive / negative electrode plate distance B were caused by deterioration due to short-circuiting due to sulfation of both electrodes.

本発明品と比較電池A2〜A4、B4、C4の劣化要因は減液によるものであった。 The deterioration factor of the product of the present invention and the comparative batteries A2 to A4, B4, and C4 was due to liquid reduction.

(寿命試験2)
更に同様の密閉形鉛蓄電池を用いて、温度を35℃に一定に保ち、13.65Vの電圧でフロート充電を2時間行い、その後164時間充電を休止して回路状態とすることを1サイクルとする加速試験を行った場合の寿命試験結果は表4の通りであり、最も寿命の長かったものを100としてその相対比で表した。
尚、寿命判定法は寿命試験1の場合と同様である。
(Life test 2)
Furthermore, using a similar sealed lead-acid battery, keeping the temperature constant at 35 ° C., performing float charging at a voltage of 13.65 V for 2 hours, and then stopping charging for 164 hours to obtain a circuit state is one cycle. The results of the life test when the accelerated test is performed are as shown in Table 4. The longest service life is 100, and the relative ratio is expressed as 100.
The life judgment method is the same as in the life test 1.

表4から明らかな通り寿命性能は本発明品A1、A2、B1、B2が他の比較電池に比し特に優れていることが分かる。 As is apparent from Table 4, it can be seen that the products A1, A2, B1, and B2 of the present invention are particularly superior to other comparative batteries in terms of life performance.

また、この場合においても減液率と劣化要因を調査した結果は、先の試験と同様本発明品A1、A2、B1、B2が他の比較電池に比し特に優れ、各鉛蓄電池の劣化要因もほぼ同様であった。 In this case as well, the results of investigating the liquid reduction rate and the deterioration factor are similar to the previous test, in that the products A1, A2, B1, B2 of the present invention are particularly superior to other comparative batteries, and the deterioration factors of each lead storage battery Was almost the same.

実施例1において、負極板高さAを一定とし正・負極板間距離Bを変えてA/Bの値を変えた以外は実施例1と同様にして、表5に示す本発明品C1、C2、D1、D2と比較電池E1〜E5、F1、F4、G1、G4、H1〜H5の各種密閉形鉛蓄電池を得た。 In Example 1, the product C1 of the present invention shown in Table 5 was obtained in the same manner as in Example 1 except that the negative electrode plate height A was constant and the positive / negative electrode plate distance B was changed to change the A / B value. Various sealed lead-acid batteries of C2, D1, D2 and comparative batteries E1-E5, F1, F4, G1, G4, H1-H5 were obtained.

(寿命試験3)
実施例2より得られた密閉形鉛蓄電池を、寿命試験1と同様の条件で寿命試験を行った。その結果は表6に示す通りである。表6では、最も寿命の長かったものを100としその相対比で表した。
尚、寿命判定法も寿命試験1の場合と同様である。
(Life test 3)
The sealed lead-acid battery obtained from Example 2 was subjected to a life test under the same conditions as the life test 1. The results are as shown in Table 6. In Table 6, the product with the longest life was assumed to be 100 and expressed as a relative ratio.
The life judgment method is the same as in the life test 1.

上記寿命試験終了後の各電池を解体し、電解液の減液率を測定した結果を表7に示した。表7には同時に寿命となった劣化の要因を記載した。 Table 7 shows the results of disassembling each battery after the end of the life test and measuring the liquid reduction rate of the electrolytic solution. Table 7 shows the causes of deterioration that reached the end of the life at the same time.

表6から明らかな通り寿命性能は本発明品C1、C2、D1、D2が他の比較電池に比し特に優れていることが分かる。 As is apparent from Table 6, it can be seen that the products C1, C2, D1, and D2 of the present invention are particularly superior to other comparative batteries.

また、この場合においても減液率と劣化要因を調査した結果は、表7に示す通り先の試験結果と同様本発明品C1、C2、D1、D2が他の比較電池に比し特に優れ、各鉛蓄電池の劣化要因もほぼ同様であった。 Also in this case, the results of investigating the liquid reduction rate and the deterioration factor are as follows. As shown in Table 7, the present invention products C1, C2, D1, and D2 are particularly superior to other comparative batteries, The deterioration factors of each lead-acid battery were almost the same.

(寿命試験4)
更に、寿命試験2と同様の条件で寿命試験を行った。その結果は表8に示す通りである。表8では、最も寿命の長かったものを100としその相対比で表した。
尚、寿命判定法も寿命試験2の場合と同様である。
(Life test 4)
Further, a life test was performed under the same conditions as in the life test 2. The results are as shown in Table 8. In Table 8, the product with the longest life was set to 100 and expressed as a relative ratio.
The life judgment method is the same as that in the life test 2.

表8から明らかな通り寿命性能は本発明品C1、C2、D1、D2が他の比較電池に比し特に優れていることが分かる。 As is apparent from Table 8, it can be seen that the products C1, C2, D1, and D2 of the present invention are particularly superior to other comparative batteries.

また、この場合においても減液率と劣化要因を調査した結果は、先の試験と同様本発明品C1、C2、D1、D2が他の比較電池に比し特に優れ、各鉛蓄電池の劣化要因もほぼ同様であった。 In this case as well, the results of investigating the liquid reduction rate and the deterioration factor are the same as in the previous test. The products C1, C2, D1, and D2 of the present invention are particularly superior to other comparative batteries, and the deterioration factors of each lead storage battery Was almost the same.

次に、負極板に添加されるカーボンの量を0.1wt%とし、負極板高さAと正・負極板間距離Bの比(A/B)を65とし、負極活物質量に対する正極活物質の重量を0.9、1.0、1.15および1.2とした以外は実施例1と同様にそれぞれの密閉形鉛蓄電池を作製し、本発明電池J1、J2、J3およびJ4を得た。また、容量を一定とするため活物質の量は、正極活物質を一定とし負極活物質を変動させて行った。 Next, the amount of carbon added to the negative electrode plate is 0.1 wt%, the ratio of the negative electrode plate height A to the positive / negative electrode plate distance B (A / B) is 65, and the positive electrode active material relative to the negative electrode active material amount. The respective sealed lead-acid batteries were prepared in the same manner as in Example 1 except that the weights of the substances were 0.9, 1.0, 1.15 and 1.2, and the batteries J1, J2, J3 and J4 of the present invention were prepared. Obtained. In order to make the capacity constant, the amount of the active material was changed by making the positive electrode active material constant and changing the negative electrode active material.

これら密閉形鉛蓄電池を寿命試験1および2と同じ条件で寿命試験をした結果は表9に示す通りであった。この場合も、最も寿命が長かったものを100としてその相対比で表した。 Table 9 shows the results of performing life tests on these sealed lead-acid batteries under the same conditions as life tests 1 and 2. Also in this case, the product having the longest life was expressed as a relative ratio, with 100 being the longest.

表9に示すように、負極活物質量に対する正極活物質量の比を1.0、1.15としたJ2、J3が特に優れている。また、減液率も優れていることを確認した。 As shown in Table 9, J2 and J3 in which the ratio of the positive electrode active material amount to the negative electrode active material amount is 1.0 and 1.15 are particularly excellent. Moreover, it confirmed that the liquid reduction rate was also excellent.

以上、本発明品では実施例1〜3で示したように、負極板へのカーボン添加量0.01〜0.4wt%とし、且つ負極板高さAと正・負極板間距離Bとの比(A/B)を35〜95とすることで寿命性能および減液特性を改善することができる。又、更に負極活物質量に対する正極活物質量の重量を1.15〜1.0とすることにより特に優れた寿命性能を得ることができる。









As described above, in the product of the present invention, as shown in Examples 1 to 3, the amount of carbon added to the negative electrode plate is 0.01 to 0.4 wt%, and the negative electrode plate height A and the positive / negative electrode plate distance B are By setting the ratio (A / B) to 35 to 95, the life performance and the liquid reducing property can be improved. Further, particularly excellent life performance can be obtained by setting the weight of the positive electrode active material amount to the negative electrode active material amount to 1.15 to 1.0.









Claims (2)

正極板と負極板を備え、負極板にカーボンを0.01〜0.4wt%添加し、且つ負極板高さAと正・負極板間距離Bとの比(A/B)を35〜95としたことを特徴とする自動車バックアップ用密閉形鉛蓄電池。 A positive electrode plate and a negative electrode plate are provided, carbon is added to the negative electrode plate in an amount of 0.01 to 0.4 wt%, and the ratio (A / B) between the negative electrode plate height A and the positive / negative electrode plate distance B is 35 to 95. A sealed lead-acid battery for automobile backup, characterized in that 負極活物質重量に対する正極活物質量の重量を1.15〜1.0倍とすることを特徴とする請求項1記載の自動車バックアップ用密閉形鉛蓄電池。







































The sealed lead-acid battery for automobile backup according to claim 1, wherein the weight of the amount of the positive electrode active material relative to the weight of the negative electrode active material is 1.15 to 1.0 times.







































JP2004372985A 2004-12-24 2004-12-24 Backup sealed lead-acid battery for automobile Pending JP2006179378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372985A JP2006179378A (en) 2004-12-24 2004-12-24 Backup sealed lead-acid battery for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372985A JP2006179378A (en) 2004-12-24 2004-12-24 Backup sealed lead-acid battery for automobile

Publications (1)

Publication Number Publication Date
JP2006179378A true JP2006179378A (en) 2006-07-06

Family

ID=36733262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372985A Pending JP2006179378A (en) 2004-12-24 2004-12-24 Backup sealed lead-acid battery for automobile

Country Status (1)

Country Link
JP (1) JP2006179378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191976A (en) * 2013-03-27 2014-10-06 Furukawa Battery Co Ltd:The Sealed lead acid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034458A (en) * 1989-05-30 1991-01-10 Yuasa Battery Co Ltd Sealed lead storage battery
JPH08329975A (en) * 1995-06-06 1996-12-13 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2001202988A (en) * 2000-01-20 2001-07-27 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034458A (en) * 1989-05-30 1991-01-10 Yuasa Battery Co Ltd Sealed lead storage battery
JPH08329975A (en) * 1995-06-06 1996-12-13 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2001202988A (en) * 2000-01-20 2001-07-27 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191976A (en) * 2013-03-27 2014-10-06 Furukawa Battery Co Ltd:The Sealed lead acid battery

Similar Documents

Publication Publication Date Title
JP3185508B2 (en) Sealed lead-acid battery
US20050221191A1 (en) Lead alloy and lead storage battery using it
US7597998B2 (en) Lead acid battery including antimony
JPWO2014097522A1 (en) Lead acid battery
WO2005096431A1 (en) Lead storage battery
WO2014162674A1 (en) Lead acid storage battery
CN101764264A (en) Lead-acid ultra-battery
JP2008130516A (en) Liquid lead-acid storage battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
CN104067436B (en) Lead accumulator
JP2003123760A (en) Negative electrode for lead-acid battery
JP4515902B2 (en) Lead acid battery
EP3553870A1 (en) Lead acid storage battery
JP5531746B2 (en) Lead acid battery
JP4325153B2 (en) Control valve type lead acid battery
EP2381524B1 (en) Lead acid battery
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
CN104067414B (en) Lead battery
JP7128482B2 (en) lead acid battery
JP2006179378A (en) Backup sealed lead-acid battery for automobile
JP4812386B2 (en) Method for producing lead-acid battery
JP4904658B2 (en) Method for producing lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2010067583A (en) Control valve type lead-acid storage battery
JP5029871B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026