JP2021086731A - Positive electrode plate for lead acid battery, and lead acid battery - Google Patents

Positive electrode plate for lead acid battery, and lead acid battery Download PDF

Info

Publication number
JP2021086731A
JP2021086731A JP2019214711A JP2019214711A JP2021086731A JP 2021086731 A JP2021086731 A JP 2021086731A JP 2019214711 A JP2019214711 A JP 2019214711A JP 2019214711 A JP2019214711 A JP 2019214711A JP 2021086731 A JP2021086731 A JP 2021086731A
Authority
JP
Japan
Prior art keywords
positive electrode
lead
electrode plate
electrode mixture
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019214711A
Other languages
Japanese (ja)
Other versions
JP7328129B2 (en
Inventor
明尋 渡邉
Akihiro Watanabe
明尋 渡邉
英貴 萩原
Hideki Hagiwara
英貴 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019214711A priority Critical patent/JP7328129B2/en
Publication of JP2021086731A publication Critical patent/JP2021086731A/en
Application granted granted Critical
Publication of JP7328129B2 publication Critical patent/JP7328129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a positive electrode plate for a lead acid battery, which is high in utilization rate of an active material while holding good endurance.SOLUTION: A positive electrode plate of a lead acid battery including a cell chamber, and an electrode-plate group housed in the cell chamber together with an electrolyte solution, provided that the electrode-plate group has a laminate including negative and positive electrode plates disposed alternately, and a separator disposed between the negative and positive electrode plates, comprises: a current collector of a lead alloy; and a positive electrode mixture held by a grid-like substrate of the current collector. The positive electrode mixture has a median pore size of 0.75 μm or larger and 0.95 μm or smaller. The positive electrode mixture has a density of 3.90 g/cm3 or more and 4.30 g/cm3 or less. The mass ratio (α/β) of α-PbO2 to β-PbO2 in a positive electrode active material that the positive electrode mixture contains is 0.13 or more and 0.25 or less.SELECTED DRAWING: None

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池には液式のものと制御弁式のものがあり、液式鉛蓄電池は、セル室を備えた電槽と、セル室に電解液とともに収納されている極板群と、を備え、その極板群は、交互に配置された正極板および負極板と、正極板および負極板との間に配置されたセパレータと、からなる積層体を有する。 There are two types of lead-acid batteries, one is a liquid type and the other is a control valve type. The liquid lead-acid battery is equipped with an electric tank equipped with a cell chamber and a group of electrodes stored together with an electrolytic solution in the cell chamber. The electrode plate group has a laminate composed of positive electrode plates and negative electrode plates arranged alternately, and separators arranged between the positive electrode plates and the negative electrode plates.

近年、国内で新規に販売される自動車の多くは、従来のエンジン車からISS(Idling Stop and Start)車に代わりつつあり、今後、これら車両の制御に対応するISS用鉛蓄電池のニーズはより一層高まっていくものと予測される。
ISS車用の鉛蓄電池には、活物質の利用率が高いことと耐久性が高いことの両立が求められる。特に活物質の利用率向上は、余剰な活物質量の削減にもつながり、鉛蓄電池の軽量化及び低コスト化が実現できる。
In recent years, many of the automobiles newly sold in Japan are replacing conventional engine vehicles with ISS (Idling Stop and Start) vehicles, and the need for lead-acid batteries for ISS that can control these vehicles will further increase in the future. It is expected to increase.
Lead-acid batteries for ISS vehicles are required to have both high utilization rate of active materials and high durability. In particular, improving the utilization rate of active materials leads to a reduction in the amount of surplus active materials, which makes it possible to reduce the weight and cost of lead-acid batteries.

正極活物質の利用率を向上させる方法としては、例えば特許文献1に記載されているように、活物質密度を低下させる方法が挙げられる。正極活物質の密度を下げると、極板中の気孔率が増加するため極板内部まで電解液が浸透し、活物質と電解液の接触面積が向上する事で利用率が増加する。
また、特許文献2には、正極活物質の原料として、鉛粉と鉛丹化率が20〜80重量%の鉛丹との混合物を用いることが記載されている。これにより、活物質粒子間の結合性が改善されて、化成後の正極活物質粒子が小さくなるため、比表面積が向上する事で利用率が増加する。
Examples of the method for improving the utilization rate of the positive electrode active material include a method for reducing the density of the active material, as described in Patent Document 1. When the density of the positive electrode active material is lowered, the porosity in the electrode plate is increased, so that the electrolytic solution permeates into the inside of the electrode plate, and the contact area between the active material and the electrolytic solution is improved, so that the utilization rate is increased.
Further, Patent Document 2 describes that a mixture of lead powder and lead tan having a lead tanning rate of 20 to 80% by weight is used as a raw material for the positive electrode active material. As a result, the bondability between the active material particles is improved, and the positive electrode active material particles after chemical conversion become smaller, so that the specific surface area is improved and the utilization rate is increased.

さらに、特許文献3には、正極板および負極板内に含浸された電解液に、平均粒子径0.01〜0.1μmのシリカを1.0質量%以下の割合で含有させることが記載されている。シリカは電解液の保持性に優れるため、活物質と電解液の接触面積を増加させる効果があることが知られている。この効果により、正極活物質の利用率向上が得られることが期待できる。 Further, Patent Document 3 describes that the electrolytic solution impregnated in the positive electrode plate and the negative electrode plate contains silica having an average particle size of 0.01 to 0.1 μm in a proportion of 1.0% by mass or less. ing. Since silica has excellent retention of the electrolytic solution, it is known to have an effect of increasing the contact area between the active material and the electrolytic solution. Due to this effect, it can be expected that the utilization rate of the positive electrode active material can be improved.

特開2004−199993号公報Japanese Unexamined Patent Publication No. 2004-199993 特開2008−152968号公報Japanese Unexamined Patent Publication No. 2008-152968 特開平8−153535号公報Japanese Unexamined Patent Publication No. 8-153535

しかしながら、特許文献1〜3に記載された方法で得られる正極は、活物質同士の結合力が低いため、軟化脱落が生じ易く、耐久性の低いものとなる。
本発明の課題は、良好な耐久性を保持しながら活物質の利用率が高い鉛蓄電池用正極板を提供することである。
However, since the positive electrode obtained by the methods described in Patent Documents 1 to 3 has a low binding force between the active materials, it is liable to soften and fall off, resulting in low durability.
An object of the present invention is to provide a positive electrode plate for a lead storage battery, which has a high utilization rate of an active material while maintaining good durability.

上記課題を解決するために、本発明の第一態様は、下記の構成(a)〜(c)を有することを特徴とする鉛蓄電池用正極板を提供する。
(a)セル室と、セル室に電解液と共に収納された極板群と、を備え、極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池の正極板である。
(b)鉛合金からなる集電体と、集電体の格子状基板に保持された正極合剤とからなる。
(c)正極合剤のメジアン細孔径が0.75μm以上0.95μm以下であり、正極合剤の密度が3.90g/cm3以上4.30g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ−PbO2の質量に対するα−PbO2の質量の比(α/β)が0.13以上0.25以下である。
In order to solve the above problems, the first aspect of the present invention provides a positive electrode plate for a lead storage battery, which has the following configurations (a) to (c).
(a) A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is provided between the alternately arranged negative electrode plates and positive electrode plates and between the negative electrode plates and the positive electrode plates. It is a positive electrode plate of a lead storage battery having a laminated body composed of an arranged separator and a laminate.
(b) It consists of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector.
(c) the positive electrode mixture of the median pore diameter is at most 0.95μm least 0.75 .mu.m, the density of the positive electrode mixture is not more than 3.90 g / cm 3 or more 4.30 g / cm 3, constituting the positive electrode mixture The ratio (α / β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material is 0.13 or more and 0.25 or less.

本発明の第二態様は、下記の構成(d)(e)を有することを特徴とする鉛蓄電池を提供する。
(d)セル室と、セル室に電解液と共に収納された極板群と、を備え、極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池である。
(e)正極板は、鉛合金からなる集電体と、集電体の格子状基板に保持された正極合剤とからなり、上記構成(c)を満たす。
A second aspect of the present invention provides a lead storage battery having the following configurations (d) and (e).
(d) A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is provided between the alternately arranged negative electrode plates and positive electrode plates and between the negative electrode plates and the positive electrode plates. It is a lead storage battery having a laminated body composed of an arranged separator and a laminated body.
(e) The positive electrode plate is composed of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector, and satisfies the above configuration (c).

本発明の鉛蓄電池用正極板によれば、良好な耐久性を保持しながら活物質の利用率が高いものとなることが期待できる。 According to the positive electrode plate for a lead storage battery of the present invention, it can be expected that the utilization rate of the active material is high while maintaining good durability.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention.

[構成]
この実施形態の鉛蓄電池は、モノブロックタイプの電槽と、蓋と、六個の極板群とを有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一個の極板群が配置されている。各セル室に電解液が注入されている。
各極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータと、からなる積層体を有する。
[Constitution]
The lead-acid battery of this embodiment has a monoblock type battery case, a lid, and a group of six plates. The battery case is divided into six cell chambers by a partition wall. The six cell chambers are arranged along the longitudinal direction of the battery case. One electrode plate group is arranged in each cell chamber. An electrolytic solution is injected into each cell chamber.
Each electrode plate group has a laminate composed of a plurality of alternately arranged positive electrode plates and negative electrode plates, and separators arranged between the positive electrode plates and the negative electrode plates.

正極板は、格子状基板と格子状基板から上側に突出する耳部とを有する鉛合金からなる集電体の格子状基板に、正極合剤(正極活物質を含む合剤)が保持されたものである。負極板は、格子状基板と格子状基板から上側に突出する耳部とを有する鉛合金からなる集電体の格子状基板に、負極合剤(負極活物質を含む合剤)が保持されたものである。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数は正極板の枚数よりも一枚多くても良いし、同じでも良い。 The positive electrode plate is a positive electrode mixture (a mixture containing a positive electrode active material) held on a lattice-shaped substrate of a current collector made of a lead alloy having a lattice-shaped substrate and an ear portion protruding upward from the lattice-shaped substrate. It is a thing. In the negative electrode plate, a negative electrode mixture (a mixture containing a negative electrode active material) was held on a lattice-like substrate of a current collector made of a lead alloy having a lattice-like substrate and an ear portion protruding upward from the lattice-like substrate. It is a thing. A plurality of positive electrode plates and negative electrode plates are alternately arranged via a separator. The number of negative electrode plates constituting the laminate may be one more than the number of positive electrode plates, or may be the same.

正極合剤のメジアン細孔径が0.75μm以上0.95μm以下であり、正極合剤の密度が3.90g/cm3以上4.30g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ−PbO2の質量に対するα−PbO2の質量の比(α/β)が0.13以上0.25以下である。
負極合剤は、従来品と同様の構成である。具体的には、負極活物質である鉛と、補強繊維などを含む。
負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータ内に収納して、負極板と交互に重ねてもよい。
The median pore diameter of the positive electrode mixture is not more than 0.95μm than 0.75 .mu.m, the density of the positive electrode mixture is not more than 3.90 g / cm 3 or more 4.30 g / cm 3, a positive electrode active composing the positive electrode mixture The ratio (α / β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the substance is 0.13 or more and 0.25 or less.
The negative electrode mixture has the same structure as the conventional product. Specifically, it contains lead, which is a negative electrode active material, and reinforcing fibers.
The negative electrode plate is housed in a bag-shaped separator. Then, by alternately stacking the bag-shaped separator containing the negative electrode plate and the positive electrode plate, the separator is arranged between the positive electrode plate and the negative electrode plate. The positive electrode plate may be stored in the bag-shaped separator and alternately stacked with the negative electrode plate.

また、各極板群は、積層体の正極板および負極板をそれぞれ幅方向の別の位置で連結する正極ストラップおよび負極ストラップと、正極ストラップおよび負極ストラップからそれぞれ立ち上がる正極中間極柱および負極中間極柱を有する。正極ストラップおよび負極ストラップは、正極板および負極板の耳部をそれぞれ連結している。セル配列方向の両端のセル室に配置された正極ストラップおよび負極ストラップには、それぞれ小片部を介して外部端子となる正極極柱および負極極柱が形成されている。 Further, each electrode plate group includes a positive electrode strap and a negative electrode strap that connect the positive electrode plate and the negative electrode plate of the laminated body at different positions in the width direction, and a positive electrode intermediate pole column and a negative electrode intermediate pole that rise from the positive electrode strap and the negative electrode strap, respectively. Has columns. The positive electrode strap and the negative electrode strap connect the ears of the positive electrode plate and the negative electrode plate, respectively. The positive electrode strap and the negative electrode strap arranged in the cell chambers at both ends in the cell arrangement direction are formed with positive electrode pole columns and negative electrode pole columns serving as external terminals, respectively, via small pieces.

[製法]
実施形態の鉛蓄電池は、例えば以下の方法で製造することができる。正極板の製造方法以外は、従来公知の方法が採用できる。
先ず、化成前の正極板を作製する際に用いる混練物として、鉛粉、平均粒径5μm以下の四塩基性硫酸鉛、硫酸、酸化ビスマス、および水を含む混練物を作製する。酸化ビスマスの添加量は、鉛粉100質量部に対して0.03質量部以上0.10質量部以下の割合とする。
[Manufacturing method]
The lead-acid battery of the embodiment can be manufactured by, for example, the following method. A conventionally known method can be adopted other than the method for manufacturing the positive electrode plate.
First, as a kneaded product used when producing a positive electrode plate before chemical conversion, a kneaded product containing lead powder, tetrabasic lead sulfate having an average particle size of 5 μm or less, sulfuric acid, bismuth oxide, and water is produced. The amount of bismuth oxide added is 0.03 parts by mass or more and 0.10 parts by mass or less with respect to 100 parts by mass of lead powder.

次に、作製された混練物を集電体の格子状基板に充填した後に温度50℃以上65℃以下、湿度90%以上98%以下で熟成した後、乾燥する。これにより、化成前の正極合剤中の四塩基性硫酸鉛の含有率を20%以上70%未満とする。なお、化成前の正極合剤中の四塩基性硫酸鉛の含有率が20%以上70%未満となるように、温度50℃以上65℃以下の範囲内で選択される熟成温度に応じて、混練物を作製する際の硫酸および四塩基性硫酸鉛の添加量を調整する。
以上が、化成前の正極板を得る工程である。
Next, the produced kneaded product is filled in a grid-like substrate of a current collector, aged at a temperature of 50 ° C. or higher and 65 ° C. or lower, and a humidity of 90% or higher and 98% or lower, and then dried. As a result, the content of tetrabasic lead sulfate in the positive electrode mixture before chemical conversion is set to 20% or more and less than 70%. In addition, depending on the aging temperature selected within the range of 50 ° C. or higher and 65 ° C. or lower so that the content of lead tetrabasic sulfate in the positive electrode mixture before chemical conversion is 20% or more and less than 70%. Adjust the amount of sulfuric acid and lead tetrabasic sulfate added when preparing the kneaded product.
The above is the process of obtaining the positive electrode plate before chemical conversion.

次に、得られた化成前の正極板と、通常の方法で作製された化成前の負極板と、セパレータと、を用いて、化成前の積層体を作製する。
次に、化成前の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、正極板の耳部同士を接続した正極ストラップおよび負極板の耳部同士を接続した負極ストラップを形成するとともに、正極中間極柱、負極中間極柱、正極極柱および負極極柱を形成する。それらを形成した後、前記積層体を電槽の各セル室に配置する。
Next, a laminate before chemical conversion is produced by using the obtained positive electrode plate before chemical conversion, the negative electrode plate before chemical conversion produced by a usual method, and a separator.
Next, a COS (cast-on-strap) casting device was used to form the pre-chemical laminate to form a positive electrode strap connecting the ears of the positive electrode plates and a negative electrode strap connecting the ears of the negative electrode plates. A positive electrode intermediate pole column, a negative electrode intermediate pole column, a positive electrode pole column, and a negative electrode pole column are formed. After forming them, the laminate is placed in each cell chamber of the battery case.

次に、隣接するセル室の正極中間極柱同士または負極中間極柱同士を抵抗溶接することで、隣接するセル間を電気的に直列に接続する。次に、電槽の上面と蓋の下面とを熱で溶かして蓋を電槽に載せ、熱溶着により電槽に蓋を固定する。なお、蓋を電槽に載せる際に、正極極柱および負極極柱を蓋にインサート成型されたブッシングの貫通穴に通す。その後、ブッシングの貫通孔からそれぞれ突出した状態の正極極柱および負極極柱をバーナー等で加熱しブッシングと一体化させることで、正極端子および負極端子を形成する。 Next, by resistance welding the positive electrode intermediate pole columns or the negative electrode intermediate pole columns of the adjacent cell chambers, the adjacent cells are electrically connected in series. Next, the upper surface of the electric tank and the lower surface of the lid are melted by heat, the lid is placed on the electric tank, and the lid is fixed to the electric tank by heat welding. When the lid is placed on the battery case, the positive electrode pole and the negative electrode pole are passed through the through holes of the bushing insert-molded in the lid. After that, the positive electrode pole and the negative electrode pole pillar in a state of protruding from the through hole of the bushing are heated by a burner or the like and integrated with the bushing to form the positive electrode terminal and the negative electrode terminal.

その後、蓋を貫通する穴として設けた注液孔からセル室内に、アルミ二ウムイオンを20mmol/L以上200mmol/L以下の濃度で含有する電解液(硫酸に硫酸アルミニウムが添加された電解液)を注入した後、注液孔を塞ぐことなどの通常の工程を行うことにより、鉛蓄電池の組み立てを完成させる。その後、通常の条件で電槽化成を行うことで鉛蓄電池が得られる。
この電槽化成により、集電体に保持された状態の鉛粉が正極活物質に変化し、正極合剤のメジアン細孔径が0.75μm以上0.95μm以下、正極合剤の密度が3.90g/cm3以上4.30g/cm3以下、正極合剤を構成する正極活物質に含まれるβ−PbO2の質量に対するα−PbO2の質量の比(α/β)が0.13以上0.25以下となる。
After that, an electrolytic solution containing aluminum ions at a concentration of 20 mmol / L or more and 200 mmol / L or less (an electrolytic solution in which aluminum sulfate is added to sulfuric acid) is placed in the cell chamber through a liquid injection hole provided as a hole penetrating the lid. After the injection, the lead-acid battery assembly is completed by performing a normal process such as closing the injection hole. After that, a lead storage battery can be obtained by carrying out the chemical conversion of the electric tank under normal conditions.
By this battery formation, the lead powder held in the current collector is changed to the positive electrode active material, the median pore diameter of the positive electrode mixture is 0.75 μm or more and 0.95 μm or less, and the density of the positive electrode mixture is 3. 90 g / cm 3 or more 4.30 g / cm 3 or less, the ratio of the mass of alpha-PbO 2 to the mass of beta-PbO 2 contained in the positive electrode active material constituting the positive electrode mixture (alpha / beta) is 0.13 or more It will be 0.25 or less.

[作用、効果]
正極合剤のメジアン細孔径が大きく、密度が高いほど、正極活物質同士あるいは正極活物質と格子状基板との密着性が向上するため、正極板の耐久性は向上するが、活物質の利用効率は低下する。正極合剤のメジアン細孔径が小さく、密度が低いほど、活物質の利用効率は向上するが、正極活物質同士あるいは正極活物質と格子状基板との密着性が低下するため、正極板の耐久性は低下する。
また、電気化学的に不活性なα−PbO2が多いほど、耐久性(寿命性能)の点で有利になるが、活物質の利用効率の点では不利になる。電気化学的に活性なβ−PbO2が多いほど、活物質の利用効率の点で有利になるが、耐久性(寿命性能)の点では不利になる。
[Action, effect]
The larger the median pore diameter and the higher the density of the positive electrode mixture, the better the adhesion between the positive electrode active materials or between the positive electrode active material and the grid-like substrate, so that the durability of the positive electrode plate is improved, but the use of the active material Efficiency is reduced. The smaller the median pore diameter and the lower the density of the positive electrode mixture, the higher the utilization efficiency of the active material, but the lower the adhesion between the positive electrode active materials or between the positive electrode active material and the grid-like substrate, so that the durability of the positive electrode plate is reduced. Sex is reduced.
Further, the more the electrochemically inert α-PbO 2 is, the more advantageous it is in terms of durability (life performance), but it is disadvantageous in terms of the utilization efficiency of the active material. The greater the amount of electrochemically active β-PbO 2 , the more advantageous it is in terms of utilization efficiency of the active material, but it is disadvantageous in terms of durability (life performance).

本実施形態の正極板は、正極合剤のメジアン細孔径が0.75μm以上0.95μm以下であり、正極合剤の密度が3.90g/cm3以上4.30g/cm3以下であり、正極合剤を構成する正極活物質に含まれるβ−PbO2の質量に対するα−PbO2の質量の比(α/β)が0.13以上0.25以下であることで、良好な耐久性を保持しながら活物質の利用率が高くなる。
また、本実施形態の方法では、化成前の正極合剤を得る工程として、鉛粉、平均粒径5μm以下の四塩基性硫酸鉛、硫酸、および水を含む混練物を、格子状基板に充填した後、格子状基板に充填された混練物を温度50℃以上65℃以下で熟成した後乾燥することにより、化成前の正極合剤中の四塩基性硫酸鉛の含有率を20%以上70%未満とする工程を行った後に、化成を行う。これにより、本実施形態の正極板を得ることができる。
Positive electrode plate of this embodiment, the median pore diameter of the positive electrode mixture is not more than 0.95μm than 0.75 .mu.m, the density of the positive electrode mixture is not more than 3.90 g / cm 3 or more 4.30 g / cm 3, Good durability when the ratio (α / β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material constituting the positive electrode mixture is 0.13 or more and 0.25 or less. The utilization rate of the active material increases while retaining the above.
Further, in the method of the present embodiment, as a step of obtaining a positive electrode mixture before chemical conversion, a kneaded product containing lead powder, tetrabasic lead sulfate having an average particle size of 5 μm or less, sulfuric acid, and water is filled in a grid-like substrate. Then, the kneaded product filled in the lattice-shaped substrate is aged at a temperature of 50 ° C. or higher and 65 ° C. or lower, and then dried to increase the content of lead tetrabasic sulfate in the positive electrode mixture before chemical conversion by 20% or more and 70. After performing the step of making it less than%, chemical conversion is performed. Thereby, the positive electrode plate of this embodiment can be obtained.

本実施形態の方法では、上記工程を行った後に化成を行うことにより、四塩基性硫酸鉛が柱状結晶を維持したまま二酸化鉛に変換されるため、頑強な活物質構造が得られる。これにより、正極活物質は充放電に伴う体積膨張の影響を受けにくくなる。
なお、添加する四塩基性硫酸鉛の平均粒径が5μmを超える場合、熟成過程において四塩基性硫酸鉛の粒子が必要以上に粗大化するため、電解液と活物質の反応比表面積が小さくなって活物質の利用率が低下する。また、熟成温度が50℃未満の場合、四塩基性硫酸鉛の生成が進まないため、四塩基性硫酸鉛の添加効果が得られない。
さらに、正極合剤の比表面積が大きいほど活物質と電解液間の接触面積が多くなるため活物質の利用率は高くなる傾向を示す。しかし、比表面積が大きすぎると耐久性が低いものとなる。活物質の利用率が高いことと耐久性が高いことの両立のためには、正極合剤の比表面積を5.5〜6.0m/gの範囲にすることが好ましい。
In the method of the present embodiment, by performing the chemical conversion after performing the above steps, the tetrabasic lead sulfate is converted to lead dioxide while maintaining the columnar crystals, so that a robust active material structure can be obtained. As a result, the positive electrode active material is less susceptible to volume expansion due to charging and discharging.
If the average particle size of the added tetrabasic lead sulfate exceeds 5 μm, the particles of the tetrabasic lead sulfate become coarser than necessary during the aging process, so that the reaction specific surface area of the electrolytic solution and the active material becomes small. As a result, the utilization rate of active materials decreases. Further, when the aging temperature is less than 50 ° C., the production of tetrabasic lead sulfate does not proceed, so that the effect of adding tetrabasic lead sulfate cannot be obtained.
Further, the larger the specific surface area of the positive electrode mixture, the larger the contact area between the active material and the electrolytic solution, so that the utilization rate of the active material tends to increase. However, if the specific surface area is too large, the durability will be low. In order to achieve both high utilization rate of the active material and high durability, it is preferable that the specific surface area of the positive electrode mixture is in the range of 5.5 to 6.0 m 2 / g.

[試験電池の作製]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1〜No.10の鉛蓄電池を、実施形態に記載された従来公知の方法で作製した。具体的には、定格容量が32AhのBサイズの鉛蓄電池であって、動作電圧が12Vの鉛蓄電池を作製した。
[Preparation of test battery]
As a lead-acid battery having the same structure as the lead-acid battery of the embodiment, the lead-acid batteries of Samples No. 1 to No. 10 were produced by a conventionally known method described in the embodiment. Specifically, a lead-acid battery of B size having a rated capacity of 32 Ah and an operating voltage of 12 V was produced.

[正極板(化成前)の作製]
<No.1>
先ず、蓄電池用の鉛粉(粒径が数μm〜30数μmである鉛と酸化鉛との混合粉末で、質量比での混合比が鉛:酸化鉛=約25:75)2000gに、水370g、比重1.37の硫酸172g、酸化ビスマス1g、平均粒径5μm以下の四塩基性硫酸鉛(4BS)を20g加えて混練することで、正極合剤形成用ペースト(混練物)を得た。
次に、このペーストを、Pb−Sn系の鉛合金から成る鉛合金から成るBサイズ電池用集電体の格子状基板に充填したものを、温度50℃且つ湿度95%以上の環境下に48時間放置することで熟成し、その後60℃で24時間乾燥を行った。これにより、化成前の正極板を得た。
得られた化成前の正極板が有する正極合剤(以下、「正極未化成物質」と称する)に含まれる四塩基性硫酸鉛の含有率を、粉末X線回折測定により調べた。具体的には、得られた化成前の正極板から正極未化成物質を粉末状に掻き落とし、掻き落とされた正極未化成物質の粉末をX線回折装置にセットして、X線回折チャートを得、各物質の回折線の強度比から正極未化成物質中の四塩基性硫酸鉛の含有率を算出した。その結果、23.9%であった。
[Preparation of positive electrode plate (before chemical conversion)]
<No.1>
First, 2000 g of lead powder for storage batteries (a mixed powder of lead and lead oxide having a particle size of several μm to 30 μm, and the mixing ratio by mass ratio is lead: lead oxide = about 25:75) is added to water. A paste for forming a positive electrode mixture (kneaded product) was obtained by adding 370 g, 172 g of sulfuric acid having a specific gravity of 1.37, 1 g of bismuth oxide, and 20 g of lead tetrabasic lead sulfate (4BS) having an average particle size of 5 μm or less and kneading. ..
Next, this paste was filled in a grid-like substrate of a current collector for a B size battery made of a lead alloy made of a Pb—Sn-based lead alloy, and the paste was filled in an environment of a temperature of 50 ° C. and a humidity of 95% or more 48. It was aged by leaving it for a while, and then dried at 60 ° C. for 24 hours. As a result, a positive electrode plate before chemical conversion was obtained.
The content of lead tetrabasic sulfate contained in the positive electrode mixture (hereinafter referred to as "positive electrode unchemicald substance") contained in the obtained positive electrode plate before chemical conversion was examined by powder X-ray diffraction measurement. Specifically, the positive electrode unchemical substance is scraped off from the obtained positive electrode plate before chemical conversion into a powder, and the scraped positive electrode unchemical substance powder is set in an X-ray diffractometer to display an X-ray diffraction chart. The content of tetrabasic lead sulfate in the positive electrode unchemicald substance was calculated from the intensity ratio of the diffraction lines of each substance. As a result, it was 23.9%.

<No.2>
正極合剤形成用ペーストを得る際の平均粒径5μm以下の四塩基性硫酸鉛(4BS)の添加量を15g、水の添加量を350gとした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、20.0%であった。
<No.3>
正極合剤形成用ペーストを得る際の平均粒径5μm以下の四塩基性硫酸鉛(4BS)の添加量を10gとした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、16.0%であった。
<No.2>
Before chemical formation, the same method as No. 1 was used except that the amount of lead tetrabasic sulfate (4BS) with an average particle size of 5 μm or less was 15 g and the amount of water added was 350 g when obtaining the paste for forming a positive electrode mixture. A positive electrode plate was obtained. The content of tetrabasic lead sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 20.0%.
<No.3>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the amount of tetrabasic lead sulfate (4BS) having an average particle size of 5 μm or less was 10 g when obtaining a paste for forming a positive electrode mixture. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 16.0%.

<No.4>
正極合剤形成用ペーストを得る際の水の添加量を420gとした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、19.0%であった。
<No.5>
熟成の際の温度を60℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、67.0%であった。
<No.4>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the amount of water added when obtaining the paste for forming a positive electrode mixture was 420 g. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 19.0%.
<No.5>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the temperature at the time of aging was set to 60 ° C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 67.0%.

<No.6>
熟成の際の温度を65℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、68.6%であった。
<No.7>
熟成の際の温度を70℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、70.4%であった。
<No.6>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the temperature at the time of aging was set to 65 ° C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 68.6%.
<No.7>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the temperature at the time of aging was set to 70 ° C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 70.4%.

<No.8>
正極合剤形成用ペーストを得る際の水の添加量を350g、熟成の際の温度を40℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、3.9%であった。
<No.9>
熟成の際の温度を45℃とした以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、16.4%であった。
<No.8>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the amount of water added when obtaining the paste for forming a positive electrode mixture was 350 g and the temperature during aging was 40 ° C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 3.9%.
<No.9>
A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that the temperature at the time of aging was set to 45 ° C. The content of tetrabasic lead sulfate contained in the positive electrode mixture contained in the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1 and found to be 16.4%.

<No.10>
正極合剤形成用ペーストを得る際の水の添加量を350g、熟成の際の温度を40℃とするとともに、正極合剤形成用ペーストを得る際に平均粒径5μm以下の四塩基性硫酸鉛(4BS)を加えなかった以外は、No.1と同じ方法で化成前の正極板を得た。得られた化成前の正極板が有する正極合剤に含まれる四塩基性硫酸鉛の含有率を、No.1と同じ方法で調べたところ、3%未満と測定誤差の範囲内であったため、四塩基性硫酸鉛が実質的に存在しないことを確認できた。
<No.10>
The amount of water added when obtaining the positive electrode mixture forming paste is 350 g, the temperature during aging is 40 ° C., and when obtaining the positive electrode mixture forming paste, tetrabasic lead sulfate having an average particle size of 5 μm or less is obtained. A positive electrode plate before chemical conversion was obtained by the same method as No. 1 except that (4BS) was not added. When the content of lead tetrabasic sulfate contained in the positive electrode mixture of the obtained positive electrode plate before chemical conversion was examined by the same method as No. 1, it was less than 3%, which was within the measurement error range. It was confirmed that tetrabasic lead sulfate was substantially absent.

[負極板(化成前)の作製]
正極合剤形成用ペーストの作製で使用したものと同じ蓄電池用の鉛粉2000gに、水400g、ポリエステル繊維(補強用繊維)1.8g、硫酸バリウム20g、導電性カーボン4g、リグニン4gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を228g加えて混練することで、負極合剤形成用ペースト(混練物)を得た。
このペーストを、Pb−Ca系の鉛合金から成るBサイズ電池用集電体の格子状基板に充填した後、通常の条件による熟成乾燥工程を行い、化成前の負極板を得た。
[Manufacturing of negative electrode plate (before chemical conversion)]
400 g of water, 1.8 g of polyester fiber (reinforcing fiber), 20 g of barium sulfate, 4 g of conductive carbon, and 4 g of lignin were added to 2000 g of lead powder for a storage battery, which was the same as that used for producing the paste for forming a positive electrode mixture. It was added and mixed. To the mixture thus obtained, 228 g of an aqueous sulfuric acid solution having a specific gravity D of 1.37 at 20 ° C. was added and kneaded to obtain a paste for forming a negative electrode mixture (kneaded product).
This paste was filled in a grid-like substrate of a current collector for a B size battery made of a Pb—Ca-based lead alloy, and then aged and dried under normal conditions to obtain a negative electrode plate before chemical conversion.

[鉛蓄電池の組み立て]
先ず、No.1〜No.10の各鉛蓄電池用の極板群を作製するために、上述方法で作製したNo.1〜No.10の化成前の正極板を各36枚と、上述方法で作製した化成前の負極板を420(10×42)枚と、化成前の負極板と同じ数の袋状セパレータを用意した。
次に、化成前の負極板を袋状セパレータ内に収納し、この化成前の負極板入りセパレータ7枚と化成前の正極板6枚を交互に積層することで、化成前の正極板を6枚、化成前の負極板を7枚有する積層体を、サンプルNo.1〜10で六個ずつ得た。
[Assembly of lead-acid battery]
First, in order to prepare a group of electrode plates for each lead storage battery of No. 1 to No. 10, 36 positive electrode plates of No. 1 to No. 10 before chemical formation produced by the above method were used, and the above method was used. 420 (10 × 42) negative electrode plates before chemical conversion and the same number of bag-shaped separators as the negative electrode plates before chemical conversion were prepared.
Next, the negative electrode plate before chemical conversion is housed in a bag-shaped separator, and 7 separators containing the negative electrode plate before chemical conversion and 6 positive electrode plates before chemical conversion are alternately laminated to form 6 positive electrode plates before chemical conversion. Six laminated bodies having seven negative electrode plates before chemical conversion were obtained in Sample Nos. 1 to 10.

次に、サンプルNo.毎に、得られた六個の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、キャビティ内に溶融金属(鉛合金)を供給するとともに、耳部を下側に向けた状態で積層体の耳部を挿入することで、先ず、各耳部同士を接続する正極ストラップおよび負極ストラップを形成した。続いて、配列方向両端のセル室に配置された負極ストラップおよび正極ストラップには小片と極柱を形成し、それ以外の各正極ストラップおよび負極ストラップには、それぞれ正極中間極柱および負極中間極柱を形成した。次に、それらを、「SBA(電池工業会規格) S 0101」の外形区分Mのポリプロピレン製のモノブロックタイプの電槽の六個のセル室に、それぞれ配置した。 Next, for each sample No., the obtained six laminates were used with a COS (cast-on-strap) casting device to supply molten metal (lead alloy) into the cavity, and the ears were placed on the lower side. By inserting the selvages of the laminated body in a state of facing toward, first, a positive electrode strap and a negative electrode strap for connecting the selvages were formed. Subsequently, small pieces and pole columns are formed on the negative electrode straps and the positive electrode straps arranged in the cell chambers at both ends in the arrangement direction, and the positive electrode intermediate pole columns and the negative electrode intermediate pole columns are formed on the other positive electrode straps and the negative electrode straps, respectively. Was formed. Next, they were placed in each of the six cell chambers of a polypropylene monoblock type battery case of the outer shape classification M of "SBA (Battery Industry Association Standard) S 0101".

次に、電槽のセル室同士を仕切る隔壁を挟んで対向する正極中間極柱および負極中間極柱を、隔壁に設けた貫通孔の部分で抵抗溶接することにより接続した。この状態では、電槽の各セル内に化成前の極板群が配置されている。
この状態の電槽と蓋を、実施形態に記載された方法で熱溶着することで、No.1〜No.10の化成前の鉛蓄電池を得た。
次に、硫酸アルミニウムが20g/L添加された希硫酸電解液(アルミイオン濃度は117mmol/L)を、No.1〜No.10の化成前の鉛蓄電池の蓋の注液孔から、電槽の各セル室内へ注入した。その後、通常の条件で電槽化成を行って、No.1〜No.10の鉛蓄電池を得た。
Next, the positive electrode intermediate pole pillar and the negative electrode intermediate pole pillar facing each other with the partition wall partitioning the cell chambers of the battery case from each other were connected by resistance welding at the portion of the through hole provided in the partition wall. In this state, a group of electrode plates before chemical conversion is arranged in each cell of the battery case.
The pre-chemical lead-acid batteries No. 1 to No. 10 were obtained by heat-welding the battery case and lid in this state by the method described in the embodiment.
Next, a dilute sulfuric acid electrolytic solution (aluminum ion concentration: 117 mmol / L) to which 20 g / L of aluminum sulfate was added was applied to the electric tank from the injection holes of the lids of the lead storage batteries of No. 1 to No. 10 before chemical conversion. Was injected into each cell chamber of. Then, the electric tank was chemicalally formed under normal conditions to obtain No. 1 to No. 10 lead-acid batteries.

[メジアン細孔径、密度、及び比(α/β)の測定]
No.1〜No.10の鉛蓄電池の正極板について、以下の方法で正極合剤のメジアン細孔径、密度、及び比(α/β)を測定した。
電槽化成後の各鉛蓄電池から正極板を取り出して、水で洗って乾燥させた後、正極板から固形状の正極合剤を採取した。得られた固形状の正極合剤を水銀圧入式ポロシメーター(島津製作所、オートポアIV9520)にセットして、正極合剤のメジアン細孔径および密度を水銀圧入法により測定した。
また、得られた固形状の正極合剤を乳鉢等により粉砕し、得られた粉末をX線回折装置(Rigaku、RINT−Ultima+)にセットして、X線回折チャートを得、β−PbO2の回折線とα−PbO2の回折線との強度比から、比(α/β)を算出した。
[Measurement of median pore size, density, and ratio (α / β)]
The median pore diameter, density, and ratio (α / β) of the positive electrode mixture were measured for the positive electrode plates of the lead-acid batteries No. 1 to No. 10 by the following methods.
The positive electrode plate was taken out from each lead-acid battery after the conversion of the battery case, washed with water and dried, and then a solid positive electrode mixture was collected from the positive electrode plate. The obtained solid positive electrode mixture was set in a mercury injection type porosimeter (Shimadzu Corporation, Autopore IV9520), and the median pore diameter and density of the positive electrode mixture were measured by the mercury injection method.
Further, the obtained solid positive electrode mixture was pulverized with a mortar or the like, and the obtained powder was set in an X-ray diffractometer (Rigaku, RINT-Ultima +) to obtain an X-ray diffraction chart, and β-PbO 2 The ratio (α / β) was calculated from the intensity ratio of the diffraction line of No. 1 and the diffraction line of α-PbO 2.

[活物質利用率を調べる試験:放電試験]
No.1〜No.10の鉛蓄電池の正極板の活物質利用率を、以下の方法で調べた。
JIS D 5301に則り、各鉛蓄電池を25℃の水槽内に設置し、5時間率電流で、終止電圧が10.5Vに到達するまで定電流放電した。この10.5Vに到達した時の放電容量を各鉛蓄電池の理論容量で除算し、得られた値を各鉛蓄電池の正極板の活物質利用率(%)とした。
[Test to check active material utilization rate: Discharge test]
The active material utilization rate of the positive electrode plate of the lead-acid batteries of No. 1 to No. 10 was investigated by the following method.
According to JIS D 5301, each lead-acid battery was installed in a water tank at 25 ° C. and discharged at a constant current with a 5-hour rate current until the final voltage reached 10.5 V. The discharge capacity when the voltage reached 10.5 V was divided by the theoretical capacity of each lead-acid battery, and the obtained value was taken as the active material utilization rate (%) of the positive electrode plate of each lead-acid battery.

[寿命性能を調べる試験:寿命試験]
No.1〜No.10の鉛蓄電池の容量維持率を、以下の方法で調べた。
JIS D 5301 9.5 (b)に記載の重負荷寿命試験に準拠し、満充電の鉛蓄電池に対し、周囲温度40℃の環境で放電深度40%まで1時間で放電した後、10時間率電流で放電容量の125%充電するサイクルを24サイクル繰り返した。25サイクル目の放電は判定放電として、終止電圧である10.2Vに達するまで放電し、その後10時間率電流で放電容量の140%充電をした。25サイクル経過後、鉛蓄電池を取り出し、25サイクルで減水した分の電解液を補水した。この充放電サイクル試験を、25サイクル目の放電時の容量が各鉛蓄電池の5時間率容量の50%未満となるまでした。そして、No.10の鉛蓄電池(従来品)のサイクル数をNo.1〜No.9の鉛蓄電池のサイクル数で除算し、得られた値をサイクル数の相対値として比較した。
[Test to check life performance: Life test]
The capacity retention rates of the lead-acid batteries No. 1 to No. 10 were investigated by the following methods.
In accordance with the heavy load life test described in JIS D 5301 9.5 (b), a fully charged lead-acid battery is discharged to a discharge depth of 40% in an environment of an ambient temperature of 40 ° C in 1 hour, and then the rate is 10 hours. The cycle of charging 125% of the discharge capacity with an electric current was repeated for 24 cycles. The discharge in the 25th cycle was used as a judgment discharge, and was discharged until the final voltage of 10.2 V was reached, and then 140% of the discharge capacity was charged with a 10-hour rate current. After 25 cycles, the lead-acid battery was taken out and the electrolytic solution reduced in 25 cycles was replenished. This charge / discharge cycle test was performed until the capacity at the time of discharge at the 25th cycle became less than 50% of the 5-hour rate capacity of each lead-acid battery. Then, the number of cycles of the No. 10 lead-acid battery (conventional product) was divided by the number of cycles of the No. 1 to No. 9 lead-acid batteries, and the obtained value was compared as a relative value of the number of cycles.

これらの測定、試験結果を、各サンプルの化成前の正極合剤の製造方法、化成前の正極合剤中の四塩基性硫酸鉛の含有率、および正極合剤の構成とともに、下記の表1に示す。サイクル数は、No.10の鉛蓄電池(従来品)を100とした相対値を示す。 These measurements and test results are shown in Table 1 below, along with the method for producing the positive electrode mixture before chemical conversion, the content of lead tetrabasic lead sulfate in the positive electrode mixture before chemical conversion, and the composition of the positive electrode mixture. Shown in. The number of cycles shows a relative value with the No. 10 lead-acid battery (conventional product) as 100.

Figure 2021086731
Figure 2021086731

表1に示すように、本発明の実施例に相当するNo.1、No.2、No.5、No.6の鉛蓄電池は、容量維持率がNo.10の鉛蓄電池の95%以上であって、活物質利用率が53.8%以上と高かった。つまり、本発明の実施例に相当するNo.1、No.2、No.5、No.6の鉛蓄電池では、従来品と同等のサイクル数(寿命性能)を維持しつつ、活物質の利用率を高くできることが分かる。 As shown in Table 1, the lead-acid batteries of No. 1, No. 2, No. 5, and No. 6 corresponding to the examples of the present invention have a capacity retention rate of 95% or more of that of the lead-acid battery of No. 10. Therefore, the active material utilization rate was as high as 53.8% or more. That is, in the No. 1, No. 2, No. 5, and No. 6 lead-acid batteries corresponding to the examples of the present invention, the active material is used while maintaining the same number of cycles (life performance) as the conventional product. It turns out that the rate can be increased.

Claims (2)

セル室と、前記セル室に電解液と共に収納された極板群と、を備え、前記極板群は、交互に配置された負極板および正極板と、前記負極板と前記正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池の前記正極板であって、
鉛合金からなる集電体と、前記集電体の格子状基板に保持された正極合剤とからなり、
前記正極合剤のメジアン細孔径が0.75μm以上0.95μm以下であり、前記正極合剤の密度が3.90g/cm3以上4.30g/cm3以下であり、前記正極合剤を構成する正極活物質に含まれるβ−PbO2の質量に対するα−PbO2の質量の比(α/β)が0.13以上0.25以下である鉛蓄電池用正極板。
A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is between the negative electrode plates and the positive electrode plates arranged alternately, and between the negative electrode plate and the positive electrode plate. The positive electrode plate of a lead-acid battery having a laminate composed of a separator arranged in
It consists of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector.
The median pore size of the positive electrode mixture is not more than 0.95μm than 0.75 .mu.m, the density of the positive electrode mixture is at 3.90 g / cm 3 or more 4.30 g / cm 3 or less, forming the positive electrode mixture A positive electrode plate for a lead storage battery in which the ratio (α / β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material is 0.13 or more and 0.25 or less.
セル室と、前記セル室に電解液と共に収納された極板群と、を備え、前記極板群は、交互に配置された負極板および正極板と、前記負極板と前記正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池であって、
前記正極板は、鉛合金からなる集電体と、前記集電体の格子状基板に保持された正極合剤とからなり、
前記正極合剤のメジアン細孔径が0.75μm以上0.95μm以下であり、前記正極合剤の密度が3.90g/cm3以上4.30g/cm3以下であり、前記正極合剤を構成する正極活物質に含まれるβ−PbO2の質量に対するα−PbO2の質量の比(α/β)が0.13以上0.25以下である鉛蓄電池。
A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is between the negative electrode plates and the positive electrode plates arranged alternately, and between the negative electrode plate and the positive electrode plate. A lead-acid battery having a laminate composed of a separator arranged in
The positive electrode plate is composed of a current collector made of a lead alloy and a positive electrode mixture held on a grid-like substrate of the current collector.
The median pore size of the positive electrode mixture is not more than 0.95μm than 0.75 .mu.m, the density of the positive electrode mixture is at 3.90 g / cm 3 or more 4.30 g / cm 3 or less, forming the positive electrode mixture A lead-acid battery in which the ratio (α / β) of the mass of α-PbO 2 to the mass of β-PbO 2 contained in the positive electrode active material is 0.13 or more and 0.25 or less.
JP2019214711A 2019-11-27 2019-11-27 Positive plate for lead-acid battery, lead-acid battery Active JP7328129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019214711A JP7328129B2 (en) 2019-11-27 2019-11-27 Positive plate for lead-acid battery, lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019214711A JP7328129B2 (en) 2019-11-27 2019-11-27 Positive plate for lead-acid battery, lead-acid battery

Publications (2)

Publication Number Publication Date
JP2021086731A true JP2021086731A (en) 2021-06-03
JP7328129B2 JP7328129B2 (en) 2023-08-16

Family

ID=76088078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019214711A Active JP7328129B2 (en) 2019-11-27 2019-11-27 Positive plate for lead-acid battery, lead-acid battery

Country Status (1)

Country Link
JP (1) JP7328129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086732A (en) * 2019-11-27 2021-06-03 古河電池株式会社 Positive electrode plate for lead acid battery, and lead acid battery
CN113394408A (en) * 2021-06-17 2021-09-14 昆明高聚科技有限公司 Long-life light composite positive grid and preparation method thereof, and positive electrode plate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025955A (en) * 2003-06-30 2005-01-27 Furukawa Battery Co Ltd:The Lead acid battery and its manufacturing method
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP2013211205A (en) * 2012-03-30 2013-10-10 Furukawa Battery Co Ltd:The Negative electrode plate for lead-acid storage battery, manufacturing method therefor and lead-acid storage battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030696A (en) 1998-07-09 2000-01-28 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
WO2018105066A1 (en) 2016-12-07 2018-06-14 日立化成株式会社 Liquid type lead storage battery and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025955A (en) * 2003-06-30 2005-01-27 Furukawa Battery Co Ltd:The Lead acid battery and its manufacturing method
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP2013211205A (en) * 2012-03-30 2013-10-10 Furukawa Battery Co Ltd:The Negative electrode plate for lead-acid storage battery, manufacturing method therefor and lead-acid storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086732A (en) * 2019-11-27 2021-06-03 古河電池株式会社 Positive electrode plate for lead acid battery, and lead acid battery
JP7287884B2 (en) 2019-11-27 2023-06-06 古河電池株式会社 Positive plate for lead-acid battery, lead-acid battery
CN113394408A (en) * 2021-06-17 2021-09-14 昆明高聚科技有限公司 Long-life light composite positive grid and preparation method thereof, and positive electrode plate and preparation method thereof

Also Published As

Publication number Publication date
JP7328129B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
EP2544292A1 (en) Lead storage battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
WO2005107004A1 (en) Lead acid battery
JP5138391B2 (en) Control valve type lead acid battery
JPWO2018229875A1 (en) Liquid lead storage battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP5720947B2 (en) Lead acid battery
TWI285972B (en) Valve regulated lead acid battery
JP2020167079A (en) Lead-acid battery
CN109075346B (en) Lead storage battery, cast grid and manufacturing method thereof
JP2021086729A (en) Method for manufacturing positive electrode plate for lead acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP7060858B2 (en) Judgment method of liquid reduction performance of lead-acid battery, and lead-acid battery and its charging method
JP2021086730A (en) Method for manufacturing positive electrode plate for lead acid battery
JP7026715B2 (en) Kneaded material for positive electrode mixture of lead-acid batteries, manufacturing method of lead-acid batteries, lead-acid batteries
JP6730406B2 (en) Lead acid battery
WO2019116704A1 (en) Control valve type lead acid storage battery
JP7212649B2 (en) Lead-acid battery and manufacturing method thereof
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2021111445A (en) Lead-acid battery
JP6982593B2 (en) Lead-acid battery
JP7128484B2 (en) liquid lead acid battery
JP6677436B1 (en) Lead storage battery
CN109643804B (en) Lead storage battery, cast grid and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150