JP2006169051A - Dielectric ceramic composition, ceramic capacitor and method of manufacturing them - Google Patents

Dielectric ceramic composition, ceramic capacitor and method of manufacturing them Download PDF

Info

Publication number
JP2006169051A
JP2006169051A JP2004364691A JP2004364691A JP2006169051A JP 2006169051 A JP2006169051 A JP 2006169051A JP 2004364691 A JP2004364691 A JP 2004364691A JP 2004364691 A JP2004364691 A JP 2004364691A JP 2006169051 A JP2006169051 A JP 2006169051A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
dielectric ceramic
oxide
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004364691A
Other languages
Japanese (ja)
Inventor
Takashi Maki
貴史 真木
Kotaro Hatake
宏太郎 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to JP2004364691A priority Critical patent/JP2006169051A/en
Publication of JP2006169051A publication Critical patent/JP2006169051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition capable of being fired at a low temperature of ≤1,200°C in a reducing atmosphere, having specific dielectric constant of ≥2,400, satisfying X5R characteristic and having long accelerated test life and a ceramic capacitor. <P>SOLUTION: The dielectric ceramic composition is a sintered compact comprising the oxides of Ba, Ca and Ti as a main component and the oxides of Cr, Mg and Mn as an assistant component. The main component is a compound expressed by a composition formula of (Ba<SB>1-x</SB>Ca<SB>x</SB>)TiO<SB>3</SB>(where (x) is 0.005-0.10 and a (Ba<SB>1-x</SB>Ca<SB>x</SB>)/Ti is 1.003-1.030). As the assistant component, 0.03-1.5 pts.mol Cr oxide expressed in terms of Cr, 0.1-3.0 pts.mol Mg oxide expressed in terms of Mg and 0.01-1.0 pts.mol Mn oxide expressed in terms of Mn are contained per 100 pts.mol compound and further 0.2-1.2 pts.wt. sintering assistant is contained per 100 pts.wt. compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁器コンデンサの誘電体材料として好適な耐還元性を備えるとともに、低温焼成でも高い比誘電率をもつことが可能な誘電体磁器組成物とその製造方法、及びこの誘電体磁器組成物を誘電体層とした磁器コンデンサとその製造方法に関するものである。   The present invention relates to a dielectric ceramic composition having a reduction resistance suitable as a dielectric material for a ceramic capacitor and having a high relative dielectric constant even when fired at a low temperature, a method for producing the same, and the dielectric ceramic composition And a method of manufacturing the same.

近年、電子回路の小型化、高密度化にともない、磁器コンデンサの小型大容量化が強く求められている。このような磁器コンデンサの一例としては、図2にその模式的な断面図を示すような、積層磁器コンデンサが挙げられる。図2に示すように、この磁器コンデンサAは、誘電体磁器組成物からなる誘電体層11と内部電極12とを交互に重ねてなる積層体、及び、前記内部電極12の特定のものに電気的に接続され、前記積層体の外側面に配される外部電極13、14により構成される。このような磁器コンデンサは現在,製造コストを抑えるため内部電極を構成する材料として、高価な貴金属であるパラジウム(Pd)やパラジウム合金などに代えて、比抵抗が小さく高融点で低価格という点から、Niなどの卑金属が採用される方向にある。   In recent years, with the miniaturization and high density of electronic circuits, there has been a strong demand for miniaturization and large capacity of porcelain capacitors. As an example of such a ceramic capacitor, there is a laminated ceramic capacitor whose schematic sectional view is shown in FIG. As shown in FIG. 2, this ceramic capacitor A includes a laminate in which dielectric layers 11 made of a dielectric ceramic composition and internal electrodes 12 are alternately stacked, and a specific one of the internal electrodes 12. And external electrodes 13 and 14 disposed on the outer surface of the laminate. Such a ceramic capacitor is currently used as a material constituting the internal electrode in order to reduce the manufacturing cost, instead of expensive noble metal such as palladium (Pd) or palladium alloy, from the viewpoint of low specific resistance, high melting point, and low price. , Ni or other base metals are being adopted.

一方、磁器コンデンサの小型大容量化の要求に応えるには、誘電体層の薄層化と多層化する必要がある。しかしながら, 誘電体層を薄層化すると誘電体材料により多くの高電圧が印加され、従来の誘電体材料を用いると誘電率の低下や、静電容量の温度依存性の増加、そのた安定性の悪化をもたらす虞がある。例えば、誘電体層の厚さを5μm以下まで薄層化すると、内部電極間に存在するセラミック粒子の数が10個以下に減少するため、安定した特性が得られにくくなる傾向にある。   On the other hand, in order to meet the demand for a smaller and larger capacity ceramic capacitor, it is necessary to make the dielectric layer thinner and multilayer. However, when the dielectric layer is made thinner, more high voltage is applied to the dielectric material, and when the conventional dielectric material is used, the dielectric constant decreases, the temperature dependence of the capacitance increases, and its stability There is a risk of worsening. For example, when the thickness of the dielectric layer is reduced to 5 μm or less, the number of ceramic particles existing between the internal electrodes is reduced to 10 or less, so that it is difficult to obtain stable characteristics.

従来、磁器コンデンサの誘電体層を構成する誘電体磁器組成物としては、チタン酸バリウム(barium titanate) が広く利用されてきた(例えば、特許文献1参照)。
しかしながら、チタン酸バリウムを還元雰囲気において焼成すると焼成中に半導体化して絶縁抵抗を失ってしまい、耐還元性質を有するシェル(shell) 成分をキャパシター内の全粒子に均一に形成できねば製品の絶縁抵抗が低下し寿命が激減する傾向があった。また、たとえ絶縁抵抗が大きいシェルを形成したとしても、厚さが極めて薄い場合には、粒子内のチタン酸バリウムが半導体化し、製品の絶縁抵抗を低下させ、寿命を激減させる虞があった。このような理由から、チタン酸バリウムを主成分とする誘電体磁器組成物を用いた磁器コンデンサを製造する場合には、組成物の均一化を図るために多大な処理時間や製造コストを要していた。
Conventionally, barium titanate has been widely used as a dielectric ceramic composition constituting a dielectric layer of a ceramic capacitor (see, for example, Patent Document 1).
However, when barium titanate is fired in a reducing atmosphere, it becomes a semiconductor during firing and loses its insulation resistance, and it is necessary to form a shell component having reduction resistance properties uniformly on all particles in the capacitor. There was a tendency for the lifespan to decrease drastically. Even if a shell having a high insulation resistance is formed, if the thickness is very thin, the barium titanate in the particles becomes a semiconductor, which may reduce the insulation resistance of the product and drastically reduce the life. For this reason, when manufacturing a ceramic capacitor using a dielectric ceramic composition mainly composed of barium titanate, a large amount of processing time and manufacturing cost are required to make the composition uniform. It was.

これを解決するため、従来のチタン酸バリウムに比べて耐還元性に優れるチタン酸バリウムカルシウム(barium calcium titanate) を含む誘電体磁器組成物からなる誘電体層を用い、この誘電体層間にNiからなる内部電極を備えた磁器コンデンサが開発された(特許文献2参照)。
チタン酸バリウムカルシウムは、Baの位置を置換するCaにより生成される格子欠陥が耐還元性をもたらすので、還元雰囲気において焼成中にシェルが形成されず、誘電体層の薄膜化を図った場合でも高い絶縁抵抗を保てるという長所を備えている。特許文献2には、このようなチタン酸バリウムカルシウムを含む出発原料(主成分)に、酸化物ガラスを副成分として添加した誘電体磁器組成物を用いることにより、誘電率の低下が少なく、静電容量の温度特性がEIA規格に定められたX7R特性を満たす、Niを内部電極とする積層磁器コンデンサが記載されている。また、特許文献2は、チタン酸バリウムカルシウムにRe成分、即ち稀土類成分(但し、ReはY、Gd、Tb、Dy、Ho、Er、及びYbの中から選択される少なくとも一種以上の元素)を添加することにより、焼成時にRe成分が拡散し、粒子境界近傍及び粒子境界にRe成分が存在するコア-シェル(core-shell)構造が得られることも開示している。
In order to solve this problem, a dielectric layer made of a dielectric ceramic composition containing barium calcium titanate, which is superior in reduction resistance compared to conventional barium titanate, is used, and Ni is interposed between the dielectric layers. A porcelain capacitor having an internal electrode was developed (see Patent Document 2).
In barium calcium titanate, since the lattice defects generated by Ca replacing the position of Ba provide reduction resistance, no shell is formed during firing in a reducing atmosphere, and even when the dielectric layer is made thin. It has the advantage of maintaining high insulation resistance. Patent Document 2 discloses that a dielectric ceramic composition in which oxide glass is added as a subsidiary component to such a starting material (main component) containing barium calcium titanate is used, so that there is little reduction in dielectric constant, A multilayer ceramic capacitor having Ni as an internal electrode, in which the temperature characteristic of capacitance satisfies the X7R characteristic defined in the EIA standard, is described. Patent Document 2 discloses that a barium calcium titanate has a Re component, that is, a rare earth component (where Re is at least one element selected from Y, Gd, Tb, Dy, Ho, Er, and Yb). It is also disclosed that, by adding, the Re component diffuses during firing, and a core-shell structure in which the Re component is present in the vicinity of the grain boundary and at the grain boundary is obtained.

しかしながら, 特許文献2の積層磁器コンデンサはその誘電体層の副成分としてガラス成分を用いることにより絶縁抵抗は高いが、誘電率の低いシェルを形成する組成物がコアに拡散する速度の制御が容易でなく、このような誘電体組成物を用いた積層磁器コンデンサの誘電特性がむしろ低くなる虞があった。
これに対し、耐還元性の優れたチタン酸バリウムカルシウムを用いてなる誘電体磁器組成物において、拡散速度制御をより有利にすることにより、X7R特性を満足しながら誘電特性も優れる誘電体磁器組成物が開発された(特許文献3参照)。
特許文献12には、チタン酸バリウムカルシウムBaCaTiO(0.001≦x≦0.02)100モルあたり、MgO:0.5〜4モル、MnO:0.01〜0.5モル、BaO:0.1〜2モル、CaO:0.1〜2モル、及びSiO:1〜4モルを含み、これにY、Dy、Ho、及びErから成るグループの中から選んだ少なくとも1種以上の成分を0.1〜3モル含む誘電体セラミック組成物(以下、誘電体磁器組成物とも呼ぶ)とともに、この誘電体セラミック組成物を含んだ誘電体層、前記誘電体層の間に形成し誘電体層と交代で積層した内部電極層、及び前記内部誘電体層に電気的に接続し誘電体層の両端に形成する外部電極を含む積層セラミックキャパシター(以下、磁器コンデンサとも呼ぶ)が開示されている。
However, the multilayer ceramic capacitor of Patent Document 2 has a high insulation resistance by using a glass component as a subcomponent of its dielectric layer, but it is easy to control the rate at which the composition forming a shell having a low dielectric constant diffuses into the core. In addition, the dielectric characteristics of the multilayer ceramic capacitor using such a dielectric composition may be rather lowered.
On the other hand, in the dielectric ceramic composition using barium calcium titanate having excellent reduction resistance, by making the diffusion rate control more advantageous, the dielectric ceramic composition having excellent dielectric characteristics while satisfying X7R characteristics The thing was developed (refer patent document 3).
In Patent Document 12, per 100 moles of barium calcium titanate BaCa x TiO 3 (0.001 ≦ x ≦ 0.02), MgO: 0.5 to 4 moles, MnO: 0.01 to 0.5 moles, BaO : 0.1 to 2 mol, CaO: 0.1 to 2 moles, and SiO 2: includes from 1 to 4 moles, to which Y 2 O 3, Dy 2 O 3, Ho 2 O 3, and Er 2 O 3 A dielectric ceramic composition (hereinafter also referred to as a dielectric ceramic composition) containing 0.1 to 3 moles of at least one component selected from the group consisting of: A multilayer ceramic comprising: a body layer; an internal electrode layer formed between the dielectric layers and alternately laminated with the dielectric layer; and external electrodes electrically connected to the internal dielectric layer and formed at both ends of the dielectric layer Capacitors (hereinafter porcelain) Also referred to as a capacitor) is disclosed.

しかしながら、特許文献3に係る誘電体磁器組成物にあっては、誘電率が2000以上という優れた誘電特性をもつためには、1250〜1350の温度とした還元雰囲気下で焼成する必要があった。誘電体磁器組成物がチタン酸バリウムカルシウムを主体とするものであっても、還元雰囲気での焼成により、主成分であるTiの価数が4価から3価に還元され半導体化するとともに、酸素空位が増加することによる平均寿命(以下、加速寿命または絶縁劣化時間とも呼ぶ)の低下をもたらすことに変わりはない。ゆえに、より低い1200℃以下の焼成温度であっても、比誘電率を2,400以上とすることの可能な、チタン酸バリウムカルシウムを主体とする誘電体磁器組成物の開発が期待されていた。
米国特許第5,335,139号公報 大韓民国特許公開2000−17250号公報 日本国特開2002−29836号公報
However, the dielectric ceramic composition according to Patent Document 3 needed to be fired in a reducing atmosphere at a temperature of 1250 to 1350 in order to have excellent dielectric properties of a dielectric constant of 2000 or more. . Even if the dielectric ceramic composition is mainly composed of barium calcium titanate, by firing in a reducing atmosphere, the valence of Ti as the main component is reduced from tetravalent to trivalent and becomes a semiconductor, and oxygen There is no change in reducing the average life (hereinafter also referred to as accelerated life or insulation deterioration time) due to an increase in vacancies. Therefore, development of a dielectric porcelain composition mainly composed of barium calcium titanate capable of having a relative dielectric constant of 2,400 or more even at a lower firing temperature of 1200 ° C. or less was expected. .
US Pat. No. 5,335,139 Korean Patent Publication No. 2000-17250 Japanese Unexamined Patent Publication No. 2002-29836

本発明は上記事情に鑑みてなされたもので、耐還元性に優れたチタン酸バリウムカルシウムを含む出発原料(主成分)を用いながら、還元雰囲気中1200℃以下の低温で焼成可能であり、比誘電率が2,400以上で、EIA規格で規定するX5R特性を満たす容量変化率を備え、さらに加速寿命も長い、誘電体磁器組成物及び磁器コンデンサ並びにこれらの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can be fired at a low temperature of 1200 ° C. or less in a reducing atmosphere while using a starting material (main component) containing barium calcium titanate having excellent reduction resistance. An object of the present invention is to provide a dielectric ceramic composition and a ceramic capacitor having a dielectric constant of 2,400 or more, a capacitance change rate satisfying the X5R characteristic defined by the EIA standard, and a long acceleration life, and a method of manufacturing the same. To do.

上記課題を解決するため、
請求項1に係る発明は、主成分として、Ba、Ca、及びTiの酸化物を、副成分として、Cr、Mg、及びMnの酸化物を、含有してなる焼結体であって、前記主成分は、組成式(Ba1−xCa)TiO(ただし、xは0.005〜0.10、(Ba1−xCa)/Ti比は1.003〜1.030)で表される化合物であり、この化合物100mol部に対して、前記副成分をなすCrの酸化物をCrに換算して0.03〜1.5mol部、Mgの酸化物をMgに換算して0.1〜3.0mol部、Mnの酸化物をMnに換算して0.01〜1.0mol部、の割合でそれぞれ含み、さらに前記化合物100重量部に対して、焼結助剤を0.2〜1.2重量部の割合で含有させたことを特徴とする誘電体磁器組成物である。
To solve the above problem,
The invention according to claim 1 is a sintered body comprising oxides of Ba, Ca, and Ti as main components and oxides of Cr, Mg, and Mn as subcomponents, The main component is a composition formula (Ba 1-x Ca x ) TiO 3 (where x is 0.005 to 0.10 and (Ba 1-x Ca x ) / Ti ratio is 1.003 to 1.030). It is a compound represented, 0.03-1.5 mol part in terms of Cr oxide as the subcomponent is converted to Cr, and 0 mg in terms of Mg oxide is converted to Mg with respect to 100 mol parts of this compound. 0.1 to 3.0 mol parts, and an oxide of Mn in a ratio of 0.01 to 1.0 mol parts in terms of Mn. A dielectric ceramic composition comprising 2 to 1.2 parts by weight .

請求項2に係る発明は、前記焼結助剤が、Siの酸化物またはSiを主成分とする酸化物であることを特徴とする請求項1に記載の誘電体磁器組成物である。   The invention according to claim 2 is the dielectric ceramic composition according to claim 1, wherein the sintering aid is an oxide of Si or an oxide containing Si as a main component.

請求項3に係る発明は、さらに、前記化合物100mol部に対して、前記副成分として、Re(ReはY、Dy、Yb及びHoからなる群から選択される少なくとも1種以上の希土類元素)の酸化物をReに換算して0.3〜2.0mol部の割合で含むことを特徴とする請求項1に記載の誘電体磁器組成物である。   According to a third aspect of the present invention, Re (Re is at least one rare earth element selected from the group consisting of Y, Dy, Yb and Ho) as the subcomponent with respect to 100 mol parts of the compound. 2. The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition contains 0.3 to 2.0 mol parts of oxide in terms of Re.

請求項4に係る発明は、主成分の原料として、主成分の原料として、Ba、Ca、及びTiの化合物を混合して仮焼結体を形成し、該仮焼結体に、副成分の原料として、Cr、Mg、及びMnのの化合物を添加し、次いで、これを、1100〜1200℃の温度とした還元雰囲気で焼成することを特徴とする誘電体磁器組成物の製造方法である。   The invention according to claim 4 forms a temporary sintered body by mixing a compound of Ba, Ca, and Ti as a main component raw material as a main component raw material. A method for producing a dielectric ceramic composition comprising adding a compound of Cr, Mg, and Mn as raw materials and then firing the resultant in a reducing atmosphere at a temperature of 1100 to 1200 ° C.

請求項5に係る発明は、誘電体層と内部電極とを交互に重ねてなる積層体、及び、前記内部電極の特定のものに電気的に接続され、前記積層体の外表面に配される外部電極を備え、前記誘電体層は、請求項1乃至3のいずれかに記載の誘電体磁器組成物からなることを特徴とする磁器コンデンサである。   The invention according to claim 5 is electrically connected to a laminate formed by alternately stacking dielectric layers and internal electrodes, and a specific one of the internal electrodes, and is disposed on the outer surface of the laminate. An external electrode is provided, and the dielectric layer is a ceramic capacitor comprising the dielectric ceramic composition according to any one of claims 1 to 3.

請求項6に係る発明は、前記内部電極は、Ni又はNiを主成分とする合金からなることを特徴とする請求項5に記載の磁器コンデンサである。   The invention according to claim 6 is the porcelain capacitor according to claim 5, wherein the internal electrode is made of Ni or an alloy containing Ni as a main component.

請求項7に係る発明は、誘電体層をなすグリーンシートを、請求項1乃至3のいずれかに記載の誘電体磁器組成物を用いて形成する工程と、前記グリーンシートの片面に内部電極をなす導電層を形成する工程と、前記導電層を介するように前記グリーンシートを複数枚、その厚み方向に重ね合わせ、加圧して積層体を形成する工程と、前記積層体を、1100〜1200℃の温度とした還元雰囲気で焼成する工程と、前記積層体の外表面に、前記内部電極の特定のものに電気的に接続される外部電極を形成する工程と、を少なくとも具備したことを特徴とする磁器コンデンサの製造方法である。   According to a seventh aspect of the present invention, there is provided a step of forming a green sheet forming a dielectric layer using the dielectric ceramic composition according to any one of the first to third aspects, and an internal electrode on one side of the green sheet. A step of forming a conductive layer, a step of stacking a plurality of the green sheets in the thickness direction so as to interpose the conductive layer, pressing to form a laminate, and a step of forming the laminate from 1100 to 1200 ° C. At least a step of firing in a reducing atmosphere at a temperature of, and a step of forming an external electrode electrically connected to a specific one of the internal electrodes on the outer surface of the laminate. This is a method for manufacturing a ceramic capacitor.

本発明によれば、耐還元性に優れたチタン酸バリウムカルシウムを出発原料(主成分)として用いながら、還元雰囲気中1200℃以下の低温で焼成することが可能であり、比誘電率が2,400以上で、EIA規格で規定するX5R特性を満たす容量変化率を備え、さらに加速寿命も長い、誘電体磁器組成物、及び該誘電体磁器組成物を成形してなる磁器コンデンサを得ることができる。   According to the present invention, it is possible to sinter at a low temperature of 1200 ° C. or less in a reducing atmosphere while using barium calcium titanate having excellent resistance to reduction as a starting material (main component). A dielectric ceramic composition having a capacity change rate satisfying the X5R characteristic defined by the EIA standard at 400 or more and having a long accelerated life, and a ceramic capacitor formed by molding the dielectric ceramic composition can be obtained. .

[誘電体磁器組成物]
本発明の誘電体磁器組成物は、主成分として、Ba、Ca、及びTiの酸化物を、副成分として、Cr、Mg、及びMnの酸化物を、含有してなる焼結体であって、前記主成分は、組成式(Ba1−xCa)TiO(ただし、xは0.005〜0.10、(Ba1−xCa)/Ti比は1.003〜1.030) で表される化合物であり、この化合物100mol部に対して、前記副成分をなすCrの酸化物をCrに換算して0.03〜1.5mol部、Mgの酸化物をMgに換算して0.1〜3.0mol部、Mnの酸化物をMnに換算して0.01〜1.0mol部、の割合でそれぞれ含み、さらに前記化合物100重量部に対して焼結助剤を0.2〜1.2重量部の割合で含有させたものである。
[Dielectric porcelain composition]
The dielectric ceramic composition of the present invention is a sintered body comprising Ba, Ca, and Ti oxides as main components and Cr, Mg, and Mn oxides as subcomponents. The main component is a composition formula (Ba 1-x Ca x ) TiO 3 (where x is 0.005 to 0.10 and the (Ba 1-x Ca x ) / Ti ratio is 1.003 to 1.030. ) With respect to 100 mol parts of the compound, 0.03 to 1.5 mol parts of the oxide of Cr as the subcomponent is converted to Cr, and the oxide of Mg is converted to Mg with respect to 100 mol parts of the compound. 0.1 to 3.0 mol parts, and an oxide of Mn in an amount of 0.01 to 1.0 mol parts in terms of Mn, respectively, and further 0 to 100 parts by weight of the compound. .2 to 1.2 parts by weight.

本発明における主成分は、Ba、Ca、及びTiの酸化物である。これは、ペロブスカイト型結晶構造のBaTiO(またはBaO・TiO)の組成式において、Baの一部をCaに置換してなる、組成式(Ba1−xCa)TiOで表されるものである。ここで、xは0.005〜0.10、(Ba1−xCa)/Ti比は1.003〜1.030である。xが0の場合、またはxが0.10より大きい場合には、誘電体磁器組成物の比誘電率(以下、εとも呼ぶ)が所望の値(2,400)より低くなる。
また、(Ba1−xCa)/Ti比が1.003より少ないとX5R特性を満足せず、1.030より多くなると焼結性が低下し、緻密な焼結体が得られない。ゆえに、xを0.005〜0.10、(Ba1−xCa)/Ti比を1.003〜1.030の範囲にそれぞれ限定することにより、比誘電率(ε)と誘電損失(以下、tanδとも呼ぶ)を所望の値にするとともに、焼結性が向上し、緻密な焼結体を作製することができる。
The main component in the present invention is an oxide of Ba, Ca, and Ti. This is represented by a composition formula (Ba 1-x Ca x ) TiO 3 in which a part of Ba is substituted with Ca in the composition formula of BaTiO 3 (or BaO · TiO 2 ) having a perovskite crystal structure. Is. Here, x is 0.005 to 0.10, and (Ba 1-x Ca x ) / Ti ratio is 1.003 to 1.030. When x is 0 or when x is larger than 0.10, the dielectric constant (hereinafter also referred to as ε) of the dielectric ceramic composition is lower than a desired value (2,400).
Further, if the (Ba 1-x Ca x ) / Ti ratio is less than 1.003, the X5R characteristics are not satisfied, and if it exceeds 1.030, the sinterability is lowered and a dense sintered body cannot be obtained. Therefore, by limiting x to 0.005 to 0.10 and the (Ba 1-x Ca x ) / Ti ratio to the range of 1.003 to 1.030, the relative permittivity (ε) and the dielectric loss ( (Hereinafter also referred to as tan δ) is set to a desired value, the sinterability is improved, and a dense sintered body can be produced.

本発明における副成分は、Cr、Mg、及びMnの酸化物である。ここで、本発明の誘電体磁器組成物は、上記主成分からなる化合物100mol部に対して、Crの酸化物を、Crに換算して0.03〜1.5mol部含有する。0mol部の場合は所望の比抵抗や所望の加速寿命が得られなくなり、1.5mol部より多いとX5R規格を満足せず、加速寿命も低下した。ゆえに、Crの酸化物をCrに換算して0.03〜1.5mol部とすることにより、所望の比抵抗や所望の加速寿命が得られるとともに、X5R規格を満たすことも可能となる。   The subcomponent in the present invention is an oxide of Cr, Mg, and Mn. Here, the dielectric ceramic composition of the present invention contains 0.03-1.5 mol parts of Cr oxide in terms of Cr with respect to 100 mol parts of the compound composed of the main component. In the case of 0 mol part, the desired specific resistance and the desired accelerated life cannot be obtained, and when it exceeds 1.5 mol part, the X5R standard is not satisfied and the accelerated life is also reduced. Therefore, by converting the oxide of Cr to 0.03 to 1.5 mol parts in terms of Cr, it is possible to obtain a desired specific resistance and a desired accelerated life and to satisfy the X5R standard.

また、本発明の誘電体磁器組成物は、上記主成分からなる化合物100mol部に対して、Mgの酸化物を、Mgに換算して0.1〜3.0mol部含有する。0mol部の場合はX5R規格を満足せず、3.0mol部より多いと焼結性が低下し、緻密な焼結体が得られない。ゆえに、Mgの酸化物をMgに換算して0.1〜3.0mol部とすることにより、X5R規格を満たすとともに、焼結性が向上し、緻密な焼結体を作製することができる。   Moreover, the dielectric ceramic composition of the present invention contains 0.1 to 3.0 mol parts of Mg oxide in terms of Mg with respect to 100 mol parts of the compound composed of the main component. In the case of 0 mol part, the X5R standard is not satisfied, and when it is more than 3.0 mol part, the sinterability is lowered and a dense sintered body cannot be obtained. Therefore, by converting the oxide of Mg to 0.1 to 3.0 mol parts in terms of Mg, the X5R standard is satisfied, the sinterability is improved, and a dense sintered body can be produced.

さらに、本発明の誘電体磁器組成物は、上記主成分からなる化合物100mol部に対して、Mnの酸化物を、Mnに換算して0.01〜1.0mol部含有する。1.0mol部より多いと誘電体磁器組成物の比誘電率が所望の値(2,400)より低くなる。ゆえに、Mnの酸化物をMnに換算して0.01〜1.0mol部とすることにより、比抵抗と比誘電率を所望の値にすることができる。   Furthermore, the dielectric ceramic composition of the present invention contains 0.01 to 1.0 mol parts of Mn oxide in terms of Mn with respect to 100 mol parts of the compound composed of the above main components. If it exceeds 1.0 mol part, the dielectric constant of the dielectric ceramic composition will be lower than the desired value (2,400). Therefore, the specific resistance and the relative dielectric constant can be set to desired values by converting the oxide of Mn to 0.01 to 1.0 mol part in terms of Mn.

上記副成分であるCr、Mg、及びMnの酸化物に加え、前記組成式(Ba1−xCa)TiOで表記される化合物100重量部に対して焼結助剤を0.2〜1.2重量部の割合で含有させると、0.2重量部より少ないと未焼結になり、1.2重量部より多いとX5R規格を満足せず、加速寿命も低下した。ゆえに、焼結助剤を0.2〜1.2重量部とすることにより、焼結性が確保され、X5R規格を満たすとともに、所望の加速寿命も得られるので好ましい。 In addition to the oxides of the above subcomponents are as Cr, Mg, and Mn, 0.2 to sintering aids to the composition formula (Ba 1-x Ca x) 100 parts by weight of the compound expressed by TiO 3 When contained in a proportion of 1.2 parts by weight, if it was less than 0.2 part by weight, it was unsintered, and if it was more than 1.2 parts by weight, the X5R standard was not satisfied and the accelerated life was reduced. Therefore, it is preferable to set the sintering aid to 0.2 to 1.2 parts by weight because the sinterability is ensured, the X5R standard is satisfied, and a desired accelerated life is obtained.

また、本発明の誘電体磁器組成物は、上記主成分からなる化合物100mol部に対して、Re(Y、Dy、Yb及びHoからなる群から選択される少なくとも1種以上の希土類元素)の酸化物を、Reに換算して0.3〜2.0mol部の範囲で含有させてもよい。0.3molとした場合には加速寿命がさらに改善される。2.0mol部より多いとX5R規格を満足しない。ゆえに、Reの酸化物をReに換算して0.3〜2.0mol部とすることにより、X5R規格を満たしつつ、加速寿命の改善が図れる。   In addition, the dielectric ceramic composition of the present invention oxidizes Re (at least one rare earth element selected from the group consisting of Y, Dy, Yb and Ho) with respect to 100 mol parts of the compound consisting of the main component. You may contain a thing in 0.3-2.0 mol part in conversion of Re. When it is 0.3 mol, the accelerated life is further improved. When the amount is more than 2.0 mol parts, the X5R standard is not satisfied. Therefore, by converting the oxide of Re to 0.3 to 2.0 mol parts in terms of Re, the accelerated life can be improved while satisfying the X5R standard.

なお、本発明における比誘電率(ε)、誘電損失(tanδ)、比抵抗、容量変化率(X5R特性の適合性判断)、及び加速寿命は、外径寸法を縦5.7mm、横5.0mmとした積層磁器コンデンサ(本発明の誘電体磁器組成物からなる誘電体層の厚さ:2.0μm、有効誘電体層の数:5)を用いて測定した数値である。   In the present invention, the relative dielectric constant (ε), dielectric loss (tan δ), specific resistance, capacity change rate (determination of X5R characteristic suitability), and accelerated life are 5.7 mm in outer diameter and 5. This is a numerical value measured using a multilayer ceramic capacitor (the thickness of the dielectric layer made of the dielectric ceramic composition of the present invention: 2.0 μm, the number of effective dielectric layers: 5) of 0 mm.

(1)比誘電率:ε
温度25℃、1kHz、1Vrmsの条件でLCRメーターを用いて静電容量を測定した。この測定によって得られた静電容量、誘電体層の厚さ、及び電極面積から比誘電率を算出した。
(1) Dielectric constant: ε
The capacitance was measured using an LCR meter under conditions of a temperature of 25 ° C., 1 kHz, and 1 Vrms. The relative dielectric constant was calculated from the capacitance obtained by this measurement, the thickness of the dielectric layer, and the electrode area.

(2)誘電損失(dielectric dissipation factor)(D.F.%):tanδ
誘電損失tanδは、LCRメーターを用い、上記した比誘電率(ε)と同一の条件下(または、25℃の条件下)で測定した。
(2) Dielectric dissipation factor (DF%): tan δ
The dielectric loss tan δ was measured using an LCR meter under the same conditions as the above-mentioned relative dielectric constant (ε) (or at 25 ° C.).

(3)比抵抗:ρ(Ω・cm)
25℃の条件下で、磁器コンデンサに直流20Vの電圧を2分間印加して絶縁抵抗Rを測定し、この絶縁抵抗、誘電体層の厚さ、及び電極面積から比抵抗ρを算出した。
(3) Specific resistance: ρ (Ω · cm)
Under a condition of 25 ° C., a voltage of DC 20V was applied to the ceramic capacitor for 2 minutes to measure the insulation resistance R, and the specific resistance ρ was calculated from the insulation resistance, the thickness of the dielectric layer, and the electrode area.

(4)容量変化率
磁器コンデンサを恒温槽に入れ、−55℃から85℃の各温度において、周波数1kHz、電圧1Vrmsの条件で、LCRメーターを用いて静電容量を測定し、25℃の静電容量に対する静電容量の変化率を算出した。この静電容量の変化率から、X5R特性の適合性を判断した。
(4) Capacitance change rate Place a ceramic capacitor in a thermostatic chamber, measure the capacitance using an LCR meter under the conditions of a frequency of 1 kHz and a voltage of 1 Vrms at each temperature of -55 ° C to 85 ° C. The rate of change of capacitance with respect to capacitance was calculated. The suitability of the X5R characteristic was judged from the change rate of the capacitance.

(5)加速寿命
150℃の条件下で、磁器コンデンサに直流20Vの電圧を印加して、その経時変化を測定し、各試料の絶縁抵抗値が1×10Ω・cm以下に到達するまでの時間である。
(5) Accelerated life Under a condition of 150 ° C., a voltage of DC 20V is applied to the ceramic capacitor, the change with time is measured, and the insulation resistance value of each sample reaches 1 × 10 8 Ω · cm or less. Is the time.

本発明に係る誘電体磁器組成物は、上述した構成からなる磁器コンデンサの誘電体層に用いたとき、比誘電率が2400以上、誘電損失が3.0%以下、−55℃から85℃の容量変化率が±15%以内(25℃基準)、比抵抗が1×1011Ω・cm以上、加速寿命が50時間以上、という電気特性を満たすもの(本発明でいう「所望の値」を意味する)である。なお、−55℃から85℃の容量変化率が±15%(25℃基準)とは、EIA規格で規定するX5R特性である。 When the dielectric ceramic composition according to the present invention is used for a dielectric layer of a ceramic capacitor having the above-described configuration, the relative dielectric constant is 2400 or more, the dielectric loss is 3.0% or less, and −55 ° C. to 85 ° C. It satisfies the electrical characteristics that the capacity change rate is within ± 15% (25 ° C. standard), the specific resistance is 1 × 10 11 Ω · cm or more, and the accelerated life is 50 hours or more (the “desired value” as used in the present invention). Meaning). The capacity change rate from −55 ° C. to 85 ° C. is ± 15% (25 ° C. standard) is an X5R characteristic defined by the EIA standard.

なお、上述した焼結助剤としては、Siの酸化物またはSiを主成分とする酸化物が好適である。Siの酸化物またはSiを主成分とする酸化物からなる焼結助剤は、焼結性を向上させることから好ましい。また、Siに混在させる元素としては、例えばBa、CaまたはBが挙げられる。   As the above-mentioned sintering aid, an oxide of Si or an oxide containing Si as a main component is suitable. A sintering aid made of Si oxide or Si-based oxide is preferable because it improves the sinterability. Moreover, as an element mixed in Si, Ba, Ca, or B is mentioned, for example.

本発明に係る誘電体磁器組成物は、主成分の原料として、Ba、Ca、及びTiの化合物を混合して仮焼結体を形成し、該仮焼結体に、副成分の原料をなすCr、Mg、及びMnの化合物と、焼結助剤とを添加し、次いで、これを、1100〜1200℃の温度とした還元雰囲気で焼成して製造する。   The dielectric ceramic composition according to the present invention forms a temporary sintered body by mixing Ba, Ca, and Ti compounds as the main component raw material, and makes the temporary sintered body a raw material for the subcomponent. A compound of Cr, Mg, and Mn and a sintering aid are added, and then this is baked in a reducing atmosphere at a temperature of 1100 to 1200 ° C. for manufacturing.

図1は、本発明の誘電体磁器組成物及び該誘電体磁器組成物を成形してなる磁器コンデンサの製造方法の一例を示す工程図である。以下では、図1に基づき、誘電体磁器組成物の製法について説明する。   FIG. 1 is a process diagram showing an example of a dielectric ceramic composition of the present invention and a method for producing a ceramic capacitor formed by molding the dielectric ceramic composition. Below, based on FIG. 1, the manufacturing method of a dielectric ceramic composition is demonstrated.

具体的には、図1の工程(a)に示すように、主成分の原料である、Ba、Ca、及びTiの化合物を、各々秤量する。Ba、Ca、及びTiの化合物としては、酸化物、炭酸化物、水酸化物が挙げられるが、そのなかでも、BaCO、CaCO、TiOが好ましい。各原料を、組成式(Ba1−xCa)TiOのxが0〜0.12、(Ba1−xCa)/Ti比が1.000〜1.035の範囲内となるように計算して秤量し、調合する。 Specifically, as shown in step (a) of FIG. 1, Ba, Ca, and Ti compounds, which are main component materials, are weighed. Examples of the compound of Ba, Ca, and Ti include oxides, carbonates, and hydroxides, and among them, BaCO 3 , CaCO 3 , and TiO 2 are preferable. The raw materials, the composition formula (Ba 1-x Ca x) x in TiO 3 is 0~0.12, (Ba 1-x Ca x) / to Ti ratio is in the range of 1.000 to 1.035 Calculate, weigh and mix.

次いで、これら主成分の原料をボールミルに入れ、水を加え湿式で約20時間混合・粉砕を行い、スラリーとする(工程(b))。   Next, the raw materials of these main components are put into a ball mill, water is added, and the mixture is wet-mixed and pulverized for about 20 hours to form a slurry (step (b)).

得られたスラリーを脱水・乾燥し(工程(c))し、1000〜1200℃、好ましくは1100℃にて2時間仮焼する(工程(d))。その後、これを粉砕・整粒して、比表面積が3〜10m/g、 平均粒子径0.3μm以下、好ましくは0.2μm以下の仮焼結体を形成する(工程(e))。 The obtained slurry is dehydrated and dried (step (c)), and calcined at 1000 to 1200 ° C., preferably 1100 ° C. for 2 hours (step (d)). Thereafter, this is pulverized and sized to form a temporary sintered body having a specific surface area of 3 to 10 m 2 / g and an average particle diameter of 0.3 μm or less, preferably 0.2 μm or less (step (e)).

次いで、副成分の原料である、Cr、Mg、及びMnの化合物をそれぞれ、Crに換算して0.03〜1.5mol部、Mgに換算して0.1〜3.0mol部、Mnに換算して0.01〜1.0mol部の範囲内になるように計算して秤量し調合するとともに、さらに前記化合物100重量部に対して焼結助剤を0.2〜1.2重量部の割合で含有させた(工程(f))。Cr、Mg、及びMnの化合物としては、酸化物、炭酸化物、水酸化物が挙げられるが、その中でも、Cr、MgO、MnOが好ましく、焼結助剤としてはSiの酸化物またはSiを主成分とする酸化物が望ましい。これらの化合物を主成分原料、副成分原料及び焼結助剤とすることにより、低温で還元雰囲気中で焼成することが可能となる。その際、さらに副成分原料として、Re(ReはY、Dy、Yb、及びHoからなる群から選択される少なくとも1種類以上の希土類元素)の化合物を加えても構わない。 Next, Cr, Mg, and Mn compounds, which are raw materials of subcomponents, are each converted into Cr, 0.03-1.5 mol parts, converted into Mg, 0.1-3.0 mol parts, and Mn It is calculated so as to be in the range of 0.01 to 1.0 mol part in terms of conversion, weighed and prepared, and further 0.2 to 1.2 parts by weight of the sintering aid with respect to 100 parts by weight of the compound. (Step (f)). Examples of the compound of Cr, Mg, and Mn include oxides, carbonates, and hydroxides. Among them, Cr 2 O 3 , MgO, and MnO 2 are preferable, and Si oxide is used as a sintering aid. Or the oxide which has Si as a main component is desirable. By using these compounds as the main component raw material, subcomponent raw material, and sintering aid, it becomes possible to fire in a reducing atmosphere at a low temperature. At that time, a compound of Re (Re is at least one kind of rare earth element selected from the group consisting of Y, Dy, Yb, and Ho) may be added as a subcomponent material.

仮焼結体に、これら副成分原料と焼結助剤を添加し、水を加え湿式で約5時間混合・粉砕を行い、スラリーとする(工程(g))。このスラリーを脱水し、120℃で6時間加熱し、乾燥させる(不図示)。   These auxiliary component raw materials and sintering aid are added to the temporary sintered body, water is added, and the mixture is wet-mixed and pulverized for about 5 hours to obtain a slurry (step (g)). The slurry is dehydrated, heated at 120 ° C. for 6 hours, and dried (not shown).

次いで、これに、トルエン−エタノール混合溶剤、ポリビニルブチラール系バインダ、及び可塑剤を加えて、適度な粘度になるまで混合する。この混合物を1100〜1200℃の温度として、N、H及びHO からなる混合ガスの還元雰囲気で焼成し、本発明における誘電体磁器組成物を製造する。その際、焼成温度は1100〜1200℃の範囲が好適である。上記温度範囲のような低温で焼成することにより、上述した所望の電気特性を有する誘電体磁器組成物が得られる。なお、焼成する際の還元雰囲気としては、N、H及びHO からなる混合ガスの還元雰囲気が好ましく、例えば、窒素(N)ガスは95.00〜99.95%、水素(H)ガスは0.05〜5.0%、N−H混合ガスに湿度が40〜80%とすればよい。この焼成を還元雰囲気下で行うことにより、Niのような卑金属電極と共に焼成しても、電極の酸化を防止することができるので、Niのような卑金属電極を内部電極として利用可能となる。 Next, a toluene-ethanol mixed solvent, a polyvinyl butyral binder, and a plasticizer are added thereto and mixed until an appropriate viscosity is obtained. The mixture is fired at a temperature of 1100 to 1200 ° C. in a reducing atmosphere of a mixed gas composed of N 2 , H 2 and H 2 O to produce the dielectric ceramic composition in the present invention. In that case, the range of 1100-1200 degreeC is suitable for a calcination temperature. By firing at a low temperature such as the above temperature range, the dielectric ceramic composition having the desired electrical characteristics described above can be obtained. As the reducing atmosphere at the time of firing is preferably a reducing atmosphere of a mixed gas consisting of N 2, H 2 and H 2 O, for example, nitrogen (N 2) gas is from 95.00 to 99.95 percent, hydrogen ( The H 2 ) gas may be 0.05 to 5.0%, and the humidity of the N 2 —H 2 mixed gas may be 40 to 80%. By performing this firing in a reducing atmosphere, even if firing with a base metal electrode such as Ni, oxidation of the electrode can be prevented, so that a base metal electrode such as Ni can be used as the internal electrode.

本発明に係る誘電体磁器組成物の製造方法によれば、まず主成分の原料として、Ba、Ca、及びTiの化合物を混合して仮焼結体を形成し、該仮焼結体に、副成分の原料を添加して1100〜1200℃の温度とし、還元雰囲気で焼成することにより、電気特性が所望の値を満たす磁器コンデンサの誘電体磁器組成物が得られる。   According to the method for producing a dielectric ceramic composition according to the present invention, as a main component raw material, a compound of Ba, Ca, and Ti is first mixed to form a temporary sintered body. A dielectric ceramic composition of a ceramic capacitor satisfying a desired value in electrical characteristics is obtained by adding a raw material of an auxiliary component to a temperature of 1100 to 1200 ° C. and firing in a reducing atmosphere.

[磁器コンデンサ]
本発明に係る磁器コンデンサは、上述した誘電体磁器組成物を成形してなるシート(以下、誘電体層とも呼ぶ)と、該シートの片面に形成した内部電極とを複数積層してなる構成を示す一例(以下、磁器コンデンサAと呼ぶ)であり、図2はその一実施形態を示す模式的な断面図である。
図2に示すように、磁器コンデンサAは、上述した誘電体磁器組成物を成形してなるシート(誘電体層)11と、内部電極12とを交互に重ねてなる積層体、及び、内部電極12の特定のものに電気的に接続され、前記積層体の外側面に配される外部電極13、14を備えている。換言すると、この磁器コンデンサAは、符号11、11・・・で示す本発明に係る誘電体磁器組成物を成形してなるシートと、このシート11、11・・・の片面に形成した薄厚の内部電極12、12・・・と、内部電極12、12・・・と垂直方向のシート11端面に設けられた外部電極13、14とから概略構成されている。
[Porcelain capacitor]
The ceramic capacitor according to the present invention has a configuration in which a sheet formed from the above-described dielectric ceramic composition (hereinafter also referred to as a dielectric layer) and a plurality of internal electrodes formed on one side of the sheet are laminated. FIG. 2 is a schematic cross-sectional view showing an embodiment thereof (hereinafter, referred to as a porcelain capacitor A).
As shown in FIG. 2, the ceramic capacitor A includes a laminated body in which sheets (dielectric layers) 11 formed by molding the above-described dielectric ceramic composition and internal electrodes 12 are alternately stacked, and internal electrodes There are external electrodes 13 and 14 which are electrically connected to 12 specific ones and are arranged on the outer surface of the laminate. In other words, this ceramic capacitor A includes a sheet formed by molding the dielectric ceramic composition according to the present invention indicated by reference numerals 11, 11..., And a thin thickness formed on one side of the sheet 11, 11. Are composed of internal electrodes 12, 12..., And external electrodes 13, 14 provided on the end face of the sheet 11 in the vertical direction.

内部電極12や外部電極13、14としては、Cu、Ni、W、Mo等の金属若しくはこれらの合金、In−Ga、Ag、Ag−10Pd合金等、または、カーボン、グラファイト、カーボンとグラファイトの混合物等を用いることができる。その中でも、誘電体磁器組成物の焼成温度を1100〜1200℃とする観点から、内部電極12としては、NiまたはNiを主体とする合金が好ましい。
この内部電極12は、例えば上記の主たる材料からなる粉末に、有機バインダ、分散剤、有機溶剤、必要に応じて還元剤等を所定量加えた後に混練し、所定の粘度とした導電ペーストを、誘電体磁器組成物を成形してなるシートの片面に、所定のパターンとなるように印刷し、還元雰囲気中で、焼成することにより形成される。
一方、外部電極13、14としては、低抵抗で安価であることからCuが好ましい。この外部電極13、14は、内部電極12を有するシートを複数枚重ねてなる積層体に対して、その外側面に塗布法などを用いて形成される。
The internal electrode 12 and the external electrodes 13 and 14 include metals such as Cu, Ni, W, and Mo or alloys thereof, In—Ga, Ag, Ag-10Pd alloy, etc., or carbon, graphite, a mixture of carbon and graphite. Etc. can be used. Among these, from the viewpoint of setting the firing temperature of the dielectric ceramic composition to 1100 to 1200 ° C., the internal electrode 12 is preferably Ni or an alloy mainly composed of Ni.
This internal electrode 12 is, for example, an electrically conductive paste having a predetermined viscosity after adding a predetermined amount of an organic binder, a dispersant, an organic solvent, and a reducing agent, if necessary, to a powder composed of the above main material, It is formed by printing on one side of a sheet formed by molding the dielectric ceramic composition so as to form a predetermined pattern and firing in a reducing atmosphere.
On the other hand, as the external electrodes 13 and 14, Cu is preferable because of its low resistance and low cost. The external electrodes 13 and 14 are formed on the outer surface of the laminated body formed by stacking a plurality of sheets having the internal electrodes 12 by using a coating method or the like.

上述した磁器コンデンサAは、誘電体層をなすシートを、本発明に係る誘電体磁器組成物を用いて形成する工程A1と、前記シートの片面に内部電極をなす導電層を形成する工程A2と、前記導電層を介するように前記シートを複数枚、その厚み方向に重ね合わせ、加圧して積層体を形成する工程A3と、前記積層体を、1100〜1200℃の温度とした還元雰囲気で焼成する工程A4と、前記積層体の外側面に、前記内部電極の特定のものに電気的に接続される外部電極を形成する工程A5と、を少なくとも具備する磁器コンデンサの製造方法により得られる。
以下では、図1に示した、本発明に係る誘電体磁器組成物、及び該誘電体磁器組成物を成型してなる磁器コンデンサの製造方法の一例を示す工程図を用い、具体的に説明する。
In the above-described ceramic capacitor A, the step A1 of forming a sheet forming a dielectric layer using the dielectric ceramic composition according to the present invention, and the step A2 of forming a conductive layer forming an internal electrode on one side of the sheet, A step A3 of stacking a plurality of the sheets in the thickness direction so as to interpose the conductive layer and pressurizing to form a laminate, and firing the laminate in a reducing atmosphere at a temperature of 1100 to 1200 ° C. And a step A5 of forming an external electrode electrically connected to a specific one of the internal electrodes on the outer surface of the laminate.
Hereinafter, the dielectric ceramic composition according to the present invention shown in FIG. 1 and a process diagram showing an example of a method for producing a ceramic capacitor formed by molding the dielectric ceramic composition will be described in detail. .

本発明の誘電体磁器組成物を製造するまでの工程(a)〜(g)と同様にして、スラリーを製造する。このスラリーを脱水し、120℃で6時間加熱し、乾燥して粉体とする。   A slurry is produced in the same manner as in steps (a) to (g) until the dielectric ceramic composition of the present invention is produced. The slurry is dehydrated, heated at 120 ° C. for 6 hours, and dried to form a powder.

次いで、この粉体に、トルエン−エタノール混合溶剤、ポリビニルブチラール系バインダ、及び可塑剤を加えて、適度な粘度になるまで混合し、ドクターブレード法によりペットフィルムに塗布し、焼成後に所定の厚さ(例えば、2.0μm)となるようにシート(誘電体磁器組成物シート、あるいはグリーンシートとも呼ぶ)を成形する(工程(h)→上記工程A1に相当)。   Next, a toluene-ethanol mixed solvent, a polyvinyl butyral binder, and a plasticizer are added to this powder, mixed until an appropriate viscosity is obtained, applied to a PET film by the doctor blade method, and a predetermined thickness after firing. (For example, 2.0 μm) A sheet (also referred to as a dielectric ceramic composition sheet or a green sheet) is formed (corresponding to step (h) → step A1).

このシートの片面に、内部電極12をなすニッケルペーストを印刷により成形する(工程(i)→上記工程A2に相当)。次いで、これを複数枚(例えば5層)厚み方向に重ね合わせ、加圧(例えば、150℃で熱圧着)して積層体とする(工程(j)→上記工程A3に相当)。その後、得られた積層体を所望の面積をもつように切断する(不図示)。   A nickel paste forming the internal electrode 12 is formed on one side of the sheet by printing (corresponding to step (i) → step A2 above). Next, a plurality of sheets (for example, five layers) are stacked in the thickness direction and pressed (for example, thermocompression bonded at 150 ° C.) to form a laminated body (corresponding to step (j) → step A3 above). Thereafter, the obtained laminate is cut to have a desired area (not shown).

この積層体を空気中で加熱(例えば、300℃、10時間)して有機バインダを除去する(工程(k))。次いで、1100〜1200℃の温度として、例えばN、H及びHO からなる混合ガスを用いてなる還元雰囲気で焼成(例えば、2時間)した後、窒素ガス雰囲気中で再酸化処理(例えば、1000℃、1時間)する(工程(l)→前段の焼成処理が上記工程A4に相当)。 This laminated body is heated in air (for example, 300 ° C., 10 hours) to remove the organic binder (step (k)). Next, after firing (for example, 2 hours) in a reducing atmosphere using a mixed gas composed of N 2 , H 2, and H 2 O, for example, at a temperature of 1100 to 1200 ° C., re-oxidation treatment ( For example, it is performed at 1000 ° C. for 1 hour (step (l) → the previous stage baking treatment corresponds to step A4).

その後、この焼成・再酸化処理を施した積層体の外側面に、前記内部電極の特定のものに電気的に接続されるように、例えばCu、Ag等を塗布し外部電極13、14を形成する(工程(m)→上記工程A5に相当)。
以上の工程により、本発明に係る磁器コンデンサAを製造することができる。
Thereafter, external electrodes 13, 14 are formed by applying, for example, Cu, Ag or the like on the outer surface of the fired / reoxidized laminate so as to be electrically connected to a specific one of the internal electrodes. (Step (m) → corresponds to step A5).
Through the above steps, the ceramic capacitor A according to the present invention can be manufactured.

本発明によれば、上述した構成からなる磁器コンデンサAのシート(誘電体層、グリーンシート)に、本発明に係る誘電体磁器組成物を用いたことにより、比誘電率が2400以上、誘電損失が3.0%以下、−55℃から85℃の容量変化率が±15%以内(25℃基準)、比抵抗が1×1011Ω・cm以上、加速寿命が50時間以上、という電気特性を満足する磁器コンデンサを得ることができる。ここで、−55℃から85℃の容量変化率が±15%(25℃基準)とは、EIA規格で規定するX5R特性を意味する。 According to the present invention, the dielectric ceramic composition according to the present invention is used for the sheet (dielectric layer, green sheet) of the ceramic capacitor A having the above-described configuration. Electrical characteristics of 3.0% or less, capacitance change rate from −55 ° C. to 85 ° C. within ± 15% (based on 25 ° C.), specific resistance of 1 × 10 11 Ω · cm or more, acceleration life of 50 hours or more Can be obtained. Here, the capacity change rate of −55 ° C. to 85 ° C. ± 15% (25 ° C. reference) means the X5R characteristic defined by the EIA standard.

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.

まず、主成分(基本成分)の原料として、比表面積が10〜30m/gのBaCO、20〜40m/gのCaCO、40〜60m/gのTiOをそれぞれ秤量した。各原料は、組成式(Ba1−xCa)TiOのx、(Ba1−xCa)/Ti比が表1の値となるように計算して秤量した。
次に、これら主成分の原料をボールミルに入れ、水を加えて湿式で約20時間混合・粉砕し、スラリーとした。このスラリーを脱水・乾燥し、1000℃以上で仮焼した後、粉砕して。仮焼結体の平均粒子径が0.2μm以下となるように整粒した。なお、平均粒径は、走査型電子顕微鏡を用いて粉末を観察し、100個の粒子の粒子径を測長して求めた数値である。
First, BaCO 3 with a specific surface area of 10 to 30 m 2 / g, 20 to 40 m 2 / g of CaCO 3 , and 40 to 60 m 2 / g of TiO 2 were weighed as raw materials for the main component (basic component). Each raw material was calculated and weighed so that the x in the composition formula (Ba 1-x Ca x ) TiO 3 and the (Ba 1-x Ca x ) / Ti ratio were the values shown in Table 1.
Next, the raw materials of these main components were put into a ball mill, added with water, and mixed and pulverized in a wet manner for about 20 hours to obtain a slurry. This slurry is dehydrated and dried, calcined at 1000 ° C. or higher, and then pulverized. The particles were sized so that the average particle size of the temporary sintered body was 0.2 μm or less. The average particle diameter is a numerical value obtained by observing the powder using a scanning electron microscope and measuring the particle diameter of 100 particles.

次いで、この仮焼結体に、副成分(添加成分)をなす酢酸クロム、MgO、Mn、SiO、Reの粉末と、表1に示す焼結助剤とを、表2に示すmol部または重量部となるように各々秤量し、添加した。これらをボールミルに入れ、水を加え、湿式で約5時間混合してスラリーとした。このスラリーを脱水し、120℃で6時間加熱し、乾燥させて粉体とした。その際、焼結助剤a〜cとしては表3に示すものを使用した。 Subsequently, the temporary sintered body is provided with powders of chromium acetate, MgO, Mn 3 O 4 , SiO 2 , Re 2 O 3 as subcomponents (additional components), and sintering aids shown in Table 1. Each was weighed and added so as to be a mol part or a part by weight shown in 2. These were placed in a ball mill, water was added, and the mixture was wet mixed for about 5 hours to form a slurry. This slurry was dehydrated, heated at 120 ° C. for 6 hours, and dried to obtain a powder. At that time, those shown in Table 3 were used as the sintering aids a to c.

Figure 2006169051
Figure 2006169051

次に、この粉体にトルエン−エタノール混合溶剤、ポリビニルブチラール系バインダ、及び可塑剤を加えて、適度な粘度になるまで混合し、ドクターブレード法によりペットフィルムに塗布し、焼成後に厚さ2.0μmとなるシート(誘電体磁器組成物シート、グリーンシートとも呼ぶ)を成形した。原料の組成割合を、表2に各々示す。   Next, a toluene-ethanol mixed solvent, a polyvinyl butyral binder, and a plasticizer are added to this powder, mixed until an appropriate viscosity is obtained, applied to a pet film by a doctor blade method, and after firing, a thickness of 2. A sheet (also called a dielectric ceramic composition sheet or a green sheet) to be 0 μm was formed. Table 2 shows the composition ratio of the raw materials.

Figure 2006169051
Figure 2006169051

得られたシートに内部電極であるニッケルペーストを印刷により成形した。これを5層に積層し、150℃で熱圧着することにより積層体を得た。次いで、この積層体を、上面および下面が縦5.7mm×横5.0の長方形をなすように角板状に加工した。次に、これを大気中にて、300℃で10時間加熱して有機バインダ(樹脂成分)を焼却した。その後、1150℃とした、N、H及びHO からなる混合ガスの還元雰囲気中で2時間焼成し焼結させた。次に、窒素ガス雰囲気中で1000℃で2時間再酸化処理を施した。その後、焼結させた積層体の外側面(対向する位置にある切断面)にCuからなる導電性ペーストを塗布し、N雰囲気中で650℃の温度で焼き付け、図2に示すように内部電極と電気的に接続された外部電極を形成し、磁器コンデンサを作製した。誘電体層一層あたりの厚さは約2μmで、有効誘電体層は5層とした。 A nickel paste as an internal electrode was formed on the obtained sheet by printing. This was laminated into five layers, and a laminate was obtained by thermocompression bonding at 150 ° C. Next, this laminate was processed into a square plate shape so that the upper surface and the lower surface had a rectangular shape with a length of 5.7 mm and a width of 5.0. Next, this was heated in the atmosphere at 300 ° C. for 10 hours to incinerate the organic binder (resin component). Then, it was fired and sintered in a reducing atmosphere of a mixed gas composed of N 2 , H 2 and H 2 O at 1150 ° C. for 2 hours. Next, reoxidation treatment was performed at 1000 ° C. for 2 hours in a nitrogen gas atmosphere. Thereafter, a conductive paste made of Cu is applied to the outer side surface (cut surface at the opposite position) of the sintered laminate, and baked at a temperature of 650 ° C. in an N 2 atmosphere. As shown in FIG. An external electrode electrically connected to the electrode was formed to produce a ceramic capacitor. The thickness per dielectric layer was about 2 μm, and the effective dielectric layer was 5 layers.

この磁器コンデンサについて、前述した比誘電率(ε)、誘電損失tanδ、比抵抗ρ(Ω・cm)、容量変化率、加速寿命を評価した。   With respect to this ceramic capacitor, the above-described relative dielectric constant (ε), dielectric loss tan δ, specific resistance ρ (Ω · cm), capacitance change rate, and accelerated life were evaluated.

これらの評価結果を、表3に各々示す。なお、表2及び表3中、所望の値(特性)が得られない試料番号には、*を付して表す。また、比較検討した試料ごとに、グループ番号(表中のG欄に記載した番号)を付した。   These evaluation results are shown in Table 3, respectively. In Tables 2 and 3, sample numbers where desired values (characteristics) cannot be obtained are indicated with *. Moreover, the group number (number described in the G column in a table | surface) was attached | subjected for every sample examined.

Figure 2006169051
Figure 2006169051

表1及び表3の結果から、以下の点が明らかとなった。
<グループ1(G1)>
G1は、組成式(Ba1−xCa)TiOのxの値をx=0.02として、Cr添加量の依存性を検討した試料(試料番号1〜7)のグループである。
Cr添加量が0.03[mol部]の場合(試料番号2)は所望の特性になるが、Crを添加しない試料(試料番号1)は、容量温度変化のX5R特性を満足せず、加速寿命も極めて短く観測不能であった。また、Cr添加量が1.50[mol部]の場合(試料番号6)は所望の特性になるが、Cr添加量を1.70[mol部]とした試料(試料番号7)では、容量温度変化のX5R特性を満足しない。したがって、Cr添加量は、0.03〜1.50[mol部]の範囲が好ましい。
From the results in Tables 1 and 3, the following points became clear.
<Group 1 (G1)>
G1 is a group of samples (sample numbers 1 to 7) in which the dependency of the Cr addition amount was examined with the x value of the composition formula (Ba 1-x Ca x ) TiO 3 being x = 0.02.
When the Cr addition amount is 0.03 [mol part] (sample number 2), the desired characteristics are obtained, but the sample without addition of Cr (sample number 1) does not satisfy the X5R characteristic of the capacity temperature change and accelerates. The lifetime was very short and unobservable. Further, when the Cr addition amount is 1.50 [mol part] (sample number 6), the desired characteristics are obtained, but in the sample (sample number 7) in which the Cr addition amount is 1.70 [mol part], the capacity is obtained. The X5R characteristic of temperature change is not satisfied. Therefore, the Cr addition amount is preferably in the range of 0.03 to 1.50 [mol part].

<グループ2(G2)>
G2は、組成式(Ba1−xCa)TiOのxの依存性を検討した試料(試料番号8〜13)のグループである。
xを0.005〜0.10の範囲とした場合(試料番号9〜12)は所望の特性になるが、xを0とした場合(試料番号8)には比誘電率が2400より低下する。また、xを0.12とした場合(試料番号13)にも比誘電率が2400より低下する。したがって、xの値は、0.005〜0.10の範囲が好ましい。
<Group 2 (G2)>
G2 is a group of samples (sample numbers 8 to 13) in which the dependence of x in the composition formula (Ba 1-x Ca x ) TiO 3 was examined.
When x is in the range of 0.005 to 0.10 (sample numbers 9 to 12), the desired characteristics are obtained, but when x is set to 0 (sample number 8), the relative dielectric constant is lower than 2400. . Further, when x is set to 0.12 (sample number 13), the relative dielectric constant is lower than 2400. Therefore, the value of x is preferably in the range of 0.005 to 0.10.

<グループ3(G3)>
G3は、組成式(Ba1−xCa)TiOのxの値をx=0.02として、(Ba1−xCa)/Ti比の依存性を検討した試料(試料番号14〜19)のグループである。
(Ba1−xCa)/Ti比が1.003の場合(試料番号15)は所望の特性になるが、1.000の場合(試料番号14)には、容量温度変化のX5R特性を満足せず、加速寿命も極めて短く観測不能であった。また、(Ba1−xCa)/Ti比が1.030の場合(試料番号18)は所望の特性になるが、1.035の場合(試料番号19)には、焼結性が低下し、緻密な焼結体が得られない。したがって、(Ba1−xCa)/Ti比は、1.003〜1.030の範囲が好ましい。
<Group 3 (G3)>
G3 is a sample in which the value of x in the composition formula (Ba 1-x Ca x ) TiO 3 is x = 0.02 and the dependency of the (Ba 1-x Ca x ) / Ti ratio is examined (sample number 14 to 19).
When the (Ba 1-x Ca x ) / Ti ratio is 1.003 (sample number 15), the desired characteristic is obtained, but when it is 1.000 (sample number 14), the X5R characteristic of the capacity-temperature change is obtained. I was not satisfied and the accelerated lifetime was very short and could not be observed. Further, when the (Ba 1-x Ca x ) / Ti ratio is 1.030 (sample number 18), the desired characteristics are obtained, but when 1.035 (sample number 19), the sinterability is lowered. However, a dense sintered body cannot be obtained. Therefore, the (Ba 1-x Ca x ) / Ti ratio is preferably in the range of 1.003 to 1.030.

<グループ4(G4)及びグループ5(G5)>
G4は、前記組成式(Ba1−xCa)TiOで表記される化合物100重量部に対する焼結助剤aの割合[重量部]を検討した試料(試料番号20〜25)のグループであり、G5は、焼結助剤の依存性を検討した試料(試料番号26、27)のグループである。試料番号26は焼結助剤bを、試料番号27は焼結助剤cを使用した場合であり、試料番号22が、焼結助剤をa(Siの酸化物)とした場合に相当する。a〜cの各焼結助剤の構成は表1に示すものとした。
G4の結果より、焼結助剤aの割合が0.2[重量部]の場合(試料番号21)は所望の特性になるが、焼結助剤aの割合が0.1[重量部]の場合(試料番号20)には、焼結性が低下し、緻密な焼結体が得られない。また、焼結助剤aの割合が1.2[重量部]の場合(試料番号24)は所望の特性になるが、1.4[重量部]の場合(試料番号25)には、容量温度変化のX5R特性を満足しない。したがって、焼結助剤aの割合は、0.2〜1.2重量部の範囲が好ましい。
<Group 4 (G4) and Group 5 (G5)>
G4 is a group of samples (sample numbers 20 to 25) in which the ratio [parts by weight] of the sintering aid a to 100 parts by weight of the compound represented by the composition formula (Ba 1-x Ca x ) TiO 3 was examined. Yes, G5 is a group of samples (sample numbers 26 and 27) for which the dependency of the sintering aid was examined. Sample number 26 corresponds to the case where the sintering aid b is used, sample number 27 corresponds to the case where the sintering aid c is used, and sample number 22 corresponds to the case where the sintering aid is a (Si oxide). . The composition of each of the sintering aids a to c is shown in Table 1.
From the result of G4, when the ratio of the sintering aid a is 0.2 [parts by weight] (Sample No. 21), the desired characteristics are obtained, but the ratio of the sintering aid a is 0.1 [parts by weight]. In the case of (Sample No. 20), the sinterability is lowered and a dense sintered body cannot be obtained. Further, when the ratio of the sintering aid a is 1.2 [parts by weight] (sample number 24), the desired characteristics are obtained, but when 1.4 [parts by weight] (sample number 25), the capacity is increased. The X5R characteristic of temperature change is not satisfied. Therefore, the ratio of the sintering aid a is preferably in the range of 0.2 to 1.2 parts by weight.

<グループ6(G6)>
G6は、組成式(Ba1−xCa)TiOのxの値をx=0.02として、Mg添加量の依存性を検討した試料(試料番号28〜33)のグループである。
Mg添加量が0.1[mol部]の場合(試料番号29)は所望の特性になるが、Mgを添加しない場合(試料番号28)には、容量温度変化のX5R特性が不適合になってしまう。また、Mg添加量が3.0[mol部]の場合(試料番号32)は所望の特性になるが、Mg添加量が3.2[mol部]の場合(試料番号33)には、焼結性が低下し、緻密な焼結体が得られない。したがって、Mg添加量は、0.1〜3.0[mol部]の範囲が好ましい。
<Group 6 (G6)>
G6 is the value of the composition formula (Ba 1-x Ca x) TiO 3 of x as x = 0.02, a group of samples investigated Mg addition amount of dependence (Sample No. 28-33).
When the Mg addition amount is 0.1 [mol part] (sample number 29), the desired characteristics are obtained. However, when Mg is not added (sample number 28), the X5R characteristics of the capacity-temperature change become incompatible. End up. In addition, when the Mg addition amount is 3.0 [mol parts] (sample number 32), the desired characteristics are obtained, but when the Mg addition amount is 3.2 [mol parts] (sample number 33), the sintering is performed. The caking property is lowered and a dense sintered body cannot be obtained. Therefore, the amount of Mg added is preferably in the range of 0.1 to 3.0 [mol parts].

<グループ7(G7)>
G7は、組成式(Ba1−xCa)TiOのxの値をx=0.02として、Mn添加量の依存性を検討した試料(試料番号34〜38)のグループである。
G7の結果より、Mn添加量が0.01[mol部]の場合(試料番号35)は所望の特性になるが、Mnを添加しない場合(試料番号34)には所望の比抵抗が得られない。また、Mn添加量が1.0[mol部]の場合(試料番号37)は所望の特性になるが、Mn添加量が1.2[mol部]の場合(試料番号38)には、比誘電率が2400より低下し、所望の比抵抗も得られない。したがって、Mn添加量は、0.01〜1.0[mol部]の範囲が好ましい。
<Group 7 (G7)>
G7 is a group of samples (sample numbers 34 to 38) for which the dependency of the amount of Mn added was examined with the x value of the composition formula (Ba 1-x Ca x ) TiO 3 being x = 0.02.
From the result of G7, when the amount of Mn added is 0.01 [mol part] (sample number 35), the desired characteristics are obtained, but when Mn is not added (sample number 34), the desired specific resistance is obtained. Absent. Further, when the Mn addition amount is 1.0 [mol part] (sample number 37), the desired characteristics are obtained, but when the Mn addition amount is 1.2 [mol part] (sample number 38), the ratio is The dielectric constant falls below 2400, and the desired specific resistance cannot be obtained. Therefore, the amount of Mn added is preferably in the range of 0.01 to 1.0 [mol part].

<グループ8(G8)及びグループ9(G9)>
G8は、組成式(Ba1−xCa)TiOのxの値をx=0.02として、一定量のCr、Mg及びMnを添加し、Reに属するY添加量の依存性を検討した試料(試料番号39〜42)のグループである。
また、G9は、Yに代えて、Dyを添加した試料(試料番号43)、Ybを添加した試料(試料番号44)、及びHoを添加した試料(試料番号45)のグループである。
G8の結果より、Y添加量が0.3〜2.0[mol部]の場合(試料番号39〜41)には、Y添加量の増加にともない、所望の特性が得られるとともに、加速寿命を延ばすことができる。しかし、Y添加量が2.2[mol部]の場合(試料番号42)には、容量温度変化のX5R特性が不適合になってしまう。したがって、Y添加量は、0.3〜2.0[mol部]の範囲が好ましい。
上述したY添加量として適正な範囲内にある添加量であれば、Dy、Yb、Hoも所望の特性が得られる。したがって、Reとしては、Yの他にDy、Yb、Hoも有効である。
<Group 8 (G8) and Group 9 (G9)>
G8 is a composition formula (Ba 1-x Ca x ) TiO 3 where x is set to x = 0.02, and a certain amount of Cr, Mg and Mn are added, and the dependence of the Y addition amount belonging to Re is examined. Group of samples (sample numbers 39 to 42).
G9 is a group of a sample added with Dy (sample number 43), a sample added with Yb (sample number 44), and a sample added with Ho (sample number 45) instead of Y.
From the result of G8, when the Y addition amount is 0.3 to 2.0 [mol part] (sample numbers 39 to 41), the desired characteristics are obtained and the accelerated life is increased as the Y addition amount is increased. Can be extended. However, when the Y addition amount is 2.2 [mol part] (sample number 42), the X5R characteristic of the capacity-temperature change becomes incompatible. Therefore, the Y addition amount is preferably in the range of 0.3 to 2.0 [mol part].
If the added amount is within the appropriate range as the above-described Y added amount, Dy, Yb, and Ho can obtain desired characteristics. Therefore, as Re, Dy, Yb, and Ho are also effective in addition to Y.

以上の結果から、上記範囲を満足する誘電体磁器組成物は、耐還元性に優れたチタン酸バリウムカルシウムを含む出発原料(主成分)を用いながら、還元雰囲気中1200℃以下の低温で焼成可能であり、比誘電率が2,400以上で、EIA規格で規定するX5R特性を満たす容量変化率を備え、さらに加速寿命も長い、磁器コンデンサの提供に寄与することが確認された。   From the above results, the dielectric ceramic composition satisfying the above range can be fired at a low temperature of 1200 ° C. or less in a reducing atmosphere while using a starting material (main component) containing barium calcium titanate having excellent reduction resistance. It has been confirmed that it contributes to the provision of a ceramic capacitor having a relative dielectric constant of 2,400 or more, a capacitance change rate that satisfies the X5R characteristic defined by the EIA standard, and a long acceleration life.

本発明の誘電体磁器組成物及び該誘電体磁器組成物を成形してなる磁器コンデンサの製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the ceramic capacitor formed by shape | molding the dielectric ceramic composition of this invention, and this dielectric ceramic composition. 本発明に係る磁器コンデンサAの一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the ceramic capacitor | condenser A which concerns on this invention.

符号の説明Explanation of symbols

A 磁器コンデンサ、11 誘電体磁器組成物を成形してなるシート、12 内部電極、13、14 外部電極。
A A ceramic capacitor, 11 A sheet formed by molding a dielectric ceramic composition, 12 internal electrodes, 13 and 14 external electrodes.

Claims (7)

主成分として、Ba、Ca、及びTiの酸化物を、
副成分として、Cr、Mg、及びMnの酸化物を、含有してなる焼結体であって、
前記主成分は、組成式(Ba1−xCa)TiO(ただし、xは0.005〜0.10、(Ba1−xCa)/Ti比は1.003〜1.030)で表される化合物であり、この化合物100mol部に対して、
前記副成分をなすCrの酸化物をCrに換算して0.03〜1.5mol部、Mgの酸化物をMgに換算して0.1〜3.0mol部、Mnの酸化物をMnに換算して0.01〜1.0mol部、の割合でそれぞれ含み、さらに前記化合物100重量部に対して焼結助剤を0.2〜1.2重量部の割合で含有させたことを特徴とする誘電体磁器組成物。
As main components, oxides of Ba, Ca and Ti,
As a subsidiary component, a sintered body containing oxides of Cr, Mg, and Mn,
The main component, composition formula (Ba 1-x Ca x) TiO 3 ( provided that, x is 0.005~0.10, (Ba 1-x Ca x) / Ti ratio of 1.003 to 1.030) The compound represented by the formula:
The sub-component Cr oxide is converted to Cr by 0.03-1.5 mol parts, the Mg oxide is converted to Mg by 0.1-3.0 mol parts, and the Mn oxide is converted to Mn. Each of them is contained in a ratio of 0.01 to 1.0 mol parts in terms of conversion, and further, a sintering aid is contained in a ratio of 0.2 to 1.2 parts by weight with respect to 100 parts by weight of the compound. A dielectric ceramic composition.
前記焼結助剤は、Siの酸化物またはSiを主成分とする酸化物であることを特徴とする請求項1に記載の誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein the sintering aid is an oxide of Si or an oxide containing Si as a main component. さらに、前記化合物100mol部に対して、前記副成分として、Re(ReはY、Dy、Yb及びHoからなる群から選択される少なくとも1種以上の希土類元素)の酸化物をReに換算して0.3〜2.0mol部の割合で含むことを特徴とする請求項1に記載の誘電体磁器組成物。   Further, with respect to 100 mol parts of the compound, as a subcomponent, an oxide of Re (at least one rare earth element selected from the group consisting of Y, Dy, Yb and Ho) is converted into Re. The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition is contained in a proportion of 0.3 to 2.0 mol parts. 主成分の原料として、主成分の原料として、Ba、Ca、及びTiの化合物を混合して仮焼結体を形成し、該仮焼結体に、副成分の原料として、Cr、Mg、及びMnのの化合物を添加し、次いで、これを、1100〜1200℃の温度とした還元雰囲気で焼成することを特徴とする誘電体磁器組成物の製造方法。   As a main component raw material, Ba, Ca, and Ti compounds are mixed as a main component raw material to form a temporary sintered body. In the temporary sintered body, Cr, Mg, and A method for producing a dielectric ceramic composition, comprising adding a compound of Mn and then firing the resultant in a reducing atmosphere at a temperature of 1100 to 1200 ° C. 誘電体層と内部電極とを交互に重ねてなる積層体、及び
前記内部電極の特定のものに電気的に接続され、前記積層体の外表面に配される外部電極を備え、
前記誘電体層は、請求項1乃至3のいずれかに記載の誘電体磁器組成物からなることを特徴とする磁器コンデンサ。
A laminated body in which dielectric layers and internal electrodes are alternately stacked; and an external electrode electrically connected to a specific one of the internal electrodes and disposed on an outer surface of the laminated body,
The said dielectric material layer consists of a dielectric ceramic composition in any one of Claims 1 thru | or 3, The ceramic capacitor | condenser characterized by the above-mentioned.
前記内部電極は、Ni又はNiを主成分とする合金からなることを特徴とする請求項5に記載の磁器コンデンサ。   6. The ceramic capacitor according to claim 5, wherein the internal electrode is made of Ni or an alloy containing Ni as a main component. 誘電体層をなすグリーンシートを、請求項1乃至3のいずれかに記載の誘電体磁器組成物を用いて形成する工程と、
前記グリーンシートの片面に内部電極をなす導電層を形成する工程と、
前記導電層を介するように前記グリーンシートを複数枚、その厚み方向に重ね合わせ、加圧して積層体を形成する工程と、
前記積層体を、1100〜1200℃の温度とした還元雰囲気で焼成する工程と、
前記積層体の外表面に、前記内部電極の特定のものに電気的に接続される外部電極を形成する工程と、
を少なくとも具備したことを特徴とする磁器コンデンサの製造方法。
Forming a green sheet forming a dielectric layer using the dielectric ceramic composition according to any one of claims 1 to 3;
Forming a conductive layer forming an internal electrode on one side of the green sheet;
A plurality of the green sheets so as to interpose the conductive layer, a step of superposing them in the thickness direction, and pressing to form a laminate;
Firing the laminate in a reducing atmosphere at a temperature of 1100 to 1200 ° C .;
Forming an external electrode electrically connected to a specific one of the internal electrodes on the outer surface of the laminate;
A method for producing a porcelain capacitor, comprising:
JP2004364691A 2004-12-16 2004-12-16 Dielectric ceramic composition, ceramic capacitor and method of manufacturing them Pending JP2006169051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364691A JP2006169051A (en) 2004-12-16 2004-12-16 Dielectric ceramic composition, ceramic capacitor and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364691A JP2006169051A (en) 2004-12-16 2004-12-16 Dielectric ceramic composition, ceramic capacitor and method of manufacturing them

Publications (1)

Publication Number Publication Date
JP2006169051A true JP2006169051A (en) 2006-06-29

Family

ID=36670193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364691A Pending JP2006169051A (en) 2004-12-16 2004-12-16 Dielectric ceramic composition, ceramic capacitor and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2006169051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199534A (en) * 2005-01-20 2006-08-03 Tdk Corp Dielectric ceramic composition and electronic component
WO2007074843A1 (en) 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. State detector for detecting operating state of radio-frequency heating apparatus
KR20170077355A (en) * 2015-12-28 2017-07-06 삼성전기주식회사 Dielectric composition and multilayer ceramic capacitor comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103668A (en) * 1998-09-28 2000-04-11 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic capacitor
JP2002029836A (en) * 2000-07-05 2002-01-29 Samsung Electro Mech Co Ltd Dielectric ceramic composition, laminated ceramic capacitor using the same and method for manufacturing that capacitor
JP2004292186A (en) * 2003-03-25 2004-10-21 Murata Mfg Co Ltd Dielectric ceramic and multilayer ceramic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103668A (en) * 1998-09-28 2000-04-11 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic capacitor
JP2002029836A (en) * 2000-07-05 2002-01-29 Samsung Electro Mech Co Ltd Dielectric ceramic composition, laminated ceramic capacitor using the same and method for manufacturing that capacitor
JP2004292186A (en) * 2003-03-25 2004-10-21 Murata Mfg Co Ltd Dielectric ceramic and multilayer ceramic capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199534A (en) * 2005-01-20 2006-08-03 Tdk Corp Dielectric ceramic composition and electronic component
JP4622537B2 (en) * 2005-01-20 2011-02-02 Tdk株式会社 Dielectric porcelain composition and electronic component
WO2007074843A1 (en) 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. State detector for detecting operating state of radio-frequency heating apparatus
EP2194758A2 (en) 2005-12-26 2010-06-09 Panasonic Corporation State detector for detecting operating state of radio-frequency heating apparatus
EP2194759A2 (en) 2005-12-26 2010-06-09 Panasonic Corporation State detector for detecting operating state of radio-frequency heating apparatus
KR20170077355A (en) * 2015-12-28 2017-07-06 삼성전기주식회사 Dielectric composition and multilayer ceramic capacitor comprising the same
US9799451B2 (en) 2015-12-28 2017-10-24 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
KR102166127B1 (en) 2015-12-28 2020-10-15 삼성전기주식회사 Dielectric composition and multilayer ceramic capacitor comprising the same

Similar Documents

Publication Publication Date Title
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP6996320B2 (en) Dielectric Porcelain Compositions and Multilayer Ceramic Capacitors
JP5035016B2 (en) Dielectric porcelain composition and electronic component
JP4967965B2 (en) Dielectric porcelain composition and electronic component
JP4428187B2 (en) Dielectric ceramic composition and electronic component
JP2007331956A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2007031273A (en) Dielectric porcelain composition for low temperature firing and laminated ceramic condenser using the same
JP2007331958A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2011184279A (en) Dielectric ceramic and laminated ceramic capacitor
JP5651703B2 (en) Multilayer ceramic capacitor
US8363383B2 (en) Dielectric ceramic composition and ceramic electronic component
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP4556924B2 (en) Dielectric porcelain composition and electronic component
KR20070098567A (en) Laminated electronic component and method for manufacturing the same
JP2001097772A (en) Dielectric porcelain composition, electronic part and method for producing the same
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP2008179493A (en) Dielectric porcelain composition and electronic component
JP2008081351A (en) Dielectric ceramic, multilayer ceramic capacitor, and method for manufacturing the same
JP2007169087A (en) Sintered compact, ceramic capacitor, and their production method
JP2005263508A (en) Dielectric ceramic composition, laminated porcelain capacitor, and method for producing the capacitor
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JP2006169051A (en) Dielectric ceramic composition, ceramic capacitor and method of manufacturing them
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706