JP2006162467A - Immunity measurement method using light transmissive magnetic particle - Google Patents

Immunity measurement method using light transmissive magnetic particle Download PDF

Info

Publication number
JP2006162467A
JP2006162467A JP2004355304A JP2004355304A JP2006162467A JP 2006162467 A JP2006162467 A JP 2006162467A JP 2004355304 A JP2004355304 A JP 2004355304A JP 2004355304 A JP2004355304 A JP 2004355304A JP 2006162467 A JP2006162467 A JP 2006162467A
Authority
JP
Japan
Prior art keywords
substance
measured
magnetic carrier
label
carrier particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004355304A
Other languages
Japanese (ja)
Inventor
Nobuyuki Arai
信之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Chemical Diagnostics Systems Co Ltd
Original Assignee
Kyowa Medex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Medex Co Ltd filed Critical Kyowa Medex Co Ltd
Priority to JP2004355304A priority Critical patent/JP2006162467A/en
Publication of JP2006162467A publication Critical patent/JP2006162467A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sensitively detecting signals from a label and a reagent used for this method, in a method of measuring substances by using magnetic carrier particles and a label, based on a specific reaction between a substance specifically bonding to a substance to be measured and the substance to be measured. <P>SOLUTION: This method for measuring substances to be measured includes a process of generating a label which is a complex formed out of the magnetic carrier particles (i) by making a substance specifically bonded to a measured substance carried by the carrier particles or the measured substance react with a substance specifically bonded to a labeled substance to be measured with a substance to be measured in a reaction liquid, or (ii) by making a substance specifically bonding to a measured substance carried by the carrier particles react with a labeled substance to be measured with a substance to be measured in a reaction liquid; and a process of measuring the label which is the complex formed out of the magnetic carrier particles. A reagent is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測定すべき物質に特異的に結合する物質を用いる物質の測定方法および測定試薬に関する。   The present invention relates to a substance measurement method and a reagent using a substance that specifically binds to a substance to be measured.

抗原抗体反応を利用した免疫測定方法は、種々の疾病を示す診断マーカーや微量物質の検出に用いられ、その原理も広く知られている。このうち代表的な免疫測定方法としては、それぞれ放射性同位体(RI)、酵素、蛍光物質、発光物質などの標識物質を用いたラジオイムノアッセイ(RIA)、酵素イムノアッセイ(EIA)、蛍光イムノアッセイ(FIA)、発光イムノアッセイ(LIA)などが知られている。これらの方法は標識物質の特徴を生かして非常に高感度な測定方法として利用されてきたが、一方で担体粒子の反応面積を広げるために担体粒子に磁性粒子を利用し、その分散と集磁を特徴とした方法も開発されてきた。この方法では反応性や感度などの性能を大きく向上させた一方、該粒子を液体中に分散させた状態で試薬としての供給が可能であるため、ELISA(Enzyme-Linked Immunosorbent Assay)プレートのように担体粒子と反応容器が一体となったものに比べ、その汎用性は非常に高いものとなった。特に磁性粒子と発光物質による標識の組み合わせは現在もなお高感度かつ実用的な方法として広く利用されている。   An immunoassay method using an antigen-antibody reaction is used for detection of diagnostic markers and trace substances showing various diseases, and its principle is widely known. Among these, representative immunoassay methods include radioimmunoassay (RIA), enzyme immunoassay (EIA), and fluorescent immunoassay (FIA) using labeling substances such as radioisotopes (RI), enzymes, fluorescent substances, and luminescent substances, respectively. Luminescence immunoassay (LIA) and the like are known. These methods have been used as extremely sensitive measuring methods by taking advantage of the characteristics of the labeling substance. On the other hand, in order to expand the reaction area of the carrier particles, the magnetic particles are used as the carrier particles, and their dispersion and magnetic collection. A method characterized by this has also been developed. While this method has greatly improved performance such as reactivity and sensitivity, it can be supplied as a reagent in a state where the particles are dispersed in a liquid, so it can be used like an ELISA (Enzyme-Linked Immunosorbent Assay) plate. Compared with the case where the carrier particles and the reaction vessel are integrated, the versatility is very high. In particular, the combination of labels with magnetic particles and luminescent substances is still widely used as a highly sensitive and practical method.

しかし、この方法には種々の問題がある。例えばこれまで免疫測定に用いられてきた磁性粒子は光の透過性がない酸化鉄を主成分としていたため、磁性粒子上に形成された免疫複合体中の蛍光物質または発光物質の標識を検出する場合、その光シグナルが弱められる遮蔽現象を常に伴う。このような遮蔽現象は微弱な光シグナルを遮蔽するばかりでなく、高濃度の磁性粒子の使用にあたってはその検量線の傾きを減少させ、精度を大幅に損なうものであった。従って磁性粒子の使用量は遮蔽現象の少ない範囲に限定して使用するのが一般的であった。   However, this method has various problems. For example, magnetic particles that have been used for immunoassays have been based on iron oxide, which does not transmit light, as a main component. Therefore, labels of fluorescent substances or luminescent substances in immune complexes formed on magnetic particles are detected. In some cases, it is always accompanied by a shielding phenomenon in which the light signal is weakened. Such a shielding phenomenon not only shields a weak light signal, but also reduces the slope of the calibration curve when using a high concentration of magnetic particles, thereby greatly degrading accuracy. Therefore, the amount of magnetic particles used is generally limited to a range where the shielding phenomenon is small.

しかしかかる遮蔽効果を避けるため、その使用量を減らすことは有効な手段ではない。即ち、磁性粒子の使用量の減少は測定性能に大きな影響を与える。第一に固相の反応面積は担体粒子量に比例するため、該粒子量を減らすことは反応性や測定感度といった性能に影響を与える。第二に洗浄工程を含む測定系では、磁性粒子の集磁後、反応液を除去する工程で物理的衝撃による粒子の損失を伴うため、測定精度を悪化させる。この物理的衝撃による粒子の損失割合は磁性粒子量が少ないときに大きく、性能への影響は顕著となる。従って磁性粒子の遮蔽効果はこれら反応性と精度維持のための調整範囲を大きく制限する。   However, in order to avoid such a shielding effect, reducing the amount used is not an effective means. That is, a decrease in the amount of magnetic particles used has a great influence on measurement performance. First, since the reaction area of the solid phase is proportional to the amount of carrier particles, reducing the amount of particles affects performance such as reactivity and measurement sensitivity. Secondly, in a measurement system including a cleaning step, after collecting magnetic particles, the loss of particles due to physical impact is involved in the step of removing the reaction liquid, which deteriorates the measurement accuracy. The loss ratio of particles due to this physical impact is large when the amount of magnetic particles is small, and the influence on the performance becomes remarkable. Therefore, the shielding effect of the magnetic particles greatly limits the adjustment range for maintaining the reactivity and accuracy.

この問題の対応策として、特許文献1には、検出時に免疫複合体の特異的結合を解離させる方法が記載されている。この方法では、抗原抗体反応により磁性粒子上に形成された免疫複合体中の標識を検出するため、検出時に抗原抗体反応による特異的結合を解離させるべく解離液を加えて標識を解離させ、該解離した標識の強度を測定する。しかしこれらの方法では解離液の添加、再分離などの工程が必要となり煩雑であり、また標識の測定に乖離液が影響を及ぼすことがあり好ましくない。
特開平8−43391号公報
As a countermeasure against this problem, Patent Document 1 describes a method of dissociating specific binding of an immune complex during detection. In this method, in order to detect the label in the immune complex formed on the magnetic particle by the antigen-antibody reaction, a dissociation solution is added to dissociate the specific binding due to the antigen-antibody reaction at the time of detection to dissociate the label. Measure the intensity of the dissociated label. However, these methods are not preferable because steps such as addition of a dissociation solution and re-separation are necessary and are complicated, and the separation solution may affect the measurement of the label.
JP-A-8-43391

本発明の目的は、磁性担体粒子及び標識を用いて、測定すべき物質に特異的に結合する物質と測定すべき物質の特異的反応に基づく物質の測定方法において、標識からのシグナルを感度よく検出する方法および該方法に使用する試薬を提供することである。   An object of the present invention is to use a magnetic carrier particle and a label, in a method for measuring a substance based on a specific reaction between a substance that specifically binds to the substance to be measured and the substance to be measured, and a signal from the label with high sensitivity. It is to provide a method of detection and a reagent used in the method.

本発明は、以下の[1]〜[10]に関する。
(1) (i)磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質と標識された測定すべき物質に特異的に結合する物質とを反応液中の測定すべき物質に反応させ、または(ii)磁性担体粒子に担持された測定すべき物質に特異的に結合する物質と標識された測定すべき物質とを反応液中の測定すべき物質に反応させ、磁性担体粒子と複合体を形成した標識を生成させる工程、および磁性担体粒子と複合体を形成した標識を測定する工程を含み、磁性担体粒子が標識を検出するのに使用するシグナルが透過可能な磁性担体粒子であることを特徴とする測定すべき物質の測定方法。
The present invention relates to the following [1] to [10].
(1) (i) A substance that specifically binds to a substance to be measured supported on magnetic carrier particles or a substance to be measured and a substance that specifically binds to a labeled substance to be measured in a reaction solution. React with the substance to be measured, or (ii) react the substance that specifically binds to the substance to be measured supported on the magnetic carrier particles and the labeled substance to be measured with the substance to be measured in the reaction solution And generating a label that forms a complex with the magnetic carrier particle, and measuring a label that forms a complex with the magnetic carrier particle, and transmits a signal that the magnetic carrier particle uses to detect the label. A method for measuring a substance to be measured, characterized by being possible magnetic carrier particles.

(2) 標識を測定する工程が磁性担体粒子と複合体を形成した状態で行われる前記(1)記載の測定方法。
(3) 磁性担体粒子が、蒸留水に0.1mg/mLの濃度で懸濁した状態で、標識を検出するのに使用するシグナルの1cmにおける透過率が20%以上である磁性粒子である前記(1)または(2)記載の方法。
(2) The measuring method according to (1), wherein the step of measuring the label is performed in a state where a complex with the magnetic carrier particles is formed.
(3) The magnetic carrier particles are magnetic particles having a transmittance of 20% or more at 1 cm of a signal used to detect a label in a state suspended in distilled water at a concentration of 0.1 mg / mL. The method according to (1) or (2).

(4) 標識が酵素、発光物質、蛍光物質および色原体から選ばれる標識である前記(1)〜(3)のいずれかに記載の方法。
(5) 測定すべき物質に特異的に結合する物質が抗体である前記(1)〜(4)のいずれかに記載の方法。
(6) 磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質、および標識された測定すべき物質に特異的に結合する物質を含有し、磁性担体粒子が標識を検出するのに使用するシグナルが透過可能な磁性担体粒子である測定すべき物質の測定用試薬。
(4) The method according to any one of (1) to (3), wherein the label is a label selected from an enzyme, a luminescent substance, a fluorescent substance, and a chromogen.
(5) The method according to any one of (1) to (4), wherein the substance that specifically binds to the substance to be measured is an antibody.
(6) A substance that specifically binds to a substance to be measured supported on a magnetic carrier particle or a substance to be measured, and a substance that specifically binds to a labeled substance to be measured. A reagent for measuring a substance to be measured, which is a magnetic carrier particle capable of transmitting a signal used to detect a label.

(7) 磁性担体粒子に担持された測定すべき物質に特異的に結合する物質、および標識された測定すべき物質を含有し、磁性担体粒子が標識を検出するのに使用するシグナルが透過可能な磁性担体粒子である測定すべき物質の測定用試薬。
(8) 磁性担体粒子が、蒸留水に0.1mg/mLの濃度で懸濁した状態で、標識を検出するのに使用するシグナルの1cmにおける透過率が20%以上である磁性粒子である前記(6)または(7)記載の試薬。
(7) Contains a substance that specifically binds to the substance to be measured carried on the magnetic carrier particles and a labeled substance to be measured, and transmits the signal used by the magnetic carrier particles to detect the label A reagent for measuring a substance to be measured, which is a magnetic carrier particle.
(8) The magnetic carrier particles are magnetic particles having a transmittance of 20% or more at 1 cm of a signal used for detecting a label in a state suspended in distilled water at a concentration of 0.1 mg / mL. (6) or the reagent according to (7).

(9) 標識が酵素、発光物質、蛍光物質または色原体である前記(6)〜(8)のいずれかに記載の試薬。
(10) 測定すべき物質に特異的に結合する物質が抗体である前記(6)〜(9)のいずれかに記載の試薬。
(9) The reagent according to any one of (6) to (8), wherein the label is an enzyme, a luminescent substance, a fluorescent substance, or a chromogen.
(10) The reagent according to any one of (6) to (9), wherein the substance that specifically binds to the substance to be measured is an antibody.

本発明により、測定精度の高い正確な免疫測定方法および試薬が提供される。   The present invention provides an accurate immunoassay method and reagent with high measurement accuracy.

本発明で使用する磁性粒子は、標識を検出するのに使用するシグナルが透過可能なもので有れば特に制限はない。例えば、特開平10−297933号公報記載のモル%でTb2 3 が25〜50%、SiO2 が5〜40%、B2 3 が5〜45%、Ga2 3 が5〜35%、さらにP2 5 が0〜7%、GeO2 が0〜20%、またMgO、CaO、SrOおよびBaOがそれぞれ0〜6%で、MgO、CaO、SrOおよびBaOの総和が0〜6%、La2 3 が0〜6%、Gd2 3 が0〜6%、Yb2 3 が0〜6%、Dy2 3 が0〜15%、Tb2 3 、La2 3 、Gd2 3 、Yb2 3 およびDy2 3 の総和が25〜60%並びにZrO2 が0〜8%からなる組成のファラデー回転素子用ガラス、特開2002−145622号公報記載の化学式:Ti1-x Cox 2 ;0<x≦0.3、で表され、Ti格子位置にCoが置換し、かつ、単結晶基板上にエピタキシャル成長した二酸化チタン・コバルト磁性膜、イットリウム・鉄・ガーネットから成る化合物(Proc. 12th Int. Symp. Plasma Chem., / Minneapolis, USA, 1995)、磁性ガラス(特開平04−170338号公報)や光磁気記録材料(特開平01−261235号公報)、窒化ガリウムなどがあげられる。 The magnetic particle used in the present invention is not particularly limited as long as it can transmit a signal used for detecting a label. For example, Tb 2 O 3 is 25 to 50%, SiO 2 is 5 to 40%, B 2 O 3 is 5 to 45%, and Ga 2 O 3 is 5 to 35 in mol% described in JP-A-10-297933. %, more P 2 O 5 is 0 to 7%, GeO 2 0 to 20%, also MgO, CaO, at Less than six% SrO and BaO, respectively, MgO, CaO, the total sum of SrO and BaO Less than six %, La 2 O 3 is 0 to 6%, Gd 2 O 3 is 0 to 6%, Yb 2 O 3 is 0 to 6%, Dy 2 O 3 is 0 to 15%, Tb 2 O 3 , La 2 O 3 , a glass for a Faraday rotator having a composition in which the sum of Gd 2 O 3 , Yb 2 O 3 and Dy 2 O 3 is 25 to 60% and ZrO 2 is 0 to 8%, disclosed in JP-A-2002-145622 Chemical formula: Ti 1-x Co x O 2 ; represented by 0 <x ≦ 0.3, Co is substituted at the Ti lattice position, and single crystal Titanium dioxide / cobalt magnetic film epitaxially grown on a substrate, compound composed of yttrium / iron / garnet (Proc. 12th Int. Symp. Plasma Chem., / Minneapolis, USA, 1995), magnetic glass (Japanese Patent Laid-Open No. 04-170338) ), Magneto-optical recording material (Japanese Patent Laid-Open No. 01-261235), gallium nitride, and the like.

また、磁性担体粒子としては、上記透過性磁性微粒子をポリスチレン、ポリアクリロニトリル、ポリメタクリロニトリル、ポリメタクリル酸メチル、ポリカプラミド、ポリエチレンテレフタレートなどの疎水性重合体、ポリアクリルアミド、ポリメタクリルアミド、ポリビニルピロリドン、ポリビニルアルコール、ポリ(2−オキシエチルアクリレート)、ポリ(2−オキシエチルメタクリレート)、ポリ(2,3−ジオキシプロピルアクリレート)、ポリ(2,3−ジオキシプロピルメタクリレート)、ポリエチレングリコールメタクリレートなどの架橋した親水性重合体、またはそれぞれのモノマーの2〜4種程度の共重合体などのラテックス、ゼラチン、リポソームまたは、上記磁性微粒子をラテックス、ゼラチン、リポソームなどで内包した粒子などがあげられる。   Further, as the magnetic carrier particles, the above-mentioned permeable magnetic fine particles are made of a hydrophobic polymer such as polystyrene, polyacrylonitrile, polymethacrylonitrile, polymethyl methacrylate, polycapramide, polyethylene terephthalate, polyacrylamide, polymethacrylamide, polyvinylpyrrolidone, Polyvinyl alcohol, poly (2-oxyethyl acrylate), poly (2-oxyethyl methacrylate), poly (2,3-dioxypropyl acrylate), poly (2,3-dioxypropyl methacrylate), polyethylene glycol methacrylate, etc. Latex, gelatin, liposomes such as crosslinked hydrophilic polymers, or about 2 to 4 types of copolymers of the respective monomers, or latex, gelatin, liposomes, etc. , Such as packaging particles and the like.

磁性担体粒子としては、標識を検出するのに使用するシグナルが透過可能な磁性担体粒子であればその透過率は特に制限はないが、例えば蒸留水に0.1mg/mLの濃度で懸濁した状態で、標識を検出するのに使用するシグナルの1cmにおける透過率が20%以上である磁性粒子が好ましく35%である磁性粒子がより好ましく、50%以上である磁性粒子が特に好ましい。   The magnetic carrier particle is not particularly limited as long as it is a magnetic carrier particle that can transmit a signal used to detect a label, but the suspension is suspended in distilled water at a concentration of 0.1 mg / mL, for example. In the state, the magnetic particles having a transmittance of 20% or more at 1 cm of the signal used for detecting the label are preferably 35%, more preferably 50%, and particularly preferably 50% or more.

磁性粒子の粒径は、反応液中に懸濁できる粒径であれば特に制限はないが、例えば0.05μm〜300μmが好ましく、0.1μm〜30μmがより好ましく、0.5〜10μmが特に好ましい。
本発明で使用される標識は、磁性粒子を透過するシグナルを用いて直接または補所試薬を用いて間接的に検出できるものであれば特に制限はなく、例えば酵素、発光物質、蛍光物質、色原体、酵素等があげられるが、補助試薬との反応によりその量を測定することができるものが好ましい。
The particle size of the magnetic particles is not particularly limited as long as it is a particle size that can be suspended in the reaction solution, but is preferably 0.05 μm to 300 μm, more preferably 0.1 μm to 30 μm, and particularly preferably 0.5 to 10 μm. preferable.
The label used in the present invention is not particularly limited as long as it can be detected directly using a signal that permeates magnetic particles or indirectly using a supplementary reagent. For example, an enzyme, a luminescent substance, a fluorescent substance, a color Examples of the active ingredient and enzyme include those that can be measured by reaction with an auxiliary reagent.

シグナルとしては、標識を検出できれば特に制限はないが、例えば光学的なシグナルが好ましく、光、蛍光等があげられる。
発光物質としては、例えば4-(2- サクシニミジルオキシカルボニルエチル)フェニル-10-メチルアクリジウム-9- カルボン酸フルオロ硫酸(以下アクリジニウム−Iと略記する)等のアクリジウム誘導体、ジオキセタン類、ルミノール、イソルミノール、ルシゲニン、クマリン誘導体、ピラゾロピリドピリダジン誘導体等があげられるがあげられる。
The signal is not particularly limited as long as the label can be detected. For example, an optical signal is preferable, and examples thereof include light and fluorescence.
Examples of the luminescent substance include acridium derivatives such as 4- (2-succinimidyloxycarbonylethyl) phenyl-10-methylacridium-9-carboxylic acid fluorosulfuric acid (hereinafter abbreviated as acridinium-I), dioxetanes, and luminol. , Isoluminol, lucigenin, coumarin derivatives, pyrazolopyridopyridazine derivatives and the like.

蛍光物質としては、3−(4−ヒドロキシフェニル)プロピオン酸などがあげられる。
色原体としては、単独で色素を形成する化合物であっても、二つの化合物が結合して色素を形成する化合物であってもよい。
単独で色素を形成する化合物としては、例えば、10−N−カルボキシメチルカルバモイル−3,7−ビス(ジメチルアミノ)−10H−フェノチアジン(以下、CCAPと略記する。)、10−N−メチルカルバモイル−3,7−ビス(ジメチルアミノ)−10H−フェノチアジン(以下、MCDPと略記する。)、N−(カルボキシメチルアミノカルボニル)−4,4’−ビス(ジメチルアミノ)ジフェニルアミン ナトリウム塩(以下、DA−64と略記する。)、4,4’−ビス(ジメチルアミノ)ジフェニルアミン、ビス[3−ビス(4−クロロフェニル)メチル−4−ジメチルアミノフェニル]アミン(以下、BCMAと略記する。)等があげられる。
Examples of the fluorescent substance include 3- (4-hydroxyphenyl) propionic acid.
The chromogen may be a compound that forms a dye alone, or a compound that forms a dye by combining two compounds.
As a compound that forms a dye alone, for example, 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine (hereinafter abbreviated as CCAP), 10-N-methylcarbamoyl- 3,7-bis (dimethylamino) -10H-phenothiazine (hereinafter abbreviated as MCDP), N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium salt (hereinafter DA- 64, abbreviated as 64), 4,4′-bis (dimethylamino) diphenylamine, bis [3-bis (4-chlorophenyl) methyl-4-dimethylaminophenyl] amine (hereinafter abbreviated as BCMA), and the like. It is done.

二つの化合物が結合して色素となるものとしては、例えば過酸化水素水とパーオキシダーゼとの共存下で、結合して色素を形成する化合物があげられる。
具体的には、4−アミノアンチピリン(以下4−AAと略す。)や、3−メチル−2−ベンゾチアゾリノンヒドラジン等のカプラ−と、アニリン化合物、例えばN−エチル−N−(3−メチルフェニル)−N’−サクシニルエチレンジアミン(以下EMSEと略す。)、N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−m−トルイジン、N−エチル−N−スルホプロピルアニリン、N−エチル−N−スルホプロピル−3,5−ジメトキシアニリン、N−スルホプロピル−3,5−ジメトキシアニリン、N−エチル−N−スルホプロピル−3,5−ジメチルアニリン、N−エチル−N−スルホプロピル−m−トルイジン、N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−m−アニシジン、N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)アニリン、N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−3−メチルアニリン・ナトリウム塩2水和物(以下TOOSと略記する。)、N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−3,5−ジメトキシアニリン、N−(2−ヒドロキシ−3−スルホプロピル)−3,5−ジメトキシアニリン、N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−3,5−ジメチルアニリン、N−スルホプロピルアニリン、N−エチル−N−スルホプロピルアニリンプロピル−m−アニジン等との組み合わせ等が挙げられる。その他、4−AAとフェノールや3−ヒドロキシ−2,4,6−トリヨウド酢酸の組み合わせが挙げられる。
Examples of compounds that combine two compounds to form a dye include compounds that combine to form a dye in the presence of aqueous hydrogen peroxide and peroxidase.
Specifically, couplers such as 4-aminoantipyrine (hereinafter abbreviated as 4-AA) and 3-methyl-2-benzothiazolinone hydrazine and aniline compounds such as N-ethyl-N- (3- Methylphenyl) -N′-succinylethylenediamine (hereinafter abbreviated as EMSE), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine, N-ethyl-N-sulfopropylaniline, N— Ethyl-N-sulfopropyl-3,5-dimethoxyaniline, N-sulfopropyl-3,5-dimethoxyaniline, N-ethyl-N-sulfopropyl-3,5-dimethylaniline, N-ethyl-N-sulfopropyl -M-Toluidine, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-anisidine, N-ethyl-N- (2-hydro Xyl-3-sulfopropyl) aniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline sodium salt dihydrate (hereinafter abbreviated as TOOS), N-ethyl- N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline, N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl-N- (2-hydroxy -3-Sulfopropyl) -3,5-dimethylaniline, N-sulfopropylaniline, N-ethyl-N-sulfopropylanilinepropyl-m-anidin and the like. In addition, combinations of 4-AA and phenol or 3-hydroxy-2,4,6-triiodoacetic acid can be mentioned.

酵素としては、例えばペルオキシダーゼ、アルカリホスファターゼ(以下、ALPと略記する。)などがあげられる。
補助試薬は、前述の標識を測定するために使用される試薬であり前述の標識の種類に応じて当業者であれば適宜選択できるが、例えば前述の発光物質、蛍光物質、色原体、酵素などがあげられる。また、アルカリ、過酸化水素等もあげられる。
Examples of the enzyme include peroxidase and alkaline phosphatase (hereinafter abbreviated as ALP).
The auxiliary reagent is a reagent used for measuring the aforementioned label, and can be appropriately selected by those skilled in the art depending on the type of the aforementioned label. For example, the aforementioned luminescent substance, fluorescent substance, chromogen, enzyme Etc. Moreover, an alkali, hydrogen peroxide, etc. are also mentioned.

発明において、測定すべき物質に特異的に結合する物質としては、例えば測定すべき物質に結合する抗体、核酸、糖蛋白質、アプタマー等があげられる。
抗体としては、例えばIgM、IgG、IgA、IgE等およびこれら抗体を酵素処理等により処理して得られるFab、Fab’、またはF(ab’)などのフラグメントが挙げられる。抗体としては、IgGが好ましい。抗体としては、モノクローナル抗体、ポリクローナル抗体の何れも使用できる。モノクローナル抗体を用いる場合、認識するエピトープの異なるモノクローナル抗体を二種類以上組み合わせて使用するのが好ましいが、同一抗原上にエピトープを複数持つ抗原に対しては一種類のモノクローナル抗体を用いることもできる。
In the invention, examples of the substance that specifically binds to the substance to be measured include antibodies, nucleic acids, glycoproteins, aptamers and the like that bind to the substance to be measured.
Examples of the antibody include IgM, IgG, IgA, IgE, and the like, and fragments such as Fab, Fab ′, or F (ab ′) 2 obtained by treating these antibodies with an enzyme treatment or the like. As the antibody, IgG is preferable. As the antibody, either a monoclonal antibody or a polyclonal antibody can be used. When using a monoclonal antibody, it is preferable to use a combination of two or more types of monoclonal antibodies with different epitopes to be recognized. However, a single type of monoclonal antibody can be used for an antigen having a plurality of epitopes on the same antigen.

測定すべき物質としては、特定の物質と特異的に結合する物質であれば特に制限はなく、抗原抗体反応を用いて測定される成分、その他の特異的反応により測定される成分等があげられる。
抗原抗体反応により測定される成分としては例えば、IgG、IgM、IgA、IgE、アポ蛋白AI、アポ蛋白AII、アポ蛋白B、アポ蛋白E、リウマチファクター、D−ダイマー、酸化LDL、グリコアルブミン、トリヨードサイロニン(T3)、総サイロキシン(T4)、抗テンカン剤等の薬剤、C−反応性蛋白(以下CRPと略記する。)、サイトカイン類、α−フェトプロテイン(AFP)、癌胎児性抗原(CEA)、CA19−9(carbohydrate antigen 19-9)、CA15−3(carbohydrate antigen 15-3)、CA−125(carbohydrate antigen 125)、PIVKA−II(Protein induced by vitamin K absence-II)、副甲状腺ホルモン(PTH)、ヒト絨毛性ゴナドトロピン(hCG)、甲状腺刺激ホルモン(TSH)、インスリン、C−ペプタイド、エストロゲン、抗抗グルタミン酸脱炭酸酵素抗体(GAD)抗体、ペプシノーゲン、HBV抗原、抗B型肝炎ウイルス(HBV)抗体、C型肝炎ウイルス(HCV)抗原、抗HCV抗体、成人T細胞性白血病ウイルス(HTLV−I)抗原、抗HTLV−I抗体、ヒト免疫不全ウイルス(HIV)抗体、結核抗体、結核菌抗原(TBGL)マイコプラズマ抗体、ヘモグロビンA1c、心房性ナトリウム利尿ペプチド(ANP)、脳性ナトリウム利尿ペプチド(BNP)、トロポニンT、トロポニンI、クレアチニンキナーゼ−MB(CK−MB)、ミオグロビン、H−FABP(ヒト心臓由来脂肪酸結合蛋白)、デオキシニバレノール(DON)、ニバレノール(NIV)、T-2トキシン(T2)等のカビ毒類、ビスフェノールA、ノニルフェノール、フタル酸ジブチル、ポリ塩素化ビフェニル(PCB)類、ダイオキシン類、p,p’−ジクロロジフェニルトリクロロエタン、トリブチルスズ等の内分泌撹乱物質類、大腸菌等の菌類、卵、乳、小麦、そば、落花生等の食物アレルギー物質やコナヒョウダニやトヤヒョウダニ等のダニ類等のアレルギー物質、抗アレルギー物質抗体等があげられる。
The substance to be measured is not particularly limited as long as it is a substance that specifically binds to a specific substance, and includes components measured using an antigen-antibody reaction, components measured by other specific reactions, and the like. .
Components measured by antigen-antibody reaction include, for example, IgG, IgM, IgA, IgE, apoprotein AI, apoprotein AII, apoprotein B, apoprotein E, rheumatoid factor, D-dimer, oxidized LDL, glycoalbumin, chicken Drugs such as iodothyronine (T3), total thyroxine (T4), anti-tencan agents, C-reactive protein (hereinafter abbreviated as CRP), cytokines, α-fetoprotein (AFP), carcinoembryonic antigen (CEA) ), CA19-9 (carbohydrate antigen 19-9), CA15-3 (carbohydrate antigen 15-3), CA-125 (carbohydrate antigen 125), PIVKA-II (Protein induced by vitamin K absence-II), parathyroid hormone (PTH), human chorionic gonadotropin (hCG), thyroid stimulating hormone (TSH), insulin, C-peptide, est Rogen, anti-antiglutamate decarboxylase antibody (GAD) antibody, pepsinogen, HBV antigen, anti-hepatitis B virus (HBV) antibody, hepatitis C virus (HCV) antigen, anti-HCV antibody, adult T-cell leukemia virus (HTLV) -I) Antigen, anti-HTLV-I antibody, human immunodeficiency virus (HIV) antibody, tuberculosis antibody, Mycobacterium tuberculosis antigen (TBGL) mycoplasma antibody, hemoglobin A1c, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) ), Troponin T, troponin I, creatinine kinase-MB (CK-MB), myoglobin, H-FABP (human heart-derived fatty acid binding protein), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2) Mold toxins such as bisphenol A, nonylphenol, Foods such as dibutyl lurate, polychlorinated biphenyls (PCBs), dioxins, endocrine disruptors such as p, p'-dichlorodiphenyltrichloroethane, tributyltin, fungi such as E. coli, eggs, milk, wheat, buckwheat, and peanuts Examples include allergic substances, allergic substances such as mites, such as mite and mite, and anti-allergic antibodies.

その他の特異的結合により測定される成分としては、核酸、レクチン等があげられ、例えばras等のガン遺伝子、p53等のガン抑制遺伝子等をコードするDNAまたはRNA、ペプチド核酸、アプタマー、糖蛋白質等があげられる。
本発明において対象となる試料には前述の測定すべき物質を含有していると疑われる試料であれば特に制限はなく、例えば全血、血漿、血清、髄液、唾液、羊水、尿、汗、膵液等の生体試料や、食品、土壌等があげられる。
Examples of other components to be measured by specific binding include nucleic acids, lectins and the like. For example, DNA or RNA encoding cancer genes such as ras, cancer suppressor genes such as p53, peptide nucleic acids, aptamers, glycoproteins, etc. Can be given.
In the present invention, the target sample is not particularly limited as long as it is suspected of containing the aforementioned substance to be measured. For example, whole blood, plasma, serum, spinal fluid, saliva, amniotic fluid, urine, sweat And biological samples such as pancreatic juice, food, soil and the like.

磁性担体粒子または標識に、測定すべき物質または測定すべき物質に特異的に結合する物質を結合させる方法は、例えば、物理的吸着、化学的結合等により行うことができる。
物理的に結合させる方法としては、磁性担体粒子または標識に抗原または抗体などを疎水結合などで直接固定化する方法が挙げられる。またアルブミンなどの他のタンパク質に化学的に結合させ、物理的に結合する方法があげられる。
The method of binding the substance to be measured or the substance that specifically binds to the substance to be measured to the magnetic carrier particles or the label can be performed, for example, by physical adsorption, chemical binding, or the like.
Examples of the physical binding method include a method in which an antigen or an antibody is directly immobilized on a magnetic carrier particle or label by a hydrophobic bond or the like. Further, there is a method of chemically binding to other proteins such as albumin and physically binding.

化学的に結合させる方法としては、磁性担体粒子または標識に存在するアミノ基、カルボキシル基、チオール基などを化学的に修飾することにより、抗原または抗体分子上の同様の官能基と直接固定化する方法が挙げられる。スペーサー分子やアルブミンなどの他のタンパク質を介して抗原または抗体を化学結合させる方法もあげられる。
結合させる測定すべき物質または測定すべき物質に特異的に結合する物質の量は、用いる磁性担体粒子の表面積、官能基量等により異なるが、通常磁性担体粒子1mgあたり1μg〜500μg、好ましくは10μg〜200μgである。また標識の場合、酵素もしくは発光物質を担持させる量は反応官能基の種類または標識によっても異なるが、測定すべき物質または測定すべき物質に特異的に結合する物質の1分子あたり1〜50個、好ましくは5〜20個となるように調製される。
As a method of chemically binding, the amino group, carboxyl group, thiol group, etc. present on the magnetic carrier particle or label are chemically modified to directly immobilize the same functional group on the antigen or antibody molecule. A method is mentioned. A method of chemically binding an antigen or antibody via other proteins such as spacer molecules and albumin is also included.
The amount of the substance to be bound or the substance specifically bound to the substance to be measured varies depending on the surface area, functional group amount, etc. of the magnetic carrier particles to be used, but usually 1 μg to 500 μg, preferably 10 μg per 1 mg of magnetic carrier particles. ~ 200 μg. In the case of a label, the amount of the enzyme or luminescent substance supported varies depending on the type of the reactive functional group or the label, but 1 to 50 per molecule of the substance to be measured or the substance that specifically binds to the substance to be measured. , Preferably 5-20.

磁性担体粒子に標識を固定化する場合は、磁性担体粒子表面の官能基を利用して化学的に結合させる方法、または表面に物理的に結合させる方法などがある。
また、本発明において磁性担体粒子または標識と測定すべき物質または測定すべき物質に特異的に結合する物質との結合は、ビオチン又はストレプトアビジン等の生理活性物質、糖鎖とレクチン、または化学的な相互作用を有する物質を介して行うこともできる。
When immobilizing the label on the magnetic carrier particle, there are a method of chemically bonding using a functional group on the surface of the magnetic carrier particle or a method of physically bonding to the surface.
In the present invention, the binding between the magnetic carrier particle or the label and the substance to be measured or the substance that specifically binds to the substance to be measured is a bioactive substance such as biotin or streptavidin, a sugar chain and a lectin, or a chemical substance. It is also possible to carry out via a substance having such an interaction.

さらに、固定化したい測定すべき物質または測定すべき物質に特異的に結合する物質と結合しうる物質、例えば抗体、プロテインA等を利用して、磁性担体粒子または標識と結合させる方法があげられる。
磁性担体粒子の分離に関しては、磁性担体粒子を約1〜3分程度で分離できるような磁場の強度及び容器の形状が好ましい。磁石には、永久磁石、電磁石等を使用することができる。分離は速やかに行われることが好ましく、このため反応容器の大きさは比較的小さい方が好ましい。反応容器の材質としては特に制限はないが、ポリスチレン、アクリルなどのプラスチックや、ガラスで作成したチューブ、キュベットなどがあげられる。
Further, there is a method of binding to a magnetic carrier particle or a label using a substance that can bind to a substance to be immobilized or a substance that specifically binds to the substance to be measured, such as an antibody or protein A. .
Regarding the separation of the magnetic carrier particles, the strength of the magnetic field and the shape of the container are preferred so that the magnetic carrier particles can be separated in about 1 to 3 minutes. A permanent magnet, an electromagnet, etc. can be used for a magnet. Separation is preferably carried out promptly. For this reason, the reaction vessel is preferably relatively small. The material of the reaction vessel is not particularly limited, and examples thereof include plastics such as polystyrene and acrylic, tubes made of glass, and cuvettes.

反応液としては、測定すべき物質と測定すべき物質に特異的に結合する物質とが反応できる溶媒で有れば特に制限はないが、標識を補助試薬を用いて測定する場合は、さらに標識と補助試薬とが反応できる溶媒が好ましく、例えば水性媒体があげられる。
水性媒体としては例えば脱イオン水、蒸留水、緩衝液等があげられるが、緩衝液が好ましい。緩衝液に用いる緩衝剤としては、緩衝能を有するものならば特に限定されないが、pH1〜11の例えば乳酸緩衝剤、クエン酸緩衝剤、酢酸緩衝剤、コハク酸緩衝剤、フタル酸緩衝剤、リン酸緩衝剤、トリエタノールアミン緩衝剤、ジエタノールアミン緩衝剤、リジン緩衝剤、バルビツール緩衝剤、トリス(ヒドロキシメチル)アミノメタン緩衝剤、イミダゾール緩衝剤、リンゴ酸緩衝剤、シュウ酸緩衝剤、グリシン緩衝剤、ホウ酸緩衝剤、炭酸緩衝剤、グリシン緩衝剤、グッド緩衝剤等があげられる。
The reaction solution is not particularly limited as long as it is a solvent that can react with the substance to be measured and the substance that specifically binds to the substance to be measured. However, if the label is measured using an auxiliary reagent, further labeling is required. A solvent capable of reacting with the auxiliary reagent is preferable, and examples thereof include an aqueous medium.
Examples of the aqueous medium include deionized water, distilled water, and a buffer solution, and a buffer solution is preferable. The buffer used in the buffer is not particularly limited as long as it has a buffer capacity, but has a pH of 1 to 11, for example, lactate buffer, citrate buffer, acetate buffer, succinate buffer, phthalate buffer, phosphorus Acid buffer, triethanolamine buffer, diethanolamine buffer, lysine buffer, barbitur buffer, tris (hydroxymethyl) aminomethane buffer, imidazole buffer, malate buffer, oxalate buffer, glycine buffer Borate buffer, carbonate buffer, glycine buffer, Good buffer, and the like.

グッド緩衝剤としては、例えば2−モルホリノエタンスルホン酸(MES)、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis−Tris)、N−(2−アセトアミド)イミノ二酢酸(ADA)、ピペラジン−N,N’−ビス(2−エタンスルホン酸)(PIPES)、N−(2−アセトアミド)−2−アミノエタンスルホン酸(ACES)、3−モルホリノ−2−ヒドロキシプロパンスルホン酸(MOPSO)、N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸(BES)、3−モルホリノプロパンスルホン酸(MOPS)、N−[トリス(ヒドロキシメチル)メチル]−2−アミノエタンスルホン酸(TES)、2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸(HEPES)、3−[N,N−ビス(2−ヒドロキシエチル)アミノ]−2−ヒドロキシプロパンスルホン酸(DIPSO)、N−[トリス(ヒドロキシメチル)メチル]−2−ヒドロキシ−3−アミノプロパンスルホン酸(TAPSO)、ピペラジン−N,N’−ビス(2−ヒドロキシプロパンスルホン酸)(POPSO)、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]−2−ヒドロキシプロパンスルホン酸(HEPPSO)、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸[(H)EPPS]、N−[トリス(ヒドロキシメチル)メチル]グリシン(Tricine)、N,N−ビス(2−ヒドロキシエチル)グリシン(Bicine)、N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸(TAPS)、N−シクロヘキシル−2−アミノエタンスルホン酸(CHES)、N−シクロヘキシル−3−アミノ−2−ヒドロキシプロパンスルホン酸(CAPSO)、N−シクロヘキシル−3−アミノプロパンスルホン酸(CAPS)等があげられる。   Examples of the good buffer include 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminodiacetic acid (ADA), Piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethane Phosphonic acid (HEPES), 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid (DIPSO), N- [tris (hydroxymethyl) methyl] -2-hydroxy-3- Aminopropanesulfonic acid (TAPSO), piperazine-N, N′-bis (2-hydroxypropanesulfonic acid) (POPSO), 3- [4- (2-hydroxyethyl) -1-piperazinyl] -2-hydroxypropanesulfone Acid (HEPPSO), 3- [4- (2-hydroxyethyl) -1-piperazinyl] propanesulfonic acid [(H) EPPS], N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N- Bis (2-hydroxyethyl) glycine (Bicine), N-tris (hydroxymethyl) methyl -3-aminopropanesulfonic acid (TAPS), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-3-amino-2-hydroxypropanesulfonic acid (CAPSO), N-cyclohexyl-3-amino Examples thereof include propanesulfonic acid (CAPS).

緩衝液の濃度は測定に適した濃度であれば特に制限はされないが、例えば0.001〜2.0mol/Lが好ましく、0.005〜1.0mol/Lがより好ましく、0.01〜0.1mol/Lが特に好ましい。
本願発明の測定方法は、例えば以下の工程を含む。
(i)磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質と標識された測定すべき物質に特異的に結合する物質とを反応液中の測定すべき物質に反応させ、または(ii)磁性担体粒子に担持された測定すべき物質に特異的に結合する物質と標識に担持された測定すべき物質とを反応液中の測定すべき物質に反応させ、磁性担体粒子と複合体を形成した標識を生成させる工程および磁性担体粒子と複合体を形成した標識を測定する工程。
The concentration of the buffer solution is not particularly limited as long as it is a concentration suitable for measurement. For example, 0.001 to 2.0 mol / L is preferable, 0.005 to 1.0 mol / L is more preferable, and 0.01 to 0 is preferable. .1 mol / L is particularly preferred.
The measurement method of the present invention includes the following steps, for example.
(I) The substance that specifically binds to the substance to be measured supported on the magnetic carrier particles or the substance to be measured and the substance that specifically binds to the labeled substance to be measured should be measured in the reaction solution. React with a substance, or (ii) react a substance that specifically binds to a substance to be measured supported on magnetic carrier particles and a substance to be measured supported on a label with the substance to be measured in a reaction solution A step of generating a label that forms a complex with magnetic carrier particles, and a step that measures the label that forms a complex with magnetic carrier particles.

磁性担体粒子は、前述の標識を検出するのに使用するシグナルが透過可能な磁性担体粒子である。
磁性担体粒子と複合体を形成した標識の測定は、直接標識を光学的に測定してもよいが、補助試薬を用いて光学的シグナルを生成させ間接的に測定する方法が好ましい。標識の測定は、使用する磁性担体粒子を透過可能な光学的シグナルを用いて、光学的に行うのが好ましい。
The magnetic carrier particle is a magnetic carrier particle capable of transmitting a signal used for detecting the aforementioned label.
For the measurement of the label formed in a complex with the magnetic carrier particles, the label may be directly measured optically, but a method of indirectly measuring by generating an optical signal using an auxiliary reagent is preferable. The measurement of the label is preferably performed optically using an optical signal that can pass through the magnetic carrier particles to be used.

予め既知濃度の測定対象物を用いて作成した測定対象物濃度と生成物量の関係を示す検量線と、該生成物量を比較することにより測定対象物濃度を求めることができる。
反応条件は、特異的結合が起こる条件であれば特に制限はないが、2℃〜50℃が好ましく、20℃〜40℃がより好ましく、25℃〜37℃が特に好ましい。反応時間は特に制限が無く、試薬の混合直後から一昼夜が好ましく、2〜60分間がより好ましく、3〜30分間が特に好ましい。また担体粒子は反応液に対して0.001〜1.0mg/mL、好ましくは0.05〜0.2mg/mLとなるように使用される。試薬添加時の混合は速やかに行う必要があるが、均一に混合された後は静置してもよい。反応液のpHは特に制限はなく、1〜11が好ましく、2〜10がより好ましく、3〜9が特に好ましく、前述の緩衝剤が用いうる。
The concentration of the measurement object can be determined by comparing the product amount with a calibration curve indicating the relationship between the concentration of the measurement object and the product amount, which has been created in advance using a measurement object having a known concentration.
The reaction conditions are not particularly limited as long as specific binding occurs, but are preferably 2 ° C to 50 ° C, more preferably 20 ° C to 40 ° C, and particularly preferably 25 ° C to 37 ° C. The reaction time is not particularly limited, and is preferably one day after the reagent is mixed, more preferably 2 to 60 minutes, and particularly preferably 3 to 30 minutes. The carrier particles are used in an amount of 0.001 to 1.0 mg / mL, preferably 0.05 to 0.2 mg / mL with respect to the reaction solution. Although mixing at the time of reagent addition needs to be performed quickly, after mixing uniformly, it may be left still. There is no restriction | limiting in particular in pH of a reaction liquid, 1-11 are preferable, 2-10 are more preferable, 3-9 are especially preferable, The above-mentioned buffering agent can be used.

反応液は非特異反応を避けるために、例えば塩化ナトリウム等の塩類及びウシ血清アルブミン等のタンパク質を含有してもよい。
磁性担体粒子と標識された抗体が添加されると、試料中の抗原が磁性担体粒子上の抗体及び標識された抗体と結合し、免疫複合体を形成する。次いで免疫複合体を含む磁性担体粒子を磁力により反応液中の容器側面に移動させ、反応液を除いた後、必要に応じて洗浄を数回繰り返すことができる。洗浄方法は特に制限はなく、例えば必要に応じて洗浄液を添加した後、吸引除去する方法があげられる。洗浄液としては、前述の反応液があげられ、必要に応じて、トリトンX−100等の界面活性剤を添加することができる。
In order to avoid non-specific reaction, the reaction solution may contain salts such as sodium chloride and proteins such as bovine serum albumin.
When the magnetic carrier particle and the labeled antibody are added, the antigen in the sample binds to the antibody on the magnetic carrier particle and the labeled antibody to form an immune complex. Next, the magnetic carrier particles containing the immune complex are moved to the side of the container in the reaction solution by magnetic force, and after removing the reaction solution, washing can be repeated several times as necessary. The cleaning method is not particularly limited, and examples thereof include a method of removing by suction after adding a cleaning liquid as necessary. Examples of the cleaning liquid include the reaction liquid described above, and a surfactant such as Triton X-100 can be added as necessary.

ついで反応容器中に残った磁性担体粒子は適切な分散液、例えば前述の反応液に再分散させ、磁性担体粒子上の標識の量を標識に固有の方法で測定する。標識が蛍光物質のときは、蛍光色素に固有の励起光で照射し、同時に放出される蛍光強度を計測することができる。例えばフルオレッセン化合物を標識として用いた場合、490nmで励起し520nmの蛍光を測定することができる。   Next, the magnetic carrier particles remaining in the reaction vessel are redispersed in an appropriate dispersion, for example, the aforementioned reaction solution, and the amount of the label on the magnetic carrier particle is measured by a method specific to the label. When the label is a fluorescent substance, it can be irradiated with excitation light unique to the fluorescent dye, and the fluorescence intensity emitted at the same time can be measured. For example, when a fluorescene compound is used as a label, it can be excited at 490 nm and measure fluorescence at 520 nm.

標識の強度を磁性担体粒子の分散した懸濁状態で光学的に行うことは、分散した磁性担体粒子による光学的な妨害を受けることになる。即ち、磁性担体粒子による遮蔽効果が高すぎると標識の光学的検出を極めて困難なものにするため、使用する磁性担体粒子濃度に制限が生じてしまう。本発明では、この点を改善するため従来の磁性担体粒子の代わりに光透過性磁性担体粒子を用いるものであり、これにより従来と全く変わらない測定手順でより正確な標識強度の計測を可能とさせるものである。   Optically performing the labeling strength in a dispersed suspension state of the magnetic carrier particles is subject to optical interference by the dispersed magnetic carrier particles. That is, if the shielding effect by the magnetic carrier particles is too high, the optical detection of the label becomes extremely difficult, so that the concentration of the magnetic carrier particles used is limited. In the present invention, in order to improve this point, light-transmitting magnetic carrier particles are used in place of the conventional magnetic carrier particles, thereby enabling more accurate measurement of the label intensity with a measurement procedure that is completely different from the conventional one. It is something to be made.

本発明の測定試薬は、例えば下記の試薬があげられる。
標識を検出するのに使用するシグナルが透過可能な磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質、標識された測定すべき物質に特異的に結合する物質を含有する測定すべき物質の測定用試薬。
標識を検出するのに使用するシグナルが透過可能な磁性担体粒子に担持された測定すべき物質に特異的に結合する物質および標識された測定すべき物質を含有する測定すべき物質の測定用試薬。
Examples of the measuring reagent of the present invention include the following reagents.
A substance that specifically binds to a substance to be measured or a substance to be measured supported on a magnetic carrier particle that can transmit a signal used to detect the label, and specifically binds to a substance to be measured or a labeled substance to be measured. A reagent for measuring a substance to be measured containing a substance.
A reagent for measuring a substance to be measured, comprising a substance that specifically binds to the substance to be measured supported on a magnetic carrier particle that can transmit a signal used for detecting the label, and a labeled substance to be measured .

本発明の試薬は、下記のようなキットの形態でも良い
標識を検出するのに使用するシグナルが透過可能な磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質を含む試薬および標識に担持された測定すべき物質に特異的に結合する物質を含む試薬を含むキット。
標識を検出するのに使用するシグナルが透過可能な磁性担体粒子に担持された測定すべき物質を含む試薬および標識に担持された測定すべき物質に特異的に結合する物質を含むキット。
The reagent of the present invention may be in the form of a kit as described below. A substance that specifically binds to a substance to be measured supported on a magnetic carrier particle capable of transmitting a signal used to detect a label or should be measured. A kit comprising a reagent containing a substance and a reagent containing a substance that specifically binds to the substance to be measured carried on the label.
A kit comprising a reagent containing a substance to be measured supported on a magnetic carrier particle capable of transmitting a signal used to detect a label and a substance that specifically binds to the substance to be measured carried on the label.

標識を検出するのに使用するシグナルが透過可能な磁性担体粒子に担持された測定すべき物質に特異的に結合する物質を含む試薬および標識に担持された測定すべき物質を含む試薬を含むキット。
これら試薬およびキットには、前記の緩衝剤、塩類、タンパク質等を含有していてもよい。
A kit including a reagent containing a substance that specifically binds to a substance to be measured supported on a magnetic carrier particle capable of transmitting a signal used to detect the label, and a reagent containing a substance to be measured supported on a label .
These reagents and kits may contain the aforementioned buffer, salts, proteins, and the like.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は以下に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to the following.

酸化鉄から成る磁性担体粒子と光透過性磁性担体粒子の遮蔽効果の比較
光透過性磁性担体粒子を調製するため、市販の厚さ10.1mm、透過率が可視領域において80%、比重6.04および屈折率1.83の粉末磁性ガラス(住田光学ガラス社製)を用い、メノー乳鉢で微粉化した。このとき分粒の目安として、水溶液中に分散させた状態で5分経っても沈降しない画分を採取し、免疫測定に利用可能な一定粒径以下の磁性担体粒子を得た。さらにこれら磁性担体粒子を磁石で集磁させ、3分経っても集磁できずに水溶液中に分散していた磁性担体粒子を除去することで、免疫測定用光透過性磁性担体粒子とした。これらの磁性担体粒子の粒径は顕微鏡による観察から平均粒径が1〜3μmであることが確認された。
Comparison of shielding effect between magnetic carrier particles made of iron oxide and light-transmitting magnetic carrier particles In order to prepare light-transmitting magnetic carrier particles, a commercially available thickness of 10.1 mm, transmittance of 80% in the visible region, and specific gravity of 6. The powdered magnetic glass (made by Sumita Optical Glass Co., Ltd.) having a refractive index of 04 and a refractive index of 1.83 was used to make a fine powder in a menor mortar. At this time, as a guide for sizing, a fraction that did not settle even after 5 minutes in a state of being dispersed in an aqueous solution was collected to obtain magnetic carrier particles having a fixed particle size or less that can be used for immunoassay. Further, these magnetic carrier particles were collected with a magnet, and magnetic carrier particles that were not collected even after 3 minutes and were dispersed in the aqueous solution were removed, thereby obtaining light-transmitting magnetic carrier particles for immunoassay. As for the particle diameter of these magnetic carrier particles, it was confirmed that the average particle diameter was 1 to 3 μm from observation under a microscope.

これら光透過性磁性担体粒子1gに200μLの0.02N NaOHを加え、さらにシランカップリング剤であるN−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン(信越シリコーン社製)200μLを添加し、150℃で2時間反応させた。得られたアミノ基含有光透過性磁性担体粒子は1%トリトンX−100水溶液50mLで5回洗浄し、不要なシランカップリング剤を除去した後、水溶液中に保存した。   200 μL of 0.02N NaOH was added to 1 g of these light transmissive magnetic carrier particles, and 200 μL of N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane (manufactured by Shin-Etsu Silicone) as a silane coupling agent was added, The reaction was carried out at 150 ° C. for 2 hours. The obtained amino group-containing light-transmitting magnetic carrier particles were washed 5 times with 50 mL of 1% Triton X-100 aqueous solution to remove unnecessary silane coupling agents, and then stored in the aqueous solution.

調製した光透過性磁性担体粒子および市販の平均粒径0.5〜1.0μmの酸化鉄を主成分とするアミノ基付加磁性担体粒子(MagnaBind Beads;PIERCE社製:以下磁性担体粒子)をpH7.4の10mmol/Lリン酸緩衝液(PB)にそれぞれ0.3mg/mLで分散させ、この溶液の5mLに発光物質である4−(2−サクシニミジルオキシカルボニルエチル)フェニル−10−メチルアクリジウム−9−カルボン酸フルオロ硫酸(以下アクリジニウム−Iと略記する:同人化学社製)の0.001μg/μLジメチルホルムアミド溶液を10μL添加し、37℃で1時間反応させた。反応後、磁性担体粒子を1%トリトンX−100水溶液50mLで5回洗浄し、不要なアクリジニウム−Iを除去した。また洗浄液は全て回収し、磁性担体粒子に結合しなかったアクリジニウム−Iの総量を以下と同様の手順で測定した。   The prepared light-transmitting magnetic carrier particles and commercially available amino group-added magnetic carrier particles (MagnaBind Beads; manufactured by PIERCE; hereinafter referred to as magnetic carrier particles) containing iron oxide having an average particle size of 0.5 to 1.0 μm as a main component are adjusted to pH 7. .4 of 10 mmol / L phosphate buffer (PB) at 0.3 mg / mL, and 4-mL of luminescent substance 4- (2-succinimidyloxycarbonylethyl) phenyl-10-methyl was dispersed in 5 mL of this solution. 10 μL of 0.001 μg / μL dimethylformamide solution of acridium-9-carboxylic acid fluorosulfuric acid (hereinafter abbreviated as acridinium-I: manufactured by Dojin Chemical Co., Ltd.) was added and reacted at 37 ° C. for 1 hour. After the reaction, the magnetic carrier particles were washed 5 times with 50 mL of 1% Triton X-100 aqueous solution to remove unnecessary acridinium-I. All the washings were recovered and the total amount of acridinium-I not bound to the magnetic carrier particles was measured in the same procedure as described below.

得られたアクリジニウム−I結合光透過磁性担体粒子、及びアクリジニウム−I結合磁性担体粒子は、再び0.3mg/mLの濃度で水溶液中に分散させ、この100μLに0.1N水酸化ナトリウムと0.3%過酸化水素を含む水溶液200μLを添加し、結合したアクリジニウム−Iを発光させた。この検出は発光光度計(バイオルマットLB9500T;ベルトールド社製)を用い、発光光度計で捉えられた全発光カウントの積算値を標識強度として算出した。   The obtained acridinium-I bonded light transmitting magnetic carrier particles and acridinium-I bonded magnetic carrier particles were again dispersed in an aqueous solution at a concentration of 0.3 mg / mL. 200 μL of an aqueous solution containing 3% hydrogen peroxide was added to cause the bound acridinium-I to emit light. This detection was performed using a luminescence photometer (Biormatt LB9500T; manufactured by Bertolud), and the integrated value of all luminescence counts captured by the luminescence photometer was calculated as the label intensity.

アクリジニウム−I結合光透過性磁性担体粒子、及びアクリジニウム−I結合磁性担体粒子それぞれの発光カウント、及びアクリジニウム−I固定化時に結合せず洗浄液中に抽出された発光カウントを第1表に示す。なお、発光強度は、相対値(RLU)を示す。   Table 1 shows the luminescence counts of the acridinium-I-coupled light-transmitting magnetic carrier particles and the acridinium-I-coupled magnetic carrier particles, and the luminescence counts extracted into the cleaning solution without being bound when acridinium-I was immobilized. The light emission intensity indicates a relative value (RLU).

Figure 2006162467
Figure 2006162467

この結果、それぞれ一定量の磁性担体粒子上で観察された発光カウントはアクリジニウム−I結合光透過性磁性担体粒子の方が高い結果となった。ここで洗浄液中に抽出された未結合のアクリジニウム−Iは微少量であったことから、両磁性担体粒子上に固定化されたアクリジニウム−Iの量は一定と見なすことができる。従って得られた発光カウントの差は各磁性担体粒子の遮蔽効果に依存した違いと見なすことができ、光透過性磁性担体粒子を用いることにより正確な発光カウントが得られることが示唆された。   As a result, the emission counts observed on each of the fixed amount of magnetic carrier particles were higher for the acridinium-I bonded light transmissive magnetic carrier particles. Here, since the amount of unbound acridinium-I extracted into the washing solution was very small, the amount of acridinium-I immobilized on both magnetic carrier particles can be regarded as constant. Therefore, the difference in the obtained luminescence count can be regarded as a difference depending on the shielding effect of each magnetic carrier particle, suggesting that an accurate luminescence count can be obtained by using the light-transmitting magnetic carrier particles.

なお、本試験に使用した光透過性磁性粒子は、蒸留水に0.1mg/mlの濃度で懸濁させた場合、1cmの600nmの光の透過率は、51.1%であった。一方磁性担体粒子は、蒸留水に0.1mg/mlの濃度で懸濁させた場合、1cmの600nmの光の透過率は、5.1%であった。   When the light-transmitting magnetic particles used in this test were suspended in distilled water at a concentration of 0.1 mg / ml, the transmittance of 1 cm of 600 nm light was 51.1%. On the other hand, when the magnetic carrier particles were suspended in distilled water at a concentration of 0.1 mg / ml, the transmittance of 1 cm of 600 nm light was 5.1%.

光透過性磁性担体粒子を用いた免疫測定系
光透過性磁性担体粒子及び蛍光物質であるフルオレッセンで標識した抗体を用いてCRP測定系を構築した例を示す。
担体粒子含有試薬の調製
実施例1で調製した光透過性磁性担体粒子100mgをpH5.5、10mmol/mLの酢酸緩衝液5mL中に分散させ、グルタルアルデヒド(和光純薬社製)1mLを添加し、37℃で1時間振とうさせ、活性化させた。光透過性磁性担体粒子は酢酸緩衝液100mLで5回洗浄し、酢酸緩衝液中に10mg/mLの濃度に調製した。固定化する抗CRP抗体は酢酸緩衝液中に1mg/mLとなるよう調製し、この20mLを光透過性磁性担体粒子分散溶液中に添加した。同分散溶液を密閉溶液に入れ、37℃恒温槽中で一晩反応させた。反応後、抗CRP抗体固定化光透過性磁性担体粒子は酢酸緩衝液100mLで5回洗浄し、0.1%BSA及び0.1%NaNを含むpH7.4の10mmol/Lリン酸緩衝液(BSA/PBS)に0.1mg/mLとなるよう加え、担体粒子含有試薬とした。
Immunoassay system using light transmissive magnetic carrier particles An example in which a CRP measurement system is constructed using light transmissive magnetic carrier particles and an antibody labeled with a fluorescent substance, fluorescein, is shown.
Preparation of reagent containing carrier particles 100 mg of the light transmissive magnetic carrier particles prepared in Example 1 were dispersed in 5 mL of an acetic acid buffer solution having a pH of 5.5 and 10 mmol / mL, and 1 mL of glutaraldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) was added. And activated by shaking at 37 ° C. for 1 hour. The light-transmitting magnetic carrier particles were washed 5 times with 100 mL of acetate buffer and adjusted to a concentration of 10 mg / mL in acetate buffer. The anti-CRP antibody to be immobilized was prepared to 1 mg / mL in an acetate buffer, and 20 mL of this was added to the light-transmitting magnetic carrier particle dispersion solution. The dispersion solution was put into a sealed solution and allowed to react overnight in a constant temperature bath at 37 ° C. After the reaction, the anti-CRP antibody-immobilized light-transmitting magnetic carrier particles are washed 5 times with 100 mL of acetate buffer solution, and 10 mmol / L phosphate buffer solution of pH 7.4 containing 0.1% BSA and 0.1% NaN 3. It added to (BSA / PBS) so that it might become 0.1 mg / mL, and it was set as the carrier particle containing reagent.

標識試薬の調製
抗CRPモノクロナール抗体(以下、抗CRP抗体)は100mmol/L炭酸緩衝液(pH8.5)に1.0mg/mLとなるように溶解させ、テキサスレッド(PIERCE社製)のDMSO溶液(1mg/mL)100μLを加え、室温で1時間反応させた。反応後、未反応の標識体を除くためにセファデックスG−25カラムクロマトグラフィー(ファルマシア社製)で精製し、テキサスレッド標識抗CRP抗体を得た。これをBSA/PBSに0.01mg/mLとなるよう加え、標識試薬とした。
Preparation of Labeling Reagent Anti-CRP monoclonal antibody (hereinafter referred to as anti-CRP antibody) was dissolved in 100 mmol / L carbonate buffer (pH 8.5) to a concentration of 1.0 mg / mL, and Texas Red (manufactured by PIERCE) DMSO. 100 μL of the solution (1 mg / mL) was added and reacted at room temperature for 1 hour. After the reaction, in order to remove the unreacted label, the product was purified by Sephadex G-25 column chromatography (Pharmacia) to obtain a Texas Red labeled anti-CRP antibody. This was added to BSA / PBS at 0.01 mg / mL to obtain a labeling reagent.

標準抗原溶液の測定
標準のCRP抗原溶液は、CRPリコンビナント(rCRP;オリエンタル酵母工業社製)を2mmol/Lの塩化カルシウム及び0.1%のBSAを含むpH7.2のリン酸緩衝液で希釈した溶液を用いた。
この標準抗原の測定は標準抗原溶液50μLに担体粒子含有試薬300μL、及び標識試薬100μLを反応容器内で混合し、37℃で5分間反応させた。反応後、反応容器の両側に磁石を配し、反応液中に分散している光透過性磁性担体粒子を集磁させ、反応液及び未反応の標識抗体を除去した。さらに蒸留水1mLの添加と除去を2回繰り返し、反応液及び未反応の標識抗体を十分に除去した。次に磁性担体粒子上に形成された免疫複合体中の標識の量を測定するため、蒸留水100μLを添加し、該光透過性磁性担体粒子を分散させ、分光蛍光光度計(F−4000;日立製作所製)を用いて、標識体に固有の励起光(Ex:596nm)及び蛍光(Em:615nm)で測定した。この結果、測定可能なCRPの濃度範囲は、少なくとも蛍光強度と抗原濃度の関係から0.001〜5.0mg/dLであった。結果を図1に示す。
Measurement of Standard Antigen Solution As a standard CRP antigen solution, CRP recombinant (rCRP; manufactured by Oriental Yeast Co., Ltd.) was diluted with a phosphate buffer solution of pH 7.2 containing 2 mmol / L calcium chloride and 0.1% BSA. The solution was used.
For measurement of this standard antigen, 50 μL of a standard antigen solution was mixed with 300 μL of a carrier particle-containing reagent and 100 μL of a labeling reagent in a reaction vessel, and reacted at 37 ° C. for 5 minutes. After the reaction, magnets were arranged on both sides of the reaction vessel to collect the light-transmitting magnetic carrier particles dispersed in the reaction solution, and the reaction solution and unreacted labeled antibody were removed. Furthermore, addition and removal of 1 mL of distilled water were repeated twice to sufficiently remove the reaction solution and unreacted labeled antibody. Next, in order to measure the amount of the label in the immune complex formed on the magnetic carrier particles, 100 μL of distilled water is added to disperse the light-transmitting magnetic carrier particles, and a spectrofluorophotometer (F-4000; (Manufactured by Hitachi, Ltd.), and measured with excitation light (Ex: 596 nm) and fluorescence (Em: 615 nm) specific to the label. As a result, the measurable CRP concentration range was 0.001 to 5.0 mg / dL based on at least the relationship between fluorescence intensity and antigen concentration. The results are shown in FIG.

またCRPを添加した健常人血清3種(CRP濃度:血清1は0.50mg/dL、血清2は1.0mg/dL、血清3は2.0mg/dL)を測定し、上記蛍光強度と抗原濃度の関係からそれぞれの濃度を算出したところ、各濃度値は同等の数値を示した。結果を第2表に示す。   In addition, three types of healthy human serum to which CRP was added (CRP concentrations: 0.50 mg / dL for serum 1, 1.0 mg / dL for serum 2, 2.0 mg / dL for serum 3) were measured, and the fluorescence intensity and antigen were measured. When each concentration was calculated from the relationship of the concentration, each concentration value showed an equivalent numerical value. The results are shown in Table 2.

Figure 2006162467
Figure 2006162467

実施例2で得られたCRP濃度とフルオレッセン蛍光強度を示す図である。It is a figure which shows the CRP density | concentration and fluorescence intensity which were obtained in Example 2.

Claims (10)

(i)磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質と標識された測定すべき物質に特異的に結合する物質とを反応液中の測定すべき物質に反応させ、または(ii)磁性担体粒子に担持された測定すべき物質に特異的に結合する物質と標識された測定すべき物質とを反応液中の測定すべき物質に反応させ、磁性担体粒子と複合体を形成した標識を生成させる工程、および磁性担体粒子と複合体を形成した標識を測定する工程を含み、磁性担体粒子が標識を検出するのに使用するシグナルが透過可能な磁性担体粒子であることを特徴とする測定すべき物質の測定方法。 (I) The substance that specifically binds to the substance to be measured supported on the magnetic carrier particles or the substance to be measured and the substance that specifically binds to the labeled substance to be measured should be measured in the reaction solution. React with a substance, or (ii) react a substance that specifically binds to the substance to be measured supported on the magnetic carrier particles and a labeled substance to be measured with the substance to be measured in the reaction solution, A magnetic material capable of transmitting a signal used by the magnetic carrier particles to detect the label, including a step of generating a label that forms a complex with the carrier particle, and a step of measuring the label that forms a complex with the magnetic carrier particle. A method for measuring a substance to be measured, which is a carrier particle. 標識を測定する工程が磁性担体粒子と複合体を形成した状態で行われる請求項1記載の測定方法。 The measurement method according to claim 1, wherein the step of measuring the label is performed in a state where a complex is formed with the magnetic carrier particles. 磁性担体粒子が、蒸留水に0.1mg/mLの濃度で懸濁した状態で、標識を検出するのに使用するシグナルの1cmにおける透過率が20%以上である磁性粒子である請求項1または2記載の方法。 The magnetic carrier particle is a magnetic particle having a transmittance of 20% or more at 1 cm of a signal used for detecting a label in a state suspended in distilled water at a concentration of 0.1 mg / mL. 2. The method according to 2. 標識が酵素、発光物質、蛍光物質および色原体から選ばれる標識である請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the label is a label selected from an enzyme, a luminescent substance, a fluorescent substance, and a chromogen. 測定すべき物質に特異的に結合する物質が抗体である請求項1〜4のいずれかに記載の方法。 The method according to claim 1, wherein the substance that specifically binds to the substance to be measured is an antibody. 磁性担体粒子に担持された測定すべき物質に特異的に結合する物質もしくは測定すべき物質、および標識された測定すべき物質に特異的に結合する物質を含有し、磁性担体粒子が標識を検出するのに使用するシグナルが透過可能な磁性担体粒子である測定すべき物質の測定用試薬。 Contains a substance that specifically binds to a substance to be measured, or a substance to be measured, and a substance that specifically binds to a labeled substance to be measured, and the magnetic carrier particles detect the label. A reagent for measuring a substance to be measured, which is a magnetic carrier particle capable of transmitting a signal to be used. 磁性担体粒子に担持された測定すべき物質に特異的に結合する物質、および標識された測定すべき物質を含有し、磁性担体粒子が標識を検出するのに使用するシグナルが透過可能な磁性担体粒子である測定すべき物質の測定用試薬。 A magnetic carrier that contains a substance that specifically binds to the substance to be measured carried on the magnetic carrier particles, and a labeled substance to be measured and that is permeable to the signal used by the magnetic carrier particles to detect the label A reagent for measuring a substance to be measured which is a particle. 磁性担体粒子が、蒸留水に0.1mg/mLの濃度で懸濁した状態で、標識を検出するのに使用するシグナルの1cmにおける透過率が20%以上である磁性粒子である請求項6または7記載の試薬。 The magnetic carrier particles are magnetic particles having a transmittance of 20% or more at 1 cm of a signal used for detecting a label in a state suspended in distilled water at a concentration of 0.1 mg / mL. 7. The reagent according to 7. 標識が酵素、発光物質、蛍光物質または色原体である請求項6〜8のいずれかに記載の試薬。 The reagent according to any one of claims 6 to 8, wherein the label is an enzyme, a luminescent substance, a fluorescent substance, or a chromogen. 測定すべき物質に特異的に結合する物質が抗体である請求項6〜9のいずれかに記載の試薬。 The reagent according to any one of claims 6 to 9, wherein the substance that specifically binds to the substance to be measured is an antibody.
JP2004355304A 2004-12-08 2004-12-08 Immunity measurement method using light transmissive magnetic particle Withdrawn JP2006162467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355304A JP2006162467A (en) 2004-12-08 2004-12-08 Immunity measurement method using light transmissive magnetic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355304A JP2006162467A (en) 2004-12-08 2004-12-08 Immunity measurement method using light transmissive magnetic particle

Publications (1)

Publication Number Publication Date
JP2006162467A true JP2006162467A (en) 2006-06-22

Family

ID=36664654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355304A Withdrawn JP2006162467A (en) 2004-12-08 2004-12-08 Immunity measurement method using light transmissive magnetic particle

Country Status (1)

Country Link
JP (1) JP2006162467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077658A (en) * 2007-09-26 2009-04-16 Osaka Prefecture Method for quickly detecting campylobacter in feces
JP2010032360A (en) * 2008-07-29 2010-02-12 Chisso Corp Concentration measuring method of measuring target substance using magnetic particle
CN105548549A (en) * 2015-12-08 2016-05-04 孙丽华 Kit for quantitative detection of carcinoembryonic antigen (CEA) and preparation method of kit
CN113109325A (en) * 2021-03-16 2021-07-13 华南理工大学 Pepsinogen I enzymatic chemiluminescence detection kit and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077658A (en) * 2007-09-26 2009-04-16 Osaka Prefecture Method for quickly detecting campylobacter in feces
JP2010032360A (en) * 2008-07-29 2010-02-12 Chisso Corp Concentration measuring method of measuring target substance using magnetic particle
CN105548549A (en) * 2015-12-08 2016-05-04 孙丽华 Kit for quantitative detection of carcinoembryonic antigen (CEA) and preparation method of kit
CN113109325A (en) * 2021-03-16 2021-07-13 华南理工大学 Pepsinogen I enzymatic chemiluminescence detection kit and preparation method and application thereof

Similar Documents

Publication Publication Date Title
RU2608656C2 (en) Magnetic particles associated with streptavidin and method of production thereof
CA2668001C (en) A method of immunoassaying a component to be measured in a sample containing hemoglobin
JP6014091B2 (en) Method for measuring component to be measured in sample and measurement kit
JP2006010534A (en) Core-shell type magnetic particle sensor
CN111751527A (en) Novel coronavirus IgG and IgM antibody detection kit and preparation method and application thereof
JP2008216237A (en) Immunodiagnostic drug with reduced nonspecific reaction
KR101882533B1 (en) Method for measuring fibroblast growth factor-23 and reagent therefor
JP4167491B2 (en) Whole blood measurement method
JP2006162466A (en) Method for measuring substance to be measured and measurement reagent
JP5356951B2 (en) Reagent for immunoassay and reagent kit for immunoassay
JP2010032360A (en) Concentration measuring method of measuring target substance using magnetic particle
JP4879067B2 (en) Sample preparation solution for immunoassay, reagent kit for immunoassay, and immunoassay method
JP2014228385A (en) Immunity test method and immunity test kit
WO2009084369A1 (en) Reagent for detecting hiv-1 antigen and detection method
JP2006162467A (en) Immunity measurement method using light transmissive magnetic particle
KR20010025027A (en) Immunoassay reagents and immunoassay method
JPH0580052A (en) Apparatus and method for measuring substance in vivo
JPH0843391A (en) Measuring method for antigen antibody reaction
JP2000321279A (en) Immunoreagent and kit for immunoassay
JPH08146001A (en) Immunoassay and apparatus
WO2018079674A1 (en) Method for selecting subject needing treatment for dyslipidemia and reagent for such selection
WO2024038863A1 (en) Immunoassay method and reagent
JPH0772155A (en) Method for measuring antigen-antibody reaction
WO2005121790A1 (en) Composition for improving sensitivity of measurement
JP3458251B2 (en) Chemiluminescence method using fibrous material for solid phase

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304