JP2006143411A - Paper carrying device and image forming device using it - Google Patents

Paper carrying device and image forming device using it Download PDF

Info

Publication number
JP2006143411A
JP2006143411A JP2004336725A JP2004336725A JP2006143411A JP 2006143411 A JP2006143411 A JP 2006143411A JP 2004336725 A JP2004336725 A JP 2004336725A JP 2004336725 A JP2004336725 A JP 2004336725A JP 2006143411 A JP2006143411 A JP 2006143411A
Authority
JP
Japan
Prior art keywords
paper
sheet
time
succeeding
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004336725A
Other languages
Japanese (ja)
Other versions
JP4570941B2 (en
Inventor
Kenji Ueda
賢司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004336725A priority Critical patent/JP4570941B2/en
Publication of JP2006143411A publication Critical patent/JP2006143411A/en
Application granted granted Critical
Publication of JP4570941B2 publication Critical patent/JP4570941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sheets, Magazines, And Separation Thereof (AREA)
  • Registering Or Overturning Sheets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paper carrying device capable of reducing paper interval dispersion in paper feeding operation and capable of reducing intervals between the paper sheets, and an image forming device using it. <P>SOLUTION: Detection of a rear end of preceding paper P1 passing a position of a paper sensor (b) by the paper sensor (b) is taken as a trigger, the paper carrying device starts to drive a first carrying roller 1 in order to carry following paper P2 when predetermined time T1 (≥0) passes after passing of the rear end of the preceding paper P1, and measures paper interval time t1 after the rear end of the preceding paper P1 passes the paper sensor (b) before a tip of following paper P2 reaches the paper sensor (b). Paper linear velocity V3 of the following paper P2 after that and carrying timing such as the time for stopping the following paper P2 are determined in accordance with the measured paper interval time t1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、用紙搬送装置及びこれを使用した画像形成装置に関し、特に、給紙動作における紙間バラツキを低減し、紙間を小さくすることができる用紙搬送装置及びこれを使用した画像形成装置に関する。   The present invention relates to a sheet conveying device and an image forming apparatus using the same, and more particularly, to a sheet conveying device capable of reducing variation between sheets in a sheet feeding operation and reducing the sheet interval, and an image forming apparatus using the same. .

図23に従来の用紙搬送装置(FRR分離方式を使用)の横断面を示す。用紙搬送装置はコピー機やプリンタなどの画像形成装置の給紙搬送部として機能するものである。同図において、用紙積載部1aに積載された用紙2aは先端位置がAの位置にある。用紙搬送装置に給紙開始を伝える給紙信号がONとなるのをトリガとしてピックアップローラ3が下降、回転し用紙を分離部Bに送り出す。フィードローラ4、リバースローラ5はピックアップローラ3の駆動と同時に駆動され、用紙を1枚に分離する。
この例ではピックアップローラ3、フィードローラ4、リバースローラ5は1つのモータで駆動されている。1枚に分離された用紙2aの先端が用紙センサa(C)に達するとピックアップローラ3が上昇+駆動が切れ、ピックアップローラ3による用紙の搬送が無くなる。その後用紙はフィードローラ4の搬送力により搬送され第1搬送ローラ1(E)に達する。フィードローラ4の駆動はフィードローラ4の駆動開始後一定時間t1後に切れるが、このときの用紙先端位置(F)は用紙先端が第1搬送ローラ1(E)に達した後となるよう設定されている。
フィードローラ4の駆動が切れた後は、用紙は第1搬送ローラ1(E)により送られる。その後、用紙先端が用紙センサb、第2搬送ローラ2(E’)、用紙センサFを通過する。用紙先端が用紙センサFを通過したこと(=センサFが用紙先端を検知したこと)をトリガとして感光体への画像書込みが開始される(センサFがONしてから20msec後に画像書込みスタートというような制御による)。
第1搬送ローラ1(E)、第2搬送ローラ2(E’)はそれぞれ別のモータ(図示せず)で駆動されている。用紙先端が用紙センサc(I)に達した後t2後(このとき用紙先端はレジストローラ(K)に達するようにt2が設定されており、レジストローラは停止している。このt2の設定により、用紙先端はレジストローラの前でたるみを作りスキュー補正を行う。この例ではt2=37.5msec)に搬送ローラモータはOFFとなり第1搬送ローラ1(E)、2(E’)は駆動OFFとなる。
その後、レジストローラの駆動ONと同時に搬送ローラ用のモータはONとなり第1搬送ローラ1(E)、第2搬送ローラ2(E’)は回転を始め、用紙は感光体6と転写ローラ7からなる転写部に送られ画像を転写される。レジストローラONのタイミングは用紙センサFがON後時間t3後にONとなるよう設定されている。これにより感光体6に書き込まれた画像と用紙位置を合わせている。
FIG. 23 shows a cross section of a conventional paper conveying apparatus (using the FRR separation method). The sheet conveying device functions as a sheet feeding / conveying unit of an image forming apparatus such as a copier or a printer. In the figure, the leading edge of the paper 2a stacked on the paper stacking unit 1a is at the position A. The pickup roller 3 descends and rotates with a paper feed signal that tells the paper transport device to start feeding as a trigger, and feeds the paper to the separation unit B. The feed roller 4 and the reverse roller 5 are driven simultaneously with the driving of the pickup roller 3 to separate the paper into one sheet.
In this example, the pickup roller 3, the feed roller 4, and the reverse roller 5 are driven by one motor. When the leading edge of the sheet 2a separated into one sheet reaches the sheet sensor a (C), the pickup roller 3 is raised and driven, and the sheet is not conveyed by the pickup roller 3. Thereafter, the sheet is conveyed by the conveying force of the feed roller 4 and reaches the first conveying roller 1 (E). The drive of the feed roller 4 is cut off after a predetermined time t1 after the start of the drive of the feed roller 4, but the paper leading edge position (F) at this time is set so that the paper leading edge reaches the first conveying roller 1 (E). ing.
After the drive of the feed roller 4 is cut off, the paper is fed by the first transport roller 1 (E). Thereafter, the leading edge of the paper passes through the paper sensor b, the second transport roller 2 (E ′), and the paper sensor F. Image writing to the photosensitive member is triggered by the fact that the leading edge of the sheet has passed the sheet sensor F (= sensor F has detected the leading edge of the sheet) (such as starting image writing 20 msec after the sensor F is turned on). Control).
The first transport roller 1 (E) and the second transport roller 2 (E ′) are driven by separate motors (not shown). After t2 after the leading edge of the sheet reaches the sheet sensor c (I) (at this time, t2 is set so that the leading edge of the sheet reaches the registration roller (K), and the registration roller is stopped. The leading edge of the paper forms a slack in front of the registration roller and performs skew correction (in this example, at t2 = 37.5 msec), the conveyance roller motor is turned off and the first conveyance rollers 1 (E) and 2 (E ′) are driven off. It becomes.
Thereafter, at the same time when the registration roller is turned on, the motor for the conveyance roller is turned on, and the first conveyance roller 1 (E) and the second conveyance roller 2 (E ′) start to rotate, and the sheet is fed from the photosensitive member 6 and the transfer roller 7. The image is transferred to the transfer section. The registration roller ON timing is set to be ON after time t3 after the paper sensor F is turned ON. As a result, the image written on the photosensitive member 6 is aligned with the paper position.

コピー、プリンタ等の画像形成装置において、従来は用紙を連続して搬送する場合、1枚給紙後次の用紙を給紙する際に間隔を空けて(以降この間隔を紙間と記す)給紙し、搬送しているものがほとんどである。用紙先端をセンサで検知させ、画像書き込みのトリガとする、レジストローラ部の用紙先端を止めてスキュー補正、画像との位置合わせを行う等の理由のため、用紙搬送時にはある一定以上の紙間は必要であり、紙間をあけるには給紙部で用紙を送り出す際に紙間をあけて送り出すのが簡単であることから、給紙部で紙間をあけて用紙を搬送することが一般的な方法となっている。
しかし、給紙部で紙間を開けていることによる不具合も生じている。近年、コピー、プリンタ等の画像形成装置において生産性向上等の理由から紙間をできるだけ短縮したいというニーズが大きくなってきている。そして、搬送される用紙の紙間の間隔を短縮して生産性を向上しようとするものが提案されて公知である(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5を参照)。
これは、同一線速(用紙送り速度)であれば紙間距離が短いほどコピー、プリントの速度が速くできることから、従来から低コスト化を求め(同一プリント速度を狙うのであればローラの回転数をあげる必要がないためモータ等の部品を1ランク低価格のものを使用できる)、静音化(同一プリント速度を狙うのであればローラの回転数をあげる必要がないためモータの騒音を下げられる)、耐久性の向上(紙間で余分にモータを回す必要がないことなどから耐久性を向上できる)などを目的とするものである。
特開平5−193782号公報 特開2001−301998公報 特開2001−072268公報 特開平11−059965号公報 特開2002−347976公報
Conventionally, in an image forming apparatus such as a copy or printer, when continuously transporting paper, an interval is provided when the next paper is fed after feeding one sheet (hereinafter, this spacing is referred to as a paper gap). Most are paper and transported. For reasons such as detecting the leading edge of the paper with a sensor and triggering image writing, stopping the paper leading edge of the registration roller section to perform skew correction, aligning with the image, etc. It is necessary, and it is easy to leave the paper when the paper is sent out by the paper feed unit to feed the paper. It has become a method.
However, there is a problem due to the gap between the sheets in the sheet feeding unit. In recent years, there has been an increasing need to shorten the sheet interval as much as possible for reasons such as productivity improvement in image forming apparatuses such as copying and printers. And it is well-known that an attempt is made to improve productivity by shortening the interval between papers to be conveyed (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5). See).
This is because if the same linear speed (paper feed speed) is used, the shorter the distance between the papers, the faster the copying and printing speeds. Therefore, conventionally, cost reduction has been sought (if aiming at the same printing speed, the number of rotations of the roller must be reduced). Because there is no need to increase the speed, it is possible to use motors and other parts that are one rank lower in price.) Silence (If you aim for the same print speed, you do not need to increase the number of rotations of the roller, so the motor noise can be reduced), The purpose is to improve durability (it is possible to improve durability because there is no need to rotate the motor extra between papers).
Japanese Patent Laid-Open No. 5-193782 JP 2001-301998 A JP 2001-072268 A JP 11-059965 A JP 2002-347976

しかし、従来においては、給紙部で紙間を開ける方式では以下のような不具合があった。
先ず、給紙時の用紙スリップのバラツキによる紙間バラツキが発生するという欠点がある。
これは、用紙は用紙を搬送するローラの搬送力と用紙を搬送する際の負荷との関係によりスリップを生じながら搬送される。このとき搬送力が負荷に対して充分に大きいとスリップは小さく安定した線速で送られる。しかし、一般に給紙用ローラによる用紙搬送では、分離部での負荷が給紙用ローラの搬送力に対して比較的大きい場合が多く、また分離状態、用紙の種類などによっても負荷のバラツキを生じる。また、ローラの経時でのゴムの劣化、紙粉、汚れ等の付着による摩擦係数の低下等の影響によって搬送力がバラツキやすい。このため、他の搬送用ローラなどに比べてスリップが大きく、またそのバラツキも大きくなりやすい。この結果として、給紙開始から用紙先端が第1搬送ローラ1に送られるまでの間で用紙線速がバラツキやすく、結果として紙間のバラツキが大きくなってしまう(用紙先端が第1搬送ローラ1に噛んだ後は搬送ローラの搬送力が加わるため、負荷に対して用紙の搬送力が十分に大きくなり、スリップによる線速のバラツキは小さくなる)。紙間のバラツキが大きくなると紙間がばらついた状態で必要な紙間を確保するためには紙間の中央値を大きめに設定し、紙間がばらついても必要な紙間を確保できるようにする必要があった。このため、紙間を小さくするためには紙間のバラツキを小さくする必要がある。
また、用紙の待機位置のバラツキによる紙間距離のバラツキが発生するという欠点がある。
これは給紙される用紙の先端位置は用紙の待機位置(図23の(A))から分離部(図23の(B))までの間で待機している。従来の給紙部で紙間を開ける方式で用紙を連続して給紙する場合、用紙の先端位置のバラツキが紙間距離のバラツキとなってしまう。このため、上記1と同様に紙間のバラツキが大きくなると紙間がばらついた状態で必要な紙間を確保するためには紙間の中央値を大きめに設定し、紙間がばらついても必要な紙間を確保できる用にする必要があった。
そこで、本発明は、上述した実情を考慮してなされたもので、給紙動作における紙間バラツキを低減し、紙間を小さくすることができる用紙搬送装置及びこれを使用した画像形成装置を提供することを目的とする。
However, conventionally, the method of opening a gap between sheets in the sheet feeding unit has the following problems.
First, there is a drawback in that there is a paper-to-paper variation due to a paper slip variation during paper feeding.
This is because the sheet is conveyed while slipping due to the relationship between the conveying force of the roller for conveying the sheet and the load when conveying the sheet. At this time, if the conveying force is sufficiently large with respect to the load, the slip is small and is fed at a stable linear speed. However, in general, in the sheet conveyance by the sheet feeding roller, the load on the separation unit is often relatively large with respect to the conveyance force of the sheet feeding roller, and the load varies depending on the separation state, the type of the sheet, and the like. . In addition, the conveying force tends to vary due to the influence of the deterioration of the rubber over time, the reduction of the friction coefficient due to the adhesion of paper dust, dirt and the like. For this reason, the slip is larger than that of other conveying rollers, and the variation is likely to increase. As a result, the line speed of the sheet is likely to vary from the start of paper feeding until the leading edge of the sheet is sent to the first conveying roller 1, and as a result, the variation between the sheets becomes large (the leading edge of the sheet is the first conveying roller 1). Since the conveying force of the conveying roller is applied after the biting, the sheet conveying force becomes sufficiently large with respect to the load, and the variation in the linear velocity due to the slip is reduced). In order to ensure the required paper gap when the paper gap varies, the median value between the papers is set to a large value so that the required paper gap can be secured even if the paper gap varies. There was a need to do. For this reason, in order to reduce the gap between the sheets, it is necessary to reduce the variation between the sheets.
In addition, there is a drawback in that variations in the distance between the sheets due to variations in the standby position of the sheets occur.
This is because the leading edge of the fed paper is waiting from the paper standby position (FIG. 23A) to the separation unit (FIG. 23B). When the paper is continuously fed by the conventional paper feeding unit in which the paper gap is opened, the variation in the front end position of the paper becomes the variation in the distance between the papers. For this reason, in the same way as in 1 above, when the variation between the papers becomes large, in order to secure the necessary paper space in the state where the paper space varies, the median value between the papers is set to be large, and it is necessary even if the paper space varies. It was necessary to make it possible to secure a gap between papers.
Accordingly, the present invention has been made in consideration of the above-described circumstances, and provides a paper transport device that can reduce paper-to-paper variations in a paper feeding operation and can reduce the paper-to-paper space, and an image forming apparatus using the same. The purpose is to do.

上記の課題を解決するために、請求項1に記載の発明は、用紙を用紙積載部から送り出すための給紙ローラと、用紙を1枚に分離するための分離手段と、前記給紙ローラより下流の搬送路に設けられ、用紙を搬送する第1搬送ローラと、前記第1搬送ローラより下流の搬送路に設けられ、用紙を搬送する第2搬送ローラと、前記第1搬送ローラと前記第2搬送ローラの間に位置する用紙センサと、制御部と、を備え、前記制御部は、連続して給紙を行う場合には、用紙を前記用紙積載部から給紙する際に用紙の間隔をあけずに連続して給紙を行い、先行する用紙の後端が前記第1搬送ローラを抜けた以降のタイミングで前記第2搬送ローラの駆動は切らずに先行紙の搬送を続けたまま前記第1搬送ローラの駆動を切って後行紙の搬送を止めることにより、前記第1搬送ローラと前記第2搬送ローラの間で紙間距離を開けて以降搬送し、前記用紙センサにより前記用紙センサの位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラの駆動を開始して後行紙を搬送すると共に、先行紙後端が前記用紙センサを抜けてから後行紙先端が前記用紙センサに達するまでの紙間時間t1の測定を行い、測定された紙間時間t1の値に応じて以降の後行紙用紙線速V3の大きさ、あるいは後行紙を停止する時間等の搬送タイミングを決定する用紙搬送装置を最も主要な特徴とする。
また、請求項2に記載の発明は、前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは前記用紙センサの位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラの回転数を前記第1搬送ローラ1の回転数を変えることで測定した紙間時間t1に応じて決められる用紙線速V3で搬送され、用紙センサの位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定した用紙搬送装置を主要な特徴とする。
In order to solve the above-described problem, the invention according to claim 1 includes: a paper feed roller for feeding paper from a paper stacking unit; a separation unit for separating paper into one sheet; and the paper feed roller. A first conveyance roller that is provided in a downstream conveyance path and conveys a sheet, a second conveyance roller that is disposed in a conveyance path downstream of the first conveyance roller and conveys a sheet, the first conveyance roller, and the first conveyance roller A paper sensor positioned between the two transport rollers and a control unit, and the control unit, when continuously feeding paper, feeds a paper interval when the paper is fed from the paper stacking unit. The paper is continuously fed without opening the sheet, and at the timing after the trailing edge of the preceding sheet passes through the first conveying roller, the second conveying roller continues to be conveyed without turning off the second conveying roller. Stop driving the first conveying roller and stop conveying the following paper , The sheet is transported after a distance between the first transport roller and the second transport roller is increased, and it is detected by the paper sensor that the trailing edge of the preceding paper has passed through the position of the paper sensor. As a trigger, the drive of the first transport roller is started after a predetermined time T1 (≧ 0) after the trailing edge of the preceding paper sheet has passed, and the trailing sheet is transported. The paper interval time t1 until the leading edge of the line paper reaches the paper sensor is measured, and the size of the subsequent paper sheet linear velocity V3 or the following paper is determined according to the value of the measured paper interval time t1. The most important feature is a paper transport device that determines transport timing such as a stop time.
In the invention according to claim 2, the control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the conveyance speed of the trailing sheet after the interval t1 between the sheets is measured. , The timing t1 between the papers measured by changing the rotational speed of the first transport roller 1 during the time Tb after the leading edge of the succeeding paper reaches the position of the paper sensor. After the time Tb has elapsed after the leading edge of the succeeding paper has reached the position of the paper sensor, the rotation speed of the first conveying roller is returned to the normal speed. The main feature is a paper conveying apparatus set to convey the following paper at the paper linear velocity V1.

また、請求項3に記載の発明は、前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tc間は前記第1搬送ローラの回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定し、紙間時間t1≧設定時間Taのとき、前記用紙センサの位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラの回転数を変えることで測定した紙間時間t1に応じて決められる用紙線速V3で搬送され、前記用紙センサの位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定した用紙搬送装置を主要な特徴とする。
また、請求項4に記載の発明は、前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tc間は前記第1搬送ローラの回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後はそこから更に時間Td経過するまでは前記第1搬送ローラの回転数を上げることで通常の速度より速い用紙線速V2で後行紙を搬送し、時間Td経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定し、紙間時間t1≧設定時間Taのとき、前記用紙センサの位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラの回転数を変えることで測定した紙間t1に応じて決められる用紙線速V3で搬送され、前記用紙センサの位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定した用紙搬送装置を主要な特徴とする。
According to a third aspect of the present invention, the control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the transport speed of the trailing sheet after the interval time t1 is measured. When the time between papers t1 <set time Ta (where Ta = a constant value), after the leading edge of the succeeding paper reaches the position of the paper sensor, the rotation of the first transport roller is stopped for a time Tc. Then, the conveyance of the succeeding sheet is stopped, and after the leading end of the succeeding sheet reaches the position of the sheet sensor, the rotation speed of the first conveying roller is returned to the normal rotation number after the time Tc has elapsed. When the subsequent sheet is set to be conveyed at the sheet linear velocity V1, and the sheet interval time t1 ≧ the set time Ta, the first sheet is conveyed during the time Tb after the leading edge of the succeeding sheet reaches the position of the sheet sensor. Paper determined according to the paper interval time t1 measured by changing the rotation speed of the roller After the leading edge of the succeeding sheet reaches the position of the sheet sensor after the sheet is conveyed at the speed V3, after the time Tb elapses, the rotation speed of the first conveying roller is returned to the normal rotation speed so that the normal sheet linear speed V1 is reached. A main feature is a sheet conveying apparatus set to convey subsequent sheets.
According to a fourth aspect of the present invention, the control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the transport speed of the succeeding sheet after the sheet interval time t1 is measured. When the time between papers t1 <set time Ta (where Ta = a constant value), after the leading edge of the succeeding paper reaches the position of the paper sensor, the rotation of the first transport roller is stopped for a time Tc. Then, the conveyance of the succeeding sheet is stopped, and after the leading end of the trailing sheet reaches the position of the sheet sensor, the rotation speed of the first conveying roller is increased until the time Td elapses after the period Tc has elapsed. Thus, the succeeding sheet is conveyed at a sheet linear speed V2 that is faster than the normal speed, and after the time Td has elapsed, the rotation speed of the first conveying roller is returned to the normal number of rotations. When the paper is set to be conveyed and the paper interval time t1 ≧ the set time Ta, After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the sheet is conveyed at a sheet linear velocity V3 determined according to the sheet interval t1 measured by changing the rotation speed of the first conveying roller during the time Tb. After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the succeeding sheet is conveyed at the normal sheet linear velocity V1 by returning the rotation speed of the first conveying roller to the normal rotation speed after the time Tb has elapsed. The main feature is the paper transport device set to “1”.

また、請求項5に記載の発明は、後行紙用紙線速V3はV3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値である用紙搬送装置を主要な特徴とする。
また、請求項6に記載の発明は、後行紙用紙線速V3がV3={(t1+Tb)×V1−L}/Tb、時間TcがTc=Ta−t1ただし、Ta=L/V1の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値である用紙搬送装置を主要な特徴とする。
また、請求項7に記載の発明では、後行紙用紙線速V3がV3={(t1+Tb)×V1−L}/Tb、時間TcがTc=Ta−t1ただし、Ta={L+Td×(V2−V1)}/V1(V2=増速時用紙線速で一定値)の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値である用紙搬送装置を主要な特徴とする。
また、請求項8に記載の発明では、前記用紙センサの位置を前記第1搬送ローラの位置より前記用紙積載部に積載された用紙の先端位置から前記分離手段の位置までの距離よりも大きく離れた搬送路の下流側に設けた用紙搬送装置を主要な特徴とする。
Further, in the invention described in claim 5, the following paper sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = a calculated value obtained from a normal sheet linear velocity relationship, or a value obtained by referring to data set in advance in the data table so as to obtain the same effect as when the calculated value is used. The main feature is a paper transport device.
In the invention according to claim 6, the following paper sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, and the time Tc is Tc = Ta−t1, where Ta = L / V1. The main feature is a paper conveyance device which is a value obtained by referring to data calculated in advance or data set in advance in the data table so as to obtain the same effect as when using the calculated value. .
In the invention according to claim 7, the trailing paper linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, and the time Tc is Tc = Ta−t1, where Ta = {L + Td × (V2 -V1)} / V1 (V2 = constant value at the time of acceleration paper linear speed) or a preset value in the data table so as to obtain the same effect as when using the calculated value. The main feature is a sheet conveying device which is a value obtained by referring to certain data.
In the invention according to claim 8, the position of the sheet sensor is separated from the position of the first conveying roller by a distance larger than the distance from the leading end position of the sheets stacked on the sheet stacking section to the position of the separating means. The main feature is a paper transport device provided on the downstream side of the transport path.

また、請求項9に記載の発明では、前記用紙センサにより前記用紙センサの位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラの駆動を開始する際の前記第1搬送ローラにより送られる後行紙の用紙線速は前記第1搬送ローラの駆動開始から前記用紙センサに後行紙先端が達するまでの一部の区間、あるいは全区間において後行紙用紙線速が通常線速V1より速い増速線速V2にて送られるように前記第1搬送ローラの回転数が制御される用紙搬送装置を主要な特徴とする。
また、請求項10に記載の発明は、用紙に画像を形成するための画像形成部と、前記画像形成部に用紙を搬送する請求項1〜9のいずれか1項に記載の用紙搬送装置とを備えた画像形成装置を主要な特徴とする。
また、請求項11に記載の発明は、前記画像形成部は電子写真方法で形成したトナー画像を用紙に転写して用紙上に画像を形成する画像形成装置を主要な特徴とする。
According to a ninth aspect of the present invention, a predetermined time T1 (≧ 0) after the trailing edge of the preceding paper sheet is triggered by the fact that the trailing edge of the preceding sheet sheet has been detected by the sheet sensor as being triggered. ) When the drive of the first transport roller is started later, the line speed of the succeeding paper sent by the first transport roller is from the start of driving the first transport roller until the leading edge of the succeeding paper reaches the paper sensor. A paper transport device in which the rotational speed of the first transport roller is controlled so that the subsequent paper linear speed is fed at a speed increasing linear speed V2 higher than the normal linear speed V1 in a part or all of Main features.
An invention according to claim 10 is an image forming unit for forming an image on a sheet, and a sheet conveying apparatus according to any one of claims 1 to 9, wherein the sheet is conveyed to the image forming unit. An image forming apparatus provided with a main feature.
According to an eleventh aspect of the present invention, the image forming unit mainly includes an image forming apparatus that transfers a toner image formed by an electrophotographic method to a sheet and forms an image on the sheet.

本発明によれば、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態(用紙線速が安定している)であることから、従来のように用紙線速の不安定な給紙部で紙間をあけるのに対して紙間のバラツキを小さく抑えることができる。また、用紙センサにより紙間時間を測定し、その値により後行紙の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキを低減することが可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、測定した紙間時間t1に応じて後行紙が用紙センサbに達した後、一定時間Tb間の後行紙線速V3を決定し、時間Tb経過後に通常線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、測定した紙間時間t1に応じて測定した紙間時間が規定の値より小さいときは、後行紙をある時間Tc停止することで紙間をあけ、その後通常の用紙線速V1で搬送を再開することで紙間のバラツキを低減し測定した紙間時間が規定の値より大きいときは、後行紙先端が搬送ローラ1に達した後に一定時間Tbの後行紙の用紙線速(V3)の大きさを測定した紙間時間t1の大きさに応じて決定し、時間Tb経過後に、後行紙を通常線速V1に戻すことで紙間のバラツキを低減することが可能である。
また、測定した紙間時間t1に応じて測定した紙間時間が規定の値より小さいときは、後行紙をある時間Tc停止することで紙間をあけ、その後時間Td間増速線速V2で搬送し、その後通常の用紙線速V1で搬送を再開することで紙間のバラツキを低減し、測定した紙間時間が規定の値より大きいときは後行紙先端が第1搬送ローラ1に達した後に一定時間Tbの後行紙の用紙線速(V3)の大きさを測定した紙間時間t1の大きさに応じて決定し、時間Tb経過後に、後行紙を通常線速V1に戻すことで紙間のバラツキを低減することが可能である。
また、用紙線速V3をV3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常用紙線速、V2=増速時用紙線速と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能となる。
また、測定した紙間時間が規定の値より小さいとき、後行紙の停止時間TcをTc=Ta−t1ただし、Ta=L/V1、L=補正後の狙いの紙間距離と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ測定した紙間時間が規定の値より大きいときは後行紙の用紙線速V3をV3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常用紙線速、V2=増速時用紙線速と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ紙間のバラツキを効果的に減少させることが可能である。
According to the present invention, the position where the space between the papers is sufficiently large in relation to the transport load (separation load, transport stiffness due to the stiffness of the paper, sliding with the guide plate, etc.) Therefore, it is possible to suppress the variation between papers as compared to the conventional paper feeding unit where the paper linear speed is unstable. In addition, it is possible to reduce the variation between corrected papers by measuring the time between papers with the paper sensor, determining the acceleration time, timing, etc. of the following paper based on the measured values, and correcting the papers. It is. As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.
Further, after the succeeding sheet reaches the sheet sensor b in accordance with the measured sheet interval time t1, the succeeding sheet linear velocity V3 for a certain time Tb is determined and returned to the normal linear velocity V1 after the time Tb has elapsed. It becomes possible to reduce the variation between papers.
Further, when the inter-paper time measured in accordance with the measured inter-paper time t1 is smaller than a prescribed value, the succeeding paper is stopped for a certain time Tc to clear the inter-paper, and then transported at the normal paper linear speed V1. When the measured inter-sheet time is greater than a prescribed value by restarting the process, the line speed of the succeeding sheet for a certain time Tb after the leading end of the succeeding sheet reaches the conveying roller 1 ( It is possible to reduce the variation between the papers by determining the magnitude of V3) according to the measured paper interval time t1 and returning the succeeding paper to the normal linear velocity V1 after the time Tb has elapsed. .
Further, when the paper interval time measured according to the measured paper interval time t1 is smaller than a prescribed value, the succeeding paper is stopped by stopping for a certain time Tc, and then the linear velocity V2 is increased for the time Td. , And then the conveyance is resumed at the normal sheet linear velocity V1 to reduce the variation between the sheets. When the measured sheet interval is larger than the specified value, the leading edge of the succeeding sheet is moved to the first conveying roller 1. After reaching the predetermined time Tb, the paper linear velocity (V3) of the succeeding paper is determined according to the measured paper interval time t1, and after the time Tb has elapsed, the succeeding paper is set to the normal linear velocity V1. By returning it, it is possible to reduce the variation between the papers.
Further, the sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration By setting the hourly paper linear speed, the corrected inter-paper distance≈the target inter-paper distance L can be obtained, and the variation between the papers can be effectively reduced.
Further, when the measured paper interval time is smaller than the prescribed value, the trailing paper stop time Tc is set as Tc = Ta−t1, where Ta = L / V1, L = target inter-paper distance after correction. Thus, the corrected inter-paper distance≈the target inter-paper distance L can be obtained, and when the measured inter-paper time is greater than a prescribed value, the paper linear velocity V3 of the succeeding paper is V3 = {(t1 + Tb) × V1. −L} / Tb where Tb = fixed time, L = target paper distance after correction, V1 = normal paper linear speed, and V2 = paper linear speed during acceleration ≒ The target distance L between the sheets can be set, and the variation between the sheets can be effectively reduced.

また、測定した紙間時間が規定の値より小さいとき、後行紙の停止時間TcをTc=Ta−t1ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、測定した紙間時間が規定の値より大きいときは後行紙の用紙線速V3をV3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常用紙線速、V2=増速時用紙線速と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能である。
また、用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙の紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時に後行紙先端が用紙センサbに達しないことから、用紙が重なっている状態でも用紙センサbにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより上記のような紙間の補正を可能である。この結果として、紙間のバラツキを抑えることができ、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサbによる紙間時間測定の前に後行紙の用紙線速を速くすることで測定時の紙間をより小さくすることができ、測定紙間時間t1とそのバラツキも予めより小さくできることから以降の後行紙用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
また、画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから、小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Further, when the measured paper interval time is smaller than the prescribed value, the trailing paper stop time Tc is Tc = Ta−t1, where Ta = {L + Td × (V2−V1)} / V1, L = target after correction. By setting the following paper distance, V1 = normal paper linear speed, V2 = speed increasing paper linear speed, and Td = constant time, the corrected paper distance≈the target paper distance L can be obtained. When the measured inter-sheet time is larger than the specified value, the sheet linear velocity V3 of the succeeding sheet is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = predetermined time, L = target after correction By setting the inter-paper distance, V1 = normal paper linear speed, and V2 = accelerated paper linear speed, the inter-paper distance after correction can be set to the target inter-paper distance L, and the variation between the papers is effective. Can be reduced.
In addition, even if there is variation in the standby position of the paper, even if a part of the paper is fed overlapped when continuous feeding without gaps between the paper due to variation in the standby position, the leading edge of the trailing paper is stopped Since the sheet sensor b does not reach the sheet sensor b, the sheet sensor b can detect the timing of sensor removal of the preceding sheet and measure the sheet interval time t1 even when the sheets overlap. Correction is possible. As a result, variations between papers can be suppressed, and the set value between papers that has been set in consideration of the variations between papers can be reduced.
Further, by increasing the paper linear speed of the following paper before the paper interval time measurement by the paper sensor b, the paper interval at the time of measurement can be further reduced, and the measurement paper interval time t1 and its variation are also reduced in advance. As a result, it is possible to cope with larger paper-to-paper variations together with the effect of paper-to-paper correction by the subsequent paper-sheet linear speed and conveyance timing.
In addition, by providing the image forming apparatus with a paper conveyance device that performs this paper gap correction, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, increased durability, calming, etc. The effect of can be obtained.
In addition, by providing a paper conveyance device for correcting the paper gap in the electrophotographic image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, and improving durability. Effects such as calming can be obtained.

以下、図面を参照して、本発明の用紙搬送装置及びこれを使用した画像形成装置を実施するための最良の形態(用紙搬送装置を使用した画像形成装置)を詳細に説明する。なお、画像形成装置の機能としては、この例では、コピー、ファックス、プリンタ、スキャナ等の機能を備えている。また、従来技術の説明で用いた図23と同様の部分については同図を用いて説明する。
図23において、用紙センサbは用紙の有無を検知するセンサであり、従来技術では第1搬送ローラ1と第2搬送ローラ2間の用紙の挙動(用紙先端が用紙センサbに達するタイミング、後端が用紙センサbを抜けたタイミング等)を観察する目的で使用しており、これらのタイミングが規定値より大きく外れた値である場合、例えば、センサがずっとONしたままの状態となった場合にはセンサ部分で用紙が停止したまま(JAM)であると判断し、異常をパネル上に表示する、あるいは、規定時間を過ぎてもセンサがONしない場合には用紙が不給紙であると判断し、同様に異常をパネル上に表示する、等の目的で使用されている。この働きに加え、本発明を実施するための最良の形態では、紙間無しで給紙され、送られてきた用紙に一定の紙間をあけるためにも使用している。
用紙センサb(G)の位置は、第1搬送ローラ1(E)からLG−E(以下、Lは距離を意味する記号として用いる)の距離に設けられており、用紙先端が第1搬送ローラ1から距離LG−Eに達したときにセンサON、用紙の後端が第1搬送ローラ1から距離LG−Eに達したときにセンサOFFとなる様設けられている。このとき、距離LG−Eは用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−B に対して、LG−E>LA−Bとなる関係にある。
この例で示したFRR分離方式の給紙機構の場合、用紙先端の待機位置は用紙セット時の用紙先端待機位置(A)から分離部(B)までの間でばらつく。この待機位置のバラツキにより、給紙部で用紙の紙間をあけずに連続して給紙する場合、先行紙の後部と後行紙の前部が最大で距離LA−B重なって給紙される場合がある。本発明を実施するための最良の形態では、LG−E>LA−Bとなる関係に用紙センサbの位置を設けており、これは、先行紙の後部と後行紙の前部との重なり量をDの最大値Dmaxとしたとき、第1搬送ローラ1からの距離がDmax(=LA−B)の距離より下流の箇所に用紙センサbを設けることを狙ったものである。
なお、給紙開始時、その給紙が連続給紙であれば(プリンタのコントロ−ラからの指示、PPCのコピー枚数からの指示などにより判断する)、給紙部では紙間を空けずに連続給紙を開始する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode (an image forming apparatus using a sheet conveying apparatus) for carrying out a sheet conveying apparatus and an image forming apparatus using the same according to the present invention will be described in detail with reference to the drawings. In this example, the image forming apparatus has functions such as a copy function, a fax function, a printer function, and a scanner function. Moreover, the same part as FIG. 23 used by description of a prior art is demonstrated using the same figure.
In FIG. 23, a paper sensor b is a sensor that detects the presence or absence of paper. In the prior art, the behavior of the paper between the first transport roller 1 and the second transport roller 2 (timing at which the front end of the paper reaches the paper sensor b, rear end) Is used for the purpose of observing the timing at which the sensor has exited the paper sensor b), and these timings are values that are significantly larger than the specified value, for example, when the sensor remains on for a long time. Determines that the paper is stopped (JAM) at the sensor part and displays an abnormality on the panel, or if the sensor does not turn on after the specified time, it is determined that the paper is not fed. Similarly, it is used for the purpose of displaying the abnormality on the panel. In addition to this function, in the best mode for carrying out the present invention, the sheet is fed without a gap and used to leave a certain gap between the fed sheets.
The position of the paper sensor b (G) is provided at a distance from the first transport roller 1 (E) to LG-E (L is used as a symbol indicating distance), and the front end of the paper is the first transport roller. The sensor is turned on when the distance LG-E is reached from 1, and the sensor is turned off when the trailing edge of the paper reaches the distance LG-E from the first conveying roller 1. At this time, the distance LG-E is in a relationship of LG-E> LA-B with respect to the distance LA-B from the paper leading edge standby position (A) to the separating portion (B) when the paper is set.
In the case of the FRR separation type paper feed mechanism shown in this example, the standby position of the paper leading edge varies between the paper leading edge standby position (A) and the separating portion (B) when the paper is set. Due to the variation in the standby position, when the paper feeding unit continuously feeds paper without leaving a gap between the papers, the rear part of the preceding paper and the front part of the succeeding paper are fed with a maximum distance LA-B. There is a case. In the best mode for carrying out the present invention, the position of the paper sensor b is provided in a relationship of LG-E> LA-B, which is an overlap between the rear portion of the preceding paper and the front portion of the succeeding paper. When the amount is the maximum value Dmax of D, the sheet sensor b is provided at a location downstream from the distance Dmax (= LA−B) from the first conveying roller 1.
If the paper feed is continuous paper feed at the start of paper feed (determined by an instruction from the printer controller, an instruction from the number of copies of the PPC, etc.), the paper feed unit does not leave a gap between the papers. Start continuous feeding.

〔第1の実施形態〕
第1の実施形態では、図1のフローチャート、図2〜図16及び図23を用いて説明する。また、実施例1では、以下の3つの場合について説明する。
(1)連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例(図1、図23、図2〜図6)
(2)連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例(図1、図23、図7〜図11)
(3)連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例(図1、図23、図12〜図16)
(1)連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例
図2〜図6は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。なお、図中、ロ−ラ、センサ等の横に記載されている数値はこの例での用紙積載位置からの距離(mm)である。まず、給紙部で連続して給紙された用紙は、図2のように、先行紙P1後端と後行紙P2先端が重なって送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例では第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図1のステップS1〜ステップS5)。
このときの重なり量の最大値Dmaxは、用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−Bであり、用紙センサbの位置は第1搬送ローラ1からの距離LG−Eであり、重なり量の最大値Dmax=LA−Bより大きいことから、後行紙P2先端は用紙センサbに達していない位置で停止している。
[First Embodiment]
The first embodiment will be described with reference to the flowchart of FIG. 1, and FIGS. 2 to 16 and 23. In the first embodiment, the following three cases will be described.
(1) Example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are overlapped and fed in continuous sheet feeding (FIGS. 1, 23, 2 to 6)
(2) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with a sheet interval of 0 in continuous sheet feeding (FIGS. 1, 23, 7 to 11)
(3) An example in which the leading edge of the preceding paper and the leading edge of the succeeding paper are conveyed with a slight gap between them in continuous paper feeding (FIGS. 1, 23, 12 to 16).
(1) An example in which the trailing edge of the preceding paper and the leading edge of the succeeding paper are overlapped and fed in continuous feeding FIGS. 2 to 6 show a case where continuous feeding is performed without leaving a gap in the paper feeding unit. FIG. 6 is a schematic cross-sectional view when sheets are overlapped and fed due to variations in the sheet standby position. In the figure, the numerical values written beside the rollers, sensors, etc. are the distance (mm) from the paper stacking position in this example. First, as shown in FIG. 2, the paper continuously fed by the paper feeding unit is fed with the leading edge of the preceding paper P1 and the leading edge of the trailing paper P2 overlapped, and the trailing edge of the leading paper P1 is the first transport roller 1. The conveyance of the succeeding paper P2 is stopped when the first conveyance roller 1 is stopped at a timing after passing through (the timing when 10 mm is fed from the first conveyance roller 1 in this example) (Steps S1 to S1 in FIG. 1). S5).
The maximum value Dmax of the overlap amount at this time is the distance LA-B from the paper leading edge standby position (A) to the separation unit (B) when setting the paper, and the position of the paper sensor b is from the first transport roller 1. Since the distance LG-E is larger than the maximum overlap amount Dmax = LA-B, the leading edge of the succeeding paper P2 stops at a position where it does not reach the paper sensor b.

次に、図3に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図1のステップS6〜ステップS8)。
次に、図4に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図1のステップS9〜ステップS10)、測定されたt1の値から以降の搬送速度V3が制御部にて決定される(図5参照)。なお、線速V3はV3={(t1+Tb)×V1−L}/Tbとする。また、この例では、所定時間Tb=100ms、補正後の紙間距離狙い値L=15mm、V1=362mm/sとする。
本実施形態では、後行紙P2の搬送速度V3は制御部にて紙間時間t1から演算により決められる(図5において、t1=11msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.011+0.1)×362−15}/0.1=251.8mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
後行紙P2はその先端がセンサbに達してからあらかじめ設定された一定時間Tb経過までの区間で測定された紙間時間t1に応じて決定される線速V3で後行紙P2が搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図6参照)。そして、給紙枚数が設定値に達すると動作を終了する(図1のステップS11〜ステップS14)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=11msであり、V3=251.8mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=t1×V1−[{(t1+Tb)×V1−L}−V1×Tb]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
Next, as shown in FIG. 3, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S6 to S8 in FIG. 1).
Next, as shown in FIG. 4, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (steps S9 to S10 in FIG. 1), and the measured value of t1 is used. The subsequent transport speed V3 is determined by the control unit (see FIG. 5). The linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb. In this example, the predetermined time Tb = 100 ms, the corrected paper distance target value L = 15 mm, and V1 = 362 mm / s.
In the present embodiment, the transport speed V3 of the succeeding paper P2 is determined by calculation from the paper interval time t1 in the control unit (in FIG. 5, from t1 = 11 ms, the linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb = {(0.011 + 0.1) × 362-15} /0.1=251.8 mm / s) may be determined by referring to a data table stored in the control unit.
The trailing paper P2 is transported at a linear velocity V3 determined in accordance with the inter-paper time t1 measured in a section from when the leading edge of the trailing paper P2 reaches the sensor b until a predetermined time Tb elapses. In this way, the number of rotations of the first conveying roller 1 is controlled so that the sheet is conveyed at the normal sheet linear velocity V1 after the time Tb has elapsed (see FIG. 6). Then, when the number of fed sheets reaches the set value, the operation is terminated (steps S11 to S14 in FIG. 1).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, and V2 = acceleration This is a value obtained from the formula for calculating the linear paper speed. In this example, the measured inter-paper time t1 = 11 ms, and V3 = 251.8 mm / s is determined.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1-L} / Tb, corrected inter-sheet time = t1 × V1-Tb × [{(t1 + Tb) × V1-L} / Tb−V1] = t1 × V1-[{(t1 + Tb ) * V1-L} -V1 * Tb] = Ta * V1 = L, and the target distance L between the sheets is corrected. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.

(2)連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例
図7〜図11は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図7のように、先行紙P1と後行紙P2が紙間0で送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例ではで第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図1のステップS1〜ステップS5)。
次に、図8に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図1のステップS6〜ステップS8)。
次に、図9に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図1のステップS9〜ステップS10)、測定されたt1の値から以降の後行紙P2の搬送速度V3が制御部にて決定される(図10参照)。なお、線速V3はV3={(t1+Tb)×V1−L}/Tbとする。また、この例では、所定時間Tb=100ms、補正後の紙間距離狙い値L=15mm、V1=362mm/sとする。
(2) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with a sheet interval of 0 in continuous sheet feeding FIGS. 7 to 11 show that the sheet feeding unit continuously feeds a sheet with no space between sheets. FIG. 10 is a schematic cross-sectional view when sheets are overlapped and fed due to variations in the sheet standby position. First, as shown in FIG. 7, the paper continuously fed by the paper feeding unit is fed with the leading paper P1 and the trailing paper P2 between the papers 0, and the trailing edge of the leading paper P1 passes through the first transport roller 1. The conveyance of the succeeding paper P2 is stopped when the first conveyance roller 1 is stopped at the timing after the removal (in this example, the timing when 10 mm is fed from the first conveyance roller 1) (Steps S1 to S1 in FIG. 1). S5).
Next, as shown in FIG. 8, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S6 to S8 in FIG. 1).
Next, as shown in FIG. 9, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S9 to step S10 in FIG. 1), and the measured value of t1 is used. Subsequent conveyance speed V3 of the following paper P2 is determined by the control unit (see FIG. 10). The linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb. In this example, the predetermined time Tb = 100 ms, the corrected paper distance target value L = 15 mm, and V1 = 362 mm / s.

本実施形態では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図10において、t1=60msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.06+0.1)×362−15}/0.1=429.2mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
後行紙P2はその先端がセンサbに達してからあらかじめ設定された一定時間Tb経過までの区間で測定された紙間時間t1に応じて決定される線速V3で後行紙P2が搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図11参照)。そして、給紙枚数が設定値に達すると動作を終了する(図1のステップS11〜ステップS14)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=60msであり、V3=429.2mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
In the present embodiment, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 10, from t1 = 60 ms, the speed increasing linear velocity V3 is V3 = {(t1 + Tb). * V1-L} / Tb = {(0.06 + 0.1) * 362-15} /0.1=429.2 mm / s) is also determined by referring to the data table stored in the control unit. .
The trailing paper P2 is transported at a linear velocity V3 determined in accordance with the inter-paper time t1 measured in a section from when the leading edge of the trailing paper P2 reaches the sensor b until a predetermined time Tb elapses. In this way, the number of rotations of the first conveying roller 1 is controlled so that the sheet is conveyed at the normal sheet linear velocity V1 after the time Tb has elapsed (see FIG. 11). Then, when the number of fed sheets reaches the set value, the operation is terminated (steps S11 to S14 in FIG. 1).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration This is a value obtained from the formula for calculating the hourly paper linear velocity. In this example, the measured inter-paper time t1 = 60 ms, and V3 = 429.2 mm / s.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1−L} / Tb, corrected paper interval time = t1 × V1−Tb × [{(t1 + Tb) × V1−L} / Tb−V1] = Ta × V1 = L Is corrected to the inter-paper distance L. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.

(3)連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例
この例は給紙部で紙間0を狙って連続給紙の動作を行うが、用紙のスリップ等で若干の紙間があいた状態で搬送される場合である(紙間があることを除いては上記(2)の例と同じ動作を行う)。
図12〜図16は、給紙部で紙間を空けずに連続給紙を行ったときに、給紙部では紙間があいていない(=紙間0mm)で連続給紙されるが、その後、後行紙P2の用紙スリップにより(後行紙は分離部の負荷がかかるのでスリップによる搬送の遅れを生じやすい。)若干の紙間があいた状態で用紙が送られる場合の概略断面図である。
まず、給紙部で連続して給紙された用紙は、図12のように先行紙P1と後行紙P2が若干の紙間Aをあけて(ここではA=10mm)で送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例では第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図1のステップS1〜ステップS5)。
次に、図13に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図1のステップS6〜ステップS8)。
次に、図14に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図1のステップS9〜ステップS10)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図15参照)。なお、線速V3はV3={(t1+Tb)×V1−L}/Tbとする。
また、この例では、所定時間Tb=100ms、補正後の紙間距離狙い値L=15mm、V1=362mm/sとする。
(3) Example of transporting paper with a slight gap between the trailing edge of the preceding paper and the leading edge of the succeeding paper in continuous feeding. In this case, the sheet is conveyed in a state where there is a slight gap between sheets due to slipping of the sheet (the same operation as in the above example (2) is performed except that there is a gap between sheets).
In FIGS. 12 to 16, when continuous paper feeding is performed without a gap between papers in the paper feeding unit, the paper feeding unit continuously feeds paper with no paper gap (= 0 mm between papers). Thereafter, due to a paper slip of the trailing paper P2 (the trailing paper is likely to cause a delay in conveyance due to the slip because of the load on the separation unit). is there.
First, as shown in FIG. 12, the paper continuously fed by the paper feeding unit is sent with a slight paper gap A (A = 10 mm in this case) between the preceding paper P1 and the following paper P2, and the preceding paper P1 When the first conveying roller 1 stops at the timing after the trailing edge of the paper P1 passes through the first conveying roller 1 (in this example, the timing when 10 mm is fed from the first conveying roller 1), the conveying of the succeeding paper P2 is performed. Stop (steps S1 to S5 in FIG. 1).
Next, as shown in FIG. 13, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S6 to S8 in FIG. 1).
Next, as shown in FIG. 14, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (steps S9 to S10 in FIG. 1), and the measured value of t1 is used. Subsequently, the conveyance speed and timing of the succeeding paper P2 are determined by the control unit (see FIG. 15). The linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb.
In this example, the predetermined time Tb = 100 ms, the corrected paper distance target value L = 15 mm, and V1 = 362 mm / s.

本実施形態では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図15において、t1=80msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.08+0.1)×362−15}/0.1=501.6mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
後行紙P2はその先端がセンサbに達してからあらかじめ設定された一定時間Tb経過までの区間で測定された紙間時間t1に応じて決定される線速V3で後行紙P2が搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図16参照)。そして、給紙枚数が設定値に達すると動作を終了する(図1のステップS11〜ステップS14)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=80msであり、V3=501.6mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
したがって、第1実施形態では、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態(用紙線速が安定している)であることから、従来のように用紙線速の不安定な給紙部で紙間をあけるのに対して紙間のバラツキを小さく抑えることができる。また、用紙センサbにより紙間時間を測定し、その値により後行紙P2の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキを低減することが可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
In this embodiment, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 15, from t1 = 80 ms, the linear velocity increase V3 is V3 = {(t1 + Tb). * V1-L} / Tb = {(0.08 + 0.1) * 362-15} /0.1=501.6 mm / s) is also determined by referring to the data table stored in the control unit. .
The trailing paper P2 is transported at a linear velocity V3 determined in accordance with the inter-paper time t1 measured in a section from when the leading edge of the trailing paper P2 reaches the sensor b until a predetermined time Tb elapses. In this way, the number of rotations of the first conveying roller 1 is controlled so that the sheet is conveyed at the normal sheet linear velocity V1 after the time Tb has elapsed (see FIG. 16). Then, when the number of fed sheets reaches the set value, the operation is terminated (steps S11 to S14 in FIG. 1).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration This is a value obtained from the formula for calculating the hourly paper linear velocity. In this example, the measured inter-paper time t1 = 80 ms, and V3 = 501.6 mm / s is determined.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1−L} / Tb, corrected paper interval time = t1 × V1−Tb × [{(t1 + Tb) × V1−L} / Tb−V1] = Ta × V1 = L Is corrected to the inter-paper distance L. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.
Therefore, in the first embodiment, the position where the space between the papers is sufficiently large with respect to the transport load (separation load, paper stiffness, transport load due to sliding with the guide plate, etc.). Since the sheet linear speed is stable, the paper gap can be suppressed to a small value as compared with the conventional paper feeding unit having an unstable paper linear speed. In addition, the paper interval time is measured by the paper sensor b, the acceleration time and timing of the succeeding paper P2 are determined based on the measured values, and correction between the papers is performed. Is possible. As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.

また、測定した紙間時間t1に応じて後行紙P2が用紙センサbに達した後、一定時間Tb間の後行紙線速V3を決定し、時間Tb経過後に通常線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、上記の用紙線速V3をV3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常用紙線速、V2=増速時用紙線速と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能となる。
また、用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙の紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時にその先端が用紙センサbに達しないことから、用紙が重なっている状態でも用紙センサbにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより上記のような紙間の補正を可能である。この結果として、紙間のバラツキを抑えることが可能であり、これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサbによる紙間時間測定の前に後行紙P2の用紙線速を速くすることで測定時の紙間をより小さくすることが可能である。
これにより、測定紙間時間t1とそのバラツキもあらかじめより小さくできることから以降の後行紙P2の用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
また、画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Further, after the succeeding sheet P2 reaches the sheet sensor b in accordance with the measured sheet interval time t1, the succeeding sheet linear velocity V3 for a certain time Tb is determined and returned to the normal linear velocity V1 after the elapse of the time Tb. Thus, it is possible to reduce the variation between the papers.
Also, the sheet linear velocity V3 is set to V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = By setting the paper linear speed at the time of acceleration, the corrected inter-paper distance≈the target inter-paper distance L can be achieved, and variations between the papers can be effectively reduced.
Also, even if there is variation in the standby position of the paper, even if a part of the paper is overlapped and fed when continuously feeding without gaps between the paper due to the variation in the standby position, the leading edge of the paper will stop when the trailing paper stops Since the sensor b has not been reached, the paper sensor b can detect the sensor missing timing of the preceding paper and measure the paper interval time t1 even when the paper is overlapped, thereby correcting the paper interval as described above. Is possible. As a result, it is possible to suppress the variation between the papers, and thereby it is possible to reduce the set value between the papers set in consideration of the variation between the papers.
Further, by increasing the sheet linear speed of the succeeding sheet P2 before the sheet interval time measurement by the sheet sensor b, it is possible to further reduce the sheet interval at the time of measurement.
As a result, the measurement paper interval time t1 and its variation can be made smaller in advance, so that it is possible to cope with a larger variation between the papers together with the effect of the paper interval correction of the subsequent paper P2 and the conveyance timing. .
In addition, by providing a paper transport device that performs this paper gap correction in the image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, increased durability, quietness, etc. An effect can be obtained.
In addition, by providing a paper conveyance device for correcting the paper gap in the electrophotographic image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, and improving durability. Effects such as calming can be obtained.

〔第2の実施形態〕
第2の実施形態は第1の実施形態と比べて測定した紙間時間t1の規定時間Ta時間に対する大きさによって後行紙P2の停止を行う制御が追加されている。給紙コロ、搬送ロ−ラ、センサ等の構成要素は同一のものであり、同じ場所に配置されている。図23において、構成上の差はない。第2の実施形態では、図17のフローチャート、図2〜図4、図18、図19、図7〜図16及び図23を用いて説明する。また、第2の実施形態では、以下の3つの場合について説明する。
(4)連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例(図17、図23、図2〜図4、図18、図19)
(5)連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例(図17、図23、図7〜図11)
(6)連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例(図17、図23、図12〜図16)
(4)連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例
図2〜図4、図18、図19は給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図2のように、先行紙P1後端と後行紙P2先端が重なって送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例では第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図17のステップS21〜ステップS25)。
このときの重なり量の最大値Dmaxは、用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−Bであり(この例では24.5mm)、用紙センサbの位置は第1搬送ローラ1からの距離LG−Eより大きくとられていることから後行紙P2先端は用紙センサbに達していない位置で停止している。
次に、図3に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図17のステップS26〜ステップS28)。
次に、図4に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図17のステップS29〜ステップS30)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図18参照)。なお、この例では、Ta=L/V1=15mm/(362mm/s)=41.4ms、Tb=100ms(所定時間)、Tc=Ta−t1、補正後の紙間距離狙い値=15mmとする。V3={(t1+Tb)×V1−L}/Tbである
[Second Embodiment]
In the second embodiment, control for stopping the succeeding paper P2 is added according to the magnitude of the inter-paper time t1 measured with respect to the specified time Ta time as compared with the first embodiment. Constituent elements such as a paper feed roller, a transport roller, and a sensor are the same and are disposed at the same place. In FIG. 23, there is no structural difference. The second embodiment will be described with reference to the flowchart of FIG. 17, FIGS. 2 to 4, 18, 19, 7 to 16, and 23. In the second embodiment, the following three cases will be described.
(4) An example in which the trailing edge of the preceding paper and the leading edge of the succeeding paper are overlapped and fed in continuous feeding (FIGS. 17, 23, 2 to 4, 18, 18)
(5) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with zero sheet interval in continuous feeding (FIGS. 17, 23, 7 to 11).
(6) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are conveyed with a slight gap between them in continuous paper feeding (FIGS. 17, 23, 12 to 16).
(4) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are overlapped and fed in continuous sheet feeding FIGS. 2 to 4, 18, and 19 are illustrated in FIG. FIG. 6 is a schematic cross-sectional view in the case where the sheets are overlapped and fed due to variations in the sheet standby position when performing. First, as shown in FIG. 2, the paper continuously fed by the paper feeding unit is fed with the leading edge of the preceding paper P1 and the leading edge of the trailing paper P2 overlapped, and the trailing edge of the leading paper P1 is the first transport roller 1. The conveyance of the succeeding paper P2 is stopped when the first conveyance roller 1 is stopped at a timing after passing through (in this example, a timing when 10 mm is fed from the first conveyance roller 1) (Steps S21 to S21 in FIG. 17). S25).
The maximum value Dmax of the overlap amount at this time is the distance LA-B (24.5 mm in this example) from the paper leading edge standby position (A) to the separating portion (B) when setting paper, and the position of the paper sensor b. Is larger than the distance LG-E from the first conveying roller 1, and the leading edge of the succeeding paper P2 stops at a position where it does not reach the paper sensor b.
Next, as shown in FIG. 3, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S26 to S28 in FIG. 17).
Next, as shown in FIG. 4, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S29 to step S30 in FIG. 17), and the measured value of t1 is used. Subsequent conveyance speed and timing of the following paper P2 are determined by the control unit (see FIG. 18). In this example, Ta = L / V1 = 15 mm / (362 mm / s) = 41.4 ms, Tb = 100 ms (predetermined time), Tc = Ta−t1, and the corrected inter-paper distance target value = 15 mm. . V3 = {(t1 + Tb) × V1-L} / Tb.

本実施形態では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図18において、t1=11ms、Ta=41.4msなのでt1<Ta、よってここから時間Tcだけ後行紙P2を停止する。Tc=Ta−t1=41.4−11=30.4ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本実施形態では、測定された紙間時間t1=11msであり、設定値Ta=41.4msより小さく、t1<Taである。このため、後行紙P2は後行紙先端が用紙センサbに達したタイミングで第1搬送ローラ1の駆動を停止され、後行紙P2の搬送が停止した後、時間Tc経過後に図19の状態において通常の用紙線速V1で搬送を再開される。そして、給紙枚数が設定値に達すると動作を終了する(図17のステップS31、ステップS35〜ステップS37)。
停止時間Tcは、Tc=Ta−t1、ただし、Ta=L/V1、L=補正後の狙いの紙間距離を計算式にて求めた値である。
停止時間Tc経過後に後行紙P2の搬送が通常用紙線速V1で再開されたときの紙間距離は、補正後紙間距離=(t1+Tc)×V1={t1+(Ta−t1)}×V1=Ta×V1、上記式Ta=L/V1より、補正後紙間時間=L/V1×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、停止時間Tcの設定によって補正後の紙間距離=Lとなるようにしている。
In the present embodiment, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 18, since t1 = 11 ms and Ta = 41.4 ms, t1 <Ta, so from here There is also a method in which the succeeding paper P2 is stopped for a time Tc, and Tc = Ta−t1 = 41.4−11 = 30.4 ms) is determined with reference to a data table stored in the control unit.
In the present embodiment, the measured paper interval time t1 = 11 ms, which is smaller than the set value Ta = 41.4 ms, and t1 <Ta. For this reason, the trailing paper P2 stops driving the first transport roller 1 at the timing when the leading edge of the trailing paper reaches the paper sensor b, and after the time Tc elapses after the transport of the trailing paper P2 is stopped, as shown in FIG. In this state, the conveyance is resumed at the normal sheet linear velocity V1. When the number of fed sheets reaches the set value, the operation is terminated (Step S31, Step S35 to Step S37 in FIG. 17).
The stop time Tc is Tc = Ta−t1, where Ta = L / V1, L = a value obtained by calculating the target inter-paper distance after correction using a calculation formula.
The inter-paper distance when the conveyance of the succeeding paper P2 is resumed at the normal paper linear velocity V1 after the stop time Tc has elapsed is the corrected inter-paper distance = (t1 + Tc) × V1 = {t1 + (Ta−t1)} × V1. = Ta × V1, and the above equation Ta = L / V1, the corrected inter-paper time = L / V1 × V1 = L, and the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L by setting the stop time Tc.

(5)連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例
図7〜図11は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図7のように、先行紙P1と後行紙P2が紙間0で送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例ではで第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図17のステップS21〜ステップS25)。
次に、図8に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図17のステップS26〜ステップS28)。
次に、図9に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図17のステップS29〜ステップS30)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図10参照)。なお、この例では、Ta=L/V1=15mm/(362mm/s)=41.4ms、Tb=100ms(所定時間)、Tc=Ta−t1、補正後の紙間距離狙い値=15mmとする。V3={(t1+Tb)×V1−L}/Tbである。
(5) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with a sheet interval of 0 in continuous sheet feeding FIGS. FIG. 10 is a schematic cross-sectional view when sheets are overlapped and fed due to variations in the sheet standby position. First, as shown in FIG. 7, the paper continuously fed by the paper feeding unit is fed with the leading paper P1 and the trailing paper P2 between the papers 0, and the trailing edge of the leading paper P1 passes through the first transport roller 1. The conveyance of the succeeding paper P2 is stopped by stopping the first conveyance roller 1 at the timing after the removal (in this example, the timing when 10 mm is fed from the first conveyance roller 1 in this example) (Steps S21 to S21 in FIG. 17). S25).
Next, as shown in FIG. 8, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S26 to S28 in FIG. 17).
Next, as shown in FIG. 9, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S29 to step S30 in FIG. 17), and the measured value of t1 is used. The subsequent conveyance speed and timing of the succeeding paper P2 are determined by the control unit (see FIG. 10). In this example, Ta = L / V1 = 15 mm / (362 mm / s) = 41.4 ms, Tb = 100 ms (predetermined time), Tc = Ta−t1, and the corrected inter-paper distance target value = 15 mm. . V3 = {(t1 + Tb) × V1-L} / Tb.

本実施形態では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図10において、t1=60msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.06+0.1)×362−15}/0.1=429.2mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本実施形態では、測定された紙間時間t1=60msであり、設定値Ta=41.4msより大きく、t1≧Taである。このため、後行紙P2はその先端が用紙センサbに達してから時間Tb経過までの区間で後行紙P2の用紙線速V3により搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図11参照)。そして、給紙枚数が設定値に達すると動作を終了する(図17のステップS31、ステップS32〜ステップS37)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=60msであり、V3=429.2mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
In the present embodiment, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 10, from t1 = 60 ms, the speed increasing linear velocity V3 is V3 = {(t1 + Tb). * V1-L} / Tb = {(0.06 + 0.1) * 362-15} /0.1=429.2 mm / s) is also determined by referring to the data table stored in the control unit. .
In the present embodiment, the measured paper interval time t1 = 60 ms, which is larger than the set value Ta = 41.4 ms, and t1 ≧ Ta. Therefore, the rotation speed of the first transport roller 1 is controlled so that the trailing sheet P2 is transported at the sheet linear velocity V3 of the trailing sheet P2 in the section from the time when the leading edge of the trailing sheet P2 reaches the sheet sensor b until the time Tb elapses. Then, after the time Tb has elapsed, the sheet is conveyed at the normal sheet linear velocity V1 (see FIG. 11). Then, when the number of fed sheets reaches the set value, the operation is terminated (step S31, step S32 to step S37 in FIG. 17).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration This is a value obtained from the formula for calculating the hourly paper linear velocity. In this example, the measured inter-paper time t1 = 60 ms, and V3 = 429.2 mm / s.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1−L} / Tb, corrected paper interval time = t1 × V1−Tb × [{(t1 + Tb) × V1−L} / Tb−V1] = Ta × V1 = L Is corrected to the inter-paper distance L. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.

(6)連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例
この例は給紙部で紙間0を狙って連続給紙の動作を行うが、用紙のスリップ等で若干の紙間があいた状態で搬送される場合である(紙間があることを除いては上記(5)の例と同じ動作を行う)。図12〜図16は、給紙部で紙間を空けずに連続給紙を行ったときに、給紙部では紙間があいていない(=紙間0mm)で連続給紙されるが、その後、後行紙P2の用紙スリップにより(後行紙は分離部の負荷がかかるのでスリップによる搬送の遅れを生じやすい。)若干の紙間があいた状態で用紙が送られる場合の概略断面図である。
まず、給紙部で連続して給紙された用紙は、図12のように先行紙P1と後行紙P2が若干の紙間Aをあけて(ここではA=10mm)で送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例では第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図17のステップS21〜ステップS25)。
次に、図13に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図17のステップS26〜ステップS28)。
次に、図14に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図17のステップS29〜ステップS30)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図15参照)。なお、この例では、Ta=L/V1=15mm/(362mm/s)=41.4ms、Tb=100ms(所定時間)、Tc=Ta−t1、補正後の紙間距離狙い値=15mmとする。V3={(t1+Tb)×V1−L}/Tb
(6) Example of transporting paper with the trailing edge of the preceding paper and the leading edge of the succeeding paper having a slight gap in continuous feeding. In this case, the sheet is transported in a state where there is a slight gap between sheets due to slippage of the sheet (the same operation as in the above example (5) is performed except that there is a gap between sheets). In FIGS. 12 to 16, when continuous paper feeding is performed without a gap between papers in the paper feeding unit, the paper feeding unit continuously feeds paper with no paper gap (= 0 mm between papers). Thereafter, due to a paper slip of the trailing paper P2 (the trailing paper is likely to cause a delay in conveyance due to the slip because of the load on the separation unit). is there.
First, as shown in FIG. 12, the paper continuously fed by the paper feeding unit is sent with a slight paper gap A (A = 10 mm in this case) between the preceding paper P1 and the following paper P2, and the preceding paper P1 When the first conveying roller 1 stops at the timing after the trailing edge of the paper P1 passes through the first conveying roller 1 (in this example, the timing when 10 mm is fed from the first conveying roller 1), the conveying of the succeeding paper P2 is performed. Stop (steps S21 to S25 in FIG. 17).
Next, as shown in FIG. 13, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S26 to S28 in FIG. 17).
Next, as shown in FIG. 14, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S29 to step S30 in FIG. 17), and the measured value of t1 is used. Subsequently, the conveyance speed and timing of the succeeding paper P2 are determined by the control unit (see FIG. 15). In this example, Ta = L / V1 = 15 mm / (362 mm / s) = 41.4 ms, Tb = 100 ms (predetermined time), Tc = Ta−t1, and the corrected inter-paper distance target value = 15 mm. . V3 = {(t1 + Tb) × V1-L} / Tb

本実施形態では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図15において、t1=80msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.08+0.1)×362−15}/0.1=501.6mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本実施形態では、測定された紙間時間t1=80msであり、設定値Ta=41.4msより大きく、t1≧Taである。このため、後行紙P2はその先端が用紙センサbに達してから時間Tb経過までの区間で後行紙P2の用紙線速V3により搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図16参照)。そして、給紙枚数が設定値に達すると動作を終了する(図17のステップS31、ステップS32〜ステップS37)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=80msであり、V3=501.6mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
したがって、第2の実施形態では、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態(用紙線速が安定している)であることから、従来のように用紙線速の不安定な給紙部で紙間をあけるのに対して紙間のバラツキを小さく抑えることができる。また、用紙センサbにより紙間時間を測定し、その値により後行紙P2の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキを低減することが可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
In this embodiment, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 15, from t1 = 80 ms, the linear velocity increase V3 is V3 = {(t1 + Tb). * V1-L} / Tb = {(0.08 + 0.1) * 362-15} /0.1=501.6 mm / s) is also determined by referring to the data table stored in the control unit. .
In the present embodiment, the measured paper interval time t1 = 80 ms, which is larger than the set value Ta = 41.4 ms, and t1 ≧ Ta. Therefore, the rotation speed of the first transport roller 1 is controlled so that the trailing sheet P2 is transported at the sheet linear velocity V3 of the trailing sheet P2 in the section from the time when the leading edge of the trailing sheet P2 reaches the sheet sensor b until the time Tb elapses. Then, after the time Tb has elapsed, the sheet is conveyed at the normal sheet linear velocity V1 (see FIG. 16). Then, when the number of fed sheets reaches the set value, the operation is terminated (step S31, step S32 to step S37 in FIG. 17).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration This is a value obtained from the formula for calculating the hourly paper linear velocity. In this example, the measured inter-paper time t1 = 80 ms, and V3 = 501.6 mm / s is determined.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1−L} / Tb, corrected paper interval time = t1 × V1−Tb × [{(t1 + Tb) × V1−L} / Tb−V1] = Ta × V1 = L Is corrected to the inter-paper distance L. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.
Therefore, in the second embodiment, the position where the space between the papers is sufficiently large with respect to the transport load (separation load, paper stiffness, transport load due to sliding with the guide plate, etc.). Since the sheet is in a state (the sheet linear speed is stable), it is possible to suppress the variation between the sheets as compared to the conventional sheet feeding unit where the sheet linear speed is unstable. In addition, the paper interval time is measured by the paper sensor b, the acceleration time and timing of the succeeding paper P2 are determined based on the measured values, and correction between the papers is performed. Is possible. As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.

また、測定した紙間時間t1に応じて測定した紙間時間が規定の値より小さいときは、後行紙P2をある時間Tc停止することで紙間をあけ、その後通常の用紙線速V1で搬送を再開することで紙間のバラツキを低減し測定した紙間時間が規定の値より大きいときは、後行紙P2の先端が搬送ローラ1に達した後に一定時間Tbの後行紙P2の用紙線速(V3)の大きさを測定した紙間時間t1の大きさに応じて決定し、時間Tb経過後に、後行紙P2を通常線速V1に戻すことで紙間のバラツキを低減することが可能である。
また、測定した紙間時間が規定の値より小さいとき、後行紙P2の停止時間TcをTc=Ta−t1ただし、Ta=L/V1、L=補正後の狙いの紙間距離と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ測定した紙間時間が規定の値より大きいときは後行紙P2の用紙線速V3をV3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常用紙線速、V2=増速時用紙線速と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ紙間のバラツキを効果的に減少させることが可能である。
また、用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙の紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時に後行紙P2の先端が用紙センサbに達しないことから、用紙が重なっている状態でも用紙センサbにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより上記のような紙間の補正を可能である。この結果として、紙間のバラツキを抑えることが可能であり、これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサbによる紙間時間測定の前に後行紙P2の用紙線速を速くすることで測定時の紙間をより小さくすることが可能である。これにより、測定紙間時間t1とそのバラツキもあらかじめより小さくできることから以降の後行紙P2の用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
また、画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Further, when the inter-paper time measured in accordance with the measured inter-paper time t1 is smaller than a predetermined value, the succeeding paper P2 is stopped by a certain time Tc, and then the normal paper linear velocity V1 is set. When the measured inter-sheet time is greater than a specified value by reducing the variation between the sheets by restarting the conveyance, after the leading edge of the trailing sheet P2 reaches the conveying roller 1, the trailing sheet P2 of the certain period Tb is reached. The magnitude of the sheet linear velocity (V3) is determined according to the measured inter-paper time t1, and after the time Tb elapses, the following paper P2 is returned to the normal linear velocity V1 to reduce the variation between the papers. It is possible.
When the measured paper interval time is smaller than the prescribed value, the stop time Tc of the following paper P2 is set as Tc = Ta−t1, where Ta = L / V1, L = target paper distance after correction. Thus, the corrected inter-paper distance≈the target inter-paper distance L can be obtained, and when the measured inter-paper distance is greater than a prescribed value, the paper linear velocity V3 of the succeeding paper P2 is set to V3 = {(t1 + Tb) XV1-L} / Tb where Tb = fixed time, L = target inter-paper distance after correction, V1 = normal paper linear speed, and V2 = paper linear speed during acceleration The distance between the sheets can be made equal to the target distance L between the sheets, and variations between the sheets can be effectively reduced.
Further, even when there is a variation in the standby position of the paper, the continuous paper P2 when the subsequent paper is stopped even when the paper is partially overlapped when the paper is continuously fed without gaps between the paper due to the variation in the standby position. Since the leading edge of the paper does not reach the paper sensor b, the paper sensor b can detect the sensor drop timing of the preceding paper and measure the paper interval time t1 even when the paper is overlapped. It is possible to correct between. As a result, it is possible to suppress the variation between the papers, and thereby it is possible to reduce the set value between the papers set in consideration of the variation between the papers.
Further, by increasing the sheet linear speed of the succeeding sheet P2 before the sheet interval time measurement by the sheet sensor b, it is possible to further reduce the sheet interval at the time of measurement. As a result, the measurement paper interval time t1 and its variation can be made smaller in advance, so that it is possible to cope with a larger variation between the papers together with the effect of the paper interval correction of the subsequent paper P2 and the conveyance timing. .
In addition, by providing a paper transport device that performs this paper gap correction in the image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, increased durability, quietness, etc. An effect can be obtained.
In addition, by providing a paper conveyance device for correcting the paper gap in the electrophotographic image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, and improving durability. Effects such as calming can be obtained.

〔第3の実施形態〕
第3の実施形態は第2の実施形態と比べて時間Ta、Tb、Tcの設定と時間Tcの後行紙停止後の後行紙動作のみが異なる。給紙コロ、搬送ロ−ラ、センサ等の構成要素は同一のものであり、同じ場所に配置されている。図23において、構成上の差はない。第2の実施形態では、図20のフローチャート、図2〜図4、図18、図21、図22、図7〜図16及び図23を用いて説明する。また、第3の実施形態では、以下の3つの場合について説明する。
(7)連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例(図20、図23、図2〜図4、図18、図21、図22)
(8)連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例(図20、図23、図7〜図11)
(9)連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例(図20、図23、図12〜図16)
[Third Embodiment]
The third embodiment differs from the second embodiment only in the setting of the times Ta, Tb, and Tc and the subsequent sheet operation after stopping the subsequent sheet at the time Tc. Constituent elements such as a paper feed roller, a transport roller, and a sensor are the same and are disposed at the same place. In FIG. 23, there is no structural difference. The second embodiment will be described with reference to the flowchart of FIG. 20, FIGS. 2 to 4, 18, 21, 21, 22, 7 to 16, and 23. In the third embodiment, the following three cases will be described.
(7) An example in which the trailing edge of the preceding paper and the leading edge of the succeeding paper are overlapped and fed in continuous feeding (FIGS. 20, 23, 2 to 4, 18, 18, 21, and 22)
(8) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with zero gap between continuous sheets (FIGS. 20, 23, 7 to 11).
(9) An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are conveyed with a slight gap between them in continuous feeding (FIGS. 20, 23, 12 to 16).

(7)連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例
図2〜図4、図18、図21、図6は給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図2のように、先行紙P1後端と後行紙P2先端が重なって送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例では第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図20のステップS41〜ステップS45)。
このときの重なり量の最大値Dmaxは、用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−Bであり(この例では24.5mm)、用紙センサbの位置は第1搬送ローラ1からの距離LG−Eより大きくとられていることから後行紙P2先端は用紙センサbに達していない位置で停止している。
次に、図3に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図20のステップS46〜ステップS48)。
次に、図4に示すように、後行紙P2先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図20のステップS49〜ステップS50)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図18参照)。なお、この例では、Ta={L+Td×(V2−V1)}/V1={15+0.02×(500−362)}/362=49ms、Tb=100ms(所定時間)、Tc=Ta−t1、Td=20ms(一定時間)、補正後の紙間距離狙い値=15mmとする。V3={(t1+Tb)×V1−L}/Tb
(7) Example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are overlapped and fed in continuous sheet feeding FIGS. 2 to 4, 18, 21, and 6 show that there is no gap between the sheets in the sheet feeding unit. FIG. 6 is a schematic cross-sectional view when sheets are overlapped and fed due to variations in the sheet standby position when continuous sheet feeding is performed. First, as shown in FIG. 2, the paper continuously fed by the paper feeding unit is fed with the leading edge of the preceding paper P1 and the leading edge of the trailing paper P2 overlapped, and the trailing edge of the leading paper P1 is the first transport roller 1. The conveyance of the succeeding paper P2 is stopped when the first conveyance roller 1 is stopped at a timing after passing through (the timing when 10 mm is fed from the first conveyance roller 1 in this example) (Steps S41 to S41 in FIG. 20). S45).
The maximum value Dmax of the overlap amount at this time is the distance LA-B (24.5 mm in this example) from the paper leading edge standby position (A) to the separating portion (B) when setting paper, and the position of the paper sensor b. Is larger than the distance LG-E from the first conveying roller 1, and the leading edge of the succeeding paper P2 stops at a position where it does not reach the paper sensor b.
Next, as shown in FIG. 3, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S46 to S48 in FIG. 20).
Next, as shown in FIG. 4, when the leading edge of the trailing paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (steps S49 to S50 in FIG. 20), and the measured value of t1 is used. Subsequent conveyance speed and timing of the following paper P2 are determined by the control unit (see FIG. 18). In this example, Ta = {L + Td × (V2−V1)} / V1 = {15 + 0.02 × (500-362)} / 362 = 49 ms, Tb = 100 ms (predetermined time), Tc = Ta−t1, Td = 20 ms (fixed time), corrected paper distance target value = 15 mm. V3 = {(t1 + Tb) × V1-L} / Tb

本例では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図18において、t1=11ms、Ta=49msなのでt1<Ta、よってここから時間Tcだけ後行紙P2を停止する。Tc=Ta−t1=49−11=38ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本実施形態では、測定された紙間時間t1=11msであり、設定値Ta=49msより小さく、t1<Taである。このため、後行紙P2はその先端が用紙センサbに達したタイミングで第1搬送ローラ1の駆動を停止され、後行紙P2の搬送が停止した後、時間Tc経過後に図21の状態において増速線速V2で搬送を再開される(図20のステップS51、ステップS55〜ステップS57)。
停止時間Tcは、Tc=Ta−t1、ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間の計算式にて求められる値である。停止時間Tc経過後に後行紙P2の搬送が通常用紙線速V1で再開されたときの紙間距離は、
紙間距離=(t1+Tc)×V1={t1+(Ta−t1)}×V1=Ta×V1となる。
その後、増速時間Td経過後、後行紙P2は用紙線速を通常線速V1に戻される(図22参照、図20のステップS58、ステップS54)。
このときの紙間距離は補正後紙間距離=Ta×V1−Td×V2+Td×V1=Ta×V1−Td×(V2−V1)となる。上式Ta={L+Td×(V2−V1)}/V1より、補正後紙間距離={L+Td×(V2−V1)}/V1×V1−Td×(V2−V1)=L
となり、狙いの紙間距離Lに補正される。この例では、停止時間Tcの設定によって補正後の紙間距離=Lとなるようにしている。そして、給紙枚数が設定値に達すると動作を終了する(図20のステップS59)。
In this example, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the inter-paper time t1 in the control unit (in FIG. 18, since t1 = 11 ms and Ta = 49 ms, t1 <Ta, so only the time Tc from here. There is also a method in which the succeeding paper P2 is stopped.Tc = Ta−t1 = 49−11 = 38 ms) is determined by referring to the data table stored in the control unit.
In the present embodiment, the measured paper interval time t1 = 11 ms, which is smaller than the set value Ta = 49 ms, and t1 <Ta. Therefore, the drive of the first transport roller 1 is stopped at the timing when the leading edge of the succeeding paper P2 reaches the paper sensor b, and after the time Tc has elapsed after the transport of the succeeding paper P2 is stopped, the state shown in FIG. The conveyance is resumed at the increased linear velocity V2 (step S51, step S55 to step S57 in FIG. 20).
The stop time Tc is Tc = Ta−t1, where Ta = {L + Td × (V2−V1)} / V1, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration Hour sheet linear velocity, Td = a value obtained by a calculation formula of a fixed time. The distance between the sheets when the conveyance of the succeeding sheet P2 is resumed at the normal sheet linear speed V1 after the stop time Tc has elapsed is:
Distance between sheets = (t1 + Tc) × V1 = {t1 + (Ta−t1)} × V1 = Ta × V1.
Thereafter, after the acceleration time Td elapses, the succeeding paper P2 is returned to the normal linear speed V1 (see FIG. 22, steps S58 and S54 in FIG. 20).
The inter-paper distance at this time is corrected inter-paper distance = Ta * V1-Td * V2 + Td * V1 = Ta * V1-Td * (V2-V1). From the above equation Ta = {L + Td × (V2−V1)} / V1, the corrected inter-paper distance = {L + Td × (V2−V1)} / V1 × V1−Td × (V2−V1) = L
Thus, the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L by setting the stop time Tc. When the number of fed sheets reaches the set value, the operation is terminated (step S59 in FIG. 20).

(8)連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例
図7〜図11は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図7のように、先行紙P1と後行紙P2が紙間0で送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例ではで第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図20のステップS41〜ステップS45)。
次に、図8に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図20のステップS46〜ステップS48)。
次に、図9に示すように、後行紙P2の先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図20のステップS49〜ステップS50)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図10参照)。なお、この例では、Ta={L+Td×(V2−V1)}/V1={15+0.02×(500−362)}/362=49ms、Tb=100ms(所定時間)、Tc=Ta−t1、Td=20ms(一定時間)、補正後の紙間距離狙い値=15mmとする。V3={(t1+Tb)×V1−L}/Tb
本例では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図10において、t1=60msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.06+0.1)×362−15}/0.1=429.2mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本実施形態では、測定された紙間時間t1=60msであり、設定値Ta=49msより大きく、t1≧Taである。このため、後行紙P2はその先端が用紙センサbに達してから時間Tb経過までの区間で後行紙P2の用紙線速V3により搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図11参照)。そして、給紙枚数が設定値に達すると動作を終了する(図20のステップS51、ステップS52〜ステップS59)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=60msであり、V3=429.2mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
(8) Example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with a sheet gap of 0 in continuous feeding FIGS. 7 to 11 show that the sheet feeding unit continuously feeds the sheet without a gap between the sheets. FIG. 10 is a schematic cross-sectional view when sheets are overlapped and fed due to variations in the sheet standby position. First, as shown in FIG. 7, the paper continuously fed by the paper feeding unit is fed with the leading paper P1 and the trailing paper P2 between the papers 0, and the trailing edge of the leading paper P1 passes through the first transport roller 1. The conveyance of the succeeding paper P2 is stopped when the first conveyance roller 1 is stopped at the timing after the removal (in this example, the timing when 10 mm is fed from the first conveyance roller 1 in this example) (Steps S41 to S41 in FIG. 20). S45).
Next, as shown in FIG. 8, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S46 to S48 in FIG. 20).
Next, as shown in FIG. 9, when the leading edge of the trailing paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (steps S49 to S50 in FIG. 20), and the measured value of t1 From then on, the conveyance speed and timing of the succeeding paper P2 are determined by the control unit (see FIG. 10). In this example, Ta = {L + Td × (V2−V1)} / V1 = {15 + 0.02 × (500-362)} / 362 = 49 ms, Tb = 100 ms (predetermined time), Tc = Ta−t1, Td = 20 ms (fixed time), corrected paper distance target value = 15 mm. V3 = {(t1 + Tb) × V1-L} / Tb
In this example, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 10, from t1 = 60 ms, the speed increasing linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb = {(0.06 + 0.1) × 362-15} /0.1=429.2 mm / s) may be determined by referring to a data table stored in the control unit.
In the present embodiment, the measured paper interval time t1 = 60 ms, which is larger than the set value Ta = 49 ms, and t1 ≧ Ta. Therefore, the rotation speed of the first transport roller 1 is controlled so that the trailing sheet P2 is transported at the sheet linear velocity V3 of the trailing sheet P2 in the section from the time when the leading edge of the trailing sheet P2 reaches the sheet sensor b until the time Tb elapses. Then, after the time Tb has elapsed, the sheet is conveyed at the normal sheet linear velocity V1 (see FIG. 11). When the number of fed sheets reaches the set value, the operation is terminated (steps S51 and S52 to S59 in FIG. 20).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration This is a value obtained from the formula for calculating the hourly paper linear velocity. In this example, the measured inter-paper time t1 = 60 ms, and V3 = 429.2 mm / s.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1−L} / Tb, corrected paper interval time = t1 × V1−Tb × [{(t1 + Tb) × V1−L} / Tb−V1] = Ta × V1 = L Is corrected to the inter-paper distance L. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.

(9)連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例
この例は給紙部で紙間0を狙って連続給紙の動作を行うが、用紙のスリップ等で若干の紙間があいた状態で搬送される場合である(紙間があることを除いては上記(8)の例と同じ動作を行う。)。図12〜図16は、給紙部で紙間を空けずに連続給紙を行ったときに、給紙部では紙間があいていない(=紙間0mm)で連続給紙されるが、その後、後行紙P2の用紙スリップにより(後行紙P2は分離部の負荷がかかるのでスリップによる搬送の遅れを生じやすい。)若干の紙間があいた状態で用紙が送られる場合の概略断面図である。
まず、給紙部で連続して給紙された用紙は、図12のように先行紙P1と後行紙P2が若干の紙間Aをあけて(ここではA=10mm)で送られ、先行紙P1後端が第1搬送ローラ1を抜けた以降のタイミング(この例では第1搬送ローラ1から10mm送られたタイミング)で第1搬送ローラ1が停止することにより後行紙P2の搬送が停止する(図20のステップS41〜ステップS45)。
次に、図13に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図20のステップS46〜ステップS48)。
次に、図14に示すように、後行紙P2の先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図20のステップS49〜ステップS50)、測定されたt1の値から以降の後行紙P2の搬送速度、タイミングが制御部にて決定される(図15参照)。なお、この例では、Ta={L+Td×(V2−V1)}/V1={15+0.02×(500−362)}/362=49ms、Tb=100ms(所定時間)、Tc=Ta−t1、Td=20ms(一定時間)、補正後の紙間距離狙い値=15mmとする。また、V3={(t1+Tb)×V1−L}/Tbである。
(9) Example of transporting paper with a slight gap between the trailing edge of the preceding paper and the leading edge of the succeeding paper in continuous feeding. In this case, the sheet is transported with a slight gap between the sheets due to slipping of the sheet (the same operation as in the above example (8) is performed except that there is a gap between sheets). In FIGS. 12 to 16, when continuous paper feeding is performed without a gap between papers in the paper feeding unit, the paper feeding unit continuously feeds paper with no paper gap (= 0 mm between papers). Thereafter, due to a paper slip of the trailing paper P2 (the trailing paper P2 is subjected to a load on the separation unit, and thus a conveyance delay due to the slip is likely to occur). Schematic cross-sectional view when the paper is fed with a slight gap It is.
First, as shown in FIG. 12, the paper continuously fed by the paper feeding unit is sent with a slight paper gap A (A = 10 mm in this case) between the preceding paper P1 and the following paper P2, and the preceding paper P1 When the first conveying roller 1 stops at the timing after the trailing edge of the paper P1 passes through the first conveying roller 1 (in this example, the timing when 10 mm is fed from the first conveying roller 1), the conveying of the succeeding paper P2 is performed. Stop (steps S41 to S45 in FIG. 20).
Next, as shown in FIG. 13, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S46 to S48 in FIG. 20).
Next, as shown in FIG. 14, when the leading edge of the succeeding paper P2 reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S49 to step S50 in FIG. 20), and the measured value of t1 From then on, the conveyance speed and timing of the succeeding paper P2 are determined by the control unit (see FIG. 15). In this example, Ta = {L + Td × (V2−V1)} / V1 = {15 + 0.02 × (500-362)} / 362 = 49 ms, Tb = 100 ms (predetermined time), Tc = Ta−t1, Td = 20 ms (fixed time), corrected paper distance target value = 15 mm. Moreover, it is V3 = {(t1 + Tb) * V1-L} / Tb.

本実施形態では、後行紙P2の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図15において、t1=80msより、増速線速V3はV3={(t1+Tb)×V1−L}/Tb={(0.08+0.1)×362−15}/0.1=501.6mm/s)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本実施形態では、測定された紙間時間t1=80msであり、設定値Ta=49msより大きく、t1≧Taである。このため、後行紙P2はその先端が用紙センサbに達してから時間Tb経過までの区間で後行紙P2の用紙線速V3により搬送されるように第1搬送ローラ1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図16参照)。そして、給紙枚数が設定値に達すると動作を終了する(図20のステップS51、ステップS52〜ステップS59)。
用紙線速V3は、V3={(t1+Tb)×V1−L}/Tb、ただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速の計算式にて求められる値である。本例では、測定された紙間時間t1=80msであり、V3=501.6mm/sに決定される。
増速時間Tb経過後に後行紙P2の搬送が通常用紙線速V1に切替わったときの紙間距離は、補正後紙間距離=t1×V1−Tb×(V3−V1)、上記式V3={(t1+Tb)×V1−L}/Tbより、補正後紙間時間=t1×V1−Tb×[{(t1+Tb)×V1−L}/Tb−V1]=Ta×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、増速速度V3の設定によって補正後の紙間距離=Lとなるようにしている。
したがって、第3の実施形態では、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態(用紙線速が安定している)であることから、従来のように用紙線速の不安定な給紙部で紙間をあけるのに対して紙間のバラツキを小さく抑えることができる。また、用紙センサにより紙間時間を測定し、その値により後行紙P2の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキを低減することが可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
In this embodiment, the conveyance speed and timing of the succeeding paper P2 are determined by calculation from the paper interval time t1 in the control unit (in FIG. 15, from t1 = 80 ms, the linear velocity increase V3 is V3 = {(t1 + Tb). * V1-L} / Tb = {(0.08 + 0.1) * 362-15} /0.1=501.6 mm / s) is also determined by referring to the data table stored in the control unit. .
In the present embodiment, the measured paper interval time t1 = 80 ms, which is larger than the set value Ta = 49 ms, and t1 ≧ Ta. Therefore, the rotation speed of the first transport roller 1 is controlled so that the trailing sheet P2 is transported at the sheet linear velocity V3 of the trailing sheet P2 in the section from the time when the leading edge of the trailing sheet P2 reaches the sheet sensor b until the time Tb elapses. Then, after the time Tb has elapsed, the sheet is conveyed at the normal sheet linear velocity V1 (see FIG. 16). When the number of fed sheets reaches the set value, the operation is terminated (steps S51 and S52 to S59 in FIG. 20).
The sheet linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration This is a value obtained from the formula for calculating the hourly paper linear velocity. In this example, the measured inter-paper time t1 = 80 ms, and V3 = 501.6 mm / s is determined.
The inter-paper distance when the conveyance of the succeeding paper P2 is switched to the normal paper linear speed V1 after the accelerating time Tb has elapsed is the corrected inter-paper distance = t1 × V1−Tb × (V3−V1), the above formula V3 = {(T1 + Tb) × V1−L} / Tb, corrected paper interval time = t1 × V1−Tb × [{(t1 + Tb) × V1−L} / Tb−V1] = Ta × V1 = L Is corrected to the inter-paper distance L. In this example, the corrected inter-paper distance = L by setting the acceleration speed V3.
Therefore, in the third embodiment, the position where the space between the papers is sufficiently large for the conveyance load (separation load, paper stiffness, conveyance load due to sliding with the guide plate, etc.). Since the sheet is in a state (the sheet linear speed is stable), it is possible to suppress the variation between the sheets as compared to the conventional sheet feeding unit where the sheet linear speed is unstable. In addition, the sheet interval time is measured by the sheet sensor, the acceleration time and timing of the succeeding sheet P2 are determined based on the measured values, and the sheet interval correction is performed, so that variations between the corrected sheets can be reduced. Is possible. As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.

また、測定した紙間時間t1に応じて測定した紙間時間が規定の値より小さいときは後行紙P2をある時間Tc停止することで紙間をあけ、その後時間Td間増速線速V2で搬送し、その後通常の用紙線速V1で搬送を再開することで紙間のバラツキを低減し、測定した紙間時間が規定の値より大きいときは後行紙P2の先端が第1搬送ローラ1に達した後に一定時間Tbの後行紙P2の用紙線速(V3)の大きさを測定した紙間時間t1の大きさに応じて決定し、時間Tb経過後に、後行紙P2を通常線速V1に戻すことで紙間のバラツキを低減することが可能である。
また、測定した紙間時間が規定の値より小さいとき、後行紙P2の停止時間TcをTc=Ta−t1ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、測定した紙間時間が規定の値より大きいときは後行紙P2の用紙線速V3をV3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常用紙線速、V2=増速時用紙線速と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能である。
Further, when the inter-paper time measured in accordance with the measured inter-paper time t1 is smaller than a prescribed value, the succeeding paper P2 is stopped by stopping for a certain time Tc, and thereafter, the linear velocity V2 during the time Td is increased. , And then the conveyance is resumed at the normal sheet linear velocity V1 to reduce the variation between the sheets. When the measured interval between the sheets is larger than the specified value, the leading edge of the succeeding sheet P2 is the first conveying roller. After reaching 1, the magnitude of the sheet linear speed (V3) of the succeeding paper P2 for a certain time Tb is determined according to the magnitude of the measured paper interval time t1, and after the time Tb has elapsed, the following paper P2 is usually By returning to the linear velocity V1, it is possible to reduce the variation between the sheets.
When the measured inter-sheet time is smaller than the prescribed value, the stop time Tc of the succeeding paper P2 is Tc = Ta−t1, where Ta = {L + Td × (V2−V1)} / V1, L = after correction By setting the target paper distance, V1 = normal paper linear speed, V2 = speed increasing paper linear speed, and Td = constant time, the corrected paper distance ≈ the target paper distance L can be set. If the measured inter-sheet time is greater than the specified value, the sheet linear velocity V3 of the succeeding sheet P2 is V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = predetermined time, L = after correction By setting the target inter-paper distance, V1 = normal paper linear speed, and V2 = accelerated paper linear speed, the corrected inter-paper distance can be made equal to the target inter-paper distance L, and there is variation between the papers. Can be effectively reduced.

また、用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙の紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時に後行紙P2の先端が用紙センサbに達しないことから、用紙が重なっている状態でも用紙センサbにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより上記のような紙間の補正を可能である。この結果として、紙間のバラツキを抑えることが可能であり、これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサbによる紙間時間測定の前に後行紙P2の用紙線速を速くすることで測定時の紙間をより小さくすることが可能である。これにより、測定紙間時間t1とそのバラツキもあらかじめより小さくできることから以降の後行紙の用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
また、画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Further, even when there is a variation in the standby position of the paper, the continuous paper P2 when the subsequent paper is stopped even when the paper is partially overlapped when the paper is continuously fed without gaps between the paper due to the variation in the standby position. Since the leading edge of the paper does not reach the paper sensor b, the paper sensor b can detect the sensor drop timing of the preceding paper and measure the paper interval time t1 even when the paper is overlapped. It is possible to correct between. As a result, it is possible to suppress the variation between the papers, and thereby it is possible to reduce the set value between the papers set in consideration of the variation between the papers.
Further, by increasing the sheet linear speed of the succeeding sheet P2 before the sheet interval time measurement by the sheet sensor b, it is possible to further reduce the sheet interval at the time of measurement. As a result, the measurement paper interval time t1 and the variation thereof can be made smaller in advance, so that it is possible to cope with a larger variation in the paper interval together with the effect of the correction of the inter paper interval according to the subsequent sheet linear velocity and the conveyance timing.
In addition, by providing a paper transport device that performs this paper gap correction in the image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, increased durability, quietness, etc. An effect can be obtained.
In addition, by providing a paper conveyance device for correcting the paper gap in the electrophotographic image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, and improving durability. Effects such as calming can be obtained.

実施例1における動作を示すフローチャートである。3 is a flowchart illustrating an operation in the first embodiment. 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その1)である。FIG. 2 is a schematic cross-sectional view of a paper transport device (paper overlap when paper is fed, part 1). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その2)である。FIG. 3 is a schematic cross-sectional view of a paper transport device (paper overlap when paper is fed, Part 2). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その3)である。FIG. 3 is a schematic cross-sectional view of a paper transport device (with paper overlap during paper feeding, part 3). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その4)である。FIG. 4 is a schematic cross-sectional view of a paper transport device (with paper overlap during paper feeding, part 4). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その5)である。FIG. 6 is a schematic cross-sectional view of a paper conveying apparatus (with paper overlap during paper feeding, part 5). 用紙搬送装置の概略断面図(給紙時紙間なし、その1)である。FIG. 3 is a schematic cross-sectional view of the sheet transport device (no sheet space when feeding, part 1). 用紙搬送装置の概略断面図(給紙時紙間なし、その2)である。FIG. 3 is a schematic cross-sectional view of the paper transport device (No paper during feeding, part 2). 用紙搬送装置の概略断面図(給紙時紙間なし、その3)である。FIG. 3 is a schematic cross-sectional view of a paper transport device (no paper space during paper feeding, part 3). 用紙搬送装置の概略断面図(給紙時紙間なし、その4)である。FIG. 4 is a schematic cross-sectional view of a paper transport device (No space during paper feeding, part 4). 用紙搬送装置の概略断面図(給紙時紙間なし、その5)である。FIG. 6 is a schematic cross-sectional view of the paper transport device (no paper gap during paper feeding, part 5). 用紙搬送装置の概略断面図(給紙時紙間有り、その1)である。FIG. 2 is a schematic cross-sectional view of a paper transport device (there is a paper gap during paper feeding, part 1). 用紙搬送装置の概略断面図(給紙時紙間有り、その2)である。FIG. 3 is a schematic cross-sectional view of the paper transport device (there is a paper gap during paper feeding, part 2). 用紙搬送装置の概略断面図(給紙時紙間有り、その3)である。FIG. 4 is a schematic cross-sectional view of the paper transport device (there is a paper gap during paper feeding, part 3). 用紙搬送装置の概略断面図(給紙時紙間有り、その4)である。FIG. 6 is a schematic cross-sectional view of the paper transport device (there is a paper gap at the time of paper feeding, part 4). 用紙搬送装置の概略断面図(給紙時紙間有り、その5)である。FIG. 5 is a schematic cross-sectional view of the paper transport device (there is a paper gap during paper feeding, part 5). 第2の実施形態における動作を示すフローチャートである。It is a flowchart which shows the operation | movement in 2nd Embodiment. 第2の実施形態又は3の用紙搬送装置の概略断面図(給紙時用紙重なり有り、その4’)である。FIG. 4 is a schematic cross-sectional view of a sheet conveying device according to a second embodiment or 3 (sheets overlapped during feeding, 4 ′). 第2の実施形態に係る用紙搬送装置の概略断面図(給紙時用紙重なり有り、その5’)である。FIG. 6 is a schematic cross-sectional view of a paper conveying apparatus according to a second embodiment (paper feeding overlap, part 5 '). 第3の実施形態における動作を示すフローチャートである。It is a flowchart which shows the operation | movement in 3rd Embodiment. 第3の実施形態に係る用紙搬送装置の概略断面図(給紙時用紙重なり有り、その5’)である。FIG. 10 is a schematic cross-sectional view of a paper conveying apparatus according to a third embodiment (paper overlapping during feeding, part 5 '). 第3の実施形態に係る用紙搬送装置の概略断面図(給紙時用紙重なり有り、その6’)である。FIG. 10 is a schematic cross-sectional view of a paper transport device according to a third embodiment (paper overlap during paper feeding, part 6 '). 従来の用紙搬送装置(FRR分離方式を使用)の横断面図である。It is a cross-sectional view of a conventional paper transport device (using the FRR separation method).

符号の説明Explanation of symbols

1 第1搬送ローラ、1a 用紙積載部、2 第2搬送ローラ、2a 用紙
3 ピックアップローラ、4 フィードローラ、5 リバースローラ、6 感光体、7 転写ローラ、a、b、c、F 用紙センサ
DESCRIPTION OF SYMBOLS 1 1st conveyance roller, 1a Paper stacking part, 2nd 2nd conveyance roller, 2a Paper 3 Pickup roller, 4 Feed roller, 5 Reverse roller, 6 Photoconductor, 7 Transfer roller, a, b, c, F Paper sensor

Claims (11)

用紙を用紙積載部から送り出すための給紙ローラと、
用紙を1枚に分離するための分離手段と、
前記給紙ローラより下流の搬送路に設けられ、用紙を搬送する第1搬送ローラと、
前記第1搬送ローラより下流の搬送路に設けられ、用紙を搬送する第2搬送ローラと、
前記第1搬送ローラと前記第2搬送ローラの間に位置する用紙センサと、
制御部と、を備え、
前記制御部は、連続して給紙を行う場合には、用紙を前記用紙積載部から給紙する際に用紙の間隔をあけずに連続して給紙を行い、先行する用紙の後端が前記第1搬送ローラを抜けた以降のタイミングで前記第2搬送ローラの駆動は切らずに先行紙の搬送を続けたまま前記第1搬送ローラの駆動を切って後行紙の搬送を止めることにより、前記第1搬送ローラと前記第2搬送ローラの間で紙間距離を開けて以降搬送し、
前記用紙センサにより前記用紙センサの位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラの駆動を開始して後行紙を搬送すると共に、先行紙後端が前記用紙センサを抜けてから後行紙先端が前記用紙センサに達するまでの紙間時間t1の測定を行い、測定された紙間時間t1の値に応じて以降の後行紙用紙線速V3の大きさ、あるいは後行紙を停止する時間等の搬送タイミングを決定することを特徴とする用紙搬送装置。
A paper feed roller for feeding paper from the paper stacking unit;
Separating means for separating the paper into one sheet;
A first transport roller that is provided in a transport path downstream of the paper feed roller and transports paper;
A second conveyance roller that is provided in a conveyance path downstream of the first conveyance roller and conveys the paper;
A paper sensor positioned between the first transport roller and the second transport roller;
A control unit,
When continuously feeding paper from the paper stacking unit, the control unit continuously feeds paper with no gap between the papers, and the trailing edge of the preceding paper is By stopping the conveyance of the succeeding paper by turning off the driving of the first conveyance roller while continuing the conveyance of the preceding paper without turning off the driving of the second conveyance roller at the timing after the passage of the first conveyance roller. , The paper is transported after a gap between the first transport roller and the second transport roller is opened,
The first conveyance roller starts to be driven after a predetermined time T1 (≧ 0) after the trailing edge of the preceding paper sheet is detected, triggered by the detection of the trailing edge of the preceding paper sheet by the sheet sensor. Then, the succeeding sheet is conveyed, and the sheet interval time t1 from when the trailing end of the preceding sheet passes through the sheet sensor to when the leading end of the succeeding sheet reaches the sheet sensor is measured. A sheet conveying apparatus that determines the conveyance timing such as the magnitude of the subsequent sheet linear velocity V3 or the time to stop the succeeding sheet in accordance with the value of.
請求項1記載の用紙搬送装置において、
前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは前記用紙センサの位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラの回転数を前記第1搬送ローラ1の回転数を変えることで測定した紙間時間t1に応じて決められる用紙線速V3で搬送され、用紙センサの位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定したことを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 1,
The control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the subsequent sheet conveyance speed and timing after the inter-sheet time t1 is measured are determined to follow the position of the sheet sensor. After reaching the leading edge of the paper, during the time Tb, the rotational speed of the first transport roller is transported at a paper linear speed V3 determined according to the paper spacing time t1 measured by changing the rotational speed of the first transport roller 1. After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the succeeding sheet is conveyed at the normal sheet linear velocity V1 by returning the rotation speed of the first conveying roller to the normal rotation speed after the time Tb has elapsed. A sheet conveying apparatus characterized by being set to do.
請求項1記載の用紙搬送装置において、
前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tc間は前記第1搬送ローラの回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定し、
紙間時間t1≧設定時間Taのとき、前記用紙センサの位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラの回転数を変えることで測定した紙間時間t1に応じて決められる用紙線速V3で搬送され、前記用紙センサの位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定したことを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 1,
The control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the following sheet transport speed and timing after the sheet spacing time t1 is measured are the sheet spacing time t1 <the set time Ta. (However, Ta = constant value) After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the transportation of the succeeding sheet is stopped by stopping the rotation of the first conveying roller for a time Tc, After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the succeeding sheet is transported at the normal sheet linear speed V1 by returning the rotation speed of the first transport roller to the normal rotation speed after the time Tc has elapsed. Set as
When the paper interval time t1 ≧ the set time Ta, after the leading edge of the succeeding paper reaches the position of the paper sensor, the time interval Tb corresponds to the paper interval time t1 measured by changing the rotation speed of the first conveying roller. After the time Tb has elapsed after the leading edge of the succeeding paper has reached the position of the paper sensor, the rotational speed of the first transport roller is returned to the normal rotational speed. A paper conveying apparatus characterized in that it is set to convey subsequent paper at a paper linear velocity V1.
請求項1記載の用紙搬送装置において、
前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tc間は前記第1搬送ローラの回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後はそこから更に時間Td経過するまでは前記第1搬送ローラの回転数を上げることで通常の速度より速い用紙線速V2で後行紙を搬送し、時間Td経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定し、
紙間時間t1≧設定時間Taのとき、前記用紙センサの位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラの回転数を変えることで測定した紙間t1に応じて決められる用紙線速V3で搬送され、前記用紙センサの位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラの回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定したことを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 1,
The control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the following sheet transport speed and timing after the sheet spacing time t1 is measured are the sheet spacing time t1 <the set time Ta. (However, Ta = constant value) After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the transportation of the succeeding sheet is stopped by stopping the rotation of the first conveying roller for a time Tc, After the leading edge of the succeeding sheet reaches the position of the sheet sensor, after the time Tc elapses, the rotation speed of the first conveying roller is increased until the time Td elapses thereafter, so that the sheet linear velocity V2 that is faster than the normal speed. The subsequent paper is transported at a time, and after the time Td has elapsed, the rotation speed of the first transport roller is returned to the normal rotational speed so that the subsequent paper is transported at the normal paper linear speed V1,
When the paper interval time t1 ≧ the set time Ta, after the leading edge of the succeeding paper reaches the position of the paper sensor, during the time Tb, according to the paper interval t1 measured by changing the rotation speed of the first conveying roller. After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the sheet is conveyed at a determined sheet linear velocity V3, and after the time Tb has elapsed, the rotation speed of the first conveying roller is returned to the normal rotation speed to thereby return the normal sheet. A paper conveying apparatus characterized in that it is set to convey subsequent paper at a linear velocity V1.
請求項2記載の用紙搬送装置において、
後行紙用紙線速V3はV3={(t1+Tb)×V1−L}/Tbただし、Tb=一定時間、L=補正後の狙いの紙間距離、V1=通常の用紙線速の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値であることを特徴とする用紙搬送装置。
In the paper conveying apparatus according to claim 2,
The following paper sheet linear velocity V3 is obtained from the relationship of V3 = {(t1 + Tb) × V1-L} / Tb, where Tb = a fixed time, L = target inter-paper distance after correction, and V1 = normal sheet linear velocity. A sheet conveying apparatus characterized in that the calculated value is obtained by referring to data set in advance in the data table so that the same effect as that obtained when using the calculated value or the calculated value is obtained.
請求項3記載の用紙搬送装置において、
後行紙用紙線速V3がV3={(t1+Tb)×V1−L}/Tb、時間TcがTc=Ta−t1ただし、Ta=L/V1の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値であることを特徴とする用紙搬送装置。
In the paper conveying apparatus of Claim 3,
The trailing paper linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, and the time Tc is Tc = Ta-t1, where the calculated value obtained from the relationship of Ta = L / V1 or the calculated value is used. A sheet conveying apparatus characterized in that the value is obtained by referring to data set in advance in a data table so as to obtain the same effect as in the case of the above.
請求項4記載の用紙搬送装置において、
後行紙用紙線速V3がV3={(t1+Tb)×V1−L}/Tb、時間TcがTc=Ta−t1ただし、Ta={L+Td×(V2−V1)}/V1(V2=増速時用紙線速で一定値)の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値であることを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 4,
The trailing paper linear velocity V3 is V3 = {(t1 + Tb) × V1-L} / Tb, and the time Tc is Tc = Ta−t1, where Ta = {L + Td × (V2−V1)} / V1 (V2 = acceleration) A value obtained by referring to data set in advance in the data table so as to obtain the same effect as the case of using the calculated value or the calculated value obtained from the relationship of a constant value at the paper linear velocity) A paper conveying device characterized by being.
請求項1〜7のいずれか1項に記載の用紙搬送装置において、
前記用紙センサの位置を前記第1搬送ローラの位置より前記用紙積載部に積載された用紙の先端位置から前記分離手段の位置までの距離よりも大きく離れた搬送路の下流側に設けたことを特徴とする用紙搬送装置。
In the paper conveyance device according to any one of claims 1 to 7,
The position of the sheet sensor is provided on the downstream side of the conveyance path that is farther from the position of the first conveyance roller than the distance from the leading edge position of the sheet stacked on the sheet stacking unit to the position of the separation unit. Characteristic paper transport device.
請求項1〜7のいずれか1項に記載の用紙搬送装置において、
前記用紙センサにより前記用紙センサの位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラの駆動を開始する際の前記第1搬送ローラにより送られる後行紙の用紙線速は前記第1搬送ローラの駆動開始から前記用紙センサに後行紙先端が達するまでの一部の区間、あるいは全区間において後行紙用紙線速が通常線速V1より速い増速線速V2にて送られるように前記第1搬送ローラの回転数が制御されることを特徴とする用紙搬送装置。
In the paper conveyance device according to any one of claims 1 to 7,
The first conveyance roller starts to be driven after a predetermined time T1 (≧ 0) after the trailing edge of the preceding paper sheet is detected, triggered by the detection of the trailing edge of the preceding paper sheet by the sheet sensor. The sheet linear velocity of the succeeding sheet sent by the first conveying roller at the time of the following is a part of the entire period from the start of driving the first conveying roller until the leading end of the succeeding sheet reaches the sheet sensor. A sheet conveying apparatus characterized in that the rotation speed of the first conveying roller is controlled so that the line sheet linear speed is fed at an increased linear speed V2 higher than the normal linear speed V1.
用紙に画像を形成するための画像形成部と、
前記画像形成部に用紙を搬送する請求項1〜9のいずれか1項に記載の用紙搬送装置とを備えたことを特徴とする画像形成装置。
An image forming unit for forming an image on paper;
An image forming apparatus comprising: the sheet conveying apparatus according to claim 1, which conveys a sheet to the image forming unit.
請求項10記載の画像形成装置において、
前記画像形成部は電子写真方法で形成したトナー画像を用紙に転写して用紙上に画像を形成することを特徴とする画像形成装置。
The image forming apparatus according to claim 10.
An image forming apparatus, wherein the image forming unit transfers a toner image formed by an electrophotographic method onto a sheet to form an image on the sheet.
JP2004336725A 2004-11-19 2004-11-19 Paper transport device and image forming apparatus using the same Expired - Fee Related JP4570941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336725A JP4570941B2 (en) 2004-11-19 2004-11-19 Paper transport device and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336725A JP4570941B2 (en) 2004-11-19 2004-11-19 Paper transport device and image forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006143411A true JP2006143411A (en) 2006-06-08
JP4570941B2 JP4570941B2 (en) 2010-10-27

Family

ID=36623534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336725A Expired - Fee Related JP4570941B2 (en) 2004-11-19 2004-11-19 Paper transport device and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4570941B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056418A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Printing device and continuous conveying control method of printing medium
JP2010137974A (en) * 2008-12-12 2010-06-24 Konica Minolta Business Technologies Inc Sheet carrying device and image forming device having the same
US8382241B2 (en) 2010-03-16 2013-02-26 Ricoh Company, Ltd. Image forming apparatus performing non-printing discharge
JP2016104663A (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Sheet conveyance device, document reader, and image formation apparatus
US9383707B2 (en) 2013-12-25 2016-07-05 Canon Kabushiki Kaisha Image forming apparatus and feeding device that detect sheets with a sensor that is chosen according to sheet size
US10191433B2 (en) 2014-01-08 2019-01-29 Brother Kogyo Kabushiki Kaisha Sheet feeding timing method of image forming apparatus based on sheet size
JP2019206158A (en) * 2018-05-30 2019-12-05 キヤノン株式会社 Recording apparatus and its control method
US11655115B2 (en) 2020-03-24 2023-05-23 Brother Kogyo Kabushiki Kaisha Image recording apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156794A (en) * 1991-12-09 1994-06-03 Ricoh Co Ltd Sheet feeding device for image forming device and sheet feeding method
JPH1159965A (en) * 1997-08-22 1999-03-02 Ricoh Co Ltd Paper carrying device
JP2003176045A (en) * 2001-12-07 2003-06-24 Ricoh Co Ltd Paper conveying device, and image forming device
JP2004043178A (en) * 2002-05-23 2004-02-12 Ricoh Co Ltd Automatic document carrying device and image processing device
JP2004189493A (en) * 2004-01-13 2004-07-08 Canon Inc Manuscript feeder
JP2006137579A (en) * 2004-11-12 2006-06-01 Ricoh Co Ltd Paper conveying device and image forming device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156794A (en) * 1991-12-09 1994-06-03 Ricoh Co Ltd Sheet feeding device for image forming device and sheet feeding method
JPH1159965A (en) * 1997-08-22 1999-03-02 Ricoh Co Ltd Paper carrying device
JP2003176045A (en) * 2001-12-07 2003-06-24 Ricoh Co Ltd Paper conveying device, and image forming device
JP2004043178A (en) * 2002-05-23 2004-02-12 Ricoh Co Ltd Automatic document carrying device and image processing device
JP2004189493A (en) * 2004-01-13 2004-07-08 Canon Inc Manuscript feeder
JP2006137579A (en) * 2004-11-12 2006-06-01 Ricoh Co Ltd Paper conveying device and image forming device using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056418A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Printing device and continuous conveying control method of printing medium
JP2010137974A (en) * 2008-12-12 2010-06-24 Konica Minolta Business Technologies Inc Sheet carrying device and image forming device having the same
EP2196420A3 (en) * 2008-12-12 2011-02-23 Konica Minolta Business Technologies, Inc. Sheet feeding device and image forming apparatus provided with the sheet feeding device
JP4650564B2 (en) * 2008-12-12 2011-03-16 コニカミノルタビジネステクノロジーズ株式会社 Sheet conveying apparatus and image forming apparatus provided with the same
CN101746627B (en) * 2008-12-12 2013-04-17 柯尼卡美能达商用科技株式会社 Sheet feeding device and image forming apparatus provided with the sheet feeding device
US8382241B2 (en) 2010-03-16 2013-02-26 Ricoh Company, Ltd. Image forming apparatus performing non-printing discharge
US9383707B2 (en) 2013-12-25 2016-07-05 Canon Kabushiki Kaisha Image forming apparatus and feeding device that detect sheets with a sensor that is chosen according to sheet size
US10191433B2 (en) 2014-01-08 2019-01-29 Brother Kogyo Kabushiki Kaisha Sheet feeding timing method of image forming apparatus based on sheet size
JP2016104663A (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Sheet conveyance device, document reader, and image formation apparatus
JP2019206158A (en) * 2018-05-30 2019-12-05 キヤノン株式会社 Recording apparatus and its control method
JP7199837B2 (en) 2018-05-30 2023-01-06 キヤノン株式会社 Recording device and its control method
US11655115B2 (en) 2020-03-24 2023-05-23 Brother Kogyo Kabushiki Kaisha Image recording apparatus

Also Published As

Publication number Publication date
JP4570941B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5581811B2 (en) Image forming apparatus
US7068969B2 (en) Method and apparatus for image forming capable of performing fast and stable sheet transfer operations
JP6129384B2 (en) Image forming apparatus
JP5750413B2 (en) Recording medium conveying apparatus and image forming apparatus
JP2009122415A (en) Image forming system
JP4570941B2 (en) Paper transport device and image forming apparatus using the same
JP5366508B2 (en) Image forming apparatus
JP2019099377A (en) Transport device and image formation device
JP6214354B2 (en) Sheet feeding apparatus and image forming apparatus
JP4814066B2 (en) Sheet-like medium conveying apparatus, image forming apparatus, and sheet-like medium conveying method
JP4358086B2 (en) Paper transport device and image forming apparatus using the same
JP2006248677A (en) Image forming device and sheet conveying method
JP2004315177A (en) Paper transporting device and image forming device
JP4298573B2 (en) Paper transport device and image forming apparatus
JP2005213039A (en) Paper feeding device and image forming device
JP4359212B2 (en) Paper transport device
JP2009263085A (en) Image forming apparatus
JP2002274700A (en) Paper feed control method and image formation device
JP4510273B2 (en) Paper feeding device
JP7229748B2 (en) Paper feeder and image forming device
JP4749276B2 (en) Image forming apparatus
JP2008063024A (en) Image formation device, and sheet supply control method
JP2011213446A (en) Image forming device
JPH11322137A (en) Feeding paper carrier device
JP4392456B2 (en) Paper conveying apparatus and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees