JP2006138893A - 反射防止フィルム、偏光板及び表示装置 - Google Patents

反射防止フィルム、偏光板及び表示装置 Download PDF

Info

Publication number
JP2006138893A
JP2006138893A JP2004326015A JP2004326015A JP2006138893A JP 2006138893 A JP2006138893 A JP 2006138893A JP 2004326015 A JP2004326015 A JP 2004326015A JP 2004326015 A JP2004326015 A JP 2004326015A JP 2006138893 A JP2006138893 A JP 2006138893A
Authority
JP
Japan
Prior art keywords
film
refractive index
layer
acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004326015A
Other languages
English (en)
Inventor
Takashi Murakami
隆 村上
Toshiaki Shibue
俊明 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004326015A priority Critical patent/JP2006138893A/ja
Publication of JP2006138893A publication Critical patent/JP2006138893A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】 本発明の目的は、帯電防止性に優れ、着色、ヘイズが無く、膜強度が強い反射防止フィルム、偏光板及び表示装置を提供することにある。
【解決手段】 透明基材フィルム上に少なくとも一層の帯電防止層を有し、その上に直接または他の層を介して導電性中空微粒子を含有する層を設けたことを特徴とする反射防止フィルム。
【選択図】 なし

Description

本発明は、反射防止フィルム、偏光板及び表示装置に関する。
帯電防止層を得る手段として導電性金属酸化物粒子と電離放射線硬化性樹脂を用いる方法が知られている。導電性金属酸化物粒子は粒子同士が接触していないと導電性が発現し難いため、添加量を一定量以上にしないと帯電防止性が得られないことがある。しかしながら導電性金属酸化物粒子の添加量が多くなり過ぎると、帯電防止層に着色、ヘイズの上昇、膜強度の低下などの問題が発生することがあった。
一方、液晶等の表示装置の最表面にはハードコートフィルム、反射防止フィルムなどが設けられているが、画面への埃の付着などを防ぐために帯電防止性を有することが求められてきている。
ハードコートフィルムに帯電防止性を付与する手段として、ハードコート層に導電性金属酸化物粒子を添加する方法が知られている。ハードコート層は通常2〜10μm程度と膜厚が厚いため導電性金属酸化物粒子の付量が多く、帯電防止性は発現しやすいが、着色やヘイズ、耐傷性の劣化が起こりやすいという問題がある。
また、反射防止フィルムに帯電防止性を付与する手段として、高屈折率層または中屈折率層に導電性金属酸化物粒子を添加する方法が知られているが、高屈折率層または中屈折率層は通常30〜100nm程度と膜厚が薄いため、導電性金属酸化物粒子の添加比率を大きくしなければ帯電防止性が発現せず、その為膜強度が弱くなり易いという問題があった。
従来、高屈折率層の膜強度を改善する技術が開示されているが、(例えば、特許文献1、2参照。)、上記問題を解決するには不十分であり、帯電防止性と膜強度を高度に両立出来る技術の開発が待たれていた。
特開2000−63444号公報 特開2000−143924号公報
従って本発明の目的は、帯電防止性に優れ、着色、ヘイズが無く、膜強度が強い反射防止フィルム、偏光板及び表示装置を提供することにある。
本発明の上記目的は以下の構成により達成される。
(請求項1)
透明基材フィルム上に少なくとも一層の帯電防止層を有し、その上に直接または他の層を介して導電性中空微粒子を含有する層を設けたことを特徴とする反射防止フィルム。
(請求項2)
前記導電性中空微粒子を含有する層がフッ素化合物を含むことを特徴とする請求項1に記載の反射防止フィルム。
(請求項3)
前記帯電防止層が導電性金属酸化物粒子を含み、該導電性金属酸化物粒子がアンチモンをドープした酸化錫(ATO)、酸化インジウムスズ(ITO)、五酸化アンチモン、酸化亜鉛、酸化ジルコニウムから選ばれる1種または2種以上の金属酸化物粒子であることを特徴とする請求項1または2に記載の反射防止フィルム。
(請求項4)
前記透明基材フィルムが幅1.4m以上のセルロースエステルフィルムであることを特徴とする請求項1〜3のいずれか1項に記載の反射防止フィルム。
(請求項5)
請求項1〜4のいずれか1項に記載の反射防止フィルムを有することを特徴とする偏光板。
(請求項6)
請求項1〜4のいずれか1項に記載の反射防止フィルムを有することを特徴とする表示装置。
(請求項7)
請求項5に記載の偏光板を有することを特徴とする表示装置。
本発明により、帯電防止性に優れ、着色、ヘイズが無く、膜強度が強い反射防止フィルム、偏光板及び表示装置を提供することにある。
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の反射防止フィルムは、透明基材フィルム上に少なくとも一層の帯電防止層を有し、その上に直接または他の層を介して導電性中空微粒子を含有する層を設けたことを特徴とする。
本発明の帯電防止層は、例えば水溶性導電性ポリマーや導電性金属酸化物粒子等を含有することにより帯電防止性を発現させるものであるが、従来十分な帯電防止性を持たせようとすると水溶性導電性ポリマーや導電性金属酸化物粒子を層内に多量に存在させる必要があり、膜強度の低下や着色、ヘイズの上昇を引き起こしていた。本発明では、反射防止層に含有される中空微粒子に導電性を持たせ、帯電防止性と反射防止性を有する層を付加することにより、帯電防止層に多量の帯電防止剤を存在させなくても、反射防止フィルムとして十分な帯電防止性を付与することが可能になることを見出し、本発明を成すに至った次第である。
以下、本発明を各要素毎に詳細に説明する。
(帯電防止層)
本発明の帯電防止層は、導電性金属酸化物粒子と電離放射線硬化性樹脂を含むことが好ましく、更に電離放射線硬化性樹脂がアクリルアミド誘導体及び多官能アクリレート化合物であることが好ましい。
本発明の帯電防止層は膜強度を調整することで、帯電防止性を持ったハードコート層とすることも出来る。また、導電性金属酸化物粒子の種類と量を適切に選択することにより屈折率をコントロールすることが出来るため、反射防止フィルムに用いられる高屈折率層、または中屈折率層として使用することも出来る。
(導電性金属酸化物微粒子)
導電性金属酸化物微粒子の種類は特に限定されないが、例えば、アンチモンドープ酸化スズ(ATO)、五酸化アンチモン、酸化インジウム−スズ(ITO)、酸化ジルコニウム(ジルコニア)、酸化亜鉛、等を主成分として用いることが出来る。これらの導電性金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。
導電性金属酸化物微粒子の一次粒子の平均粒径は5nm〜200nmが好ましく、10〜150nmであることが更に好ましい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが上昇し好ましくない。無機微粒子の形状は、米粒状、球形状、針状、立方体状、紡錘形状或いは不定形状であることが好ましい。
導電性金属酸化物微粒子の屈折率が大きいと反射防止フィルムの高屈折率層、中屈折率層などに適用出来る。この場合、導電性金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。
導電性金属酸化物微粒子は有機化合物により表面処理してもよい。導電性金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑える事も出来る。一方、導電性金属酸化物微粒子が導電性を発現するためには粒子同士が接触する事が必要だが、表面修飾量が多過ぎると粒子同士の接触が阻害されるため、必要な導電性を得られない事がある。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。
前記導電性金属酸化物粒子を含有する層を設ける場合、その層の厚さは0.05〜5μmがよく、好ましくは0.1〜3μmである。
使用する導電性金属酸化物とバインダの比は、酸化物の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。
本発明において用いられる導電性金属酸化物粒子の使用量は帯電防止層中に25体積%〜50体積%が好ましく、30体積%〜45体積%である事がより好ましい。使用量が少ないと帯電防止性が劣化し、多過ぎると膜強度の劣化、ヘイズの上昇、着色などが発生する。
(電離放射線硬化性樹脂)
電離放射線硬化性樹脂としては、紫外線や電子線のような電離放射線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じるモノマー、またはオリゴマーを用いることが出来る。本発明に用いられる電離放射線硬化性樹脂は、多官能アクリレートとアクリルアミド誘導体を含有することが好ましい。それ以外にスチレン、アクリル酸誘導体、メタクリル酸誘導体、アクリル樹脂、メタクリル樹脂などを含有させても良い。必要に応じて光重合開始剤を組み合わせることが好ましい。
本発明において使用する電離放射線は、紫外線、電子線、γ線等で、化合物を活性させるエネルギー源であれば制限なく使用出来るが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、照射光量は40〜2000mJ/cm2が好ましく、100〜1500mJ/cm2が更に好ましい。照射光量が少ないと硬化が不十分となり、照射量が多過ぎると発熱によるベース変形などが発生する。
また、電子線も同様に使用出来る。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000KeV、好ましくは100〜300KeVのエネルギーを有する電子線を挙げることが出来る。
(アクリルアミド誘導体)
本発明に好ましく用いられるアクリルアミド誘導体を単独で用いた場合には帯電防止性は無く、多官能アクリレートほどの膜強度は得られないが、導電性金属酸化物粒子、多官能アクリレートに添加することで、導電性金属酸化物粒子の導電性発現を助けるため帯電防止性を向上させることが出来、また、導電性金属酸化物粒子の添加量が少なくても良好な帯電防止性が得られるため添加量を減らすことが出来るため、着色、ヘイズ、膜強度の劣化を抑えることが出来る。更に、多官能アクリレートの酸素存在下での反応性を向上させるため、薄膜時の膜強度を上げることも出来る。更に、多官能アクリレートは耐光性試験機などで紫外線を長時間照射すると反応が進行して塗膜が硬く脆くなるため基材との密着性が劣化するが、アクリルアミド誘導体を添加することでこの紫外線耐光性を向上出来る。
本発明に用いられるアクリルアミド誘導体としては特に制限されないが、下記一般式(I)で表されるアクリルアミド誘導体であることが好ましい。
Figure 2006138893
(式中、R1及びR2は水素原子、炭素数1〜4の直鎖又は分枝鎖のアルキル基、炭素数3〜8の環状アルキル基、フェニル基、若しくはいずれの位置で置換しても良いN,N−ジメチルアミノ基、塩酸とともにN,N,N−トリメチルアミノ基、ヒドロキシ基、或いはR1及びR2が一緒になって炭素数2〜8のアルキレンを形成するか、酸素原子とともにモルフォリン環を形成する。)
アクリルアミド誘導体の具体例としては、例えば、これらに限定されるものではないが、アクリルアミド、N−イソプロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N,N−ジメチルアミノエチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N,N−トリメチルアミノエチルアクリルアミドクロリド、N,N,N−トリメチルアミノプロピルアクリルアミドクロリド、N−(2−ヒドロキシエチル)アクリルアミド、アクリロイルモルフォリン、が好ましく用いることが出来る。特に、N−(2−ヒドロキシエチル)アクリルアミド、アクリロイルモルフォリンが好ましい。これらのアクリルアミド誘導体は混合して用いても良い。
本発明に係るアクリルアミド誘導体の使用量は、多官能アクリレートに対して、5〜40質量%が好ましく、10〜30質量%がより好ましい。使用量が少ないと所望の効果が十分に得られず、使用量が多過ぎると膜強度が劣化する。
(多官能アクリレート化合物)
本発明に好ましく用いられる多官能アクリレート化合物は、分子中に2個以上のアクリロイルオキシ基またはメタクロイルオキシ基を有する化合物である。
多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
本発明に係る多官能アクリレート化合物の使用量は、5〜40質量%が好ましく、更に10〜30質量%が好ましい。40質量%を超えると膜が脆くなる。
(光重合開始剤)
電離放射線硬化性樹脂の硬化促進のために、光重合開始剤を電離放射線硬化性樹脂に対して5〜30質量%含有することが好ましい。光重合開始剤としては、特に制限は無く各種公知のものを使用することが出来る。光重合開始剤としては、例えばイルガキュア−184、イルガキュア−651(チバ・スペシャルティ・ケミカルズ社製)、ダロキュア−1173(メルク社製)などの光開始剤を用いることが出来る。更に、ベンゾフェノン、ベンゾイル安息香酸メチル、p−ジメチル安息香酸エステル、チオキトサンなどの光増感剤を併用しても良い。
(アクリル樹脂またはメタクリル樹脂)
本発明の帯電防止層にはバインダとしてアクリル樹脂またはメタクリル樹脂を添加しても良い。
アクリルまたはメタクリル樹脂としては分子量10〜50万のアルコール溶解性アクリル樹脂またはメタクリル樹脂を好ましく用いることが出来る。具体的には、アルキル(メタ)アクリレート重合体またはアルキル(メタ)アクリレート共重合体、例えばn−ブチルメタクリレート、イソブチルメタクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート等の共重合体が好ましく用いられるがこれらに限定されるものではない。市販品としては、ダイヤナールBR−50、BR−51、BR−52、BR−60、BR−64、BR−65、BR−70、BR−73、BR−75、BR−76、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−89、BR−90、BR−93、BR−95、BR−96、BR−100、BR−101、BR−102、BR−105、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118(以上、三菱レーヨン(株)製)等が使用出来る。
アクリル樹脂またはメタクリル樹脂のTg(ガラス転移点)は30℃以下であることが好ましい。Tgは、Rheometrics社製のSOLIDS ANALYZER−RSAIIを用いて、周波数(Freqency)を100rad/sec、歪み(strain)を8.0×10-4として測定し、tanδのピーク値になる温度をガラス転移点(Tg)として得ることが出来る。
(帯電防止層の導電性助剤)
また、帯電防止層中に他の帯電防止剤として、イオン性高分子化合物を併用することも出来る。
イオン性高分子化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物;特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基をもつアイオネン型ポリマー;特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853、同62−9346にみられるような、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;等を挙げることが出来る。
本発明に係る帯電防止層を有する反射防止フィルムの表面比抵抗は1011Ω/□(25℃、55%RH)以下とすることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、109Ω/□(25℃、55%RH)以下である。
ここで、表面比抵抗値の測定は、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。
(層構成)
本発明に係わる反射防止フィルムはハードコート層を有することが好ましい。更に好ましくは帯電防止性付与ハードコート層を有することである。
(ハードコートフィルム)
本発明に係わるハードコートフィルムの好ましい層構成の一例を下記に示すが、これらに限定されるものではない。
基材フィルム/帯電防止性付与ハードコート層
基材フィルム/帯電防止層/ハードコート層
帯電防止層/基材フィルム/ハードコート層
基材フィルム/ハードコート層/帯電防止層
これらの層は単層でも複数の層からなってもよい。また、帯電防止性は帯電防止層を設けることで付与しても良いし、ハードコート層自体に帯電防止性を付与しても良い。
(帯電防止性付与ハードコート層)
ハードコート層に帯電防止性を付与する場合は、本発明の帯電防止層をハードコート層として用いることが出来る。本発明の帯電防止層をハードコート層として使用する場合、ハードコート層の膜厚は1〜15μmの範囲とすることが好ましく、より好ましくは1〜10μmである。ハードコート層の膜厚を1μm以上にすると紫外線硬化時の酸素阻害が低減するため、膜強度を強くすることが出来る。また、膜厚が厚い方が付量が増加するため、前記導電性金属酸化物粒子の添加比率が低くても帯電防止性を発現させることが出来る。導電性金属酸化物粒子の添加比率を下げることが出来ると、膜強度の向上、ヘイズ、着色などを向上させることが出来る。15μmを越える膜厚ではヘイズ、屈曲性、基材フィルムの平面性等に問題が生じるため好ましくない。
導電性金属酸化物粒子の添加量は特に制限されないが、10質量%〜50質量%であることが好ましく、15質量%〜40質量%であることが更に好ましい。
(ハードコート層)
帯電防止性を付与しない、通常のハードコート層には一般的な紫外線硬化樹脂を用いることが出来る。
紫外線硬化性樹脂としては特に限定されないが、例えば、アデカオプトマーKR、BYシリーズのKR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、旭電化工業(株)製)、コーエイハードのA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インキ化学工業(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H−601R(三洋化成工業(株)製)、SP−1509、SP−1507(以上、昭和高分子(株)製)、RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成(株)製)、またはその他の市販のものから適宜選択して利用することが出来る。
紫外線硬化樹脂層の塗布組成物は、固形分濃度は10〜100質量%であることが好ましく、塗布方法により適当な濃度が選ばれる。
紫外線硬化性樹脂の硬化被膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用出来る。具体的には、前述の光源を使用出来る。照射条件はそれぞれのランプによって異なるが、照射光量は20〜1200mJ/cm2程度あればよく、好ましくは、50〜1000mJ/cm2である。近紫外線領域から可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用出来る。
液晶表示装置パネルの表面に防眩性を与えるために、また他の物質との密着を防ぎ、耐擦り傷性等を高めるために、ハードコート層の塗布組成物中に無機または有機の微粒子を加えることも出来る。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化アンチモン、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることが出来る。また、有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を挙げることが出来る。これらは紫外線硬化性樹脂組成物に加えて用いることが出来る。これらの微粒子粉末の平均粒径としては、0.01〜10μmであり、使用量は紫外線硬化樹脂組成物100質量部に対して、0.1〜20質量部となるように配合することが望ましい。防眩効果を付与するには、平均粒径0.1〜1μmの微粒子を紫外線硬化樹脂組成物100質量部に対して1〜15質量部用いるのが好ましい。
このような微粒子を紫外線硬化樹脂に添加することによって、中心線平均表面粗さRaが0.1〜0.5μmの好ましい凹凸を有する防眩層を形成することが出来る。また、このような微粒子を紫外線硬化性樹脂組成物に添加しない場合、中心線平均表面粗さRaは0.05μm未満、より好ましくは0.002〜0.04μm未満の良好な平滑面を有するハードコート層を形成することが出来る。
この他、ブロッキング防止機能を果たすものとして、上述したのと同じ成分で、体積平均粒径0.005〜0.1μmの極微粒子を樹脂組成物100質量部に対して0.1〜5質量部を用いることも出来る。
本発明に用いる活性エネルギー線硬化樹脂含有層には、公知の熱可塑性樹脂、熱硬化性樹脂またはゼラチン等の親水性樹脂等のバインダを上記活性エネルギー線硬化樹脂に混合して使用することが出来る。これら樹脂にはその分子中に極性基を持っていることが好ましい。極性基としては、−COOM、−OH、−NR2、−NR3X、−SO3M、−OSO3M、−PO32、−OPO3M(ここで、Mは水素原子、アルカリ金属またはアンモニウム基を、Xはアミン塩を形成する酸を、Rは水素原子、アルキル基を表す)等を挙げることが出来る。
また硬化された層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることが出来る。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることが出来る。具体的には、例えば、4,4′−チオビス(6−t−3−メチルフェノール)、4,4′−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−t−ブチルベンジルホスフェート等を挙げることが出来る。
(反射防止フィルム)
本発明に係わる反射防止フィルムの好ましい層構成の例を下記に示す、これらに限定されるものではない。
基材フィルム/ハードコート層/帯電防止性付与中屈折率層/低屈折率層
基材フィルム/ハードコート層/帯電防止性付与高屈折率層/低屈折率層
基材フィルム/ハードコート層/帯電防止性付与中屈折率層/高屈折率層/低屈折率層
基材フィルム/帯電防止性付与ハードコート層/低屈折率層
基材フィルム/帯電防止層/ハードコート層/低屈折率層
帯電防止層/基材フィルム/ハードコート層/低屈折率層
基材フィルム/帯電防止性付与ハードコート層/中屈折率層/高屈折率層/低屈折率層
基材フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層
基材フィルム/ハードコート層//帯電防止層/中屈折率層/高屈折率層/低屈折率層
帯電防止層/基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
基材フィルム/ハードコート層/帯電防止性付与高屈折率層/低屈折率層/高屈折率層/低屈折率層
本発明に係わる帯電防止層を積層した反射防止フィルムは、支持体の少なくとも一方の面に、支持体側から高屈折率層、低屈折率層を順に積層した光学干渉層の積層体(後述のように他の層を追加することもある)であり、例えば波長λの光に対して高屈折率層及び低屈折率層の光学膜厚をλ/4に設定して反射防止積層体を作製する。光学膜厚とは、層の屈折率nと膜厚dとの積により定義される量である。屈折率の高低はそこに含まれる金属または化合物によってほぼ決まり、例えば高屈折率層はTi化合物により、低屈折率層はSi或いは、Fを含有する化合物により形成されることが多い。屈折率と膜厚は、分光反射率の測定により計算して算出し得る。
反射防止フィルムには多層の光学干渉層からなるものや、例えばハードコート層に低反射層を塗設したものなどが考えられる。低反射積層体は、透明な基材上に、必要に応じて前述のハードコート層を有し、その上に光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されているもの、また、単層が塗設されたもの等もある。反射防止層は、通常、基材よりも屈折率の高い高屈折率層と、基材よりも屈折率の低い低屈折率層を組み合わせて構成されている。構成例としては、基材側から高屈折率層/低屈折率層の2層のものや、屈折率の異なる3層を、中屈折率層(基材またはハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているもの等があり、更に多くの反射防止層を積層するものも提案されている。中でも、耐久性、光学特性や生産性等から、ハードコート層を有する基材上に、中屈折率層/高屈折率層/低屈折率層の順に積層されたもの、中屈折率層/低屈折率層が積層されたものが好ましい。
本発明の帯電防止層は、基材フィルムの反射防止層が塗設されているのと反対側、または基材フィルムとハードコート層との間に帯電防止層として設けても良いし、ハードコート層に適用して帯電防止性付与ハードコート層として設けても良いし、中屈折率層、または高屈折率層に適用して帯電防止性付与中屈折率層、または帯電防止性付与高屈折率層として設けても良い。
また、光学干渉により反射率を低減出来るものであれば、特にこれらの層構成のみに限定されるものではない。例えば最表層に防汚層を設けても良いし、基材フィルムとハードコート層の間に干渉ムラ低減層を設けても良い。
(中屈折率層、高屈折率層)
中屈折率層、高屈折率層は所定の屈折率層が得られれば構成成分に特に制限はないが、屈折率の高い金属酸化物微粒子、バインダ等よりなることが好ましい。その他に添加剤を含有しても良い。中屈折率層の屈折率は1.55〜1.75であることが好ましく、高屈折率層の屈折率は1.75〜2.20であることが好ましい。
また、本発明の帯電防止層を中屈折率層、または高屈折率層として使用することも好ましい。
(金属酸化物微粒子)
金属酸化物微粒子は特に限定されないが、例えば、二酸化チタン、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化亜鉛、アンチモンドープ酸化スズ(ATO)、五酸化アンチモン、酸化インジウム−スズ(ITO)、酸化鉄、等を主成分として用いることが出来る。また、これらの混合物でもよい。二酸化チタンを用いる場合は二酸化チタンをコアとし、シェルとしてアルミナ、シリカ、ジルコニア、ATO、ITO、五酸化アンチモン等で被覆させたコア/シェル構造を持った金属酸化物粒子を用いることが光触媒活性の抑制の点で好ましい。
金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.90〜2.50であることが更に好ましい。金属酸化物微粒子の一次粒子の平均粒径は5nm〜200nmであるが、10〜150nmであることが更に好ましい。粒径が小さ過ぎると金属酸化物微粒子が凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが上昇し好ましくない。無機微粒子の形状は、米粒状、針状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。
金属酸化物微粒子は有機化合物により表面処理してもよい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が最も好ましい。二種以上の表面処理を組み合わせてもよい。
金属酸化物の種類、添加比率を適切に選択することによって、所望の屈折率を有する高屈折率層、中屈折率層を得ることが出来る。
(バインダ)
バインダは塗膜の成膜性や物理特性の向上のために添加される。バインダとしては例えば、前述の電離放射線硬化型樹脂、アクリルアミド誘導体、多官能アクリレート、アクリル樹脂またはメタクリル樹脂などを用いることが出来る。
(金属化合物、シランカップリング剤)
その他の添加剤として金属化合物、シランカップリング剤などを添加しても良い。金属化合物、シランカップリング剤はバインダとして用いることも出来る。
金属化合物としては下記式(1)で表される化合物またはそのキレート化合物を用いることが出来る。
式(1):AnMBx−n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記式(1)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、屈折率や塗膜強度の補強効果、取り扱い易さ、材料コスト等の観点から、チタンアルコキシド、ジルコニウムアルコキシド、ケイ素アルコキシドまたはそれらのキレート化合物を挙げることが出来る。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。ケイ素アルコキシドは反応速度が遅く、屈折率も低いが、取り扱いが容易で耐光性に優れる。シランカップリング剤は無機微粒子と有機ポリマーの両方と反応することが出来るため、強靱な塗膜を作ることが出来る。また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることが出来る。
チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。
ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。
ケイ素アルコキシド及びシランカップリング剤は下記式(2)で表される化合物である。
式(2):RmSi(OR′)n
式中、Rはアルキル基(好ましくは炭素数1〜10のアルキル基)、または、ビニル基、(メタ)アクリロイル基、エポキシ基、アミド基、スルホニル基、水酸基、カルボキシル基、アルコキシル基等の反応性基を表し、R′はアルキル基(好ましくは炭素数1〜10のアルキル基)を表し、m+nは4である。
具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラペンタエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ヘキシルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン等が挙げられる。
遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることが出来る。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成出来る。
金属化合物の添加量は、中屈折率組成物では金属酸化物に換算して5質量%未満であることが好ましく、高屈折率組成物では金属酸化物に換算して20質量%未満であることが好ましい。
(低屈折率層形成用塗布液)
本発明に用いられる低屈折率層は、導電性中空微粒子を含有し、その他に珪素アルコキシド、シランカップリング剤、硬化剤等を含有することが好ましい。
(導電性中空微粒子)
低屈折率層には導電性中空微粒子が含有される。
ここでいう中空微粒子は、(1)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(2)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。尚、低屈折率層用塗布液には(1)複合粒子または(2)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
尚、空洞粒子は、内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような無機微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される無機微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することが出来ないことがあり、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持出来ないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とし、更に導電性を有させる為、ZnO2、ZrO2、TiO2、SnO2、Al23、In23、SiO2、MgO、BaO、MoO2、V25、Sb25等、或いはこれらの複合酸化物を含むことが好ましく、特にZnO、ZrO2、In23、SnO2、TiO2及びSb25が好ましい。異種原子を含む例としては、例えばZrO2に対してはAl、In等の添加、TiO2に対してはNb、Ta等の添加、またSnO2に対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。具体的にはアンチモンをドープした酸化錫(ATO)、酸化インジウムスズ(ITO)、ZrO2(Alドープ)等が挙げられる。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。最も好ましくは、ITO(酸化インジウム−スズ)である。
このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表した時のモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても導電性を発現しない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が小さく、かつ屈折率の低い粒子を得られないことがある。
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
尚、このような多孔質粒子の細孔容積は水銀圧入法によって求めることが出来る。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
このような無機微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から無機化合物粒子は製造される。
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることが出来る。尚、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
また、シリカ以外の無機化合物の原料は、アルカリ可溶の前記導電性化合物が用いられる。
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度にはとくに制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al23、TiO2またはZrO2等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることが出来る。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整したのち、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにして、シード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることが出来る。
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、或いは、シード粒子上に析出して粒子成長が起こる。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOx)に換算し、MOx/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積は殆ど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOx/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、或いは、陽イオン交換樹脂と接触させてイオン交換除去する。
尚、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することが出来る。
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られるケイ酸液或いは加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。尚シリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することが出来る。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することが出来る。尚、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持出来る範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることが出来る。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸と有機酸を用いることが出来る。
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。尚、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることが出来る。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸と有機酸を用いることが出来る。
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。尚、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆出来る程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞出来る程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化出来ないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
このようにして得られた無機微粒子の屈折率は、1.44未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。
本発明に用いられる低屈折率層には導電性中空微粒子の他に、アルコキシ珪素化合物の加水分解物及びそれに続く縮合反応により形成される縮合物を含むことが好ましい。特に、下記一般式(1)及び/または(2)で表されるアルコキシ珪素化合物またはその加水分解物を調整したSiO2ゾルを含有することが好ましい。
一般式(1) R1−Si(OR2)3
一般式(2) Si(OR2)4
(式中、R1はメチル基、エチル基、ビニル基、またはアクリロイル基、メタクリロイル基、アミノ基若しくはエポキシ基を含む有機基を、R2はメチル基またはエチル基を示す)
珪素アルコキシド、シランカップリング剤の加水分解は、珪素アルコキシド、シランカップリング剤を適当な溶媒中に溶解して行う。使用する溶媒としては、例えば、メチルエチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコールブタノールなどのアルコール類、酢酸エチルなどのエステル類、或いはこれらの混合物が上げられる。
上記珪素アルコキシドまたはシランカップリング剤を溶媒に溶解した溶液に、加水分解に必要な量より若干多い量の水を加え、15〜35℃、好ましくは20℃〜30℃の温度で1〜48時間、好ましくは3〜36時間攪拌を行う。
上記加水分解においては、触媒を用いることが好ましく、このような触媒としては塩酸、硝酸、硫酸又は酢酸などの酸が好ましく用いられる。これらの酸は0.001N〜20.0N、好ましくは0.005〜5.0N程度の水溶液にして用いる。該触媒水溶液中の水分は加水分解用の水分とすることが出来る。
アルコキシ珪素化合物を所定の時間加水分解反応させ、調製されたアルコキシ珪素加水分解液を溶剤で希釈し、必要な他の添加剤等を混合して、低屈折率層用塗布液を調製し、これを基材例えばフィルム上に塗布、乾燥することで低屈折率層を基材上に形成することが出来る。
(アルコキシ珪素化合物)
本発明において低屈折率層塗布液の調製に用いられるアルコキシ珪素化合物(以後アルコキシシランともいう)としては、下記一般式で表されるものが好ましい。
一般式 R4−nSi(OR′)n
前記一般式中、R′はアルキル基であり、Rは水素原子または1価の置換基を表し、nは3または4を表す。
R′で表されるアルキル基としてはメチル基、エチル基、プロピル基、ブチル基等の基が挙げられ、置換基を有していてもよく、置換基としてはアルコキシシランとしての性質を示すものであれば特に制限はなく、例えば、フッ素などのハロゲン原子、アルコキシ基等により置換されていてもよいが、より好ましくは非置換のアルキル基であり、特にメチル基、エチル基が好ましい。
Rで表される1価の置換基としては特に制限されないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アリール基、芳香族複素環基、シリル基等が挙げられる。中でも好ましいのは、アルキル基、シクロアルキル基、アルケニル基である。また、これらは更に置換されていてもよい。Rの置換基としては、フッ素原子、塩素原子等のハロゲン原子、アミノ基、エポキシ基、メルカプト基、ヒドロキシル基、アセトキシ基等が挙げられる。
前記一般式で表されるアルコキシシランの好ましい例として、具体的には、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、テトラキス(メトキシエトキシ)シラン、テトラキス(メトキシプロポキシ)シラン、
また、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、i−ブチルトリメトキシシラン、n−へキシルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、アセトキシトリエトキシシラン、(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、更に、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられる。
また、これらの化合物が部分的に縮合した多摩化学製シリケート40、シリケート45、シリケート48、Mシリケート51のような数量体のケイ素化合物でもよい。
前記アルコキシシランは、加水分解重縮合が可能な珪素アルコキシド基を有しているため、これらのアルコキシシランを加水分解、縮合によって、架橋して、高分子化合物のネットワーク構造が形成され、これを低屈折率層塗布液として用い、基材上に塗布して、乾燥させることで均一な酸化珪素を含有する層が基材上に形成される。
加水分解反応は、公知の方法により行うことが出来、疎水的なアルコキシシランと水が混和しやすいように、所定量の水とメタノール、エタノール、アセトニトリルのような親水性の有機溶媒を共存させ溶解・混合したのち、加水分解触媒を添加して、アルコキシシランを加水分解、縮合させる。通常、10℃〜100℃で加水分解、縮合反応させることで、ヒドロキシル基を2個以上有する液状のシリケートオリゴマーが生成し加水分解液が形成される。加水分解の程度は、使用する水の量により適宜調節することが出来る。
本発明においては、アルコキシシランに水と共に添加する溶媒としては、メタノール、エタノールが安価であること、得られる被膜の特性が優れ硬度が良好であることから好ましい。イソプロパノール、n−ブタノール、イソブタノール、オクタノール等も用いることが出来るが、得られた被膜の硬度が低くなる傾向にある。溶媒量は加水分解前のテトラアルコキシシラン100質量部に対して50〜400質量部、好ましくは100〜250質量部である。
このようにして加水分解液を調製し、これを溶剤によって希釈し、必要に応じて添加剤を添加して、低屈折率層塗布液を形成するに必要な成分と混合し、低屈折率層塗布液とする。
(加水分解触媒)
加水分解触媒としては、酸、アルカリ、有機金属、金属アルコキシド等を挙げることが出来るが、本発明においては硫酸、塩酸、硝酸、次亜塩素酸、ホウ酸等の無機酸或いは有機酸が好ましく、特に硝酸、酢酸などのカルボン酸、ポリアクリル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メチルスルホン酸等が好ましく、これらの内特に硝酸、酢酸、クエン酸または酒石酸等が好ましく用いられる。上記クエン酸や酒石酸の他に、レブリン酸、ギ酸、プロピオン酸、リンゴ酸、コハク酸、メチルコハク酸、フマル酸、オキサロ酢酸、ピルビン酸、2−オキソグルタル酸、グリコール酸、D−グリセリン酸、D−グルコン酸、マロン酸、マレイン酸、シュウ酸、イソクエン酸、乳酸等も好ましく用いられる。
この中で、乾燥時に酸が揮発して、膜中に残らないものが好ましく、沸点が低いものがよい。従って、酢酸、硝酸が特に好ましい。
添加量は、用いるアルコキシ珪素化合物(例えばテトラアルコキシシラン)100質量部に対して0.001〜10質量部、好ましくは0.005〜5質量部がよい。また、水の添加量については部分加水分解物が理論上100%加水分解し得る量以上であればよく、100〜300%相当量、好ましくは100〜200%相当量を添加するのがよい。
上記アルコキシシランを加水分解する際には、下記無機微粒子を混合することが好ましい。
加水分解を開始してから所定の時間加水分解液を放置して加水分解の進行が所定の程度に達した後用いる。放置する時間は、上述の加水分解そして縮合による架橋が所望の膜特性を得るのに十分な程度進行する時間である。具体的には用いる酸触媒の種類にもよるが、例えば、酢酸では室温で15時間以上、硝酸では2時間以上が好ましい。熟成温度は熟成時間に影響を与え、一般に高温では熟成が早く進むが、100℃以上に加熱するとゲル化が起こるので、20〜60℃の加熱、保温が適切である。
このようにして加水分解、縮合により形成したシリケートオリゴマー溶液に下記無機微粒子、添加剤を加え、必要な希釈を行って、低屈折率層塗布液を調製し、これを後述する基材フィルム上に塗布して、乾燥することで、低屈折率層として優れた酸化珪素膜を含有する層を形成することが出来る。
また、本発明においては、上記のアルコキシシランの他に、例えばエポキシ基、アミノ基、イソシアネート基、カルボキシル基等の官能基を有するシラン化合物(モノマー、オリゴマー、ポリマー)等により変性した変性物であってもよく、単独で使用または併用することも可能である。
(フッ素化合物)
本発明に係る低屈折率層は導電性中空微粒子とフッ素化合物を含有することも好ましく、バインダーマトリックスとして、熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)を含む。該含フッ素樹脂を含むことにより良好な防汚性反射防止フィルムを提供することが出来る。
架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることが出来る。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入出来ることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の相み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることが出来る。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。
含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることが出来る。
架橋前の含フッ素樹脂は、市販されており使用することが出来る。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。
(添加剤)
低屈折率層塗布液には更に必要に応じて、シランカップリング剤、硬化剤などの添加剤を含有させても良い。
シランカップリング剤は前記式(2)で表される化合物である。
具体的には、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン等が挙げられる。
硬化剤としては、酢酸ナトリウム、酢酸リチウム等の有機酸金属塩が挙げられ、特に酢酸ナトリウムが好ましい。珪素アルコキシシラン加水分解溶液に対する添加量は、加水分解溶液中に存在する固形分100質量部に対して0.1〜1質量部程度の範囲が好ましい。
また、本発明の各層の塗布液には各種のレベリング剤、界面活性剤、シリコンオイル等の低表面張力物質を添加することが好ましい。具体的なシリコンオイルとしては表1の化合物が挙げられる。
Figure 2006138893
これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は添加量が多過ぎると塗布時にハジキの原因となるため、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
(溶媒)
低屈折率層を塗設する際の塗布液に使用する溶媒は、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセルソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;N−メチルピロリドン、ジメチルフォルムアミド、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、水等が挙げられ、それらを単独または2種以上混合して使用することが出来る。
(塗布方法)
帯電防止層、低屈折率層、中屈折率層、高屈折率層、ハードコート層塗布液などの塗布方法としては、ディッピング、スピンコート、ナイフコート、バーコート、エアードクターコート、ブレードコート、スクイズコート、リバースロールコート、グラビアロールコート、カーテンコート、スプレイコート、ダイコート等の公知の塗布方法または公知のインクジェット法を用いることが出来、連続塗布または薄膜塗布が可能な塗布方法が好ましく用いられる。塗布量はウェット膜厚で0.1〜30μmが適当で、好ましくは0.5〜15μmである。塗布速度は10〜80m/minが好ましい。
本発明の組成物を基材に塗布する際、塗布液中の固形分濃度や塗布量を調整することにより、層の膜厚及び塗布均一性等をコントロールすることが出来る。また、組成物の塗布性を向上させるために、塗布液中に微量の界面活性剤等を添加してもよい。
(基材フィルム)
本発明の反射防止フィルム(低反射積層体)に用いられる基材フィルムとしては、製造が容易であること、ハードコート層または反射防止層等が接着しやすいこと、光学的に等方性であること、光学的に透明性であることが好ましい。これらの性質を有していれば何れでもよく、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルムまたはアクリルフィルム等を挙げることが出来るが、これらに限定されるわけではない。これらの内セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX2M、KC4UX2M、KC4UY、KC8UT、KC5UN、KC12UR、KC8UCR−3、KC8UCR−4(以上、コニカミノルタオプト(株)製))、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)、シクロオレフィンポリマーフィルムが好ましく、本発明においては、特にセルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルムが、製造上、コスト面、透明性、等方性、接着性等の面から好ましい。
(セルロースエステルフィルム)
本発明に用いられるセルロースエステルは、セルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート等や、特開平10−45804号、同08−231761号、米国特許第2,319,052号等に記載されているようなセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることが出来る。上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルはセルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは単独或いは混合して用いることが出来る。
セルロースエステルの分子量が小さ過ぎると引裂強度が低下するが、分子量を上げ過ぎるとセルロースエステルの溶解液の粘度が高くなり過ぎるため生産性が低下する。セルロースエステルの分子量は数平均分子量(Mn)で70000〜200000のものが好ましく、100000〜200000のものが更に好ましい。
セルローストリアセテートの場合には、平均酢化度(結合酢酸量)54.0〜62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0〜62.5%のセルローストリアセテートである。平均酢化度が小さいと寸法変化が大きく、また偏光板の偏光度が低下する。平均酢化度が大きいと溶剤に対する溶解度が低下し生産性が下がる。
セルローストリアセテート以外で好ましいセルロースエステルは炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロースエステルである。
式(I) 2.6≦X+Y≦3.0
式(II) 0≦X≦2.5
この内特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。アシル基で置換されていない部分は通常水酸基として存在しているのものである。これらは公知の方法で合成することが出来る。
セルロースエステルは綿花リンター、木材パルプ、ケナフ等を原料として合成されたセルロ−スエステルを単独或いは混合して用いることが出来る。特に綿花リンタ−(以下、単にリンタ−とすることがある)から合成されたセルロ−スエステルを単独或いは混合して用いることが好ましい。
本発明で用いられるセルロースエステルフィルムは、溶液流延法で製造されたものでも、溶融流延法で製造されたものでもよいが、少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で剥離残溶量が3〜40質量%である時に幅手方向に1.01〜1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、剥離残溶量が3〜40質量%である時に幅手方向及び長手方向に、各々1.01〜1.5倍に延伸されることが望ましい。こうすることによって、視認性に優れた反射防止フィルムを得ることが出来る。更に、2軸延伸し、ナーリング加工をすることによって、長尺状低反射フィルムのロール状での保管中の巻き形状の劣化を著しく改善することが出来る。
このときの延伸倍率としては1.01〜1.5倍が好ましく、特に好ましくは、1.03〜1.45倍である。
本発明においては、長尺フィルムを用いることが好ましく、具体的には、100m〜5000m程度のものを示る。また、基材フィルムの幅は1.4m以上が好ましく、1.4〜4mであることがより好ましい。
本発明に係るセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上の透明支持体であることが好ましい。
本発明に係るセルロースエステルフィルム支持体は、その厚さが10〜100μmのものが好ましく、透湿性は、25℃、90±2%RHにおいて、200g/m2・24時間以下であることが好ましく、更に好ましくは、10〜180g/m2・24時間以下であり、特に好ましくは、160g/m2・24時間以下である。
特には、膜厚10〜60μmで透湿性が上記範囲内であることが好ましい。
ここで、支持体の透湿性は、JIS Z 0208に記載の方法に従い、各試料の透湿性を測定した。
(可塑剤)
本発明に用いられる支持体にセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、多価アルコールエステル系可塑剤等を好ましく用いることが出来る。
リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。
ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることが出来る。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることが出来る。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることが出来る。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる。好ましい多価アルコールの例としては、例えば以下のようなものを挙げることが出来るが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、2−n−ブチル−2−エチル−1,3−プロパンジオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール、等を上げることが出来る。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトール、であることが好ましい。多価アルコールエステルに用いられるモノカルボン酸としては特に制限はなく公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸などを用いることが出来る。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。好ましいモノカルボン酸の例としては以下のようなものを上げることが出来るが、本発明はこれに限定されるものではない。脂肪族モノカルボン酸としては炭素数1〜32の直鎖または側鎖を持った脂肪酸を好ましく用いることが出来る。炭素数1〜20であることが更に好ましく、炭素数1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。好ましい脂肪族モノカルボン酸としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを上げることが出来る。好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を上げることが出来る。好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上もつ芳香族モノカルボン酸、またはそれらの誘導体を上げることが出来る。特に安息香酸であることが好ましい。多価アルコールエステルの分子量は特に制限はないが、分子量300〜1500の範囲であることが好ましく、350〜750の範囲であることが更に好ましい。保留性向上の点では大きい方が好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好まろしい。
多価アルコールエステルに用いられるカルボン酸は一種類でも良いし、二種以上の混合であっても良い。また、多価アルコール中のOH基はカルボン酸で全てエステル化しても良いし、一部をOH基のままで残しても良い。
これらの可塑剤は単独または併用するのが好ましい。
これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1〜20質量%が好ましく、特に好ましくは、3〜13質量%である。
(紫外線吸収剤)
本発明に用いる支持体に係る紫外線吸収剤について説明する。低反射積層体の支持体には、紫外線吸収剤が好ましく用いられる。
紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。
ベンゾトリアゾール系紫外線吸収剤としては下記一般式(A)で示される化合物が好ましく用いられる。
Figure 2006138893
式中、R1、R2、R3、R4及びR5は同一でも異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アルコキシル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノ若しくはジアルキルアミノ基、アシルアミノ基または5〜6員の複素環基を表し、R4とR5は閉環して5〜6員の炭素環を形成してもよい。
また、上記記載のこれらの基は、任意の置換基を有していてよい。
以下に本発明に用いられる紫外線吸収剤の具体例を挙げるが、本発明はこれらに限定されない。
UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、チバスペシャルティケミカルズ製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、チバスペシャルティケミカルズ製)
また、ベンゾフェノン系紫外線吸収剤としては下記一般式(B)で表される化合物が好ましく用いられる。
Figure 2006138893
式中、Yは水素原子、ハロゲン原子またはアルキル基、アルケニル基、アルコキシル基、及びフェニル基を表し、これらのアルキル基、アルケニル基及びフェニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フェニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基または−CO(NH)n-1−D基を表し、Dはアルキル基、アルケニル基または置換基を有していてもよいフェニル基を表す。m及びnは1または2を表す。
上記において、アルキル基としては、例えば、炭素数24までの直鎖または分岐の脂肪族基を表し、アルコキシル基としては例えば、炭素数18までのアルコキシル基を表し、アルケニル基としては例えば、炭素数16までのアルケニル基でアリル基、2−ブテニル基等を表す。また、アルキル基、アルケニル基、フェニル基への置換基としてはハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等を置換していてもよい)等が挙げられる。
以下に一般式(B)で表されるベンゾフェノン系化合物の具体例を示すが、本発明はこれらに限定されない。
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる上記記載の紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
また、特願平11−295209号に記載されている分配係数が9.2以上の紫外線吸収剤は、支持体に用いた時、支持体の面品質に優れ、塗布性にも優れ好ましい。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。
また、特開平6−148430号の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。
(微粒子)
本発明において、セルロースエステルフィルム中に微粒子を含有しているのが好ましく、微粒子としては、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さく出来るので好ましい。微粒子の2次粒子の平均粒径は0.01〜1.0μmの範囲で、その含有量はセルロースエステルに対して0.005〜0.3質量%が好ましい。二酸化ケイ素のような微粒子には有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下出来るため好ましい。表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類(特にメチル基を有するアルコキシシラン類)、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方がマット効果は大きく、反対に平均粒径の小さい方は透明性に優れるため、好ましい微粒子の一次粒子の平均粒径は5〜50nmで、より好ましくは7〜16nmである。これらの微粒子はセルロースエステルフィルム中では、通常、凝集体として存在しセルロースエステルフィルム表面に0.01〜1.0μmの凹凸を生成させることが好ましい。二酸化ケイ素の微粒子としてはアエロジル社製のAEROSIL(アエロジル)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることが出来、好ましくはAEROSIL(アエロジル)200V、R972、R972V、R974、R202、R812である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することが出来る。この場合、平均粒径や材質の異なる微粒子、例えばAEROSIL(アエロジル)200VとR972Vを質量比で0.1:99.9〜99.9〜0.1の範囲で使用出来る。本発明において、微粒子はドープ調製時、セルロースエステル、他の添加剤及び有機溶媒とともに含有させて分散してもよいが、セルロースエステル溶液とは、別に微粒子分散液のような十分に分散させた状態でドープを調製するのが好ましい。微粒子を分散させるために、前もって有機溶媒にひたしてから高剪断力を有する分散機(高圧分散装置)で細分散させておくのが好ましい。その後により多量の有機溶媒に分散して、セルロースエステル溶液と合流させ、インラインミキサーで混合してドープとすることが好ましい。この場合、微粒子分散液に紫外線吸収剤を加え紫外線吸収剤液としてもよい。
上記の劣化防止剤、紫外線吸収剤及び/または微粒子は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
(有機溶媒)
本発明に係わるドープを形成するのに有用な有機溶媒は、セルロースエステル、芳香族環を少なくとも二つ有し、かつ少なくとも二つの芳香族環が平面構造を有する化合物、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。特に酢酸メチルが好ましい。
本発明に係わるドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースエステルの溶解を促進する役割もある。炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性も良く、かつ毒性がないこと等からエタノールが好ましい。
ドープ中のセルロースエステルの濃度は15〜40質量%、ドープ粘度は100〜500ポアズ(P)の範囲に調整されることが良好なフィルム面品質を得る上で好ましい。
(裏面)
本発明では、本発明に係わる低屈折率層を含む光学干渉層が設けられている反射防止フィルム(低反射積層体)の裏面が、高さ0.1〜10μmの突起を1〜500個/0.01mm2有することが好ましい。好ましくは10〜400個/0.01mm2、更に好ましくは15〜300個/0.01mm2である。これによって、各光学干渉層塗設中に一旦ロール状に巻き取りをしてもブロッキングの発生が防止出来るだけでなく、次の光学干渉層を塗設する際の塗布むらを著しく低減することが出来る。塗布むらの原因は完全に明らかにはなっていないが、原因の1つとしてロール状に巻き取ったフィルムを塗布工程に送り出す際の剥離帯電が関係していると推測される。基材フィルム中に微粒子を添加することで、裏面に高さ0.1〜10μmの突起を1〜500個/0.01mm2有するようにすることが出来る。このとき、基材フィルムを多層構成として、表層のみに微粒子を含ませることも出来る。添加する微粒子は前述のものを用いることが出来る。
(偏光板)
偏光板は一般的な方法で作製することが出来る。本発明の反射防止フィルムの裏面側をアルカリ鹸化処理し、沃素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面には該フィルムを用いても、別の偏光板保護フィルムを用いてもよい。市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UY、KC4UY、KC12UR、以上コニカミノルタオプト(株)製)が好ましく用いられる。本発明の反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20〜70nm、Rtが100〜400nmの位相差を有していることが好ましい。これらは例えば、特開2002−71957、特願2002−155395記載の方法で作製することが出来る。或いは更にディスコチック液晶などの液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348記載の方法で光学異方性層を形成することが出来る。本発明の反射防止フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることが出来る。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の光学フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
従来の反射防止フィルムを使用した偏光板は平面性に劣り、反射像を見ると細かい波打ち状のムラが認められ、60℃、90%RHの条件での耐久性試験により、波打ち状のムラが増大したが、これに対して本発明の反射防止フィルムを用いた偏光板は、平面性に優れていた。また、60℃、90%RHの条件での耐久性試験によっても波打ち状のムラが増加することはなかった。
(表示装置)
本発明の偏光板を表示装置に組み込むことによって、種々の視認性に優れた本発明の表示装置を作製することが出来る。本発明のハードコートフィルムまたは反射防止フィルムは反射型、透過型、半透過型LCD或いはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明のハードコートフィルムまたは反射防止フィルムは平面性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面が30型以上、特に30型〜54型の大画面の表示装置では、画面周辺部での白抜けなどもなく、その効果が長期間維持され、特にMVA型液晶表示装置では顕著な効果が認められる。また、色むら、ぎらつきや波打ちむらが少なく、長時間の鑑賞でも目が疲れないという効果があった。
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。尚、特に断りのない限り、実施例中の「%」は「質量%」を表す。
実施例1
下記の方法に従って反射防止フィルムを作製した。
〈反射防止フィルム101の作製〉
〈セルロースエステルフィルムの作製〉
(二酸化珪素分散液A)
アエロジル972V(日本アエロジル(株)製) 12質量部
(一次粒子の平均径16nm、見掛け比重90g/リットル)
エタノール 88質量部
以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は200ppmであった。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液Aを作製した。
(インライン添加液Aの作製)
チヌビン109(チバスペシャルティケミカルズ(株)製) 11質量部
チヌビン171(チバスペシャルティケミカルズ(株)製) 5質量部
メチレンクロライド 100質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
これに二酸化珪素分散希釈液Aを36質量部、撹拌しながら加えて、さらに30分間撹拌した後、セルロースアセテートプロピオネート(アセチル基置換度2.0、プロピオニル基置換度0.7)6質量部を撹拌しながら加えて、さらに60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW−PPS−1Nで濾過し、インライン添加液Aを調製した。
(ドープ液Aの調製)
セルロースエステル(リンター綿から合成されたセルローストリアセテート)
100質量部
(Mn=148000、Mw=310000、Mw/Mn=2.1、アセチル基置換度2.92)
トリメチロールプロパントリベンゾエート 6.0質量部
エチルフタリルエチルグリコレート 6.0質量部
メチレンクロライド 440質量部
エタノール 40質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液Aを調製した。
製膜ライン中で日本精線(株)製のファインメットNFでドープ液Aを濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液Aを濾過した。濾過したドープ液Aを100質量部に対し、濾過したインライン添加液Aを2質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi−Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、1800mm幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が120%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを35℃で溶媒を蒸発させ、1650mm幅にスリットし、その後、テンターでTD方向(フィルムの搬送方向と直交する方向)に1.1倍に延伸しながら、135℃の乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は30%であった。
その後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1450mm幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、巻き取り初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、セルロースエステルフィルムを得た。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のMD方向(フィルムの搬送方向と同一方向)の延伸倍率は1.07倍であった。セルロースエステルフィルムの残留溶剤量は0.1%であり、平均膜厚は80μm、巻数は4000mであった。
このセルロースエステルフィルムの一面に下記のハードコート層組成物1を塗布し、80℃で30秒間乾燥させ、次いで80W/cmの高圧水銀灯を12cmの距離から4秒間照射して硬化させ、ハードコート層1を設けた。ハードコート層1の厚さは6.0μm、塗布幅1.4mであった。
《ハードコート層の作製》
〈ハードコート層組成物1〉
ジペンタエリスリトールヘキサアクリレート(主に単量体を含有し、2量体を約20%、3量体以上の成分を約20%含む) 1000g
イルガキュア184(チバスペシャルティケミカルズ(株)製) 20g
シリコン系界面活性剤 10g
メチルエチルケトン 500g
酢酸エチル 500g
イソプロピルアルコール 500g
次に下記、導電性中屈折率層、高屈折率層、低屈折率層の順に反射防止層を塗設し、反射防止フィルム1を作製した。
《反射防止層の作製:中屈折率層》
ハードコート層の上に、下記中屈折率層組成物1を押し出しコーターで塗布し、100℃で30秒間乾燥させた後、高圧水銀灯にて0.1J/cm2の紫外線を照射して、中屈折率層1を設けた。中屈折率層1の厚さは95nm、塗布幅1.4mであった。
〈中屈折率層組成物1〉
20%ITO微粒子分散物(平均粒径70nm、イソプロピルアルコール溶液)
100g
ジペンタエリスリトールヘキサアクリレート 5.12g
アクリロイルモルフォリン(興人(株)社製) 1.28g
イルガキュア184(チバスペシャルティケミカルズ(株)製) 1.6g
テトラブトキシチタン 4.0g
10%FZ−2207(日本ユニカー社製、プロピレングリコールモノメチルエーテル溶液) 3.0g
イソプロピルアルコール 530g
メチルエチルケトン 90g
プロピレングリコールモノメチルエーテル 265g
《反射防止層の作製:高屈折率層》
前記中屈折率層上に、下記高屈折率層組成物1を押し出しコーターで塗布し、100℃で30秒間乾燥させた後、高圧水銀灯にて0.1J/cm2の紫外線を照射して、高屈折率層1を設けた。高屈折率層1の厚さは50nm、塗布幅1.4mであった。
〈高屈折率層組成物1〉
固形分15%酸化チタン微粒子分散物(ブタノール溶液) 60g
γ−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM503)
2g
テトラブトキシチタン 5g
10%FZ−2207(日本ユニカー社製、プロピレングリコールモノメチルエーテル溶液) 3g
イソプロピルアルコール 560g
メチルエチルケトン 90g
プロピレングリコールモノメチルエーテル 280g
《反射防止層の作製:低屈折率層》
前記高屈折率層上に、下記低屈折率層組成物1を押し出しコーターで塗布し、100℃で30秒間乾燥させた後、高圧水銀灯にて0.1J/cm2の紫外線を照射して、低屈折率層を設けた。低屈折率層の厚さは100nm、塗布幅1.4mであった。
〈加水分解液Aの調製〉
テトラエトキシシラン172gとエタノール700gを混合し、これに0.4%硝酸水溶液129gを添加して、加水分解液Aを調製した。
更に、加水分解液Aを、室温(25℃)にて5時間攪拌することで加水分解反応を進めて調製した。
(低屈折率層塗布組成物1)
テトラエトキシシラン加水分解物A 1020質量部
末端反応性ジメチルシリコーンオイル(日本ユニカー社製L−9000)
0.42質量部
プロピレングリコールモノメチルエーテル 2700質量部
イソプロピルアルコール 6300質量部
〈反射防止フィルム2の作製〉
中屈折率層組成物1を下記中屈折率層組成物2に代えた以外は同様にして反射防止フィルム102を作製した。
〈中屈折率層組成物2〉
20%ITO微粒子分散物(平均粒径70nm、イソプロピルアルコール溶液)
200g
ジペンタエリスリトールヘキサアクリレート 5.12g
アクリロイルモルフォリン(興人(株)社製) 1.28g
イルガキュア184(チバスペシャルティケミカルズ(株)製) 1.6g
テトラブトキシチタン 4.0g
10%FZ−2207(日本ユニカー社製、プロピレングリコールモノメチルエーテル溶液) 3.0g
イソプロピルアルコール 530g
メチルエチルケトン 90g
プロピレングリコールモノメチルエーテル 265g
〈反射防止フィルム3の作製〉
下記低屈折率層塗布組成物2を調製し用いた以外は、反射防止フィルム101と同様にして低屈折率層を設け、反射防止フィルム103を作製した。
(低屈折率層塗布組成物2)
最初に、複合粒子の調製を行った。
(複合粒子P−1の調製)
平均粒径5nm、SiO2濃度20質量%のシリカゾル100gと純水1900gとを混合して反応母液を調製し、80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.5質量%のケイ酸ナトリウム水溶液9000gとAl23として0.5質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは、ケイ酸ナトリウムとアルミン酸ナトリウムの添加直後、12.5に上昇し、その後、殆ど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al23多孔質粒子前駆体の分散液(A)を調製した。(第1工程)
上記で得られた多孔質粒子前駆体の分散液(A)100gに純水1900gを加えて95℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液(SiO2として1.5g質量%)27000g及びアルミン酸ナトリウム水溶液(Al23として0.5質量%)27000gを同時に徐々に添加し、多孔質粒子前駆体の分散液(A)の粒子をシード粒子として粒子成長を行った。添加終了後、室温まで冷却した後、限外濾過膜で洗浄、濃縮して、固形分濃度20質量%のSiO2・Al23多孔質粒子前駆体の分散液(B)を得た。(第1工程)
この多孔質粒子前駆体の分散液(B)500gを採り、次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、一部のアルミニウムが除去されたSiO2・Al23多孔質粒子の分散液(C)を調製した。(第2工程)
この複合粒子P−1の平均粒径、SiO2/MOx(モル比)、及び屈折率を表2に示す。ここで、平均粒径は動的光散乱法により測定し、屈折率は標準屈折液としてCARGILL製のSeriesA、AAを用い、以下の方法で測定した。
〈粒子の屈折率の測定方法〉
(1)粒子分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率をコロイド粒子の屈折率とする。
Figure 2006138893
(低屈折率層の形成)
Si(OC254を95mol%、C37−(OC3624−O−(CF22−C24−O−CH2Si(OCH33を5mol%で混合したマトリックスに対して、平均粒径60nmの上記複合粒子P−1を35質量%添加し、1.0N−HClを触媒に用いて、更に溶媒で希釈した低屈折率層塗布組成物2を作製した。前記高屈折率層上にダイコーター法を用いてコーティング溶液を膜厚100nmで塗布し、120℃で1分間乾燥した後、紫外線照射を行うことにより、屈折率1.41の低屈折率層を形成した。
〈反射防止フィルム104〜106の作製〉
前記複合粒子P−1で用いたAl23の代わりに、ITO(低屈折率層塗布組成物3)、ATO(低屈折率層塗布組成物4)、五酸化アンチモン(低屈折率層塗布組成物5)に変更した以外は同様にして、反射防止フィルム104〜106を作製した。
得られた反射防止フィルム101〜106の表面比抵抗、耐傷性、紫外線耐光性を下記の方法に従って測定した。結果を表3に示す。
《評価》
作製した反射防止フィルムについて下記方法により評価した。
(表面比抵抗)
サンプルを23℃、55%RHの環境下で24時間調湿後、川口電機社製テラオームメーターVE−30を用い印加電圧100Vで両面の表面比抵抗を測定した。1×1011(Ω/□)以下であれば実用上問題ないが、1×1010(Ω/□)以下であることが好ましく、1×109(Ω/□)以下であることが更に好ましい。
(耐傷性)
サンプルを23℃、55%RHの環境下で、#0000のスチールウール(SW)に500g/cm2の荷重をかけてサンプル上に置き、荷重をかけたまま10往復した時に出来る1cm幅当たりの傷の本数を測定した。尚、傷の本数は荷重をかけた部分の中で最も傷の本数の多い所で測定する。10本/cm以下であれば実用上問題ないが、5本/cm以下が好ましく、3本/cm以下が更に好ましい。
Figure 2006138893
本発明の反射防止フィルム104〜106は表面比抵抗、耐傷性等の物性に優れていることが明らかである。
また、本発明の反射防止フィルムは、着色、ヘイズに問題がなかった。
実施例2
下記の方法に従ってハードコートフィルムを得た。
透明基材として実施例1で作製したセルロースエステルフィルムを用いた。このセルロースアセテートフィルムの一面に下記のハードコート層組成物2を塗布し、高圧水銀灯にて0.1J/cm2の紫外線を照射して硬化させ、ハードコート層2を得た。ハードコート層の厚さは6.0μm、塗布幅1.4mであった。
〈ハードコート層組成物2〉
アクリルモノマー(KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製)) 180質量部
アクリロイルモルフォリン(興人(株)社製) 46質量部
光反応開始剤(イルガキュア184、チバスペシャリティケミカルズ製)
25質量部
20%ITO微粒子分散物(平均粒径70nm、イソプロピルアルコール溶液)
540質量部
レベリング剤(FZ2207、日本ユニカー製、10%プロピレングリコールモノメチルエーテル溶液) 7質量部
プロピレングリコールモノメチルエーテル 101質量部
酢酸エチル 101質量部
〈反射防止フィルム201の作製〉
次いで、ハードコート層2の上に、下記中屈折率層組成物3を押し出しコーターで塗布し、高圧水銀灯にて0.1J/cm2の紫外線を照射して硬化させ、中屈折率層1を設けた。中屈折率層1の厚さは95nm、塗布幅1.4mであった。
〈中屈折率層組成物3〉
固形分15%酸化チタン微粒子分散物(ブタノール溶液) 270g
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA 日本化薬社製) 55g
イルガキュア907(チバスペシャルティケミカルズ(株)製) 3g
カヤキュアーDETX(日本化薬社製) 1g
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207 日本ユニカー社製) 1g
プロピレングリコールモノメチルエーテル 1470g
イソプロピルアルコール 2720g
メチルエチルケトン 490g
次いで、実施例1の反射防止フィルム101で形成した高屈折率層、低屈折率層を同様にして設け、反射防止フィルム201を作製した。
〈反射防止フィルム202〜205の作製〉
表4に記載の構成で反射防止フィルム202〜205を作製した。
《評価》
得られた反射防止フィルムの表面比抵抗、耐傷性を前記の方法に従って測定した。結果を表4に示す。
Figure 2006138893
本発明の反射防止フィルム204、205は実施例1を再現し、表面比抵抗、耐傷性に優れていることが明らかである。
また、本発明の反射防止フィルムは、着色、ヘイズに問題がなかった。
実施例3
実施例1、2で得られた反射防止フィルムを用いて下記偏光板を作製した。
〔偏光板の作製〕
厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光膜を得た。
次いで、下記工程1〜5に従って偏光膜と前記反射防止フィルム、裏面側のセルロースエステルフィルム(光学補償フィルム)を貼り合わせて偏光板を作製した。裏面側の偏光板保護フィルムにはセルロースエステルフィルム(コニカミノルタタックKC8UCR−4 コニカミノルタタック(株)製)を用いてそれぞれ偏光板とした。
工程1:60℃の2mol/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化したセルロースエステルフィルムを得た。
一方、反射防止フィルムの反射防止層側の面は剥離性のポリエチレンフィルムを貼り付けてアルカリから保護しながら上記鹸化処理を行った。
工程2:前記偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒浸漬した。
工程3:工程2で偏光膜に付着した余な接着剤を軽く拭き除き、これを工程1で処理したセルロースエステルフィルムの上に載せて、更に反射防止フィルムが外側になるように積層し、配置した。
工程4:ハンドローラーで工程3で積層した反射防止フィルムと偏光膜とセルロースエステルフィルム試料との積層物の端から過剰の接着剤及び気泡を取り除き貼り合わせた。ハンドローラーの圧力は20〜30N/cm2、ローラースピードは約2m/分とした。
工程5:80℃の乾燥機中に工程4で作製した偏光膜とセルロースエステルフィルムと反射防止フィルムとを貼り合わせた試料を2分間乾燥し、偏光板を作製した。
本発明の反射防止フィルム104〜106、203〜205は優れた表面比抵抗、耐傷性を有している為、偏光板作製時のゴミの付着、傷の発生もなく優れた偏光板加工適性を有していることが分かった。
〔液晶表示装置の作製〕
視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
富士通製15型ディスプレイVL−150SDの予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板をそれぞれ液晶セルのガラス面に貼合した。
その際、その偏光板の貼合の向きは、裏面側のセルロースエステルフィルム(光学補償フィルム)の面が、液晶セル側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置を作製した。
得られた液晶表示装置について評価したところ、本発明の反射防止フィルム104〜106、203〜205を用いたものは、平面性に優れていたのに対し、比較例の偏光板は細かい波打ち状のムラが認められ、目が疲れ易かった。更に液晶表示装置の表面フィルムとして本発明のフィルムは下記評価により優れた視認性を有していることが確認された。
(視認性の評価)
得られた各液晶表示装置について、60℃、90%RHの条件で100時間放置した後、23℃、55%RHに戻し、表面の波打ち状のムラを目視にて評価した。

Claims (7)

  1. 透明基材フィルム上に少なくとも一層の帯電防止層を有し、その上に直接または他の層を介して導電性中空微粒子を含有する層を設けたことを特徴とする反射防止フィルム。
  2. 前記導電性中空微粒子を含有する層がフッ素化合物を含むことを特徴とする請求項1に記載の反射防止フィルム。
  3. 前記帯電防止層が導電性金属酸化物粒子を含み、該導電性金属酸化物粒子がアンチモンをドープした酸化錫(ATO)、酸化インジウムスズ(ITO)、五酸化アンチモン、酸化亜鉛、酸化ジルコニウムから選ばれる1種または2種以上の金属酸化物粒子であることを特徴とする請求項1または2に記載の反射防止フィルム。
  4. 前記透明基材フィルムが幅1.4m以上のセルロースエステルフィルムであることを特徴とする請求項1〜3のいずれか1項に記載の反射防止フィルム。
  5. 請求項1〜4のいずれか1項に記載の反射防止フィルムを有することを特徴とする偏光板。
  6. 請求項1〜4のいずれか1項に記載の反射防止フィルムを有することを特徴とする表示装置。
  7. 請求項5に記載の偏光板を有することを特徴とする表示装置。
JP2004326015A 2004-11-10 2004-11-10 反射防止フィルム、偏光板及び表示装置 Pending JP2006138893A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326015A JP2006138893A (ja) 2004-11-10 2004-11-10 反射防止フィルム、偏光板及び表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326015A JP2006138893A (ja) 2004-11-10 2004-11-10 反射防止フィルム、偏光板及び表示装置

Publications (1)

Publication Number Publication Date
JP2006138893A true JP2006138893A (ja) 2006-06-01

Family

ID=36619791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326015A Pending JP2006138893A (ja) 2004-11-10 2004-11-10 反射防止フィルム、偏光板及び表示装置

Country Status (1)

Country Link
JP (1) JP2006138893A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142272A1 (ja) * 2006-06-09 2007-12-13 Jemco Inc. 透明導電膜形成用組成物、透明導電膜及びディスプレイ
JP2008233371A (ja) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd 反射防止フィルム
JP2008250315A (ja) * 2007-03-08 2008-10-16 Fujifilm Corp 反射防止積層体、偏光板及び画像表示装置
WO2014069160A1 (ja) * 2012-10-31 2014-05-08 オリンパス株式会社 塗料、光学塗膜および光学素子
JP2014153684A (ja) * 2013-02-13 2014-08-25 Dainippon Printing Co Ltd 反射防止物品の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350002A (ja) * 2000-06-07 2001-12-21 Bridgestone Corp 反射防止フィルム
JP2002277604A (ja) * 2001-03-16 2002-09-25 Toppan Printing Co Ltd 反射防止フイルム
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2003323070A (ja) * 2002-05-07 2003-11-14 Ricoh Co Ltd 定着ローラ、その製造方法および加熱定着装置
JP2004029660A (ja) * 2002-06-28 2004-01-29 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム、光学フィルムを有する偏光板及び表示装置
JP2004165123A (ja) * 2002-09-24 2004-06-10 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法および導電材料
JP2006049296A (ja) * 2004-07-09 2006-02-16 Fuji Photo Film Co Ltd 中空導電性微粒子、光学機能フィルム、反射防止フィルム、その製造方法、偏光板、及び画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350002A (ja) * 2000-06-07 2001-12-21 Bridgestone Corp 反射防止フィルム
JP2002277604A (ja) * 2001-03-16 2002-09-25 Toppan Printing Co Ltd 反射防止フイルム
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2003323070A (ja) * 2002-05-07 2003-11-14 Ricoh Co Ltd 定着ローラ、その製造方法および加熱定着装置
JP2004029660A (ja) * 2002-06-28 2004-01-29 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム、光学フィルムを有する偏光板及び表示装置
JP2004165123A (ja) * 2002-09-24 2004-06-10 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法および導電材料
JP2006049296A (ja) * 2004-07-09 2006-02-16 Fuji Photo Film Co Ltd 中空導電性微粒子、光学機能フィルム、反射防止フィルム、その製造方法、偏光板、及び画像表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142272A1 (ja) * 2006-06-09 2007-12-13 Jemco Inc. 透明導電膜形成用組成物、透明導電膜及びディスプレイ
KR101000436B1 (ko) 2006-06-09 2010-12-13 미쓰비시마테리알덴시카세이가부시키가이샤 투명 도전막 형성용 조성물, 투명 도전막 및 디스플레이
TWI421316B (zh) * 2006-06-09 2014-01-01 Jemco Inc 透明導電膜形成用組成物、透明導電膜及顯示器
JP2008250315A (ja) * 2007-03-08 2008-10-16 Fujifilm Corp 反射防止積層体、偏光板及び画像表示装置
JP2008233371A (ja) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd 反射防止フィルム
WO2014069160A1 (ja) * 2012-10-31 2014-05-08 オリンパス株式会社 塗料、光学塗膜および光学素子
JP2014091743A (ja) * 2012-10-31 2014-05-19 Olympus Corp 塗料、光学塗膜および光学素子
JP2014153684A (ja) * 2013-02-13 2014-08-25 Dainippon Printing Co Ltd 反射防止物品の製造方法

Similar Documents

Publication Publication Date Title
JP4849068B2 (ja) 防眩性反射防止フィルム及び防眩性反射防止フィルムの製造方法
JP5218411B2 (ja) 光学フィルム、偏光板及び液晶表示装置
JP5088137B2 (ja) 光学フィルムの処理方法、光学フィルムの処理装置及び光学フィルムの製造方法
JP5167812B2 (ja) 光学フィルムの処理方法、光学フィルムの処理装置及び光学フィルムの製造方法
JP2009042351A (ja) 光学フィルム、偏光板及び表示装置
JP2007076089A (ja) 表面凹凸形状光学フィルムの製造方法及び表面凹凸形状光学フィルム
JP2007233129A (ja) 防眩性フィルムの製造方法、防眩性フィルム、防眩性反射防止フィルム及び画像表示装置
JP4622472B2 (ja) 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板及び表示装置
JP2007047536A (ja) 偏光板及び液晶表示装置
JP2007017845A (ja) 偏光板及び液晶表示装置
JP2007144301A (ja) 紫外線硬化樹脂層の硬化方法及び紫外線照射装置
JP2010107639A (ja) 偏光板、液晶表示装置、及びips(インプレーンスイッチング)モード型液晶表示装置
JP2007017946A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び液晶表示装置
JP4885441B2 (ja) 防眩性反射防止フィルム、偏光板および画像表示装置
JP2005309120A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2005266232A (ja) 光学フィルム、偏光板及び画像表示装置
JP2005272756A (ja) セルロースエステルフィルム、偏光板及び液晶表示装置
JP5017775B2 (ja) 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、それを用いた偏光板及び表示装置
JP2005266051A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2006018062A (ja) 反射防止フィルム、偏光板及び表示装置
JP2006308880A (ja) 透明帯電防止フィルム、反射防止フィルム、偏光板及び表示装置
JP2005298716A (ja) 帯電防止層、帯電防止性ハードコートフィルム、帯電防止性反射防止フィルム、偏光板及び表示装置
JP2006138893A (ja) 反射防止フィルム、偏光板及び表示装置
JP2007320052A (ja) ハードコートフィルム、偏光板及び表示装置
JP4543667B2 (ja) 反射防止膜形成用塗布液の製造方法及び反射防止フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118