JP2006136990A - Microfluid device having valve - Google Patents

Microfluid device having valve Download PDF

Info

Publication number
JP2006136990A
JP2006136990A JP2004330395A JP2004330395A JP2006136990A JP 2006136990 A JP2006136990 A JP 2006136990A JP 2004330395 A JP2004330395 A JP 2004330395A JP 2004330395 A JP2004330395 A JP 2004330395A JP 2006136990 A JP2006136990 A JP 2006136990A
Authority
JP
Japan
Prior art keywords
flow path
microfluidic device
valve
channel
weir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004330395A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2004330395A priority Critical patent/JP2006136990A/en
Publication of JP2006136990A publication Critical patent/JP2006136990A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microfluid device having a valve which is capable of reducing the reverse flow rate by increasing the responsive speed when the valve is closed from an open state, and suppressing degradation of the discharge amount and degradation of linearity of the discharge amount to the drive frequency of a pump mechanism when the valve is used as a discharge side reverse flow preventive valve of a diaphragm type pump mechanism or of a plunger type pump mechanism. <P>SOLUTION: The microfluid device having a capillary flow passage has a gate-like structure to shut off the flow passage in the middle of the flow passage, the gate-like structure and an area in a vicinity thereof including the gate-like structure are not fixed, a flow passage opening part to distribute the fluid by opening the flow passage with the fluid pressure in the flow passage is provided, and a pressing member to press the flow passage opening part is provided outside the flow passage facing the flow passage opening part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流路を開閉するバルブが設けられたマイクロ流体デバイスに関し、より詳細には、常態では流路を遮断していて、その少なくとも一方の側の流路中の流体圧力が特定値以上になると開き、流体を流通させるバルブを有するマイクロ流体デバイス、及び、該バルブをポンプ機構の逆流防止バルブとして組み込んだマイクロ流体デバイスに関する。   The present invention relates to a microfluidic device provided with a valve for opening and closing a flow path, and more specifically, the flow path is normally blocked, and the fluid pressure in the flow path on at least one side thereof is equal to or higher than a specific value. The present invention relates to a microfluidic device having a valve that opens and allows fluid to flow, and a microfluidic device that incorporates the valve as a backflow prevention valve of a pump mechanism.

流路を開閉するバルブが設けられたマイクロ流体デバイスとしては、毛細管状の流路の途上に該流路を遮断する堰状構造を設け、該堰状構造の一面は可撓性を有する部材と当接しているが固着していない構造を形成し、この構造を、常態では閉じているが、該堰状構造の少なくとも一方の側(流入側)の流路が特定値以上の圧力になると、前記可撓性を有する部材が撓んで、前記当接しているが接着していない部分に間隙が生じて、開くバルブとして機能させ得ることが開示されている(特許文献1参照)。   As a microfluidic device provided with a valve for opening and closing the flow path, a weir-like structure for blocking the flow path is provided in the middle of the capillary flow path, and one surface of the weir-like structure is a member having flexibility. Forming a structure that is in contact but not sticking, this structure is normally closed, but when the flow path on at least one side (inflow side) of the weir-like structure is at a pressure higher than a specific value, It is disclosed that the flexible member bends so that a gap is generated in the abutting but not bonded portion so that it can function as an opening valve (see Patent Document 1).

このようなバルブは、例えばマイクロ流体デバイスに組み込まれたダイヤフラムポンプ機構やプランジャーポンプ機構の一部である吐出側逆流防止バルブとして好ましく使用され、又、マイクロ流体デバイスに接続されたポンプや圧力気体によって流体の圧力のを制御してバルブの開閉を行い、例えばマイクロ流体デバイス内のある流路から他の流路へ流体を吐出して混合する場合に好ましく使用される。   Such a valve is preferably used, for example, as a discharge-side backflow prevention valve that is a part of a diaphragm pump mechanism or a plunger pump mechanism incorporated in a microfluidic device, or a pump or pressure gas connected to the microfluidic device. For example, it is preferably used when the valve is opened and closed by controlling the pressure of the fluid by, for example, discharging and mixing the fluid from one channel in the microfluidic device to another channel.

しかしながら、該バルブの流入側流路の圧力を特定値以上にして流体を通過させた後、該圧力を常態に戻しても、流出側流路の圧力が常態に戻るためにはいくらかの時間を要するため、該バルブを即時に閉じることが出来なかった。そのため、この間に流体の一部が逆流する場合があった。従って、該バルブをマイクロ流体デバイスに組み込まれたダイヤフラム式ポンプ機構やプランジャ式ポンプ機構の吐出側逆流防止バルブとして用いた場合に、該逆流や低い応答性が原因となって、吐出量の低下や、前記バルブの駆動周波数に対する吐出量の直線性の大きな低下が生じがちであった。   However, even if the pressure of the inflow side passage of the valve is set to a specific value or more and the fluid is allowed to pass and then the pressure is returned to the normal state, it takes some time for the pressure of the outflow side passage to return to the normal state. Therefore, the valve could not be closed immediately. Therefore, a part of the fluid may flow backward during this time. Therefore, when the valve is used as a discharge side backflow prevention valve of a diaphragm type pump mechanism or a plunger type pump mechanism incorporated in a microfluidic device, the discharge amount may be reduced due to the backflow or low responsiveness. The linearity of the discharge amount with respect to the driving frequency of the valve tends to greatly decrease.

特開2003−139660号公報JP 2003-139660 A

本発明が解決しようとする課題は、バルブを開いた状態から閉じる時の応答速度を向上させることにより、その時の逆流量を減少させ、該バルブをダイヤフラム式ポンプ機構やプランジャ式ポンプ機構の吐出側逆流防止バルブとして用いた場合に、吐出量の低下や、該ポンプ機構の駆動周波数に対する吐出量の直線性の低下を抑制することにある。   The problem to be solved by the present invention is to improve the response speed when the valve is closed from the open state, thereby reducing the reverse flow rate at that time, and to connect the valve to the discharge side of the diaphragm type pump mechanism or the plunger type pump mechanism. When used as a backflow prevention valve, it is to suppress a decrease in the discharge amount and a decrease in the linearity of the discharge amount with respect to the driving frequency of the pump mechanism.

本発明者らは、上記課題を解決する方法について鋭意検討した結果、毛細管状の流路を有するマイクロ流体デバイスであって、前記流路の途中に該流路を遮断するための堰状構造を有し、該堰状構造部及び該堰状構造の近傍を含む範囲が固着しておらず且つ流路内の流体圧力により流路を開放して流体を流通する流路開放部が設けられてなり、該流路開放部に相対する流路外部に該流路開放部を圧迫するように圧迫部材が設けられてなることを特徴とするマイクロ流体デバイスを提供することにより上記課題を解決した。   As a result of intensive studies on a method for solving the above problems, the inventors of the present invention are microfluidic devices having a capillary channel, and have a weir-like structure for blocking the channel in the middle of the channel. A flow path opening portion is provided in which the dam-like structure portion and a range including the vicinity of the dam-like structure are not fixed and the flow passage is opened by the fluid pressure in the flow passage to circulate the fluid. Thus, the above problem has been solved by providing a microfluidic device characterized in that a compression member is provided outside the flow channel opposite to the flow channel opening portion so as to press the flow channel open portion.

本発明のマイクロ流体デバイスによれば、常態では流路を遮断していて、その少なくとも一方の側の流路中の流体圧力が特定値以上になると開き、流体を流通させるバルブに流体を通過させた状態から、該流体圧力を常態に戻してバルブを閉じた状態に戻すときに、閉じるために要する時間を短縮することが出来る。これにより、バルブを開いた状態から閉じる際に、該バルブを通過した流体の一部が流入側流路に逆流する量を減少させることができる。特に、該バルブをポンプ機構の吐出側逆流防止バルブとして組み込んだマイクロ流体デバイスにおいては、流体の吐出量の向上と該ポンプの駆動周波数に対する吐出量の直線性の向上が図れる。また、マイクロ流体デバイスが特定圧力以上で開くバルブを有する場合において、マイクロ流体デバイスに接続した外部ポンプなどによる流体圧力の制御によって、ある流路から上記バルブを通して他の流路へ流体を吐出する場合には、定量性の向上が図れる上、該バルブの開く圧力を高く設定した場合にも、該圧力を掛けた際に通過の圧力損失が小さく、大きな流量で流体を通過させることができる。   According to the microfluidic device of the present invention, the flow path is normally shut off, and when the fluid pressure in the flow path on at least one side thereof exceeds a specific value, it opens and allows the fluid to pass through a valve that circulates the fluid. When the fluid pressure is returned to the normal state from the closed state to return the valve to the closed state, the time required for closing can be shortened. Thereby, when the valve is closed from the opened state, it is possible to reduce the amount of a part of the fluid that has passed through the valve flows back into the inflow side flow path. In particular, in a microfluidic device in which the valve is incorporated as a discharge-side backflow prevention valve of a pump mechanism, the fluid discharge amount can be improved and the linearity of the discharge amount with respect to the pump drive frequency can be improved. In addition, when the microfluidic device has a valve that opens at a specific pressure or higher, fluid is discharged from one channel to another channel through the valve by controlling the fluid pressure using an external pump connected to the microfluidic device. In addition to improving the quantitativeness, even when the opening pressure of the valve is set high, the passage pressure loss is small when the pressure is applied, and the fluid can be passed at a large flow rate.

本発明のマイクロ流体デバイスの基本構造を図1に示す。本発明のマイクロ流体デバイス(101)は、毛細管状の流路(5)を有し、該流路の途中に流路を遮断するための堰状構造(6)を有する。また、該堰状構造(6)及び該堰状構造(6)を含む近傍領域が固着しておらず且つ流体内の流体圧力により流路を開放して流体を流通する流路開放部(15)が設けられてなり、該流路開放部に相対する流路外部に該流路開放部を圧迫するように圧迫部材(51)が設けられてなるものである。   The basic structure of the microfluidic device of the present invention is shown in FIG. The microfluidic device (101) of the present invention has a capillary channel (5), and has a weir structure (6) for blocking the channel in the middle of the channel. Further, the weir-like structure (6) and the vicinity area including the weir-like structure (6) are not fixed, and the channel opening part (15) that opens the channel by the fluid pressure in the fluid and circulates the fluid. ) Is provided, and a compression member (51) is provided outside the flow channel opposite to the flow channel opening portion so as to press the flow channel open portion.

前記圧迫部材(51)は、堰状構造(6)方向に弾性力を付勢するものであり、該圧迫部材(51)が装着されたバルブを有する本発明のマイクロ流体デバイス(101)は、常態においては堰状構造(6)により、流路(5)は流路(5a)と流路(5b)に分断されており、流路(5a)と流路(5b)との間に流体は流通しない。
しかし、流路の少なくとも一方、例えば流路(5a)の流体圧力を特定値以上とすることにより、圧迫部材(51)の押圧力に抗して流路開放部(15)が開放されて流路(5a)と流路(5b)が連絡し、流路(5)中を流体が流通するものである。
The compression member (51) urges an elastic force in the direction of the weir-like structure (6), and the microfluidic device (101) of the present invention having a valve to which the compression member (51) is attached Normally, the flow path (5) is divided into the flow path (5a) and the flow path (5b) by the weir-like structure (6), and the fluid is between the flow path (5a) and the flow path (5b). Does not circulate.
However, by setting the fluid pressure in at least one of the flow paths, for example, the flow path (5a) to a specific value or more, the flow path opening portion (15) is opened against the pressing force of the compression member (51) to flow. The path (5a) and the flow path (5b) communicate with each other, and the fluid flows through the flow path (5).

本発明のマイクロ流体デバイスは、前記流路開放部(15)に相対する流路外部に圧迫部材(51)を設けることにより、流路開放部(15)の開放圧力や、流路(5)中を流通する流体の流量を適宜調節することが可能である。   In the microfluidic device of the present invention, the compression member (51) is provided outside the flow channel facing the flow channel opening portion (15), so that the opening pressure of the flow channel opening portion (15) and the flow channel (5) It is possible to appropriately adjust the flow rate of the fluid flowing through the inside.

以下、本発明のマイクロ流体デバイスについて、詳細に説明する。
[マイクロ流体デバイス本体]
本発明のマイクロ流体デバイスの外形は任意であり、例えば、板状、シート状、棒状、塊状などであり得るが、板状またはシート状であることが、本発明の構造を形成しやすく、又使用も容易であるため、好ましい。「シート状」には、類似の構造、例えばフィルム状やリボン状を含むものとする。
Hereinafter, the microfluidic device of the present invention will be described in detail.
[Microfluidic device body]
The external shape of the microfluidic device of the present invention is arbitrary, and may be, for example, a plate shape, a sheet shape, a rod shape, a lump shape, etc. The plate shape or the sheet shape is easy to form the structure of the present invention, and Since use is also easy, it is preferable. The “sheet shape” includes a similar structure, for example, a film shape or a ribbon shape.

該マイクロ流体デバイスは、毛細管状の流路を有する。該毛細管状の流路は、マイクロ流体デバイスを構成する部材表面に略平行に設けられていることが好ましい。当該毛細管状の流路を有する構造としては、流路となる溝を有する板状の部材の溝形成面に、シート状の部材が固着された構造、流路となる溝を有するシート状の部材の溝形成面に、板状の部材が固着された構造、または、流路となる溝を有するシート状の部材の溝形成面に、シート状の部材が固着された構造であることが製造が容易であり好ましい。   The microfluidic device has a capillary channel. The capillary channel is preferably provided substantially parallel to the surface of the member constituting the microfluidic device. The structure having the capillary channel includes a structure in which a sheet-like member is fixed to a groove-forming surface of a plate-like member having a groove serving as a channel, and a sheet-like member having a groove serving as a channel. The sheet-shaped member is fixed to the groove-forming surface of the sheet, or the sheet-shaped member is fixed to the groove-forming surface of the sheet-like member having a groove serving as a flow path. Easy and preferred.

マイクロ流体デバイスの素材は、後述の流路開放部以外は特に制約はなく、使用可能なものとしては、例えば、有機重合体(以下、単に[重合体」又は「樹脂」と称する。又、これにはシリコン樹脂も含める)、ガラス、石英の如き結晶、岩石やセラミックなどの多結晶或いは非晶性無機物、シリコンの如き半導体、金属などが挙げられるが、これらの中でも、易成形性、高生産性、低価格などの点から重合体が特に好ましい。   The material of the microfluidic device is not particularly limited except for the flow path opening portion described later, and examples of usable materials include organic polymers (hereinafter simply referred to as “polymer” or “resin”. Includes silicon resin), crystals such as glass, quartz, polycrystalline or amorphous inorganic materials such as rocks and ceramics, semiconductors such as silicon, metals, etc. Among these, easy moldability and high production Polymers are particularly preferred from the standpoints of properties and low cost.

重合体は、単独重合体であっても、共重合体であっても良く、また、熱可塑性重合体であっても、熱硬化性重合体であっても良い。生産性の面から、前記重合体は、熱可塑性重合体又はエネルギー線硬化性の架橋重合体であることが好ましい。   The polymer may be a homopolymer or a copolymer, and may be a thermoplastic polymer or a thermosetting polymer. From the viewpoint of productivity, the polymer is preferably a thermoplastic polymer or an energy ray curable crosslinked polymer.

好ましく使用できる重合体としては、例えば、ポリスチレン、ポリ−α−メチルスチレン、ポリスチレン/マレイン酸共重合体、ポリスチレン/アクリロニトリル共重合体の如きスチレン系重合体;ポルスルホン、ポリエーテルスルホンの如きポリスルホン系重合体;ポリメチルメタクリレート、ポリアクリロニトリルの如き(メタ)アクリル系重合体;ポリマレイミド系重合体;ビスフェノールA系ポリカーボネート、ビスフェノールF系ポリカーボネート、ビスフェノールZ系ポリカーボネートなどのポリカーボネート系重合体;   Examples of polymers that can be preferably used include styrene polymers such as polystyrene, poly-α-methylstyrene, polystyrene / maleic acid copolymer, polystyrene / acrylonitrile copolymer; polysulfone heavy polymers such as porsulfone and polyethersulfone. (Meth) acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide polymers; polycarbonate polymers such as bisphenol A polycarbonate, bisphenol F polycarbonate, and bisphenol Z polycarbonate;

ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1の如きポリオレフィン系重合体;塩化ビニル、塩化ビニリデンの如き塩素含有重合体;酢酸セルロース、メチルセルロースの如きセルロース系重合体;ポリウレタン系重合体;ポリアミド系重合体;ポリイミド系重合体;ポリ−2,6−ジメチルフェニレンオキサイド、ポリフェニレンサルファイドの如きポリエーテル系又はポリチオエーテル系重合体;ポリエーテルエーテルケトンの如きポリエーテルケトン系重合体;ポリエチレンテレフタレート、ポリアリレートの如きポリエステル系重合体;エポキシ樹脂;ウレア樹脂;フェノール樹脂;ポリ四フッ化エチレン、PFA(四フッ化エチレンとパーフロロアルコキシエチレンの共重合体)などのフッ素系重合体、ポリジメチルシロキサン等のシリコーン系重合体;本発明で使用するエネルギー線硬化性組成物の硬化物等が挙げられる。 Polyolefin polymers such as polyethylene, polypropylene and poly-4-methylpentene-1; chlorine-containing polymers such as vinyl chloride and vinylidene chloride; cellulose polymers such as cellulose acetate and methylcellulose; polyurethane polymers; Polyimide polymer; Polyether or polythioether polymer such as poly-2,6-dimethylphenylene oxide or polyphenylene sulfide; Polyether ketone polymer such as polyether ether ketone; Polyethylene terephthalate or polyarylate Such as polyester polymer; epoxy resin; urea resin; phenol resin; polytetrafluoroethylene, fluorine polymer such as PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), polydimethyl Silicone polymers Le siloxanes; cured products of the energy ray curable composition to be used are mentioned in the present invention.

マイクロ流体デバイスを複数の部材を固着して形成する場合には、これらの中でも、接着性が良好な点などから、スチレン系重合体、(メタ)アクリル系重合体、ポリカーボネート系重合体、ポリスルホン系重合体、ポリエステル系重合体が好ましい。また、流路を構成する部材(後述する部材(A)(3))は、エネルギー線硬化性樹脂の硬化物であることも好ましい。該流路を構成する部材は、ポリマーブレンドやポリマーアロイで構成されていても良いし、積層体その他の複合体であっても良い。さらに、任意の添加剤の添加や表面処理を行っても良い。   When a microfluidic device is formed by fixing a plurality of members, among these, styrenic polymer, (meth) acrylic polymer, polycarbonate polymer, polysulfone type, because of good adhesiveness, etc. Polymers and polyester polymers are preferred. Moreover, it is preferable that the member (member (A) (3) mentioned later) which comprises a flow path is hardened | cured material of energy-beam curable resin. The member constituting the flow path may be composed of a polymer blend or a polymer alloy, or may be a laminate or other complex. Furthermore, you may perform addition of arbitrary additives and surface treatment.

マイクロ流体デバイスやその部材の形成方法は任意であり、例えば、フォトリソグラフ法、エネルギー線硬化性組成物を用いたパターン露光法、射出成形、溶融レプリカ法、溶液キャスト法、エネルギー線硬化性組成物を用いたエネルギー線硬化性組成物を用いたキャスト成型法、欠損部を有するシートの積層固着法、光造形法などにより製造できる。光造形法とは、エネルギー線硬化性組成物の未硬化層にレーザー光線などの活性エネルギー線をパターニング照射し、未照射部分の未硬化の活性エネルギー線硬化性組成物を除去すること無く、その上に活性エネルギー線硬化性組成物の第2層を置き(或いは活性エネルギー線硬化性組成物の液面下に、第2層の厚みとなる深さだけ第1層を沈め)第2層に活性エネルギー線をパターニング照射し、この工程を繰り返して立体構造を形成する方法を言う。   The method of forming the microfluidic device and its members is arbitrary. For example, photolithographic method, pattern exposure method using energy beam curable composition, injection molding, melt replica method, solution cast method, energy beam curable composition It can be produced by a cast molding method using an energy ray curable composition using, a lamination fixing method of a sheet having a defective portion, an optical modeling method, or the like. The stereolithography method involves patterning irradiation of an active energy ray such as a laser beam on an uncured layer of an energy beam curable composition, and without removing the uncured active energy ray curable composition of an unirradiated portion. Place the second layer of the active energy ray-curable composition on the surface (or submerge the first layer below the liquid level of the active energy ray-curable composition to a depth corresponding to the thickness of the second layer) and activate the second layer. It refers to a method of forming a three-dimensional structure by patterning irradiation with energy rays and repeating this process.

マイクロ流体デバイスはいくつかの部材を固着して作製することも出来る。例えば、流路となる溝を有する部材をフォトリソグラフ法、射出成型法などの上記の方法で作製し、該部材の溝形成面に、シート状の部材を固着する方法も好ましい。又、上記溝を有する部材は、特許文献1に記載されているように、エネルギー線硬化性組成物を用いたパターン露光法により、溝の底となる層や溝の側壁となる層を順次積層して形成することも好ましい。   The microfluidic device can also be produced by fixing several members. For example, a method in which a member having a groove serving as a flow path is produced by the above-described method such as a photolithographic method or an injection molding method, and a sheet-like member is fixed to the groove forming surface of the member is also preferable. Further, as described in Patent Document 1, the member having the groove is formed by sequentially laminating a layer serving as the bottom of the groove and a layer serving as the sidewall of the groove by a pattern exposure method using an energy ray curable composition. It is also preferable to form them.

[流路]
流路は、少なくともバルブとなす部分付近において、部材表面に略平行に設けられている。該流路は、バルブとされる部分付近において、マイクロ流体デバイスの外部から流路壁を構成する部材が圧迫されることによって、流路の断面積が減少しうる深さに形成される。該流路の断面積は任意であるが、好ましくは1μm〜10mm、さらに好ましくは10μm〜1mm、最も好ましくは100μm〜0.1mmである。流路断面の形状も任意であり、円、矩形、台形、半円形、スリット状など(但し、上記の内、角のある実施態様は角の丸まった実施態様を含む。以下同じ)であり得る。流路は、マイクロ流体デバイスの他の機構の流路と連続して形成することが出来る。
[Flow path]
The flow path is provided substantially parallel to the surface of the member at least in the vicinity of the portion that forms the valve. The flow path is formed in the vicinity of the portion to be a valve to a depth at which the cross-sectional area of the flow path can be reduced by pressing a member constituting the flow path wall from the outside of the microfluidic device. The cross-sectional area of the flow path is arbitrary, but is preferably 1 μm 2 to 10 mm 2 , more preferably 10 μm 2 to 1 mm 2 , and most preferably 100 μm 2 to 0.1 mm 2 . The shape of the cross section of the flow path is also arbitrary, and may be a circle, rectangle, trapezoid, semicircle, slit shape, etc. (however, the above-mentioned embodiments with corners include embodiments with rounded corners, the same applies hereinafter). . The channel can be formed continuously with the channel of another mechanism of the microfluidic device.

該流路は、堰状構造部や流路開放部の設計や製造が容易であることから、後述のように、流路となる溝(凹部)を有する部材と部材を固着することにより、該溝と蓋となる部材とで形成することが出来る。   Since the channel is easy to design and manufacture the weir-like structure part and the channel opening part, the member having a groove (concave part) that becomes the channel is fixed to the member, as will be described later. It can be formed by a groove and a member to be a lid.

[堰状構造、流路開放部]
本発明のマイクロ流体デバイスは、流路途中に該流路を遮断するための堰状構造、及び該堰状構造部及び該堰状構造部近傍の範囲に流路内の流体圧力により流路を開放して流体を流通する流路開放部を有する。また、該流路開放部に相対する流路外部に流路開放部を圧迫するように圧迫部材が設けられている。以下、該堰状構造と流路開放部とから構成される部分をバルブ本体、該バルブ本体と圧迫部材とから構成される部分をバルブと称する。
[Weir-like structure, channel opening]
The microfluidic device of the present invention includes a weir-like structure for blocking the flow path in the middle of the flow path, and the flow path by the fluid pressure in the flow path in the vicinity of the weir-like structure part and the weir-like structure part. It has a flow path opening part which opens and distribute | circulates a fluid. Further, a compression member is provided so as to press the channel opening part outside the channel facing the channel opening part. Hereinafter, a portion composed of the weir-like structure and the flow path opening portion is referred to as a valve body, and a portion composed of the valve body and the compression member is referred to as a valve.

流路を遮断するための堰状構造は、圧迫部材により圧迫された状態、且つ流路内の流体がマイクロ流体デバイスが設置された雰囲気の圧力である状態(以下、該状態を常態と称する。)で流路を分断して流路を遮断する構造であり、流路の内表面と一体化された部分と、圧迫部材により圧迫された状態で流路の内表面に当接しているが固着していない部分(以下、該部分を当接部と称する。)を有するものである。   The weir-like structure for blocking the flow path is a state compressed by the compression member, and a state where the fluid in the flow path is the pressure of the atmosphere in which the microfluidic device is installed (hereinafter, this state is referred to as a normal state). ) To divide the flow path to block the flow path, and a part integrated with the inner surface of the flow path and the inner surface of the flow path in a state of being pressed by the compression member are fixed. It has a portion that is not (hereinafter, this portion is referred to as a contact portion).

また、流路開放部は、上記堰状構造の当接部とその周囲に形成された非固着部とからなり、該非固着部は、圧迫部材により圧迫された状態で、常態においては間隙寸法がゼロの空隙部である。上記流路開放部は、常態では圧迫部材により流路を遮断している状態であるが、流路内の流体の加圧により堰状構造及び/又は流路構成部材を変形させ、前記当接部および前記非固着部に間隙を生じて流路を開放して流体を流通する部分である。   The flow path opening portion is composed of a contact portion of the dam-like structure and a non-fixed portion formed around the contact portion, and the non-fixed portion is compressed by a compression member, and normally has a gap dimension. Zero void. The flow path opening portion is normally in a state where the flow path is blocked by the compression member, but the weir structure and / or flow path component member is deformed by pressurization of the fluid in the flow path, and the contact is made. This is a part that creates a gap between the part and the non-adhering part and opens the flow path to circulate the fluid.

上記流路開放部の具体例としては、流路となる凹部と、該凹部の途中に形成された流路を遮断する堰状構造となる凸部とを有する部材(A)と、前記凹部の蓋となる部材(B)とが、前記凸部及び凸部の近傍領域が固着しないように張合わされることにより形成された構造が好ましい例として挙げられる。該構造の場合には、部材(A)中の凸部は形成された流路を途切れさせて2つに分ける堰状構造を形成する。また、前記部材(B)の流路と対向する外壁面及び/又は部材(A)の前記堰状構造およびその近傍領域に相対する外壁面に、前記圧迫部材を有することによりマイクロ流体デバイスにバルブが構成される。該流路開放部は、圧迫部材により圧迫された状態で流路を遮断すればよく、圧迫部材が無い状態では当接していても、空隙を有していてもよい。   As a specific example of the flow path opening portion, a member (A) having a concave portion that becomes a flow channel, and a convex portion that has a weir-like structure that blocks a flow channel formed in the middle of the concave portion, A preferable example is a structure formed by pasting the member (B) serving as a lid so that the convex portion and a region near the convex portion are not fixed. In the case of this structure, the convex portion in the member (A) forms a weir-like structure that breaks the formed flow path and divides it into two. The microfluidic device is provided with a valve on the outer wall surface facing the flow path of the member (B) and / or the outer wall surface facing the dam-like structure of the member (A) and its vicinity. Is configured. The flow path opening portion only needs to block the flow path in a state of being compressed by the compression member, and may be in contact with or without a gap in the absence of the compression member.

上記構造においては、前記部材(B)の流路と対向する外壁面に圧迫部材を有する場合には、部材(A)の弾性率と厚みの積を、部材(B)の弾性率と厚みの積より高くし、バルブを開とする際、部材(B)側を変形させる。一方、部材(A)の前記堰状構造およびその近傍領域に相対する外壁面に圧迫部材を有する場合には、部材(A)の弾性率と厚みの積を、部材(B)の弾性率と厚みの積より低くし、バルブを開とする際、部材(A)側を変形させる。   In the above structure, when the compression member is provided on the outer wall surface facing the flow path of the member (B), the product of the elastic modulus and the thickness of the member (A) is calculated by the elastic modulus and the thickness of the member (B). When the valve is opened higher than the product, the member (B) side is deformed. On the other hand, when the compression member is provided on the outer wall surface facing the dam-like structure of the member (A) and the vicinity thereof, the product of the elastic modulus and the thickness of the member (A) is expressed as the elastic modulus of the member (B). When lower than the product of thickness and opening the valve, the member (A) side is deformed.

上記部材のうち弾性率と厚みの積を低くする部材の引っ張り弾性率は1MPa〜10GPaが好ましく、10MPa〜1GPaがさらに好ましく、10MPa〜300MPaが最も好ましい。該部材の厚みは、好ましくは1〜3000μm、更に好ましくは5〜1000μm、最も好ましくは10〜500μmである。この範囲未満では製造が困難となり、この範囲を越えると、マイクロでデバイスとしての利点が減少する。また、該部材は、引っ張り弾性率と厚みの積が、1kPa・m〜300kPa・mが好ましく、2kPa・m〜100kPa・mがさらに好ましく、5kPam〜50kPamが最も好ましい。この範囲とすることで、本発明の効果が十分に発揮される。   Of the above members, the tensile modulus of the member that lowers the product of the elastic modulus and the thickness is preferably 1 MPa to 10 GPa, more preferably 10 MPa to 1 GPa, and most preferably 10 MPa to 300 MPa. The thickness of the member is preferably 1 to 3000 μm, more preferably 5 to 1000 μm, and most preferably 10 to 500 μm. If it is less than this range, it becomes difficult to manufacture, and if it exceeds this range, the advantage of the device as a micro device is reduced. Further, the product of the tensile modulus and thickness of the member is preferably 1 kPa · m to 300 kPa · m, more preferably 2 kPa · m to 100 kPa · m, and most preferably 5 kPam to 50 kPam. By setting it within this range, the effect of the present invention is sufficiently exhibited.

一方、上記部材のうち他方の部材の引っ張り弾性率、厚み、及び引っ張り弾性率と厚みの堰については任意であるが、張り弾性率を300MPa〜100GPa、厚みを0.1mm〜10mm、引っ張り弾性率と厚みの積が、1MPa・m〜1GPa・mとすることも好ましい。この範囲とすることで該他方の部材及びマイクロ流体デバイスが剛直となり、マイクロ流体デバイスの取り扱い性が向上する。   On the other hand, the tensile elastic modulus and thickness of the other member among the above members and the weir of the tensile elastic modulus and thickness are arbitrary, but the tensile elastic modulus is 300 MPa to 100 GPa, the thickness is 0.1 mm to 10 mm, and the tensile elastic modulus. And the product of the thickness is preferably 1 MPa · m to 1 GPa · m. By setting it as this range, this other member and microfluidic device become rigid, and the handleability of a microfluidic device improves.

マイクロ流体デバイス表面から見た、堰状構造の当接部の面積は、好ましくは1μm〜10mm、さらに好ましくは10μm〜1mmである。堰状構造の寸法は、流路の寸法により好適な寸法が異なるが、この範囲とすることによって、本発明の硬化を発揮させることが出来る上、製造も容易となる。 The area of the contact portion of the weir-like structure as viewed from the surface of the microfluidic device is preferably 1 μm 2 to 10 mm 2 , more preferably 10 μm 2 to 1 mm 2 . The dimensions of the weir-like structure vary depending on the dimensions of the flow path, but by setting this range, the curing of the present invention can be exhibited and the manufacture is facilitated.

上記堰状構造の当接部を含む流路開放部の面積は、上記当接部の面積の2〜100倍であることが好ましく、2〜30倍であればさらに好ましく、3〜10倍であれば最も好ましい。流路開放部の面積を上記範囲の下限以上とすることにより、バルブが開の状態にある時に、流れる流量が多くなる。また、流路開放部の面積を上記範囲の上限以下とすることにより、バルブが閉じる速度を速くすることが出来る。   The area of the flow path opening portion including the contact portion of the dam-like structure is preferably 2 to 100 times the area of the contact portion, more preferably 2 to 30 times, and 3 to 10 times. Most preferred. By setting the area of the flow path opening portion to be equal to or more than the lower limit of the above range, the flow rate flowing when the valve is in an open state increases. Moreover, the speed which a valve closes can be made quick by making the area of a flow-path opening part below into the upper limit of the said range.

また、前記堰状構造近傍の流路の幅は、その他の部分と同じであっても良いし、変化していても良い。堰状構造付近で幅を広げることによって、開となる圧力を低下させることができ、また、バルブ開時に生じる間隙を流れる流体の剪断速度を低下させることができるため、タンパク質などの生化学物質の溶液に適用する場合に好ましい。また、前記流路の高さも、前記堰状構造付近でその他の部分と同じであっても良いし、変化しても良い。   In addition, the width of the flow path in the vicinity of the dam-like structure may be the same as that of other portions or may be changed. By expanding the width in the vicinity of the weir structure, the opening pressure can be reduced, and the shear rate of the fluid flowing through the gap generated when the valve is opened can be reduced. Preferred when applied to a solution. Also, the height of the flow path may be the same as or changed from other portions in the vicinity of the dam-like structure.

ここで、上記バルブ本体の好ましい態様の具体例につき、本発明のマイクロ流体デバイスに組み込んだ態様で以下に例示する。
〔第一実施態様〕
図2に示されるように、該堰状構造(6)が、圧迫部材(51)により圧迫される部材表面(11)に最も近い側の流路内面(13)に於いて該流路内面(13)に当接しているが固着していない場合(以下、これを「バルブ本体の第一実施態様」と称することにする)には、流路(5)の途中に該流路(5)を遮断する堰状構造(6)が設けられており、該堰状構造(6)の頂部(6a)が流路内面(13)に当接している。さらに、該当接部及びその近傍領域において、堰状構造(6)が形成された部材(A)と流路内面(13)が形成された部材(B)は、当接しているが固着していない流路開放部(15)を形成している。
Here, a specific example of a preferred embodiment of the valve body will be exemplified below in an embodiment incorporated in the microfluidic device of the present invention.
[First embodiment]
As shown in FIG. 2, the weir-like structure (6) is formed on the inner surface (13) of the channel closest to the member surface (11) compressed by the compression member (51). 13) but is not fixed (hereinafter referred to as “the first embodiment of the valve body”), the flow channel (5) is placed in the middle of the flow channel (5). A weir-like structure (6) is provided, and the top (6a) of the weir-like structure (6) is in contact with the inner surface (13) of the flow path. Furthermore, in the corresponding contact portion and the vicinity thereof, the member (A) in which the dam-like structure (6) is formed and the member (B) in which the flow path inner surface (13) is formed are in contact but firmly fixed. There is no flow path opening (15).

部材(A)と部材(B)の固着が接着や粘着である場合には、部材(A)と部材(B)は、前記流路開放部(15)となす部分において、硬化した接着剤層、或いは粘着力を喪失した粘着剤層を介して互いに当接していることになるが、これらを介さず直接固着している場合と実質的に同等であるため、本発明においては厳密に区別せずに説明する。流路開放部(15)の面積は、前記堰状構造(6)の面積以上であり、好ましくは前記堰状構造(6)の面積の2〜100倍、さらに好ましくは2〜30倍、最も好ましくは3〜10倍である。流路開放部(15)の面積を上記範囲の下限以上とすることにより、バルブが開の状態にある時に、流れる流量が多くなる。また、流路開放部(15)の面積を上記範囲の上限以下とすることにより、バルブが閉じる速度を速くすることが出来る。   In the case where the adhesion between the member (A) and the member (B) is adhesion or adhesion, the member (A) and the member (B) are cured adhesive layers at the portion formed with the flow path opening portion (15). Alternatively, they are in contact with each other through the adhesive layer that has lost its adhesive force, but is substantially the same as the case where the adhesive layer is directly fixed without using the adhesive layer. Without explaining. The area of the flow path opening portion (15) is equal to or larger than the area of the dam-like structure (6), preferably 2 to 100 times, more preferably 2 to 30 times the area of the dam-like structure (6). Preferably it is 3 to 10 times. By setting the area of the flow path opening portion (15) to be equal to or greater than the lower limit of the above range, the flow rate flowing when the valve is in an open state increases. Moreover, the speed which a valve closes can be made quick by making the area of a flow-path opening part (15) below into the upper limit of the said range.

流路内面(13)を構成する部材は少なくとも流路開放部(15)付近において、撓み得る硬度と厚みを有しており、堰状構造(6)の少なくとも一方の側の流路内の圧力が高くなると、流路内面(13)を構成する部材は、流路(5)の直径を増す側に撓んでふくらみ、堰状構造(6)の頂部(6a)と当接部(12a)間に間隙を生じ、堰状構造(6)の両側の流路が連絡して、流体を流通させることができる。固着部(15)が堰状構造(6)の頂部(6a)と当接部(12a)の近傍領域を含む場合にも、同様に、流路開放部(15)に間隙を生じ、堰状構造(6)の両側の流路が連絡して、流体を流通させることができる。   The member constituting the channel inner surface (13) has a hardness and thickness that can bend at least in the vicinity of the channel opening (15), and the pressure in the channel on at least one side of the weir-like structure (6) When the height increases, the member constituting the flow path inner surface (13) bends and bulges toward the side where the diameter of the flow path (5) is increased, and between the top part (6a) of the weir-like structure (6) and the contact part (12a) A gap is formed in the channel, and the flow paths on both sides of the weir-like structure (6) communicate with each other to allow fluid to flow. Similarly, when the adhering portion (15) includes the vicinity of the top portion (6a) of the weir-like structure (6) and the contact portion (12a), a gap is generated in the flow path opening portion (15), and the weir-like structure The flow paths on both sides of the structure (6) can communicate to allow fluid to flow.

圧迫部材(51)は流路内面(13)を構成する部材側から前記流路開放部を圧迫するように固定される。よって、流路開放部(15)付近において、流路壁(12)の内面(13)の裏側の表面(11)側は、流路壁(12)が撓み得る空間となっているか、或いは、マイクロ流体デバイスの外表面となっている。該空間や外表面には、圧迫部材(51)が装着される。   The pressing member (51) is fixed so as to press the channel opening from the side of the member constituting the channel inner surface (13). Therefore, in the vicinity of the flow path opening portion (15), the surface (11) side on the back side of the inner surface (13) of the flow path wall (12) is a space where the flow path wall (12) can be bent, or It is the outer surface of the microfluidic device. A compression member (51) is attached to the space or outer surface.

部材表面(11)から流路(5)までの距離、即ち、流路壁(12)の厚みは、流路内の圧力によって流路壁(12)が撓み、堰状構造を越えて流体を流通させることが出来れば特に限定する必要はないが、該流路壁(12)を構成する素材の引っ張り弾性率が高い場合には薄く、低い場合には厚くすることが好ましい。   The distance from the member surface (11) to the flow path (5), that is, the thickness of the flow path wall (12) is such that the flow path wall (12) bends due to the pressure in the flow path, and the fluid passes over the weir-like structure. Although there is no particular limitation as long as it can be circulated, it is preferable that the material constituting the flow path wall (12) is thin when the tensile elastic modulus is high and thick when it is low.

流路壁(12)を構成する素材の引っ張り弾性率は1MPa〜10GPaが好ましく、10MPa〜1GPaがさらに好ましく、10MPa〜300MPaが最も好ましい。該流路壁(12)の厚みは、好ましくは1〜3000μm、更に好ましくは5〜1000μm、最も好ましくは10〜500μmである。この範囲未満では製造が困難となり、この範囲を越えると、マイクロでデバイスとしての利点が減少する。そして、流路壁(12)は、引っ張り弾性率と厚みの積が、1kPa・m〜300kPa・mが好ましく、2kPa・m〜100kPa・mがさらに好ましく、5kPam〜50kPamが最も好ましい。この範囲とすることで、本発明の効果が十分に発揮される。   The tensile elastic modulus of the material constituting the flow path wall (12) is preferably 1 MPa to 10 GPa, more preferably 10 MPa to 1 GPa, and most preferably 10 MPa to 300 MPa. The thickness of the channel wall (12) is preferably 1 to 3000 μm, more preferably 5 to 1000 μm, and most preferably 10 to 500 μm. If it is less than this range, it becomes difficult to manufacture, and if it exceeds this range, the advantage of the device as a micro device is reduced. The flow path wall (12) has a product of tensile elastic modulus and thickness of preferably 1 kPa · m to 300 kPa · m, more preferably 2 kPa · m to 100 kPa · m, and most preferably 5 kPam to 50 kPam. By setting it within this range, the effect of the present invention is sufficiently exhibited.

上記のような流路壁(12)は、少なくとも上記流路開放部(15)付近で上記の範囲であればよいが、流路壁(12)を含むような、マイクロ流体デバイスの外面の少なくとも一つの面全体を形成していることが、製造の工程数が少なくなり好ましい。   The channel wall (12) as described above may be in the above range at least in the vicinity of the channel opening (15), but at least on the outer surface of the microfluidic device including the channel wall (12). The formation of one entire surface is preferable because the number of manufacturing steps is reduced.

上記の、バルブ本体が第一実施態様である場合の典型的な具体例としては、溝(5)を有する剛直な部材(以下、部材(A)と称する)の溝形成面に、柔軟な流路壁(12)を有する部材(以下、部材(B)と称する)が固着された構造を示すことが出来る。該溝(5)は、前記堰状構造(6)となる部分、即ち、溝(5)が形成されていない部分でもって途切れ、二つの部分、溝(5a)と溝(5b)に分けられている。ている。そして、前記部材(B)は、堰状構造(6)に当接している部分(及びその近傍領域)において、部材(A)と接触しているが固着していない流路開放部(15)とされ、それ以外の部分において部材(A)と固着されていて、前記溝(5)は毛細管状の流路(5)とされている。そして、これらの流路(5)、堰状構造(6)、流路開放部(15)、および流路壁(12)によってバルブ本体が形成されている。   As a typical example when the valve main body is the first embodiment, a flexible flow is formed on a groove forming surface of a rigid member (hereinafter referred to as member (A)) having a groove (5). A structure in which a member having a road wall (12) (hereinafter referred to as member (B)) is fixed can be shown. The groove (5) is interrupted by a portion that forms the weir-like structure (6), that is, a portion where the groove (5) is not formed, and is divided into two portions, a groove (5a) and a groove (5b). ing. ing. The member (B) is in contact with the member (A) at the portion (and its vicinity) in contact with the weir-like structure (6), but the channel opening portion (15) not fixed. The other part is fixed to the member (A), and the groove (5) is a capillary channel (5). A valve body is formed by the flow path (5), the weir-like structure (6), the flow path opening portion (15), and the flow path wall (12).

〔第二実施態様〕
一方、前記堰状構造(6)が、圧迫部材(51)により圧迫されている部材表面(11)から最も遠い側の流路内面(14)に当接しているが固着していない場合(以下、これを「バルブ本体の第二実施態様」と称することにする)には、流路(5)内の流体の圧力によって撓むのは、堰状構造が当接している流路壁ではなく、堰状構造(6)が設けられている部材であるところが、前記第一実施態様とは異なる。
[Second embodiment]
On the other hand, when the dam-like structure (6) is in contact with the inner surface (14) of the channel farthest from the member surface (11) pressed by the pressing member (51), but is not fixed (hereinafter referred to as the following) This is referred to as the “second embodiment of the valve body”). It is not the flow path wall against which the weir-like structure abuts that is deflected by the pressure of the fluid in the flow path (5). It is a member provided with the shape structure (6), but is different from the first embodiment.

従って、本第二実施態様の典型的な具体例においては、部材(B)が、少なくとも流路開放部(15)付近において撓み得る硬度と厚みを有するような、例えばシート状の部材であり、堰状構造(6)は部材(B)に固着して形成される。一方、部材(A)は例えば板状のように剛直な部材とされ、堰状構造(6)は部剤(5)に当接している。そして、前記引っ張り弾性率や厚みなど、変形する側と変形しない側について記述した内容は、変形する側の部材に堰状構造(6)が形成されていること以外は、前記第一実施態様の説明と同様である。本第二実施態様の典型的においても、圧迫部材(51)は部材(B)側に装着される。   Therefore, in a typical example of the second embodiment, the member (B) is a sheet-like member, for example, having a hardness and thickness that can be bent at least in the vicinity of the flow path opening (15). The dam-like structure (6) is formed by being fixed to the member (B). On the other hand, the member (A) is a rigid member such as a plate, and the weir structure (6) is in contact with the member (5). And the contents described about the deformation side and the non-deformation side, such as the tensile modulus and thickness, are the same as those of the first embodiment except that the member on the deformation side is formed with a weir-like structure (6). It is the same as the description. Also in the typical example of the second embodiment, the compression member (51) is mounted on the member (B) side.

〔第三実施態様〕
さらに、部材表面から最も近い側と遠い側の両方の流路内面に於いて流路内表面に当接しているが固着していない場合(以下、これを「バルブ本体の第三実施態様」と称することにする)の構造は、上記バルブ本体の第一実施態様と第二実施態様の双方を併せ持つ実施態様である。
[Third embodiment]
Further, when the inner surface of the flow channel on both the closest side and the far side from the member surface is in contact with the inner surface of the flow channel but is not fixed (hereinafter referred to as “the third embodiment of the valve body”). The structure of the above-described valve body is an embodiment having both the first embodiment and the second embodiment of the valve body.

このようなバルブ本体の第三実施態様の典型的な構造は、シート状の部材[以下、部材(B’)と称する]とシート状の部材[以下、部材(B”)と称する]でもって、部材の表裏を貫通する流路となる欠損部と堰状構造となる非欠損部を有する板状の部材[以下、部材(A’)と称する]を挟持して、前記堰状構造部分(及びその近傍領域)以外の部分においてこれら3部材が固着された構造を示すことが出来る。この場合は、前記堰状構造が形成された部材(B’)および部材(B”)の、堰状構造に相当する部分及びその近傍領域が流路開放部となること以外は前記の場合と同様である。本第三実施態様の典型的においては、圧迫部材(51)は部材(B’)側と部材(B”)側の両方に装着される。   A typical structure of the third embodiment of such a valve body is a sheet-like member [hereinafter referred to as member (B ′)] and a sheet-like member [hereinafter referred to as member (B ″)]. , Sandwiching a plate-like member [hereinafter referred to as member (A ′)] having a deficient portion that becomes a flow path penetrating the front and back of the member and a non-defective portion that becomes a dam-like structure, In addition, the structure in which these three members are fixed in a portion other than the region in the vicinity thereof can be shown.In this case, the dam-like structure of the member (B ′) and the member (B ″) in which the dam-like structure is formed Except that the portion corresponding to the structure and the vicinity thereof become the channel opening portion, the same as the above case. In a typical example of the third embodiment, the compression member (51) is mounted on both the member (B ′) side and the member (B ″) side.

勿論、上記の各実施態様に於いて挙げた構造は一例であって、その他に、部材(B)、(B’)、(B”)が、部材全体がシート状ではなく、堰状構造(6)と当接する部分(及びその近傍領域)のみにシート状部分を持つ部材である場合、全構成部材(A)がシート状などの柔軟なものである場合等があり得る。   Of course, the structure given in each of the above embodiments is merely an example. In addition, the members (B), (B ′), and (B ″) are not sheet-like as a whole, and the weir-like structure ( 6) In the case of a member having a sheet-like portion only in the portion that abuts with (and the vicinity thereof), there may be a case where all the constituent members (A) are flexible such as a sheet-like shape.

[圧迫部材]
本発明のマイクロ流体デバイスは、流路開放部に相対する位置に、該部分を弾性力で押圧している状態で固定された圧迫部材を有する。
[Compression member]
The microfluidic device of the present invention has a compression member fixed at a position facing the flow path opening portion in a state where the portion is pressed by an elastic force.

本発明においては、流路開放部に相対する位置に該圧迫部材を装着することによって、常態において、前記堰状構造の当接部の当接圧力をゼロを超える任意の圧力に調節することが出来る。これにより、マイクロ流体デバイスが置かれた雰囲気圧力を超える任意の圧力で開くバルブを構成することが出来るし、流入側流路の圧力を常態に戻した際、当接部の間隙が小さくなるにつれ当接圧力もちいさくなりゼロに近づくことを避けられるため、バルブを素早く閉じることが出来る。   In the present invention, it is possible to adjust the contact pressure of the contact portion of the weir-like structure to an arbitrary pressure exceeding zero by attaching the compression member at a position opposite to the flow path opening portion. I can do it. This makes it possible to configure a valve that opens at an arbitrary pressure that exceeds the atmospheric pressure where the microfluidic device is placed, and when the pressure in the inflow channel is returned to the normal state, the gap between the contact portions becomes smaller. Since the contact pressure becomes small and it can be avoided that the pressure approaches zero, the valve can be closed quickly.

圧迫部材は、固定部、弾性部、及び押圧部を有する。これらは互いを兼ねていても良い。   The compression member has a fixed part, an elastic part, and a pressing part. These may double as each other.

固定部は、マイクロ流体デバイスの前記流路開放部以外の部分に於いてマイクロ流体デバイスに固定される部分である。固定部をマイクロ流体デバイスのどの位置に固定するかは任意であり、流路開放部を圧迫する表面を持つ部材に固定されることが好ましいが、他の部分でも良い。固定部の形状も任意であり、例えば、流路開放部を囲む枠状や筒状、流路開放部を囲むU字状やコの字状、その他矩形や円などであり得る。固定部は複数の部分でマイクロ流体デバイスに固定されていても良い。   The fixing portion is a portion that is fixed to the microfluidic device at a portion other than the flow path opening portion of the microfluidic device. The position where the fixing portion is fixed to the microfluidic device is arbitrary, and it is preferable that the fixing portion is fixed to a member having a surface that presses the channel opening portion, but other portions may be used. The shape of the fixing portion is also arbitrary, and may be, for example, a frame shape or a cylindrical shape surrounding the flow channel opening portion, a U shape or a U shape surrounding the flow channel opening portion, and other rectangles or circles. The fixing part may be fixed to the microfluidic device at a plurality of parts.

弾性部の形状や付勢方式は任意であり、弾性体の曲げ、延び、縮み、ねじり変形などの弾性力や、ゴムなどの圧縮変形の弾性力、空気バネなどの体積弾性力を使用したものであり得る。弾性素材としては、金属、重合体、ガラスなどを好ましく用い得るが、金属又は重合体がさらに好ましい。弾性部の構造も任意であり、弾性体を利用した構造としては、コイルバネ、タケノコバネ、ゼンマイ状のバネ、板バネ、棒バネ、皿バネ、トーションバー等であり得る。これらの中で、重合体製の板バネが、押圧する圧力を好適な範囲に調節することが容易な上、構造が簡単で製造が容易なため好ましい。また、弾性部のストロークを大きく採り、流路開放部が変形する範囲で、押圧部材が押圧する圧力の変化はなるべく小さいことが、本バルブが効果を発揮する上で好ましい。   The shape of the elastic part and the biasing method are arbitrary, and use elastic force such as bending, extending, shrinking, and torsional deformation of elastic body, elastic force of compressive deformation such as rubber, and volume elastic force such as air spring It can be. As the elastic material, a metal, a polymer, glass or the like can be preferably used, but a metal or a polymer is more preferable. The structure of the elastic portion is arbitrary, and the structure using the elastic body may be a coil spring, a bamboo shoot spring, a spring in the form of a spring, a leaf spring, a bar spring, a disc spring, a torsion bar, or the like. Among these, a plate spring made of a polymer is preferable because it is easy to adjust the pressing pressure within a suitable range, and the structure is simple and the manufacturing is easy. In addition, it is preferable that the change of the pressure pressed by the pressing member is as small as possible within a range in which the stroke of the elastic portion is large and the flow path opening portion is deformed, in view of the effect of the valve.

押圧部は流路開放部の流路壁に接触して、該流路壁を押圧する部位である。押圧部の素材は任意であるが、ゴムやエラストマーなどの柔軟な素材を用いることも、本押圧部材の製造精度の許容量が広くなり好ましい。押圧部の形状は任意であり、例えば平面状、凸面状など、であり得るが、ゴムやエラストマーなどの柔軟な素材を使用した場合には、流路開放部の変形形状に応じて自動的に変形するため、形状の製作誤差は大きくても良い。また、押圧部の寸法は、前記流路開放部を圧迫することが出来る寸法であれば任意であり、前記流路開放部全体を圧迫可能な寸法が好ましいが、それよりやや小さくても良い。   The pressing part is a part that contacts the channel wall of the channel opening part and presses the channel wall. The material of the pressing part is arbitrary, but it is also preferable to use a flexible material such as rubber or elastomer because the tolerance of the manufacturing accuracy of the pressing member is widened. The shape of the pressing portion is arbitrary, and may be, for example, a flat shape or a convex shape. However, when a flexible material such as rubber or elastomer is used, it automatically changes depending on the deformed shape of the flow path opening portion. Due to the deformation, the manufacturing error of the shape may be large. Moreover, the dimension of the pressing part is arbitrary as long as it can press the flow path opening part, and a dimension capable of pressing the whole flow path opening part is preferable, but it may be slightly smaller than that.

ここで、上記圧迫部材の具体例を以下に例示する。圧迫部材の具体例としては、図2や図5に示されるような板バネ状の部材、あるいは図6に示されるようなコイルバネ状の部材などが挙げられる。図3の圧迫部材(51)は、金属板や樹脂板からなるものであり、平面視で周部が固定部(52)となっており、中心部(54)の円形部分に、円板から成る押圧部(55)が接着されている。この押圧部(55)と固定部(52)との中間部(53)はスリット状の切れ込みが設けられ、板の弾性を利用したバネ(板バネ)(53)となっている。   Here, the specific example of the said compression member is illustrated below. Specific examples of the compression member include a plate spring-like member as shown in FIGS. 2 and 5, or a coil spring-like member as shown in FIG. The compression member (51) of FIG. 3 is made of a metal plate or a resin plate, and the peripheral portion is a fixed portion (52) in plan view, and the circular portion of the central portion (54) is formed from the disc. The press part (55) which consists of is adhere | attached. An intermediate portion (53) between the pressing portion (55) and the fixing portion (52) is provided with a slit-like cut and is a spring (plate spring) (53) utilizing the elasticity of the plate.

また、図5の圧迫部材(51)も金属板や樹脂板により形成されており、一端が固定部(52)となっており、他端(56)に、円板(55)が接着され、押圧部(55)とされている。この他端(56)と固定部(52)の中間部(53)はアーム状であり、板の弾性を利用したバネ(板バネ)(53)となっている。   Further, the compression member (51) of FIG. 5 is also formed of a metal plate or a resin plate, one end is a fixing portion (52), and the disk (55) is bonded to the other end (56), The pressing portion (55) is used. An intermediate portion (53) between the other end (56) and the fixing portion (52) is an arm shape, and is a spring (plate spring) (53) utilizing the elasticity of the plate.

また、図6は、圧迫部材(51)は、固定部(52)が上面に蓋の付いた円筒状であり、押圧部(55)となる円板(55)は、ピアノ線等によるバネ(コイルバネ)(53)により、固定部(52)の蓋を支点として、下方に付勢する構造となっている。   Further, in FIG. 6, the compression member (51) has a cylindrical shape with a fixing portion (52) having a lid on the upper surface, and the disc (55) serving as the pressing portion (55) is a spring (such as a piano wire) ( The coil spring (53) is configured to urge downward with the lid of the fixed portion (52) as a fulcrum.

押圧部が流路開放部を圧迫する範囲は、流路開放部の面積より小さくても、同じでも、大きくても良く、目的により任意に設定できるが、流路開放部の面積より大きく、流路開放部を含む範囲であることが、バルブを閉じた際のリークが少なくなり好ましく、流路開放部よりやや広い範囲であることが、無駄が無く、さらに好ましい。   The range in which the pressing part presses the flow path opening part may be smaller than, equal to, or larger than the area of the flow path opening part, and can be arbitrarily set depending on the purpose. A range including the path opening portion is preferable because leakage at the time of closing the valve is reduced, and a range slightly wider than the channel opening portion is more preferable because there is no waste.

押圧部を押圧する圧力はゼロを超える値であれば任意であり、その下限は、好ましくは20kPa以上、さらに好ましくは50kPa以上、最も好ましくは100kPa以上であり、押圧圧力の上限は、目的に応じて、マイクロ流体デバイスの破壊を招かない範囲で任意の値とすることが出来るが、一般には10MPa以下が好ましく、5MPa以下がさらに好ましく、2MPa以下が最も好ましい。特に、マイクロ流体デバイスが重合体で形成されている場合には、3MPa以下が好ましく、1MPa以下がさらに好ましく、500kPa以下が最も好ましい。なお、ここで言う押圧圧力とは、押圧する力を前記流路開放部(15)の面積で除した値とする。圧迫部材の押圧圧力をこのように設定することにより、本発明のバルブが開く圧力を、例えば10kPa〜10MPaとすることが出来る。   The pressure for pressing the pressing part is arbitrary as long as it is a value exceeding zero, and the lower limit thereof is preferably 20 kPa or more, more preferably 50 kPa or more, and most preferably 100 kPa or more. The upper limit of the pressing pressure depends on the purpose. Thus, it can be set to any value as long as it does not cause destruction of the microfluidic device, but is generally preferably 10 MPa or less, more preferably 5 MPa or less, and most preferably 2 MPa or less. In particular, when the microfluidic device is formed of a polymer, it is preferably 3 MPa or less, more preferably 1 MPa or less, and most preferably 500 kPa or less. The pressing pressure referred to here is a value obtained by dividing the pressing force by the area of the flow path opening portion (15). By setting the pressing pressure of the compression member in this way, the pressure at which the valve of the present invention opens can be set to 10 kPa to 10 MPa, for example.

[製造方法]
以下、バルブ本体が前記第一実施態様の場合について説明する。第二実施態様の場合や第三実施態様の場合についても同様の方法により製造が可能である。このような構造のマイクロ流体デバイスの製造方法として、部材(A)と部材(B)を固着する方法は任意であり、例えば接着剤による接着、融着、粘着、半硬化状態とした部材(A)及び/又は部材(B)を接触させた状態で完全硬化させることによる固着などであり得る。
[Production method]
Hereinafter, the case where the valve body is the first embodiment will be described. The second embodiment and the third embodiment can be manufactured by the same method. As a manufacturing method of the microfluidic device having such a structure, a method of fixing the member (A) and the member (B) is arbitrary. For example, a member (A that is bonded, fused, adhered, or semi-cured with an adhesive) ) And / or fixing by completely curing the member (B) in a contact state.

前記半硬化した状態で固着する方法は、例えば、前記特許文献1に記載されている。即ち、板状の基材の上に塗布したエネルギー線硬化性組成物の塗膜に流路となる部分を除いて紫外線を不十分な量だけパターン照射することによって、該塗膜の照射部を、流動性は喪失するが接着性は残存している半硬化物とし、該半硬化した塗膜の堰状構造となる部分に選択的に紫外線を照射して照射部分の前記組成物を完全硬化させて非接着性とした部材(A)を作製する。他方、シート状の一時的な支持体上に前記流路開放部を完全硬化、それ以外の部分を半硬化させた部材(B)を形成し、前記部材(A)に位置を合わせて積層し、さらにエネルギーを照射して、両部材を硬化させると共に互いに固着し、前記流路開放部(15)のみを非接着部位として残したマイクロ流体デバイスを形成することができる。   The method for fixing in the semi-cured state is described in Patent Document 1, for example. That is, by irradiating the coating film of the energy beam curable composition coated on the plate-shaped substrate with an insufficient amount of ultraviolet light except for the portion that becomes the flow path, A semi-cured product that loses fluidity but remains adhesive, and selectively irradiates ultraviolet light onto the part of the semi-cured coating film that forms the weir-like structure, thereby completely curing the composition in the irradiated part. A member (A) that is made non-adhesive is prepared. On the other hand, a member (B) in which the flow path opening portion is completely cured and the other portions are semi-cured is formed on a sheet-like temporary support, and the member (A) is aligned and laminated. Further, it is possible to form a microfluidic device in which energy is further irradiated to cure both members and adhere to each other, leaving only the channel opening (15) as a non-adhered portion.

部材(A)と部材(B)を固着するにあたり、当接しているが接着していない部分を形成する方法は任意であるが、例えば、接着を抑制する物質を非接着とする部分に塗布しておく方法、接着剤としてエネルギー線硬化性の接着剤を用い、非接着とする部分のみにあらかじめエネルギー線を照射して硬化させ、接着性を喪失させておく方法、エネルギー線硬化性樹脂で形成した半硬化状態の部材(A)及び/又は部材(B)の、非接着とする部分のみにあらかじめエネルギー線を照射して接着性を喪失させておき、積層後エネルギー線照射により部材(A)と部材(B)を互いに固着する方法、などにより実施できる。   In fixing the member (A) and the member (B), any method may be used to form a portion that is in contact but not bonded. For example, a substance that suppresses adhesion is applied to a non-bonded portion. This method uses an energy ray curable adhesive as an adhesive, and irradiates only the non-adhered part with an energy ray in advance to cure it and lose the adhesiveness. In the semi-cured member (A) and / or member (B), only the non-adhered portion is irradiated with energy rays in advance to lose the adhesiveness, and the member (A) is irradiated with energy rays after lamination. And the member (B) are fixed to each other.

上記の接着を抑制する物質としては、粘稠液体(溶液を含む)や、溶解洗浄可能な固体やワックス状物質を挙げることができる。粘稠液体としては、例えば、液状ポリエチレングリコール、グリセリン、界面活性剤、ポリエチレングリコール水溶液、ポリビニルピロリドン水溶液、ポリビニルアルコール水溶液など等の親水性液体、流動パラフィン、ワックス、シリコングリースなどの疎水性液体を例示できる。   Examples of the substance that suppresses adhesion include viscous liquids (including solutions), solids that can be dissolved and washed, and waxy substances. Examples of the viscous liquid include hydrophilic liquids such as liquid polyethylene glycol, glycerin, surfactant, polyethylene glycol aqueous solution, polyvinyl pyrrolidone aqueous solution, and polyvinyl alcohol aqueous solution, and hydrophobic liquids such as liquid paraffin, wax, and silicon grease. it can.

前記部材(A)と部材(B)を接着剤により接着する場合に接着剤を塗布する方法としては、部材(A)の欠損部として漏洩のない流路を形成でき、かつ、接着剤により流路が閉塞しない方法であれば任意であり、例えば、スピンコート、ディッピング、スプレー、刷毛塗り、印刷法、他の支持体上に塗布した接着剤の転写法などを利用できるが、薄い接着剤層が形成可能で、部材表面に欠損部があってもそれを閉塞しないスピンコート法が好ましく、また、接着剤を溶剤で希釈する方法が好ましい。   As a method of applying the adhesive when the member (A) and the member (B) are bonded by an adhesive, a flow path without leakage can be formed as a defective portion of the member (A), and the adhesive can be flowed by the adhesive. Any method can be used as long as it does not block the path. For example, spin coating, dipping, spraying, brushing, printing, and transfer of an adhesive applied on another support can be used. Is preferable, and a spin coating method that does not block a defective portion on the surface of the member is preferable, and a method of diluting the adhesive with a solvent is preferable.

部材(A)や部材(B)を構成する素材や、接着剤に紫外線硬化樹脂を使用する場合には、硬化に用いることのできる活性エネルギー線としては、紫外線、可視光線、赤外線、レーザー光線、放射光の如き光線;エックス線、ガンマ線、放射光の如き電離放射線;電子線、イオンビーム、ベータ線、重粒子線の如き粒子線が挙げられる。これらの中でも、取り扱い性や硬化速度の面から紫外線及び可視光が好ましく、紫外線が特に好ましい。硬化速度を速め、硬化を完全に行う目的で、活性エネルギー線の照射を低酸素濃度雰囲気で行うことが好ましい。低酸素濃度雰囲気としては、窒素気流中、二酸化炭素気流中、アルゴン気流中、真空又は減圧雰囲気が好ましい。   In the case where an ultraviolet curable resin is used for the material constituting the member (A) or the member (B) or the adhesive, the active energy rays that can be used for the curing include ultraviolet rays, visible rays, infrared rays, laser rays, and radiation. Examples include light rays such as light; ionizing radiation such as X-rays, gamma rays, and radiation; particle beams such as electron beams, ion beams, beta rays, and heavy particle beams. Among these, ultraviolet rays and visible light are preferable from the viewpoint of handleability and curing speed, and ultraviolet rays are particularly preferable. For the purpose of accelerating the curing and complete the curing, it is preferable to irradiate active energy rays in a low oxygen concentration atmosphere. The low oxygen concentration atmosphere is preferably a nitrogen stream, a carbon dioxide stream, an argon stream, a vacuum or a reduced pressure atmosphere.

形成したマイクロ流体デバイスは、穿孔、切断などの後加工することも可能である。また、一つのマイクロ流体デバイスに、他の機構と一体化して形成することが好ましく、一枚の部材に多数のマイクロ流体デバイスを同時に作成することも生産効率面で好ましい。   The formed microfluidic device can be post-processed such as drilling and cutting. In addition, it is preferable that one microfluidic device is formed integrally with another mechanism, and it is also preferable in terms of production efficiency to simultaneously create a large number of microfluidic devices on one member.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、以下の実施例において、「部」は、特に断りがない限り、「質量部」を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples. In the following examples, “part” represents “part by mass” unless otherwise specified.

[実施例1]
本実施例は上記の第一実施態様を実施した例である。
〔マイクロ流体デバイスおよびバルブ本体〕
[Example 1]
This example is an example in which the first embodiment described above is implemented.
[Microfluidic device and valve body]

本実施例では、前記した図2に示す態様のマイクロ流体デバイスを作製した。該マイクロ流体デバイス(101)は板状の部材(A)とシート状の部材(B)、および、圧迫部材(51)を主な構成要素とするものである。   In this example, the microfluidic device having the embodiment shown in FIG. 2 was manufactured. The microfluidic device (101) includes a plate-like member (A), a sheet-like member (B), and a compression member (51) as main components.

部材(A)は75mm×25mm×厚さ1.2mmであり、その一面に幅300μmの溝(5)を形成した。溝(5)は、該溝の底面に固着して形成した、堰状構造(6)となる凸部(6)により、長さが各25mmの溝(5a)と溝(5b)に分断される。凸部(6)は、流路方向の長さを300μm、高さを、溝の深さと同じ100μmとし、流路方向に対する幅は流路(5)の幅と同じであり、凸部(6)の側面は流路(5)側壁に固着させる。   The member (A) was 75 mm × 25 mm × 1.2 mm thick, and a groove (5) having a width of 300 μm was formed on one surface thereof. The groove (5) is divided into a groove (5a) and a groove (5b) each having a length of 25 mm by a convex portion (6) which is formed to be fixed to the bottom surface of the groove and forms a weir-like structure (6). The The convex portion (6) has a length in the flow path direction of 300 μm, a height of 100 μm, which is the same as the depth of the groove, and a width with respect to the flow path direction is the same as the width of the flow path (5). ) Is fixed to the channel (5) side wall.

更に詳細には、部材(A)は、厚み1mmの基板(1)に、厚さ約0.1mmの樹脂層(2)と厚さ約0.1mmの樹脂層(3)が固着した積層体として構成した。樹脂層(3)には流路(5)となる、該樹脂層(3)の表裏を貫通した幅300μmの欠損部(5)を形成した。樹脂層(2)の欠損部(5)は、凸部(6)となる樹脂層(2)の非欠損部(6)により、長さ各25mmの二つの欠損部(5a)、(5b)に分断される。樹脂層(3)を樹脂層(2)と積層して固着することにより、該欠損部(5)を部材(A)の溝(凹部)(5)とし、欠損部(5a)、(5b)を、溝(5a)と溝(5b)とし、非欠損部(6)は堰状構造(6)となる凸部(6)とした。即ち、溝(5)は、底面が樹脂層(2)、側壁が樹脂層(3)で形成し、凸部(6)は底面が樹脂層(2)に固着され、側壁は樹脂層(3)と一体化させた。   More specifically, the member (A) is a laminate in which a resin layer (2) having a thickness of about 0.1 mm and a resin layer (3) having a thickness of about 0.1 mm are fixed to a substrate (1) having a thickness of 1 mm. Configured as. The resin layer (3) was provided with a defect portion (5) having a width of 300 μm that penetrated the front and back surfaces of the resin layer (3) to be a flow path (5). The defect part (5) of the resin layer (2) is divided into two defect parts (5a) and (5b) each having a length of 25 mm by the non-defect part (6) of the resin layer (2) to be the convex part (6). Divided into By laminating and fixing the resin layer (3) to the resin layer (2), the defect portion (5) becomes a groove (concave portion) (5) of the member (A), and the defect portions (5a) and (5b). Are a groove (5a) and a groove (5b), and a non-defect portion (6) is a convex portion (6) that forms a weir-like structure (6). That is, the groove (5) is formed of the resin layer (2) on the bottom surface and the resin layer (3) on the side wall, the convex portion (6) is fixed on the resin layer (2) on the bottom surface, and the resin layer (3) on the side wall. ).

部材(B)は、厚さ約50μmの、弾性変形可能な紫外線硬化樹脂(引っ張り弾性率約580MPa、破断伸び率約7.2%)で、樹脂層(4)として形成した。部材(B)には、図2に示すように、直径約500μmの貫通孔(7)、(8)を形成し、該貫通孔(7)、(8)をそれぞれ囲む位置に、外径6mm、高さ6mmのポリスチレン製の円管(9)、(10)を接着した。   The member (B) was formed as a resin layer (4) with an ultraviolet-curing resin (tensile elastic modulus of about 580 MPa, elongation at break of about 7.2%) having a thickness of about 50 μm and capable of elastic deformation. In the member (B), as shown in FIG. 2, through holes (7) and (8) having a diameter of about 500 μm are formed, and the outer diameter is 6 mm at positions surrounding the through holes (7) and (8), respectively. The polystyrene circular tubes (9) and (10) having a height of 6 mm were adhered.

部材(A)と部材(B)とを互いに固着し、溝(5)は幅約300μm、高さ約100μmの毛細管状の流路(5)となし、部材(B)即ち樹脂層(4)の流路(5)に相対する部分は流路壁(12)とした。該流路(5)は堰状構造(6)により約300μmの間隔をあけて、各長さ約25mmの二つの流路(5a)、(5b)に分断した。ただし、堰状構造(6)の頂部(6a)は流路(5)の上部内面(13)に当接しているが固着していない。また、堰状構造(6)を中心とした直径約600μmの円形の近傍部分においては、部材(A)と部材(B)は互いに当接しているが固着されていない流路開放部(15)とした。   The member (A) and the member (B) are fixed to each other, and the groove (5) is formed as a capillary channel (5) having a width of about 300 μm and a height of about 100 μm, and the member (B), that is, the resin layer (4). The portion facing the flow channel (5) was the flow channel wall (12). The flow path (5) was divided into two flow paths (5a) and (5b) each having a length of about 25 mm with a weir-like structure (6) at an interval of about 300 μm. However, although the top part (6a) of the weir-like structure (6) is in contact with the upper inner surface (13) of the flow path (5), it is not fixed. Further, in the circular vicinity having a diameter of about 600 μm with the dam-like structure (6) as the center, the member (A) and the member (B) are in contact with each other but are not fixed to each other. It was.

以下、具体的に上記各工程を説明する。
部材(A)は、以下の製造方法により作製される。厚さ1mmのアクリル樹脂(引っ張り弾性率は約3.5GPa)製の基板(1)の上に、平均分子量約2000の3官能ウレタンアクリレートオリゴマー(大日本インキ化学工業株式会社製の「ユニディックV−4263」)を60部、ヘキサンジオールンジアクリレート(HDDA,東京化成(株)製)を40部、ノニルフェノキシポリエチレングリコール(n=17)アクリレート(第一工業製薬株式会社製の「N−177E」)を20部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバガイギー社製の「イルガキュア184」)を5部、及び、重合遅延剤として2,4−ジフェニル−4−メチル−1−ペンテン(DMP,関東化学株式会社製)を0.1部を均一に混合したエネルギー線硬化性組成物(X)(硬化物の引っ張り弾性率は約580MPa、破断伸び率約7.2%)をスピンコーターにて塗布し、紫外線照射により半硬化させて樹脂層(2)となす。
Hereafter, each said process is demonstrated concretely.
The member (A) is produced by the following manufacturing method. A trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 (“Unidic V” manufactured by Dainippon Ink & Chemicals, Inc.) is formed on a substrate (1) made of acrylic resin having a thickness of 1 mm (tensile elastic modulus is about 3.5 GPa). -4263 "), 40 parts of hexanediol diacrylate (HDDA, manufactured by Tokyo Chemical Industry Co., Ltd.), nonylphenoxypolyethylene glycol (n = 17) acrylate (" N-177E "manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) ) As a photopolymerization initiator, 5 parts of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Geigy) and 2,4-diphenyl-4-methyl-1-pentene ( DMP, manufactured by Kanto Chemical Co., Ltd.) Energy beam curable composition (X) in which 0.1 part is uniformly mixed (X) ( Tensile modulus of product is about 580 MPa, about 7.2%) was applied by a spin coater elongation at break, eggplant and is semi-cured by irradiation with ultraviolet rays resin layer (2).

樹脂層(2)の上に前記組成物(X)をスピンコーターにて塗布し、紫外線をパターン露光して半硬化させて樹脂層(3)となし、未照射部の未硬化の該組成物をエタノールで洗浄除去して、該樹脂層(3)の表裏を貫通する欠損部(5a)および(5b)として、溝(5a)および溝(5b)を形成する。この部材を部材(A)とする。   The composition (X) is applied onto the resin layer (2) with a spin coater, and is subjected to pattern exposure with ultraviolet rays and semi-cured to form a resin layer (3), which is an uncured composition in an unirradiated portion. Are removed by washing with ethanol to form grooves (5a) and grooves (5b) as defect portions (5a) and (5b) penetrating the front and back of the resin layer (3). This member is referred to as member (A).

部材(B)の作製、及び部材(A)と部材(B)の固着は下記の方法によりなされる。表面コロナ処理した二軸延伸ポリプロピレン・フィルム(OPPフィルム)製の一時的な支持体(図示略)上に、前記エネルギー硬化性組成物(X)をスピンコーターにて塗布し、紫外線を照射して半硬化させて部材(B)である樹脂層(4)となし、該樹脂層(4)の流路開放部(15)となす部分に紫外線をパターン露光して該部分を完全硬化させて非接着性とし、該流路開放部(15)を前記部材(A)の堰状構造(6)に中心を合わせて積層し、紫外線を照射して、樹脂層(4)を部材(A)に固着し、前記一時的な支持体を剥離除去した。その後、ドリルにて 該貫通孔(7)、(8)を開け、ポリスチレン製の円管(9)、(10)をエポキシ系接着剤にて接着し、バルブ本体を有するマイクロ流体デバイス(100)を得る。なお、本実施例に於いて、マイクロ流体デバイス(100)の部材(B)の厚さとそれを構成する素材の引っ張り弾性率との積は、29kPa・mである。   Production of the member (B) and fixation of the member (A) and the member (B) are performed by the following method. The energy curable composition (X) is applied with a spin coater on a temporary support (not shown) made of a biaxially oriented polypropylene film (OPP film) subjected to surface corona treatment, and irradiated with ultraviolet rays. Semi-cured to form the resin layer (4) which is the member (B), and the portion of the resin layer (4) which forms the flow path opening portion (15) is subjected to pattern exposure to ultraviolet rays to completely cure the portion. Adhesiveness, the flow path opening (15) is laminated with the center of the weir-like structure (6) of the member (A), irradiated with ultraviolet rays, and the resin layer (4) is applied to the member (A). The temporary support was peeled and removed. Thereafter, the through holes (7) and (8) are opened with a drill, and the polystyrene circular pipes (9) and (10) are bonded with an epoxy adhesive, and the microfluidic device (100) having a valve body Get. In the present embodiment, the product of the thickness of the member (B) of the microfluidic device (100) and the tensile elastic modulus of the material constituting the member is 29 kPa · m.

〔圧迫部材〕
圧迫部材(51)は、厚さ0.5mmのハイインパクトポリスチレン(HIPS、大日本インキ化学工業(株)製、引っ張り弾性率3.1GPa、破断伸び率2%)の板で形成したものであり、周部を固定部(52)としており、中心部(54)の直径約2
mmの円形部分に、同じくHIPS製の直径約2mmの円板(55)が接着され、押圧部(55)としている。この中心部(54)と固定部(52)の中間部(53)は、図3に示したようなスリット状の切れ込みを設け、HIPS板の弾性を利用したバネ(板バネ)による弾性部(53)としている。
(Pressure member)
The compression member (51) is formed of a 0.5 mm thick high impact polystyrene (HIPS, manufactured by Dainippon Ink & Chemicals, Inc., tensile elastic modulus 3.1 GPa, elongation at break 2%). The peripheral part is a fixed part (52), and the center part (54) has a diameter of about 2
Similarly, a circular plate (55) made of HIPS and having a diameter of about 2 mm is bonded to a circular portion of mm to form a pressing portion (55). An intermediate portion (53) between the center portion (54) and the fixing portion (52) is provided with a slit-like cut as shown in FIG. 3, and an elastic portion (spring spring) using the elasticity of the HIPS plate (plate spring) ( 53).

上記の圧迫部材(51)は、上記HIPSの板をレーザー加工により切り抜きとスリット形成を行い、同じくHIPSの板をレーザー加工により切り抜いた押圧部(55)をシリコーン系接着剤で接着して作製した。   The compression member (51) was produced by cutting out and slitting the HIPS plate by laser processing, and bonding the pressing portion (55), which was also cut out by laser processing, with a silicone-based adhesive. .

〔バルブを有するマイクロ流体デバイス〕
圧迫部材(51)は、中心部(54)の押圧部材(55)の中心を、マイクロ流体デバイス(101)の流路開放部(15)の中心に合わせて、固定部(52)にて前記部材(B)の表面にエポキシ系接着剤で接着した。このとき、押圧部(55)の下面の高さが部材(B)の表面(11)の位置と一致するようにしているため、前記バネ部(53)は撓んで、押圧部(55)を部材(B)方向に弾性力で付勢した状態で固定されている。なお、圧迫部材(51)が部材(B)を圧迫する力は、約0.076Nでであり、この力を流路開放部(15)の面積で除した圧力は、約270kPaであった。
[Microfluidic device with valve]
The compression member (51) is configured so that the center of the pressing member (55) of the center portion (54) is aligned with the center of the flow path opening portion (15) of the microfluidic device (101) at the fixing portion (52). The surface of the member (B) was bonded with an epoxy adhesive. At this time, since the height of the lower surface of the pressing portion (55) coincides with the position of the surface (11) of the member (B), the spring portion (53) is bent and the pressing portion (55) is moved. It is fixed in a state of being biased by an elastic force in the direction of the member (B). In addition, the force which the compression member (51) presses the member (B) was about 0.076N, and the pressure which remove | divided this force by the area of the flow-path opening part (15) was about 270 kPa.

この圧迫部材(51)が装着されたバルブを有するマイクロ流体デバイス(101)は、常態において、堰状構造(6)及びその近接領域が流路開放部(15)において流路壁(12)の内表面(11)に当接して流路(5)を遮断し、流路(5)を流路(5a)と流路(5b)に分断しているため、流路(5a)と流路(5b)との間に流体は流通しない。なお、本実施例に於いて、部材(B)の厚さとそれを構成する素材の引っ張り弾性率との積は、29kPa・mである。   In the normal state, the microfluidic device (101) having the valve to which the compression member (51) is attached has the dam-like structure (6) and its adjacent region of the flow path wall (12) in the flow path opening portion (15). Since the flow path (5) is blocked by contacting the inner surface (11) and the flow path (5) is divided into the flow path (5a) and the flow path (5b), the flow path (5a) and the flow path No fluid flows between (5b). In the present embodiment, the product of the thickness of the member (B) and the tensile elastic modulus of the material constituting the member (B) is 29 kPa · m.

[使用試験]
幅12mm、奥行き6mm、高さ30mmの硬質塩化ビニル樹脂製の部材本体(22)に、左右方向の断面が、底辺(上端)12mm、左端の高さが8mm、右端の高さが6.5mmの四角形であり、奥行き方向の断面が、先端部(下端)が半径0.5mmの半球にとなされた底辺(上端)が6mmの先端が丸められた三角形に形成したブチルゴムを接着したダイヤフラムポンプ駆動部材(図示略)を作製した。
[Use test]
A member body (22) made of hard vinyl chloride resin having a width of 12 mm, a depth of 6 mm, and a height of 30 mm has a horizontal cross-section of 12 mm at the bottom (upper end), 8 mm at the left end, and 6.5 mm at the right end. The diaphragm pump drive is bonded to the butyl rubber formed in a triangular shape with a bottom section (upper end) of 6 mm and a base (upper end) of which is a hemisphere with a radius of 0.5 mm in the cross section in the depth direction. A member (not shown) was produced.

マイクロ流体デバイスの円管(9)にマイクロシリンジポンプ(図示略)を接続し、該ポンプからメチレンブルーで着色した蒸留水を注入して、徐々に流路(5a)の圧力を上げて行ったところ、圧力約340kPaで該バルブを蒸留水が通過した。
次いで、前記シリンジポンプをはずし、マイクロ流体デバイスの円管(9)に、メチレンブルーで着色した蒸留水を投入した後、上記のダイヤフラムポンプ駆動部材を装着した電磁式アクチュエーター(図示略)を用いて、部材(B)の表面(11)から該面に直角方向に、0.25Hzで流路(5a)の圧迫、解除を繰り返したところ、着色水は流路(5a)を圧迫したときに堰状構造(6)を通過し、圧迫を解除したときの逆流はほとんど見られなかった。該操作を繰り返すことにより、円管(9)に投入された着色水は円管(10)へと移送された。
When a microsyringe pump (not shown) is connected to the circular pipe (9) of the microfluidic device, distilled water colored with methylene blue is injected from the pump, and the pressure in the flow path (5a) is gradually increased. Distilled water passed through the valve at a pressure of about 340 kPa.
Next, after removing the syringe pump and introducing distilled water colored with methylene blue into the circular pipe (9) of the microfluidic device, using an electromagnetic actuator (not shown) equipped with the diaphragm pump driving member, When the pressure and release of the flow path (5a) were repeated at 0.25 Hz from the surface (11) of the member (B) in a direction perpendicular to the surface, the colored water was shaped like a weir when the flow path (5a) was compressed. When the structure (6) was passed through and the pressure was released, almost no backflow was seen. By repeating this operation, the colored water charged into the circular pipe (9) was transferred to the circular pipe (10).

繰り返し圧迫する周波数を0.5Hz、1Hz,2Hz、および3Hzに上昇させたとき、吐出流量は0.25Hzの時のそれぞれ2倍、4倍、7.2倍、9.2倍となった。即ち、比較例1と比べて、同じ条件での吐出流量が大きく、また、バルブの応答速度が高いため、速い繰り返し圧迫周波数まで優れたポンプ機能を有すること分かる。   When the frequency of repeated compression was increased to 0.5 Hz, 1 Hz, 2 Hz, and 3 Hz, the discharge flow rate was 2 times, 4 times, 7.2 times, and 9.2 times that at 0.25 Hz, respectively. That is, compared with the comparative example 1, since the discharge flow rate on the same conditions is large and the response speed of a valve is high, it turns out that it has the pump function which was excellent to the quick repetition compression frequency.

[実施例2]
本実施例は上記の第二実施態様を実施した例である。
〔バルブを有するマイクロ流体デバイス〕
本実施例では、前記した図4に示す態様のマイクロ流体デバイスを作製した。本実施例で作製したバルブ本体を有するマイクロ流体デバイス(102)は、実施例1で作製したバルブ本体を有するマイクロ流体デバイス(100)と比べて、堰状構造(6)を樹脂層(2)に固着する代わりに樹脂層(4)に固着し、また、実施例1では、流路開放部(15)を樹脂層(3)と樹脂層(4)との間に形成したのに対し、樹脂層(2)と樹脂層(3)との間に形成したものである。従って、製造に際し基材(1)と樹脂層(2)から成る部材を部材(A)として作製し、樹脂層(3)と樹脂層(4)から成る部材を部材(B)として作製した。また、圧迫部材(51)も異なったものを使用した。
[Example 2]
This example is an example in which the second embodiment described above was implemented.
[Microfluidic device with valve]
In this example, the microfluidic device having the above-described embodiment shown in FIG. 4 was produced. Compared with the microfluidic device (100) having the valve main body manufactured in Example 1, the microfluidic device (102) having the valve main body manufactured in this example has the weir-like structure (6) in the resin layer (2). In Example 1, the flow path opening portion (15) was formed between the resin layer (3) and the resin layer (4) instead of being fixed to the resin layer (4). It is formed between the resin layer (2) and the resin layer (3). Therefore, during production, a member composed of the base material (1) and the resin layer (2) was produced as the member (A), and a member comprised of the resin layer (3) and the resin layer (4) was produced as the member (B). Also, a different compression member (51) was used.

以下、具体的に上記各工程を説明する。
部材(A)は、樹脂層(3)を有さないこと、従って、溝(5)及び堰状構造(6)となる凸部(6)を有さないこと以外は、実施例1の部材(A)と同様である。
Hereafter, each said process is demonstrated concretely.
The member of Example 1 except that the member (A) does not have the resin layer (3), and therefore does not have the groove (5) and the convex portion (6) that becomes the weir-like structure (6). Same as (A).

部材(B)は、樹脂層(3)が樹脂層(4)に積層され、固着されて形成されていること、従って、溝(5)及び堰状構造(6)となる凸部(6)も部材(B)に形成されていること以外は、実施例1の部材(B)と同様である。樹脂層(3)、溝(5)、凸部(6)等の寸法や形状に関しては、実施例1に於ける部材(A)に形成されている場合と同じである。   The member (B) is formed by laminating and fixing the resin layer (3) to the resin layer (4), and accordingly, the convex portion (6) that becomes the groove (5) and the weir-like structure (6). Is the same as the member (B) of Example 1 except that it is also formed on the member (B). The dimensions and shapes of the resin layer (3), the groove (5), the convex portion (6) and the like are the same as those formed on the member (A) in the first embodiment.

部材(A)と部材(B)とは互いに固着され、溝(5)は流路(5)となされ、上記のように、堰状構造(6)が樹脂層(4)に固着しており、即ち、マイクロ流体デバイスの表面(11)から最も遠い側の流路内面(14)に当接しており、また、流路開放部が樹脂層(2)と樹脂層(3)との間に形成されていること以外は、実施例1と同様のマイクロ流体デバイスとなっている。なお、本実施例に於いて、部材(B)の厚さとそれを構成する素材の引っ張り弾性率との積は、87kPa・mである。   The member (A) and the member (B) are fixed to each other, the groove (5) is formed as a flow path (5), and the dam-like structure (6) is fixed to the resin layer (4) as described above. That is, it is in contact with the inner surface (14) of the flow channel farthest from the surface (11) of the microfluidic device, and the flow channel opening portion is between the resin layer (2) and the resin layer (3). The microfluidic device is the same as in Example 1 except that it is formed. In the present embodiment, the product of the thickness of the member (B) and the tensile elastic modulus of the material constituting the member (B) is 87 kPa · m.

部材(A)の作製方法は、樹脂層(3)を形成しないこと以外は、実施例1の場合と同様である。   The production method of the member (A) is the same as that in Example 1 except that the resin layer (3) is not formed.

部材(B)の製造方法は、実施例1において樹脂層(2)の上に樹脂層(3)を形成するのと同様にして、樹脂層(4)の上に樹脂層(3)を形成すること以外は、実施例1の場合と同様である。従って、溝(5)及び堰状構造(6)となる凸部(6)も樹脂層(4)の上に固着して形成される。   The manufacturing method of the member (B) is the same as that of forming the resin layer (3) on the resin layer (2) in Example 1, and forming the resin layer (3) on the resin layer (4). Except for this, the process is the same as in the first embodiment. Therefore, the groove (5) and the convex portion (6) that becomes the weir-like structure (6) are also formed on the resin layer (4).

部材(A)と部材(B)の固着も、実施例1に於いて、樹脂層(3)と樹脂層(4)を固着するのと同様にして、樹脂層(2)と樹脂層(3)を固着する。   The fixing of the member (A) and the member (B) is the same as that of fixing the resin layer (3) and the resin layer (4) in Example 1, and the resin layer (2) and the resin layer (3). ).

〔圧迫部材〕
圧迫部材(51)は、厚さ1mmの前記HIPS板で形成したものであり、図5に示したように、一端を6×6mmの固定部(52)とし、他端(56)に、厚み1mm、直径2mmのポリジメチルシロキサン(シリコンゴム)製の円板(55)を接着し、押圧部(55)としている。この他端(56)と固定部(52)の中間部(53)は幅2mm、長さ18mmのアーム状であり、HIPS板の弾性を利用したバネ(板バネ)(53)とした。
(Pressure member)
The compression member (51) is formed of the HIPS plate having a thickness of 1 mm. As shown in FIG. 5, one end is a 6 × 6 mm fixing portion (52) and the other end (56) is thick. A disk (55) made of polydimethylsiloxane (silicon rubber) having a diameter of 1 mm and a diameter of 2 mm is bonded to form a pressing portion (55). An intermediate portion (53) between the other end (56) and the fixing portion (52) is an arm shape having a width of 2 mm and a length of 18 mm, and is a spring (plate spring) (53) utilizing the elasticity of the HIPS plate.

上記の圧迫部材(51)は、上記HIPSの板をレーザー加工により切り抜き、ポリジメチルシロキサン(シリコンゴム)シートをレーザー加工により切り抜いた円板(55)をシリコーン系接着剤で接着して作製した。   The compression member (51) was prepared by cutting out the HIPS plate by laser processing and bonding a disc (55) by cutting out a polydimethylsiloxane (silicone rubber) sheet by laser processing with a silicone-based adhesive.

〔バルブを有するマイクロ流体デバイス(103)〕
押圧部材(55)の中心を、マイクロ流体デバイス(102)の流路開放部(15)の中心に合わせて、固定部(52)にて圧迫部材(51)を、マイクロ流体デバイス(102)の表面(11)にエポキシ系接着剤で接着した。このとき、押圧部(55)の下面の高さが部材(A)の表面(11)の位置と一致するようにしているため、前記バネ部(53)が撓んで、押圧部(55)を部材(A)方向に弾性力で付勢した状態で固定されている。なお、圧迫部材(51)が部材(B)を圧迫する力は、約0.11Nでであった。この力を流路開放部(15)の面積で除した圧力は、約390kPaであった。
[Microfluidic device having a valve (103)]
The center of the pressing member (55) is aligned with the center of the flow path opening (15) of the microfluidic device (102), and the compression member (51) is fixed to the microfluidic device (102) by the fixing portion (52). The surface (11) was bonded with an epoxy adhesive. At this time, since the height of the lower surface of the pressing portion (55) coincides with the position of the surface (11) of the member (A), the spring portion (53) is bent and the pressing portion (55) is moved. It is fixed in a state of being biased by an elastic force in the direction of the member (A). The force with which the compression member (51) presses the member (B) was about 0.11N. The pressure obtained by dividing this force by the area of the flow path opening (15) was about 390 kPa.

この圧迫部材(51)を装着したバルブを有するマイクロ流体デバイス(103)は、常態において、堰状構造(6)は流路(5)の内面(14)、即ち、表面(11)から最も遠い側の流路(5)の内面に当接し、また、その近接領域の流路開放部(15)において樹脂層(2)と樹脂層(3)は互いに当接して流路(5)を遮断し、流路(5)を流路(5a)と流路(5b)に分断しているため、流路(5a)と流路(5b)との間に流体は流通しない。   In the microfluidic device (103) having a valve equipped with the compression member (51), the weir-like structure (6) is normally farthest from the inner surface (14) of the flow path (5), that is, the surface (11). The resin layer (2) and the resin layer (3) are in contact with each other at the channel opening portion (15) in the adjacent area to block the channel (5). However, since the flow path (5) is divided into the flow path (5a) and the flow path (5b), no fluid flows between the flow path (5a) and the flow path (5b).

[使用試験]
実施例1と同様にして使用試験を行ったところ、圧力が約290kPaで該バルブを蒸留水が通過した。また、0.25Hzの時の吐出流量は、実施例の約0.88倍であること、および、圧迫周波数を0.5Hz、1Hz,2Hz、および3Hzに変えたとき、それぞれ0.25Hzの時の吐出流量の、それぞれ2倍、3.9倍、7.0倍、8.6倍であること以外は実施例1と同様であった。
[Use test]
When a use test was conducted in the same manner as in Example 1, distilled water passed through the valve at a pressure of about 290 kPa. Further, the discharge flow rate at 0.25 Hz is about 0.88 times that of the embodiment, and when the compression frequency is changed to 0.5 Hz, 1 Hz, 2 Hz, and 3 Hz, each is 0.25 Hz. Example 2 was the same as Example 1 except that the discharge flow rates were 2 times, 3.9 times, 7.0 times, and 8.6 times, respectively.

〔比較例1〕
圧迫部材(51)を装着しなかったこと以外は実施例1と同様のバルブ本体を有するマイクロ流体デバイス(100)を使用し、実施例1と同様の使用試験を行ったところ、繰り返し圧迫する周波数が0.25Hzの時の吐出流量は、実施例1の場合の約0.6倍であり、また、0.5Hz、1Hz,2Hz、および3Hzに上昇させたときの吐出流量0.25Hzの時のそれぞれ1.8倍、3.0倍、2.2倍、1.2倍であった。
[Comparative Example 1]
When the microfluidic device (100) having the same valve body as in Example 1 was used except that the compression member (51) was not mounted, the same usage test as in Example 1 was performed. When the discharge flow rate is about 0.25 Hz, the discharge flow rate is about 0.6 times that of Example 1, and when the discharge flow rate is increased to 0.5 Hz, 1 Hz, 2 Hz, and 3 Hz, the discharge flow rate is 0.25 Hz. Respectively, 1.8 times, 3.0 times, 2.2 times and 1.2 times.

上記実施例1〜2及び比較例1より明らかなように<施例1と比較例1は圧迫部材の有無のみが異なり、その他の構造が同じ。実施例2は本体の構造が異なるため、。比較例1とは直接比較できない。必要なら、比較例2を作ります。本発明のマイクロ流体デバイスは、逆流が少ないため同じ条件での吐出流量が大きく、また、バルブの応答速度が高いため、速い繰り返し圧迫周波数でも良好に流体の流通が可能であった。
As apparent from Examples 1-2 and Comparative Example 1, <Example 1 and Comparative Example 1 differ only in the presence or absence of a compression member, and the other structures are the same. Since Example 2 is different in the structure of the main body. Direct comparison with Comparative Example 1 is not possible. If necessary, make comparative example 2. The microfluidic device of the present invention has a large discharge flow rate under the same conditions because of a small backflow, and a high response speed of the valve, so that the fluid can be circulated satisfactorily even at a fast repeated compression frequency.

本発明のマイクロ流体デバイスの基本構造の平面模式図、及び、A部における断面図模式図である。It is the plane schematic diagram of the basic structure of the microfluidic device of this invention, and the cross-sectional schematic diagram in A section. 本発明の実施例1で作製したバルブを有するマイクロ流体デバイスの平面模式図、及び、A部における断面図模式図である。It is the plane schematic diagram of the microfluidic device which has the valve produced in Example 1 of this invention, and the cross-sectional schematic diagram in the A section. 本発明の実施例1で作製したの圧迫部材の平面模式図、側面模式図、及び、マイクロ流体デバイスに固定し状態の側面模式図である。It is the plane schematic diagram of the compression member produced in Example 1 of this invention, the side surface schematic diagram, and the side surface schematic diagram of the state fixed to the microfluidic device. 本発明の実施例2で作製したバルブを有するマイクロ流体デバイスの平面模式図、及び、A部における断面図模式図である。It is the plane schematic diagram of the microfluidic device which has the valve produced in Example 2 of this invention, and the cross-sectional schematic diagram in A section. 本発明の実施例2で作製した圧迫部材の平面模式図および側面模式図である。It is the plane schematic diagram and side surface schematic diagram of the compression member produced in Example 2 of this invention. 本発明の圧迫部材の他の態様を示す平面図および縦割り断面図である。It is the top view and longitudinal section showing other modes of the compression member of the present invention.

符号の説明Explanation of symbols

A・・・部材(A)
B・・・部材(B)
1・・・基材
2、3、4・・・樹脂層
5、5a、5b・・・流路(欠損部、溝)
6・・・堰状構造(凸部、非欠損部)
6a・・・堰状構造の頂部
7、8・・・貫通孔
9,10・・・円管
11・・・外表面
12・・・流路壁
13・・・流路の内面(上部内面、表面に最も近い側の流路内面)
14・・・流路の内面(底面、表面から最も遠い側の流路内面)
15・・・流路開放部
51・・・圧迫部材
52・・・圧迫部材の固定部
53・・・圧迫部材の弾性部
54・・・圧迫部材の中心部
55・・・圧迫部材の押圧部(円板)
26・・・圧迫部材の他端
100、102・・・バルブ本体を有するマイクロ流体デバイス
101、103・・・バルブを有するマイクロ流体デバイス
A ... Member (A)
B ... Member (B)
DESCRIPTION OF SYMBOLS 1 ... Base material 2, 3, 4 ... Resin layer 5, 5a, 5b ... Flow path (deletion part, groove | channel)
6 ... weir-like structure (convex part, non-defect part)
6a: top portions 7 and 8 of the dam-like structure, through-holes 9, 10 ... circular pipe 11 ... outer surface 12 ... channel wall 13 ... inner surface of the channel (upper inner surface, The inner surface of the channel closest to the surface)
14 ... inner surface of the channel (bottom surface, inner surface of the channel farthest from the surface)
DESCRIPTION OF SYMBOLS 15 ... Flow path opening part 51 ... Compression member 52 ... Compression member fixing | fixed part 53 ... Elastic part 54 of a compression member ... Center part 55 of a compression member ... Pressing part of a compression member (Disc)
26 ... the other end 100, 102 of the compression member ... a microfluidic device 101, 103 having a valve body, 103 ... a microfluidic device having a valve

Claims (7)

毛細管状の流路を有するマイクロ流体デバイスであって、
前記流路の途中に該流路を遮断するための堰状構造を有し、該堰状構造部及び該堰状構造を含む近傍の領域が固着しておらず且つ流路内の流体圧力により流路を開放して流体を流通する流路開放部が設けられてなり、該流路開放部に相対する流路外部に該流路開放部を圧迫するように圧迫部材が設けられてなることを特徴とするマイクロ流体デバイス。
A microfluidic device having a capillary channel,
It has a dam-like structure for blocking the flow path in the middle of the flow path, the dam-like structure portion and the nearby region including the dam-like structure are not fixed, and the fluid pressure in the flow path A flow path opening portion that opens the flow path and distributes the fluid is provided, and a compression member is provided outside the flow channel that faces the flow path opening portion so as to press the flow path opening portion. A microfluidic device characterized by.
流路となる凹部と、該凹部の途中に形成された流路を遮断する堰状構造となる凸部とを有する部材(A)と、前記凹部の蓋となる部材(B)とが、前記凸部及び凸部の近傍領域が固着しないように張合わされてなり、且つ、前記部材(B)の流路と対向する外壁面及び/又は部材(A)の前記堰状構造およびその近傍領域に相対する外壁面に、前記圧迫部材を有することを特徴とする請求項1に記載のマイクロ流体デバイス。 A member (A) having a concave portion that becomes a flow path, and a convex portion that becomes a weir-like structure that blocks the flow path formed in the middle of the concave portion, and a member (B) that becomes a lid of the concave portion, The protruding portion and the vicinity of the protruding portion are bonded so as not to be fixed, and the outer wall surface facing the flow path of the member (B) and / or the dam-like structure of the member (A) and the vicinity thereof The microfluidic device according to claim 1, wherein the compression member is provided on an opposing outer wall surface. 前記圧迫部材が、プラスチック製の板バネ部分を有する部材である請求項1に記載のマイクロ流体デバイス。 The microfluidic device according to claim 1, wherein the compression member is a member having a plastic plate spring portion. 前記部材(A)と前記部材(B)とが当接するが固着しない前記近傍領域の面積が、前記凸部の面積の2〜100倍である請求項1または2に記載のマイクロ流体デバイス。 3. The microfluidic device according to claim 1, wherein an area of the neighboring region where the member (A) and the member (B) are in contact but not fixed is 2 to 100 times the area of the convex portion. 前記圧迫部材が、前記部材(B)の凸部及び凸部の近傍領域を圧迫する圧力が、10kPa〜10MPaである請求項1〜3のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to any one of claims 1 to 3, wherein the pressure member presses the convex portion of the member (B) and a region near the convex portion from 10 kPa to 10 MPa. 流路断面積が1μm〜1mmの範囲にある請求項1〜3のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to claim 1, wherein the cross-sectional area of the flow channel is in the range of 1 μm 2 to 1 mm 2 . 前記部材(B)の及び凸部の近傍領域の厚みと、ヤング率との積が0.1kPa・m〜300kPa・mである請求項1〜4のいずれかに記載のマイクロ流体デバイス。
The microfluidic device according to any one of claims 1 to 4, wherein a product of a thickness of the member (B) and a region in the vicinity of the convex portion and a Young's modulus is 0.1 kPa · m to 300 kPa · m.
JP2004330395A 2004-11-15 2004-11-15 Microfluid device having valve Withdrawn JP2006136990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330395A JP2006136990A (en) 2004-11-15 2004-11-15 Microfluid device having valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330395A JP2006136990A (en) 2004-11-15 2004-11-15 Microfluid device having valve

Publications (1)

Publication Number Publication Date
JP2006136990A true JP2006136990A (en) 2006-06-01

Family

ID=36618117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330395A Withdrawn JP2006136990A (en) 2004-11-15 2004-11-15 Microfluid device having valve

Country Status (1)

Country Link
JP (1) JP2006136990A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059848A1 (en) * 2006-11-14 2008-05-22 Japan Science And Technology Agency Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them
JP2008170349A (en) * 2007-01-12 2008-07-24 National Institute Of Advanced Industrial & Technology Method of manufacturing glass microchip substrate with electrode
JP2009085762A (en) * 2007-09-28 2009-04-23 Toray Eng Co Ltd Temperature measuring device
JP2010008190A (en) * 2008-06-26 2010-01-14 Fujikura Kasei Co Ltd Liquid passage device
US8499794B2 (en) 2008-10-28 2013-08-06 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9283562B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
WO2023008398A1 (en) * 2021-07-27 2023-02-02 凸版印刷株式会社 Microfluidic chip and method for manufacturing microfluidic microchip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059848A1 (en) * 2006-11-14 2008-05-22 Japan Science And Technology Agency Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them
JP2008170349A (en) * 2007-01-12 2008-07-24 National Institute Of Advanced Industrial & Technology Method of manufacturing glass microchip substrate with electrode
JP2009085762A (en) * 2007-09-28 2009-04-23 Toray Eng Co Ltd Temperature measuring device
JP2010008190A (en) * 2008-06-26 2010-01-14 Fujikura Kasei Co Ltd Liquid passage device
US9283561B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9283562B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9579653B2 (en) 2008-06-26 2017-02-28 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US8499794B2 (en) 2008-10-28 2013-08-06 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
WO2023008398A1 (en) * 2021-07-27 2023-02-02 凸版印刷株式会社 Microfluidic chip and method for manufacturing microfluidic microchip

Similar Documents

Publication Publication Date Title
US7220334B2 (en) Method of manufacturing microdevice having laminated structure
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
US8715446B2 (en) Latent solvent-based microfluidic apparatus, methods, and applications
KR20030038739A (en) Very small chemical device and flow rate adjusting method therefor
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
CN102721820A (en) Method for preparing assembly type polymer micro fluidic chip equipped with integrated pneumatic micro valve
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2003139660A5 (en)
JP2006136990A (en) Microfluid device having valve
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP2007216226A (en) Micronozzle, its manufacturing method, spotting method, and spotter
JP2001070784A (en) Extremely small chemical device with valve mechanism
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2002370200A (en) Method of manufacturing miniature valve mechanism
JP2003136500A (en) Method of manufacturing micro fluid device having resin diaphragm
JP2000288381A (en) Manufacture of microchemical device
US7122093B1 (en) Gas-assisted resin injection technique for bonding and surface modification in micro-fluidic devices
JP2003083256A (en) Micro fluid device with a pump mechanism, pump mechanism driving device and fluid transporting method
KR100969551B1 (en) Method of forming fine channel using electrostatic attraction and method of forming fine structure using the same
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
JP4307771B2 (en) Manufacturing method of microfluidic device
JP2007307644A (en) Method and device for affixing together
JP2003139662A (en) Microfluid device
JP2002005887A (en) Method for producing micro chemical device having hydrophylic liquid contact part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070914

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090424