JP2007307644A - Method and device for affixing together - Google Patents

Method and device for affixing together Download PDF

Info

Publication number
JP2007307644A
JP2007307644A JP2006137640A JP2006137640A JP2007307644A JP 2007307644 A JP2007307644 A JP 2007307644A JP 2006137640 A JP2006137640 A JP 2006137640A JP 2006137640 A JP2006137640 A JP 2006137640A JP 2007307644 A JP2007307644 A JP 2007307644A
Authority
JP
Japan
Prior art keywords
holder
bonding
contact
holding
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137640A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2006137640A priority Critical patent/JP2007307644A/en
Publication of JP2007307644A publication Critical patent/JP2007307644A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for affixing together two members having a micro-structural part with the mating surfaces in alignment while bubbles are prevented from intruding. <P>SOLUTION: The device is composed of: (1) a first holder to hold a first member having a flat and smooth surface α and a micro-structural part a; (2) a second holder confronting the first holder, having a flat and smooth surface β and a micro-structural part b, and having a second member holding surface to hold a second member; (3) a position sensing mechanism to sense the positional relation between the first member and the second member; (4) an aligning mechanism to coordinate the positions of the first member and the second member; and (5) a vertically moving mechanism to move the first holder and/or the second holder, (6) wherein the second holder is made of a flexible material, (7) while the second member holding surface is embodied as a convex curved surface or a plane not parallel with the affixing surface of the first member, (8) in which the affixation is conducted in such a manner that the first holder and/or the second holder are moved in the direction of shrinking their mutual distance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面に微細な構造部分を有する部材と、やはり表面に微細な構造部分を有する、可撓性のある板状又はフィルム状の部材とを、前記構造部分形成面を貼り合わせ面として、互いに位置を合わせて貼り合わせる貼り合わせ装置、及び上記部材を互いに位置を合わせて貼り合わせる貼り合わせ方法に関する。本発明は、マイクロ流体デバイスの製造方法に好ましく適用できる。   In the present invention, a member having a fine structure portion on the surface and a flexible plate-like or film-like member which also has a fine structure portion on the surface are used as the bonding surface. The present invention relates to a laminating apparatus for laminating and aligning each other, and a laminating method for laminating the above members with their positions aligned with each other. The present invention can be preferably applied to a manufacturing method of a microfluidic device.

マイクロ流体デバイスは、部材中に微細な毛細管状の流路を有し、該流路中で反応や分析を行うデバイスである。その代表的な製造方法は、溝を有する板状又はフィルム状の部材の溝形成面にカバーとなる板状又はフィルム状の部材を貼り合わせることにより、該溝と該カバーとで毛細管状の流路を形成する製造方法である。この場合には、前記二つの部材の精密な位置あわせは不要であるため、ガラス製マイクロ流体デバイスの製造においては、単に重ねて圧迫し、熱融着する方法が広く用いられている。また、前記二つの部材の少なくとも一方が粘着性である場合、例えば粘着性を有するポリマー製部材である場合や、接着剤を塗布した部材である場合には、両部材を端から順に接触するように重ねることで、間に気泡を残さずに積層することが出来る。   A microfluidic device is a device that has a fine capillary channel in a member and performs reaction and analysis in the channel. A typical manufacturing method is to attach a plate-like or film-like member serving as a cover to a groove-forming surface of a plate-like or film-like member having a groove, whereby a capillary-like flow is formed between the groove and the cover. A manufacturing method for forming a path. In this case, since precise positioning of the two members is not necessary, in the manufacture of a glass microfluidic device, a method of simply compressing and heat-sealing is widely used. Further, when at least one of the two members is sticky, for example, when it is a sticky polymer member or a member to which an adhesive is applied, both members are contacted in order from the end. It is possible to stack without leaving bubbles in between.

それに対し、該マイクロ流体デバイスに、例えば立体交差する流路、バルブ、ポンプ機構、濾過機構、内壁に多孔質体が固定された流路、内壁にプローブが固定された流路などの、さらに複雑な構造を形成する場合には、前記カバーとなる部材の表面にも、溝、孔、プローブ固定部分、多孔質層形成部分などの微小な構造部分を形成し、これらの位置を合わせて貼り合わせる必要がある。そのため、例えば部材がガラス製である場合には、上側ホルダと下側ホルダにそれぞれ部材を固定し、両部材を接触又は非接触の状態で、光学的に位置を検出して位置合わせして、非接触の場合には該二つの部材間のギャップを縮めて行き、密着させた後に加熱融着させる装置と方法が知られている。   On the other hand, the microfluidic device has a more complicated structure such as a three-dimensionally intersecting flow path, a valve, a pump mechanism, a filtration mechanism, a flow path with a porous body fixed on the inner wall, and a flow path with a probe fixed on the inner wall. When forming a simple structure, a minute structure portion such as a groove, a hole, a probe fixing portion and a porous layer forming portion is also formed on the surface of the member to be the cover, and these positions are aligned and bonded together. There is a need. Therefore, for example, when the member is made of glass, the member is fixed to the upper holder and the lower holder, and both the members are contacted or non-contacted, and the position is optically detected and aligned. In the case of non-contact, an apparatus and a method are known in which the gap between the two members is reduced, and the two members are brought into close contact with each other and heated and fused.

しかしながら、上記表面に微小な構造を有する部材または表面に微小な構造を有する部材の少なくとも一方が、半硬化状態の樹脂のように粘着性を有する場合や、接着剤を流動しない程度に極薄く、例えば0.5〜5μmの厚さに塗布したものである場合には、接触した状態では相互位置をずらすことは出来ないし、非接触の状態で位置を合わせ、両部材間のギャップを平行状態を保って縮めていって接触させる方法では、貼り合わせ面に気泡が入りがちであり、微細な毛細管状の流路をうまく形成できなかった。また、該部材の端から順に接触するように重ねる方法では精密な位置合わせが出来なかった。   However, when at least one of the member having a minute structure on the surface or the member having a minute structure on the surface is sticky like a semi-cured resin, or extremely thin to the extent that the adhesive does not flow, For example, when the coating is applied to a thickness of 0.5 to 5 μm, the mutual position cannot be shifted in the contact state, the positions are aligned in a non-contact state, and the gap between the two members is in a parallel state. In the method of maintaining the shrinkage and bringing it into contact, bubbles tend to enter the bonding surface, and a fine capillary channel cannot be formed well. In addition, precise positioning could not be performed by the method of overlapping the members so as to contact each other in order.

一方、特許文献1には、第1の基板と第2の基板のそれぞれ対向する表面の端部に沿って環状に接着剤が塗布され、上記接着剤と上記両基板とにより形成される、所定の厚さの隙間に液晶材料が充填された液晶表示装置の製造装置として、真空容器と、第1の基板の下表面全面を真空吸着で保持する第1の吸着機構と、第2の基板の上表面全面を真空吸着で保持する第2の吸着機構と、上記真空容器内の気圧の減圧時に、真空容器内にて、該第2の吸着機構及び第2の基板を鉛直方向に下降させて、第2の基板の下表面を上記液晶材料又は上記接着剤と接触させる、第1の加圧力を備える第1の加圧機構と、同じく上記真空容器内の気圧の減圧時に、真空容器内にて、第2の吸着機構及び第2の基板をさらに鉛直方向に下降させ、第2の基板を接着剤を介して第1の基板に貼り合わせ所定の間隔になるまで加圧する、第1の加圧力より大きい第2の加圧力を備える第2の加圧機構と、から構成される液晶表示装置製造装置が開示されている。   On the other hand, in Patent Document 1, an adhesive is applied annularly along the end portions of the opposing surfaces of the first substrate and the second substrate, and is formed by the adhesive and both substrates. As a manufacturing apparatus of a liquid crystal display device in which a liquid crystal material is filled in a gap of a thickness of, a vacuum container, a first suction mechanism that holds the entire lower surface of the first substrate by vacuum suction, and a second substrate A second suction mechanism that holds the entire upper surface by vacuum suction, and when the pressure in the vacuum container is reduced, the second suction mechanism and the second substrate are lowered vertically in the vacuum container. A first pressurizing mechanism having a first pressurizing force that brings the lower surface of the second substrate into contact with the liquid crystal material or the adhesive, and when the atmospheric pressure in the vacuum container is reduced, The second suction mechanism and the second substrate are further lowered in the vertical direction, and the second substrate A liquid crystal display device comprising: a second pressurizing mechanism having a second pressurizing force larger than the first pressurizing force, which is bonded to the first substrate via an adhesive and pressurizes until a predetermined interval is reached. A manufacturing apparatus is disclosed.

しかしながら、真空容器を用いると、接着面に気泡の入る恐れはなくなるが、貼り合わせ装置が大がかりになる上、貼り合わせ工程のスループットが低下しがちであった。   However, when a vacuum container is used, there is no risk of bubbles entering the bonding surface, but the bonding apparatus becomes large and the throughput of the bonding process tends to decrease.

また、特許文献2には、やはり液晶表示装置の製造装置として、下固定治具の上に下圧着治具を配置し、この下圧着治具の上に前記第1の基板と第2の基板とを積層した貼り合わせ空セルと、中圧着治具とを交互に積み重ね、最上部に位置する貼り合わせ空セルの上に上圧着治具と上固定治具とを順次配置し、更に個々の圧着治具にシートを設け、このシートにヒーターを設けるとともに、複数個のほぼ同一形状のシートと複数個のほぼ同一形状の貼り合わせ空セルとを交互に積み重ね、上記シート内に流体を流して該シートの膨張により複数個の液晶表示用貼り合わせ空セルを同時に圧着するようにした圧着装置が開示されている。   Also, in Patent Document 2, as a liquid crystal display manufacturing apparatus, a lower pressure bonding jig is disposed on a lower fixing jig, and the first substrate and the second substrate are placed on the lower pressure bonding jig. Stacked empty cells and intermediate pressure bonding jigs are alternately stacked, and an upper pressure bonding jig and an upper fixing jig are sequentially disposed on the bonding empty cell located at the uppermost position, and each individual A sheet is provided on the crimping jig, a heater is provided on the sheet, and a plurality of sheets having substantially the same shape and a plurality of bonded empty cells having substantially the same shape are alternately stacked, and a fluid is allowed to flow in the sheet. A pressure bonding apparatus is disclosed in which a plurality of liquid crystal display-bonded empty cells are pressure-bonded simultaneously by expansion of the sheet.

しかしながら、この場合には、あらかじめ前記第1の基板と第2の基板に相当する部材とを積層して、貼り合わせ空セルを作製した上で、圧着するものである。このように、貼り合わせ部分が前記両基板の周囲部だけであるように幅が小さく、しかも、接着剤を流動可能な厚さに塗布した場合には、圧着することで気泡を追い出すことが可能であろうが、マイクロ流体デバイスのように、微細な流路となる欠損部を持つ部材を貼り合わせる場合には、接着剤を流動する程度に塗布すると、前記欠損部が接着剤により埋められてしまい、微細な流路が閉塞されてしまう。即ちこの製造装置と製造方法では、マイクロ流体デバイスの部材の微細な欠損部を除いた全面を、気泡を残さずに貼り合わせることは出来なかった。   However, in this case, a member corresponding to the first substrate and the second substrate is laminated in advance to produce a bonded empty cell and then crimped. In this way, the width is small so that the bonded part is only the peripheral part of the two substrates, and when the adhesive is applied to a flowable thickness, it is possible to expel bubbles by pressure bonding. However, when a member having a defective portion that becomes a fine flow path is bonded together like a microfluidic device, if the adhesive is applied to such an extent that it flows, the defective portion is filled with the adhesive. As a result, the fine flow path is blocked. That is, with this manufacturing apparatus and manufacturing method, it was impossible to bond the entire surface of the microfluidic device member excluding the minute defects without leaving bubbles.

特開2001−051284号公報JP 2001-051284 A 特許第3439787号公報Japanese Patent No. 3439787

本発明が解決しようとする課題は、表面に微細な構造部分を有する部材、及び、やはり表面に微細な構造部分を有する、可撓性のある板状又はフィルム状の部材の少なくとも一方が粘着性である場合のように、両部材を接触させてからずらして位置を合わせることが出来ない場合でも、真空容器を使用することなく、部材間に気泡が入らないように、位置を合わせて貼り合わせる貼り合わせ装置、及び貼り合わせ方法を提供することにある。特に、上記のような部材を貼り合わせる工程を含むマイクロ流体デバイスの製造方法を提供することにある。   The problem to be solved by the present invention is that at least one of a member having a fine structure portion on the surface and a flexible plate-like or film-like member also having a fine structure portion on the surface is adhesive. Even if it is not possible to shift the position after bringing both members into contact, as in the case of, without using a vacuum vessel, align the positions so that bubbles do not enter between the members. It is in providing the bonding apparatus and the bonding method. In particular, an object of the present invention is to provide a method of manufacturing a microfluidic device including a step of bonding the above-described members.

本発明者等は、表面に微細な構造部分を有する部材である第1部材を第1ホルダに保持し、やはり表面に微細な構造部分を有する、可撓性のある板状又はフィルム状の第2部材を可撓性のある第2ホルダに密着させて保持し、両部材の貼り合わせ面を互いに向き合わせ、相対位置を合わせた後、両部材間の距離を縮めて行き、前記第2部材の一部を前記第1部材の一部に接触させ、その後も前記第2ホルダと前記第2部材を撓ませながらさらに両部材間の距離を縮めて行き、前記第1部材に前記第2部材を、前記貼り合わせ面の内周部から外周部へ、又は一方の端から他方の端へと順に接触させて貼り合わせることにより、上記課題を解決出来ることを見いだし、本発明に到達した。   The present inventors hold the first member, which is a member having a fine structure portion on the surface, in the first holder, and have a flexible plate-like or film-like shape that also has a fine structure portion on the surface. The two members are held in close contact with the flexible second holder, the bonding surfaces of the two members are faced to each other, the relative positions are adjusted, and the distance between the two members is reduced. A part of the first member is brought into contact with a part of the first member, and thereafter, the second member and the second member are further bent while the distance between the two members is further reduced, and the second member is moved to the first member. It was found that the above-mentioned problems can be solved by bringing the bonding surfaces into contact with each other in order from the inner peripheral portion to the outer peripheral portion or one end to the other end of the bonding surface.

即ち本発明は、平滑な表面αと該平滑な表面α上に微細な構造部分aとを有する第1部材と、平滑な表面βと該平滑な表面β上に微細な構造部分bとを有し、更に可撓性を有する板状又はフィルム状の第2部材とを、
前記表面αと前記表面βを貼り合わせ面として、前記微細な構造部分aと前記微細な構造部分bの位置関係を調整して貼り合わせるための貼り合わせ装置であって、
(1)前記第1部材を保持する機構を有する第1ホルダと、
(2)前記第1ホルダに対向し、前記第2部材を保持する第2部材保持面を有する第2ホルダと、
(3)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出する位置検出機構と
(4)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内における位置を調整する位置合わせ機構と
(5)前記第1ホルダ及び/又は前記第2ホルダを前記貼り合わせ面に略垂直な方向に移動させて前記第1部材と第2部材を貼り合わせることの出来る垂直移動機構
とを有し、
(6)前記第2ホルダが可撓性のある素材で形成されており、かつ、
(7)前記第2ホルダの前記第2部材保持面が、凸曲面であるか、前記第1ホルダに保持された前記第1部材の貼り合わせ面に対して非平行な平面であり、
(8)前記垂直移動機構により前記第1ホルダ及び/又は前記第2ホルダを相互の距離を縮める方向に移動させた時には、前記第1部材と前記第2部材が、先ず前記貼り合わせ面の一部に於いて接触し、さらなる移動により第2ホルダが変形して、該接触面が広がることにより貼り合わされる
ことを特徴とする貼り合わせ装置を提供するものである。
That is, the present invention has a first member having a smooth surface α and a fine structure portion a on the smooth surface α, a smooth surface β and a fine structure portion b on the smooth surface β. And a flexible plate-like or film-like second member,
A bonding apparatus for adjusting and bonding the positional relationship between the fine structure portion a and the fine structure portion b using the surface α and the surface β as a bonding surface;
(1) a first holder having a mechanism for holding the first member;
(2) a second holder having a second member holding surface facing the first holder and holding the second member;
(3) A position detection mechanism for detecting a positional relationship between the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface. (4) an alignment mechanism that adjusts the position of the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface; 5) a vertical movement mechanism capable of moving the first holder and / or the second holder in a direction substantially perpendicular to the bonding surface to bond the first member and the second member;
(6) The second holder is made of a flexible material, and
(7) The second member holding surface of the second holder is a convex curved surface or a plane non-parallel to the bonding surface of the first member held by the first holder,
(8) When the first holder and / or the second holder are moved in the direction of reducing the mutual distance by the vertical movement mechanism, the first member and the second member are first placed on one side of the bonding surface. The present invention provides a laminating apparatus in which the second holder is deformed by further movement and the second holder is deformed by the further movement, and the laminating is performed by spreading the contact surface.

また、本発明は、(1)上記の貼り合わせ装置を使用し、
(2)前記第1部材を、前記表面αが前記第2ホルダと対向するように前記第1ホルダに保持させ、
(3)前記第2部材を、前記表面βが前記表面αと対向するように前記第2ホルダの前記第2部材保持面に密着させて保持させ、
(4)前記位置検出機構により、前記第1部材と前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出し、
(5)前記位置合わせ機構により、前記第1部材と前記第2部材を前記貼り合わせ面に平行な面内において位置を合わせ、
(6)前記垂直移動機構により、前記第1ホルダ及び/又は前記第2ホルダを相互の距離を縮める方向に移動させて、前記第1部材と前記第2部材を、前記貼り合わせ面の一部に於いて接触させ、
その後さらに距離を縮める方向に移動させて、該接触面を広げることにより貼り合わせる
ことを特徴とする貼り合わせ方法を提供するものである。
Moreover, this invention uses (1) said bonding apparatus,
(2) The first member is held by the first holder so that the surface α faces the second holder,
(3) The second member is held in close contact with the second member holding surface of the second holder so that the surface β faces the surface α,
(4) The positional detection mechanism detects a positional relationship between the first member and the second member in a plane parallel to the bonding surface,
(5) By the alignment mechanism, the first member and the second member are aligned in a plane parallel to the bonding surface,
(6) The vertical movement mechanism moves the first holder and / or the second holder in a direction to reduce the mutual distance so that the first member and the second member are part of the bonding surface. In contact,
Then, the bonding method is characterized in that bonding is performed by further moving the distance in a direction to reduce the distance and widening the contact surface.

本発明は、表面に微細な構造部分を有する部材、及び、やはり表面に微細な構造部分を有する可撓性のある板状又はフィルム状の部材、の少なくとも一方が粘着性である場合のように、両部材を接触させてからずらして相互の位置を合わせることが出来ない場合でも、真空容器を使用することなく、部材間に気泡が入らないように、位置を合わせて貼り合わせる貼り合わせ装置、及び、位置を合わせて貼り合わせる貼り合わせ方法を提供できる。本発明はまた、表面に微細な凹状構造を有する部材を位置を合わせて貼り合わせる工程を含むマイクロ流体デバイスの製造方法を提供することができる。   In the present invention, at least one of a member having a fine structure portion on the surface and a flexible plate-like or film-like member also having a fine structure portion on the surface is adhesive. Even if it is not possible to align the mutual position by bringing both members into contact with each other, a bonding apparatus that aligns and bonds the positions so that bubbles do not enter between the members without using a vacuum vessel, In addition, it is possible to provide a bonding method in which the positions are bonded together. The present invention can also provide a method for manufacturing a microfluidic device, which includes a step of bonding a member having a fine concave structure on the surface thereof in alignment.

以下、本発明を、図1〜図8に示された態様により説明する。
[第1ホルダ]
図1に第1ホルダ1の平面図とA部断面図を示す。本態様の第1ホルダ1は、第1部材11を固定(保持)する機構(第1部材保持機構3と称する)として真空溝式の真空チャック3を有する。真空溝の幅は任意であるが、第1部材11が柔軟なフィルム状部材である場合にも対応できるように、該真空溝の幅を0.03〜0.5mm、より好ましくは0.05〜0.3mm程度に細くすることが好ましく、また、真空溝の代わりに、直径0.03〜1mm程度、より好ましくは直径0.05〜0.5mmの微小な多数の孔が穿たれた細孔式の真空チャック(図示略)や、金属焼結体などの、平均孔径1〜100μmの多孔質体を用いた多孔質体式の真空チャック(図示略)とすることも好ましい。第1部材保持機構3の第1部材保持方式は任意であり、上記の他、例えばクランプやネジなどの機械的保持、粘着力やや静電気力や磁力による保持、ワックスなどの液体の冷却凝固による保持を使用できる。
Hereinafter, the present invention will be described with reference to the embodiments shown in FIGS.
[First holder]
FIG. 1 shows a plan view of the first holder 1 and a sectional view of part A. The first holder 1 of this aspect includes a vacuum groove type vacuum chuck 3 as a mechanism (referred to as a first member holding mechanism 3) for fixing (holding) the first member 11. The width of the vacuum groove is arbitrary, but the width of the vacuum groove is 0.03 to 0.5 mm, more preferably 0.05 so that the case where the first member 11 is a flexible film-like member can be accommodated. It is preferable to make it as thin as about 0.3 mm, and instead of a vacuum groove, it is fine with a large number of small holes having a diameter of about 0.03 to 1 mm, more preferably 0.05 to 0.5 mm. It is also preferable to use a porous vacuum chuck (not shown) using a porous body having an average pore diameter of 1 to 100 μm, such as a hole type vacuum chuck (not shown) or a sintered metal body. The first member holding method of the first member holding mechanism 3 is arbitrary. In addition to the above, for example, mechanical holding such as a clamp or a screw, holding by adhesive force or electrostatic force or magnetic force, holding by cooling and solidifying liquid such as wax Can be used.

真空チャック3の場合は、例えば図4に示されたように、切り替えバルブ21を経て真空24と大気25に接続される。第1部材保持機構3として、ワックスなどの液体の冷却凝固による保持方式を用いた場合には、保持の解除のための加熱機構を設けることが出来る。磁力によるものの場合には、第1部材11を強磁性体で形成された板やフィルム状などの一時的な支持体に粘着力などで貼り付けて使用する。粘着力や静電気力や磁力による保持方式を用いた場合には、それらの保持力の強さを、第1部材11と第2部材12の粘着力や最終的な固着力の強さより弱く設定しておけば、該両部材の貼り付け後、剥離により保持を解除できる。   In the case of the vacuum chuck 3, for example, as shown in FIG. 4, the vacuum chuck 3 is connected to the vacuum 24 and the atmosphere 25 via the switching valve 21. When the first member holding mechanism 3 uses a holding method by cooling and solidifying a liquid such as wax, a heating mechanism for releasing the holding can be provided. In the case of using a magnetic force, the first member 11 is used by adhering to a temporary support such as a plate or film formed of a ferromagnetic material with an adhesive force. When a holding method using adhesive force, electrostatic force, or magnetic force is used, the strength of the holding force is set to be weaker than the adhesive strength and final fixing strength of the first member 11 and the second member 12. In this case, after the two members are attached, the holding can be released by peeling.

第1ホルダ1は、第1部材11が板状又はフィルム状である場合は、図1、図5に示されたように、第1ホルダ1の第1部材保持面は平面とし、水平に配置されることが好ましい。第1ホルダ1は一般的に、前記第1部材11を第2部材12と貼り合わせる面(貼り合わせ面と称する)を外向きにして保持できるものであれば、第1部材11の形状に応じた任意の形状であって良い。
図1に示された第1ホルダ1は、中心部に孔4が開けられており、該孔4を通して、例えば図6、図7に示された様な第1部材11の位置決めマーク107、108と第2部材12の位置決めマーク117、118を光学的に観察し、位置決めできるようになっている。該孔4は、より小さな複数の孔であっても良いし、第1ホルダ1をガラスや透明プラスチックなどの光学的に透明な素材で作製した場合には、孔4を設けなくても良い。
When the first member 11 is in the form of a plate or a film, the first holder 1 has a flat first member holding surface of the first holder 1 and is disposed horizontally as shown in FIGS. It is preferred that Generally, the first holder 1 can be held according to the shape of the first member 11 as long as the first member 11 can hold the first member 11 with a surface (referred to as a bonding surface) for bonding the second member 12 outward. Any shape can be used.
The first holder 1 shown in FIG. 1 has a hole 4 in the center, and through the hole 4, for example, positioning marks 107 and 108 of the first member 11 as shown in FIGS. The positioning marks 117 and 118 of the second member 12 can be optically observed and positioned. The holes 4 may be a plurality of smaller holes. If the first holder 1 is made of an optically transparent material such as glass or transparent plastic, the holes 4 may not be provided.

[第2ホルダ]
〔第1態様〕
図2に第2ホルダ2の第1態様の平面図とA部断面図を示す。本第1態様の第2部材12は、円筒の一部を切り取った形状の曲面の板状とされ、凸面を第1ホルダ1側に向け、中央部が最も第1ホルダに近く配置されている。これにより、第2部材12を装着した第2ホルダ2を第1部材11に押しつけたとき、先ず凸状に保持された第2部材12の中央部が第1部材11に線状に接触し、更に押しつけると、第2ホルダ2が撓みながら、接触面が両端方向へ広がってゆき、最終的には第2部材12の全体を第1部材11に接触させることが出来る。上記でいう「中央部」は厳密な中央である必要はなく、両端間のいずれかの部分であってよい。
[Second holder]
[First embodiment]
FIG. 2 shows a plan view and a cross-sectional view of part A of the first mode of the second holder 2. The second member 12 of the first aspect is a curved plate having a shape obtained by cutting a part of a cylinder, the convex surface is directed to the first holder 1 side, and the central portion is disposed closest to the first holder. . Thereby, when the 2nd holder 2 with which the 2nd member 12 was equipped was pressed against the 1st member 11, the central part of the 2nd member 12 held in convex shape first contacts the 1st member 11 linearly, When further pressed, the contact surface spreads in both end directions while the second holder 2 is bent, and finally the entire second member 12 can be brought into contact with the first member 11. The “center portion” described above does not have to be a strict center, and may be any portion between both ends.

或いは、第2ホルダ2は、上記円筒の一方の端と他方の端(即ち、図2の紙面内上端と下端)が、第1部材11の貼り合わせ面に対して遠近がある状態の凸面状としてもよい。この場合は、第2部材12を装着した第2ホルダ2を第1部材11に押しつけたとき、先ず凸状に保持された第2部材12の中央部の一方の端が第1部材11に点状に接触し、更に押しつけると、第2ホルダ2が撓みながら、接触面が3方向へ広がってゆく。   Alternatively, the second holder 2 has a convex surface shape in which one end and the other end of the cylinder (that is, the upper and lower ends in the drawing in FIG. 2) are close to the bonding surface of the first member 11. It is good. In this case, when the second holder 2 fitted with the second member 12 is pressed against the first member 11, first, one end of the central portion of the second member 12 held in a convex shape is pointed to the first member 11. When the contact is made and pressed further, the contact surface spreads in three directions while the second holder 2 is bent.

第2ホルダ2の表面の曲面の程度は、第1部材11の貼り合わせ面と第2部材12の貼り合わせ面の、両端部に於ける距離Xeと中央部における距離Xmとの差(Xe−Xm)が、好ましくは0.3mm以上、さらに好ましくは0.4mm以上、最も好ましくは0.5mm以上であり、また、好ましくは5mm以下、更に好ましくは4mm以下、最も好ましくは3mm以下である。但し、上記範囲は貼り合わせ面の一辺の長さが10cmのときの値であり、上記距離差(Xe−Xm)の好ましい範囲は、上限、下限共に貼り合わせ面の一辺の長さに比例する。上記下限以上とすることにより、貼り合わせ部に残存する気泡の量を減じることが出来、また、上記上限以下とすることによ貼り合わせた際の位置のずれを最小限に抑えられる。   The degree of the curved surface of the surface of the second holder 2 is the difference between the distance Xe at both ends and the distance Xm at the center between the bonding surface of the first member 11 and the bonding surface of the second member 12 (Xe− Xm) is preferably 0.3 mm or more, more preferably 0.4 mm or more, most preferably 0.5 mm or more, preferably 5 mm or less, more preferably 4 mm or less, and most preferably 3 mm or less. However, the above range is a value when the length of one side of the bonding surface is 10 cm, and the preferable range of the distance difference (Xe−Xm) is proportional to the length of one side of the bonding surface. . By setting it to the above lower limit or more, the amount of bubbles remaining in the bonded portion can be reduced, and by setting it to the upper limit or less, the positional deviation at the time of bonding can be minimized.

図2に示された例では、第2ホルダ2は、円筒の一部である形状とされているが、厳密に円筒である必要はなく、平面を曲げて作られる任意の凸曲面を使用できる。例えば、円錐の一部である凸曲面であってもよいし、断面が双曲線の一部、放物線の一部、正弦波の一部、正規分布曲線等であるような凸曲面であってよい。   In the example shown in FIG. 2, the second holder 2 has a shape that is a part of a cylinder. However, the second holder 2 does not have to be strictly a cylinder, and any convex curved surface that is formed by bending a plane can be used. . For example, it may be a convex curved surface that is a part of a cone, or a convex curved surface whose cross section is a part of a hyperbola, a part of a parabola, a part of a sine wave, a normal distribution curve, or the like.

図2に示された態様では、常態で曲面状である板状の第2ホルダ2が、図中左右端において、固定部材にて、スポンジ製の緩衝材6を介して移動ステージ13に装着されている。本態様では、板状の第2ホルダ2は常態で安定な曲面状の板であるが、例えば図3に示したように、第2ホルダが、常態では反りのない平面状であって、その中央部をスポンジ製などの柔軟な部材7に押しつけて弾性的に凸面状にされたものであってもよい。   In the embodiment shown in FIG. 2, the plate-like second holder 2, which is normally curved, is mounted on the moving stage 13 via the sponge cushioning material 6 at the left and right ends in the figure, with fixing members. ing. In this aspect, the plate-like second holder 2 is a curved plate that is stable in a normal state. For example, as shown in FIG. 3, the second holder is a flat shape that does not warp in a normal state. The central portion may be elastically convex by pressing against the flexible member 7 made of sponge or the like.

本第1態様に於ける第2ホルダ2の厚みは任意であり、資材の弾性率により好適な厚みが異なるが、例えば0.01〜10mmが好ましく、0.1〜5mmがさらに好ましく、0.3〜3mmが最も好ましい。第2ホルダ2の柔軟性は、第2部材12を装着して第1部材11に、最終的に平面状になるまで押しつけたとき、該第2部材12の表面や内部に形成された微細な構造が破損したり不都合なほど著しく変形したりすることがなければ任意である。そのため、好適な範囲は第1部材11と第2部材12の硬度、強度、微細な構造の寸法や種類に依存する。一般には、引張弾性率と厚みの積が、好ましくは1×10〜1×10「Pa・m]、さらに好ましくは3×10〜3×10「Pa・m]である様な範囲である。 Although the thickness of the 2nd holder 2 in this 1st aspect is arbitrary and suitable thickness changes with elastic modulus of material, for example, 0.01-10 mm is preferable, 0.1-5 mm is more preferable, and 0.1. Most preferred is 3 to 3 mm. The flexibility of the second holder 2 is the fineness formed on the surface and inside of the second member 12 when the second member 12 is mounted and pressed against the first member 11 until it finally becomes planar. It is optional as long as the structure is not damaged or is not significantly deformed. Therefore, a suitable range depends on the hardness and strength of the first member 11 and the second member 12, and the size and type of the fine structure. In general, the product of tensile modulus and thickness is preferably 1 × 10 5 to 1 × 10 8 “Pa · m”, more preferably 3 × 10 5 to 3 × 10 7 “Pa · m”. It is a range.

第2ホルダ2は繰り返し使用するために、使用条件で弾性変形する素材で形成されていることが好ましい。そのような素材としては、例えば有機重合体や金属が好ましい。有機重合体は任意であり、線上重合体であっても架橋重合体であってもよいし、ガラス転移温度(Tg)が室温以上であっても以下であってもよい。   The second holder 2 is preferably formed of a material that is elastically deformed under use conditions in order to be used repeatedly. As such a material, for example, an organic polymer or a metal is preferable. The organic polymer is arbitrary, and may be a linear polymer or a crosslinked polymer, and may have a glass transition temperature (Tg) of room temperature or above or below.

図2に示された本第1態様に於いては、第2ホルダ2が第2部材12を保持する機構(第2部材保持機構5と称する)は微細な真空溝式の真空チャック5とされている。第2部材保持機構5は、第2部材12が薄いフィルム状である場合にも対応できるように、第1ホルダー1と同様に、細孔式の真空チャック、微細な真空溝式の真空チャック、又は多孔質体式の真空チャックが好ましい。しかし、保持する方式は任意であり、前記第1部材保持機構3と同様の機構を使用できる。   In the first mode shown in FIG. 2, the mechanism (referred to as the second member holding mechanism 5) in which the second holder 2 holds the second member 12 is a fine vacuum groove type vacuum chuck 5. ing. Similarly to the first holder 1, the second member holding mechanism 5 is capable of dealing with a case where the second member 12 is in the form of a thin film, as in the case of the first holder 1, a fine vacuum groove type vacuum chuck, Or a porous body type vacuum chuck is preferable. However, the holding method is arbitrary, and a mechanism similar to the first member holding mechanism 3 can be used.

真空チャック5は、例えば図4に示されたように、切り替えバルブ22を経て、真空24と大気25に接続され、これにより着脱される。第2部材保持機構5として、ワックスなどの液体の冷却凝固による保持方式を用いた場合には、保持の解除は加熱により実施できる。第2部材保持機構5として粘着力や静電気力や磁力による保持方式を用いた場合には、それらの保持力の強さを、第1部材11との粘着力の強さより弱く設定しておけば、押しつけ後、第2ホルダ2を元の位置に戻す際に、第2部材12は自然に第2ホルダ2から剥がれる。   For example, as shown in FIG. 4, the vacuum chuck 5 is connected to the vacuum 24 and the atmosphere 25 via the switching valve 22, and is thereby attached and detached. When the second member holding mechanism 5 uses a holding method based on cooling and solidification of a liquid such as wax, the holding can be released by heating. When a holding method using adhesive force, electrostatic force, or magnetic force is used as the second member holding mechanism 5, the strength of the holding force is set to be weaker than the strength of the adhesive force with the first member 11. After the pressing, when the second holder 2 is returned to the original position, the second member 12 is naturally peeled from the second holder 2.

本第1態様のバリエーションとして、第2ホルダを板状ではなく、中央が円柱の一部のように凸状である柔軟な塊状物で形成することも出来る。この場合には、第2ホルダを第1部材に押しつけ、第2部材の中央部が第1部材に接触した後更に押しつけると、塊状の第2ホルダ2は押しつぶされて変形し、第2部材12の全体を第1部材11に接触させることが出来る。この場合の第2ホルダ2の素材は、引張弾性率が、好ましくは0.1〜100[MPa]、さらに好ましくは0.3〜30[MPa]である。そのような素材としては、例えば、ゴム、エラストマー、ポリジメチルシロキサンのようなシリコン樹脂、ゲル、スポンジ状有機重合体、有機重合体の発泡体を例示できる。この場合には、第2部材保持機構5は、粘着力、静電気力、又は磁力によるものが好ましい。   As a variation of the first embodiment, the second holder may be formed of a flexible lump that is not plate-shaped but has a convex center like a part of a cylinder. In this case, when the second holder is pressed against the first member and further pressed after the central portion of the second member comes into contact with the first member, the massive second holder 2 is crushed and deformed, and the second member 12 is deformed. Can be brought into contact with the first member 11. In this case, the material of the second holder 2 has a tensile elastic modulus of preferably 0.1 to 100 [MPa], more preferably 0.3 to 30 [MPa]. Examples of such a material include rubber, elastomer, silicon resin such as polydimethylsiloxane, gel, sponge-like organic polymer, and organic polymer foam. In this case, the second member holding mechanism 5 is preferably based on adhesive force, electrostatic force, or magnetic force.

第2ホルダ2は、前記板状物と本塊状物を併用してもよい。そのような例としては、ゴムやスポンジの塊状部材の上にそれより硬い素材で形成された板状部材が張り付けられた或いは乗せられた構造を例示できる。
図2に示された態様では、曲面状である板状の第2ホルダ2が、図中左右端において、固定部材にて、スポンジ製の緩衝材6を介して移動ステージ13に装着されている。そのため、第2ホルダ2は移動ステージ13の表面に平行な面内で多少動き得る。しかしながら、本発明の貼り合わせ装置を用いて貼り合わせる際には、第1部材11と第2部材12が最初に接触すると、粘着性により両部材間の相対位置が固定されるため、その後、接触面が拡大して行く際にも両部材の相対位置がずれることはない。第2ホルダを板状ではなく、中央が円柱の一部のように凸状である柔軟な塊状物で形成されている場合も話は同様である。
The 2nd holder 2 may use the said plate-shaped object and this block-shaped object together. As such an example, a structure in which a plate-like member made of a harder material is attached to or placed on a lump member of rubber or sponge can be exemplified.
In the embodiment shown in FIG. 2, the plate-like second holder 2 having a curved surface is mounted on the moving stage 13 via a sponge cushioning material 6 at a fixed member at the left and right ends in the figure. . Therefore, the second holder 2 can move somewhat in a plane parallel to the surface of the moving stage 13. However, when laminating using the laminating apparatus of the present invention, when the first member 11 and the second member 12 are in contact with each other for the first time, the relative position between the two members is fixed due to adhesiveness. Even when the surface expands, the relative positions of both members do not shift. The same applies to the case where the second holder is not formed in a plate shape but is formed of a flexible lump having a convex shape at the center like a part of a cylinder.

〔第2態様〕
図4に第2ホルダの第2の態様の平面図とA部断面図を示す。本第2態様では、弾性を持つ板状の第2ホルダ2が、第1部材11の貼り合わせ面に対して一方の端(図中右端)が近く他方の端(図中左端)が遠く設置されている。これにより、第2部材12を装着した第2ホルダ2を第1部材11に押しつけたとき、先ず第2部材12の第1部材に近い側の端の辺が第1部材11に線状に接触し、更に押しつけると、第2ホルダ2が撓みながら、接触面が他端の辺方向へ順次広がってゆく。或いは、先ず第2部材12の第1部材に近い側の辺の一方の端の頂点が第1部材11に点状に接触し、更に押しつけると、第2ホルダ2が撓みながら、接触面が2方向へ順次広がってゆく。そして最終的には第2部材12の全体が第1部材11に接触する。これらにより、貼り合わせ面への気泡の残留を減少させることが出来る。
[Second embodiment]
FIG. 4 shows a plan view and a cross-sectional view of part A of the second mode of the second holder. In the second aspect, the elastic plate-like second holder 2 is installed with one end (right end in the figure) close to the bonding surface of the first member 11 and the other end (left end in the figure) far away. Has been. Thereby, when the 2nd holder 2 with which the 2nd member 12 was mounted | worn was pressed against the 1st member 11, the edge | side edge | side of the side near the 1st member of the 2nd member 12 contacts the 1st member 11 linearly first. When further pressed, the contact surface gradually expands in the side direction of the other end while the second holder 2 is bent. Alternatively, first, the vertex of one end of the side of the second member 12 on the side close to the first member contacts the first member 11 in a dot-like manner, and further pressed, the second holder 2 bends and the contact surface becomes 2 It gradually spreads in the direction. Finally, the entire second member 12 comes into contact with the first member 11. By these, bubbles remaining on the bonding surface can be reduced.

上記板状の第2ホルダは、平面状であっても、第1部材11側に対して凸面状であってもよい。第2ホルダを平面状とした場合には、引張弾性率と厚みの積を好ましくは1×10〜3×10「Pa・m]、さらに好ましくは3×10〜1×10「Pa・m]とすることで、第2部材12を装着した第2ホルダ2を第1部材11に押しつけたとき、第2部材12の全体が一度に第1部材11に接触するのではなく、上記のように順次接触してゆくようにすることが出来る。第2ホルダを、第1部材11側に対して凸面状とすると、第2ホルダ2の引張弾性率と厚みの積が、好ましくは1×10〜1×10「Pa・m]、さらに好ましくは3×10〜3×10「Pa・m]である様なさらに広い範囲で、上記の効果が発揮される。 The plate-like second holder may be planar or convex with respect to the first member 11 side. When the second holder is planar, the product of tensile modulus and thickness is preferably 1 × 10 5 to 3 × 10 6 “Pa · m”, more preferably 3 × 10 5 to 1 × 10 6 “ Pa · m], when the second holder 2 mounted with the second member 12 is pressed against the first member 11, the entire second member 12 does not contact the first member 11 at once, When the second holder is convex with respect to the first member 11 side, the product of the tensile elastic modulus and the thickness of the second holder 2 is preferably The above effect is exhibited in a wider range of 1 × 10 5 to 1 × 10 8 “Pa · m”, more preferably 3 × 10 5 to 3 × 10 7 “Pa · m”.

第2ホルダ2の、第1部材11の貼り合わせ面に対する傾きの程度は、貼り合わせ面の一辺の長さが10cmのとき、第1部材11から遠い側の端に於ける距離Xbと第1部材11に近い側の端に於ける距離Xaとの差(Xb−Xa)が、好ましくは0.3mm以上、さらに好ましくは0.4mm以上、最も好ましくは0.5mm以上であり、また、好ましくは5mm以下、更に好ましくは1.4mm以下、最も好ましくは3mm以下である。但し、上記距離差(Xb−Xa)の好ましい範囲は、上限、下限共に貼り合わせ面の一辺の長さに比例する。上記下限以上とすることにより、貼り合わせ部に残存する気泡の量を減じることが出来、また、上記上限以下とすることにより貼り合わせた際の位置のずれを最小限に抑えられる。   The degree of inclination of the second holder 2 with respect to the bonding surface of the first member 11 is equal to the distance Xb at the end far from the first member 11 when the length of one side of the bonding surface is 10 cm. The difference (Xb−Xa) from the distance Xa at the end closer to the member 11 is preferably 0.3 mm or more, more preferably 0.4 mm or more, and most preferably 0.5 mm or more. Is 5 mm or less, more preferably 1.4 mm or less, and most preferably 3 mm or less. However, the preferable range of the distance difference (Xb−Xa) is proportional to the length of one side of the bonding surface at both the upper and lower limits. By setting it to the above lower limit or more, it is possible to reduce the amount of bubbles remaining in the bonded portion, and by setting it to the upper limit or less, it is possible to minimize displacement of the position when bonded.

本第2態様に於ける第2ホルダ2の厚みは任意であるが、例えば0.01〜10mmが好ましい。第2ホルダ2の柔軟性は、第2部材12を装着して第1部材11に押しつけたとき、該部材の表面や内部に形成された微細な構造が破損したり不都合なほど著しく変形したりすることがなければ任意である。そのため、好適な範囲は第1部材11と第2部材12の硬度、強度、微細な構造の寸法や種類に依存する。一般には、引張弾性率と厚みの積を前記の範囲にすることが好ましい。第2ホルダ2は繰り返し使用するために、使用条件で弾性変形する素材で形成されていることが好ましい。   Although the thickness of the 2nd holder 2 in this 2nd aspect is arbitrary, 0.01-10 mm is preferable, for example. The flexibility of the second holder 2 is that when the second member 12 is mounted and pressed against the first member 11, the fine structure formed on the surface or inside of the member is damaged or deformed remarkably. It is optional if there is nothing to do. Therefore, a suitable range depends on the hardness and strength of the first member 11 and the second member 12, and the size and type of the fine structure. In general, it is preferable to set the product of the tensile elastic modulus and the thickness within the above range. The second holder 2 is preferably formed of a material that is elastically deformed under use conditions in order to be used repeatedly.

第2部材保持機構5については、前記第1態様と同様である。本第2態様のバリエーションとして、第2ホルダを板状ではなく、一方の端が厚く他方の端が薄い柔軟な塊状物で形成することも出来る。この場合には、第2ホルダを第1部材に押しつけ、第2部材の一分が第1部材に接触した後更に押しつけると、塊状の第2ホルダ2は厚い端から薄い端へと順次押しつぶされて変形し、最終的には第2部材12の全体を第1部材11に接触させることが出来る。この場合の第2ホルダ2の素材は、前記第1態様のバリエーションの場合と同様である。
本第2態様の場合も、第2ホルダ2は、前記板状物と本塊状物を併用してもよい。そのような例としては、ゴムやスポンジの塊状部材の上にそれより硬い素材で形成された板状部材が張り付けられた或いは乗せられた構造を例示できる。
The second member holding mechanism 5 is the same as the first aspect. As a variation of the second embodiment, the second holder may be formed of a flexible lump that is not plate-shaped but one end is thick and the other end is thin. In this case, when the second holder is pressed against the first member and a part of the second member is in contact with the first member and further pressed, the massive second holder 2 is sequentially crushed from the thick end to the thin end. Finally, the entire second member 12 can be brought into contact with the first member 11. The material of the second holder 2 in this case is the same as that of the variation of the first aspect.
Also in the case of this 2nd aspect, the 2nd holder 2 may use the said plate-shaped object and this lump-shaped object together. As such an example, a structure in which a plate-like member made of a harder material is attached to or placed on a lump member of rubber or sponge can be exemplified.

[位置検出機構]
本発明の貼り合わせ装置は、前記第1部材11と前記第2部材12の、貼り合わせ面に平行な方向の位置関係を検出する位置検出機構14を有する。検出の方式は任意であるが、光学的検出が好ましく、第1ホルダ1を通して、例えば図6、図7に示したような、第1部材11と第2部材12の位置決めマーク107、108、117、118を観察する方式が好ましい。このような光学的な位置検出機構14は、垂直移動機構15の移動方向と同じ方向から観察する向きに設けることが、正確な位置合わせが出来るため好ましく、かつ、第1部材11の貼り合わせ面に垂直な方向から観察する向きに設けることが好ましい。
その他の位置検出機構14としては、例えば、部材の外周を突き当てる位置決めピンや、部材に穿たれた孔に差し込む位置決めピンのような機械的な位置検出と位置決めを同時に行う機構、電極の導通/非導通や電極間の静電容量を検出する電気的検出機構を例示できる。
[Position detection mechanism]
The bonding apparatus of the present invention includes a position detection mechanism 14 that detects a positional relationship between the first member 11 and the second member 12 in a direction parallel to the bonding surface. Although the detection method is arbitrary, optical detection is preferable, and the positioning marks 107, 108, 117 of the first member 11 and the second member 12 as shown in FIGS. , 118 is preferable. Such an optical position detection mechanism 14 is preferably provided in the direction of observation from the same direction as the movement direction of the vertical movement mechanism 15 because accurate alignment is possible, and the bonding surface of the first member 11 It is preferable to provide in the direction of observation from a direction perpendicular to the direction.
Other position detection mechanisms 14 include, for example, a mechanism that simultaneously performs mechanical position detection and positioning, such as a positioning pin that abuts the outer periphery of the member, or a positioning pin that is inserted into a hole formed in the member, An electrical detection mechanism that detects non-conduction or capacitance between electrodes can be exemplified.

[位置合わせ機構]
本発明の貼り合わせ装置は、第1ホルダ1に保持された第1部材11の前記構造部分と、第2ホルダ2に保持された前記第2部材12の前記構造部分の位置を合わせる位置合わせ機構13を有する。位置合わせ機構13は、前記第1部材11と前記第2部材12の貼り合わせ面に平行な面内で相対的に移動させる位置合わせ機構13が好ましい。図5の例では、位置合わせ機構13と垂直移動機構15を兼ねる機構として、直交する3方向への移動および回転が可能なXYZθ移動ステージ13(15)を使用しているが、位置合わせ機構13は一般には、前記第2ホルダ2を前記貼り合わせ面に平行な面内で、X軸方向(図5の紙面内左右方向とする)、Y軸方向(図5の紙面に対して垂直な方向とする)への平行移動、及び、好ましくはθ方向の回転(図5の紙面内上下方向にとったZ軸回りの回転とする)が可能な機構である。第1部材11と第2部材12の位置合わせ部分が1点である場合はθ方向の移動は不要である。上記のX、Y、θ方向の移動機構は、第1ホルダ1と第2ホルダ2のどちらか一方に設けてもよいし、両方に設けても良いし、第1ホルダと第2ホルダで分担しても良い。
[Positioning mechanism]
The bonding apparatus of the present invention is a positioning mechanism for aligning the position of the structural portion of the first member 11 held by the first holder 1 and the position of the structural portion of the second member 12 held by the second holder 2. 13 The alignment mechanism 13 is preferably an alignment mechanism 13 that relatively moves in a plane parallel to the bonding surface of the first member 11 and the second member 12. In the example of FIG. 5, an XYZθ moving stage 13 (15) capable of moving and rotating in three orthogonal directions is used as a mechanism that serves as both the alignment mechanism 13 and the vertical movement mechanism 15, but the alignment mechanism 13 In general, in the plane parallel to the bonding surface, the second holder 2 is in the X-axis direction (referred to as the left-right direction in the plane of FIG. 5) and Y-axis direction (the direction perpendicular to the plane of FIG. 5). ), And preferably a rotation in the θ direction (rotation around the Z axis in the vertical direction in FIG. 5). When the alignment part of the 1st member 11 and the 2nd member 12 is one point, the movement of (theta) direction is unnecessary. The moving mechanism in the X, Y, and θ directions may be provided in one of the first holder 1 and the second holder 2, or may be provided in both, or shared by the first holder and the second holder. You may do it.

位置検出機構14が、位置決めピンのように位置検出と同時に位置合わせも行う機構である場合には、位置合わせ機構13として、第1ホルダ1や第2ホルダ2を移動させる機構ではなく、第1部材11及び第2部材12を各ホルダに装着する際に、前記X、Y、θ方向に移動させて位置合わせする機構が設けられる。   In the case where the position detection mechanism 14 is a mechanism that performs position detection at the same time as position detection, such as a positioning pin, the position detection mechanism 13 is not a mechanism that moves the first holder 1 or the second holder 2 but a first mechanism. When the member 11 and the second member 12 are mounted on each holder, a mechanism is provided that moves and aligns the X, Y, and θ directions.

位置検出機構と位置合わせ機構による位置合わせの精度(誤差)は、好ましくは0.1μm〜100μm、更に好ましくは0.2μm〜30μm、最も好ましくは0.3μm〜10μmである。かつ該誤差は、第1部材と第2部材に設けられた位置合わせすべき構造部分の寸法の1/10以下とすることが好ましく、1/30以下とすることがさらに好ましい。この範囲とすることで、位置検出機構と位置合わせ機構を簡単で安価な機構で実現でき、かつ、マイクロ流体デバイスなどの貼り合わせ形成物を十分な精度と再現性で得ることができる。   The alignment accuracy (error) by the position detection mechanism and the alignment mechanism is preferably 0.1 μm to 100 μm, more preferably 0.2 μm to 30 μm, and most preferably 0.3 μm to 10 μm. The error is preferably 1/10 or less, and more preferably 1/30 or less, of the size of the structure portion provided on the first member and the second member to be aligned. By setting this range, the position detection mechanism and the alignment mechanism can be realized with a simple and inexpensive mechanism, and a bonded product such as a microfluidic device can be obtained with sufficient accuracy and reproducibility.

[垂直移動機構]
垂直移動機構15は、第1ホルダ1と第2ホルダ2の相互の距離を変化させる機構であり、図5の態様では、紙面内上下方向にとったZ軸方向に第2ホルダを移動させる機構である。該垂直移動機構14により第2ホルダ2に保持された第2部材12を第1ホルダ1に保持された第1部材11に近づけて行き、接触させ、貼りあわることが出来る。垂直移動機構15の移動方向は、第1ホルダ1と第2ホルダ2の相互の距離を変化させる方向であれば任意であるが、位置検出機構14が光学的な検出機構である場合には、位置検出機構14の位置合わせマーク観測方向に垂直な方向であることが好ましく、かつ、第1部材11の貼り合わせ面に垂直な方向であることがさらに好ましい。
垂直方向移動機構14は、第1ホルダ1と第2ホルダ2のどちらを移動させるものであってもよいし、両方を移動させるものであってよい。なお、図5の例では垂直移動機構15は位置合わせ機構13と一体化されており、直交する3方向への移動および回転が可能なXYZθ移動ステージ13(15)を使用している。
[Vertical movement mechanism]
The vertical movement mechanism 15 is a mechanism that changes the distance between the first holder 1 and the second holder 2. In the aspect of FIG. 5, the mechanism that moves the second holder in the Z-axis direction taken in the vertical direction in the drawing. It is. The second member 12 held by the second holder 2 by the vertical movement mechanism 14 can be brought close to the first member 11 held by the first holder 1, brought into contact, and stuck together. The movement direction of the vertical movement mechanism 15 is arbitrary as long as the distance between the first holder 1 and the second holder 2 is changed, but when the position detection mechanism 14 is an optical detection mechanism, A direction perpendicular to the alignment mark observation direction of the position detection mechanism 14 is preferable, and a direction perpendicular to the bonding surface of the first member 11 is more preferable.
The vertical direction moving mechanism 14 may move either the first holder 1 or the second holder 2 or may move both. In the example of FIG. 5, the vertical movement mechanism 15 is integrated with the alignment mechanism 13, and an XYZθ movement stage 13 (15) capable of moving and rotating in three orthogonal directions is used.

[その他の機構]
本発明の貼り合わせ装置の姿勢は任意であり、例えば図5に例示された配置の上下逆であってもよいし、横向きであってもよい。本貼り合わせ装置は、第1部材11と第2部材12が半硬化のエネルギー線硬化性樹脂で形成されている場合には、貼り合わせ後完全に固着させるためのエネルギー線照射を行うエネルギー線照射装置(図示略)を有することも好ましい。
[Other mechanisms]
The posture of the bonding apparatus of the present invention is arbitrary, and may be, for example, upside down in the arrangement illustrated in FIG. In the bonding apparatus, when the first member 11 and the second member 12 are formed of a semi-cured energy beam curable resin, energy beam irradiation for performing energy beam irradiation for completely fixing after bonding is performed. It is also preferable to have a device (not shown).

[マイクロ流体デバイス]
本発明の貼り合わせ装置や貼り合わせ方法で貼り合わせる部材について、マイクロ流体デバイスの例で説明する。本発明により好ましく製造することの出来るマイクロ流体デバイスは、表面に設けられた微細な溝状の流路や、その内部に設けられた微細な空洞状の流路の中で反応や分析を行うデバイスである。マイクロ流体デバイスには、前記流路の他、バルブ機構、ポンプ機構、膜分離機構、抽出機構、吸着機構、空洞中へ吐出するノズル機構、脱気機構、蒸溜機構、多孔質部、検出機構などの種々の微細な機構を形成することにより、その機能と応用範囲を広げることが出来る。このようなマイクロ流体デバイスを使用して、例えば濾過、抽出、反応などの試料の前処理部と、マイクロ・クロマトグラフィー、マイクロ電気泳動などの分離部と、蛍光や可視・紫外吸収などの検出部を一体化し、医療診断、生化学分析、化学分析の方面で微量の試料を分析するマイクロ・トータル・アナリシス・システム(μ−TAS)を構築することが出来る。また、前記微細な流路の内表面に触媒を固定し、反応装置(マイクロリアクター)に応用することも出来る。
[Microfluidic device]
A member to be bonded by the bonding apparatus and the bonding method of the present invention will be described using an example of a microfluidic device. A microfluidic device that can be preferably manufactured according to the present invention is a device that performs a reaction or analysis in a fine groove-like flow path provided on the surface, or a fine hollow-like flow path provided therein. It is. In addition to the above-mentioned flow path, the microfluidic device includes a valve mechanism, a pump mechanism, a membrane separation mechanism, an extraction mechanism, an adsorption mechanism, a nozzle mechanism for discharging into a cavity, a deaeration mechanism, a distillation mechanism, a porous part, a detection mechanism, etc. By forming these various fine mechanisms, the function and application range can be expanded. Using such a microfluidic device, for example, sample pretreatment units such as filtration, extraction, and reaction, separation units such as micro chromatography and micro electrophoresis, and detection units such as fluorescence and visible / ultraviolet absorption Can be integrated, and a micro total analysis system (μ-TAS) for analyzing a small amount of sample in the fields of medical diagnosis, biochemical analysis, and chemical analysis can be constructed. In addition, a catalyst can be fixed to the inner surface of the fine channel and applied to a reaction apparatus (microreactor).

本発明で作製するマイクロ流体デバイスは、内部に空洞状の流路を有するマイクロ流体デバイスであり、平滑な表面αと、その平滑な表面α上に微細な構造部分aを有する第1部材と、やはり平滑な表面βと、その平滑な表面β上に微細な構造部分bを有する、可撓性のある板状又はフィルム状の第2部材とが、表面αと表面βを貼り合わせ面として、微細な構造部分aと微細な構造部分bの位置関係を調整して互いに貼り合わせされた、マイクロ流体デバイスである。   The microfluidic device produced in the present invention is a microfluidic device having a hollow flow path therein, and has a smooth surface α, a first member having a fine structure portion a on the smooth surface α, A smooth plate β and a flexible plate-like or film-like second member having a fine structural portion b on the smooth surface β are bonded with the surface α and the surface β as a bonding surface. This is a microfluidic device in which the positional relationship between the fine structure portion a and the fine structure portion b is adjusted and bonded together.

部材の表面の微細な構造部分a及びbとしては、表面のみに微細な構造部分がある場合と、部材内部の構造が表面まで達している場合とがあり、例えば、他方の部材と積層貼り合わせされることにより空洞状の流路となる溝や凹部、該部材に穿たれた孔、フィルム状部材の一部にU字型の長孔で囲まれて形成された、逆止弁の弁体となるフラップ、濾過膜、該部材の表面の一部に形成された多孔質層等の物理的構造部分や、該部材の表面の一部に固定されたプローブ、該部材の表面の一部に固定された、種々の物質を固定するためのアンカーとなる官能基等の化学的構造部分が上げられる。これらの微細な構造部分が前記第1部材と第2部材にそれぞれ形成される組み合わせは任意であるが、本発明に於いては、特に前記構造部分の一方が、前記の溝、凹部、または孔である場合に効果的であり好ましい。   As the fine structure portions a and b on the surface of the member, there are cases where there is a fine structure portion only on the surface and cases where the structure inside the member reaches the surface, for example, lamination bonding with the other member A valve body of a check valve formed by being surrounded by a U-shaped long hole in a part of a film-like member, a groove or a recess that becomes a hollow flow path, a hole made in the member, A physical structure part such as a flap, a filtration membrane, a porous layer formed on a part of the surface of the member, a probe fixed to a part of the surface of the member, and a part of the surface of the member The chemical structure portion such as a functional group that becomes an anchor for immobilizing various substances that have been immobilized is raised. The combination in which these fine structural parts are respectively formed on the first member and the second member is arbitrary, but in the present invention, in particular, one of the structural parts is the groove, recess, or hole. Is effective and preferable.

このような、位置合わせすべき対象となる微細な構造部分の寸法は任意であるが、その短辺(又は短径)方向の寸法は好ましくは1μm〜5mm、更に好ましくは3μm〜1mm、最も好ましくは5μm〜0.5mmである。この範囲とすることで、本発明の効果が最も発揮される。該微細な構造部分の長辺(又は長径)方向の寸法は任意であり、例えば、該構造が溝である場合の長さ方向の寸法は、マイクロ流体デバイスの最大寸法、例えば10cmであり得る。   The dimension of the fine structure portion to be aligned is arbitrary, but the dimension in the short side (or minor axis) direction is preferably 1 μm to 5 mm, more preferably 3 μm to 1 mm, most preferably. Is 5 μm to 0.5 mm. By setting it as this range, the effect of this invention is exhibited most. The dimension in the long side (or major axis) direction of the fine structure portion is arbitrary. For example, when the structure is a groove, the dimension in the length direction may be the maximum dimension of the microfluidic device, for example, 10 cm.

第1部材11と第2部材12に設ける位置決めマークは、専用のマークであっても良いし、位置合わせする構造部分そのものであってもよい。該位置決めマークの位置は、垂直移動機構15を移動させたときに第1部材11と第2部材12が最初に接触する分部に近い部分とすることが、位置決め精度が高くなり、好ましい。また、2点で位置決めを行う際には、該2つの位置決めマークは、垂直移動機構15を移動させたときに第1部材11と第2部材12の接触面が広がってゆく際の接触/非接触の境界線に略平行に設けることが、位置決め精度が高くなり、好ましい。位置決めが、位置決めピンによるものである場合には、位置決めマークは部材の外周となる。   The positioning mark provided on the first member 11 and the second member 12 may be a dedicated mark or a structure portion itself to be aligned. It is preferable that the position of the positioning mark be close to the portion where the first member 11 and the second member 12 first contact when the vertical movement mechanism 15 is moved, because the positioning accuracy is high. In addition, when positioning is performed at two points, the two positioning marks are in contact / non-contact when the contact surfaces of the first member 11 and the second member 12 expand when the vertical movement mechanism 15 is moved. Providing substantially parallel to the boundary line of contact is preferable because positioning accuracy increases. When the positioning is performed by a positioning pin, the positioning mark is the outer periphery of the member.

第1部材11は任意の形状の部材であるが、板状又はフィルム状であることが好ましい。第1部材11を両面が実質的に平行な板状又はフィルム状とすることにより、本第1部材11を通して光学的に位置合わせすることが容易になる。厚みや形状は任意である。材質も任意であるが、光学的に透明であることが、該第1部材11を通して、光学的に第2部材12の位置を検出できるため好ましい。   Although the 1st member 11 is a member of arbitrary shapes, it is preferable that it is plate shape or film shape. By making the first member 11 into a plate shape or a film shape whose both surfaces are substantially parallel, it becomes easy to optically align through the first member 11. The thickness and shape are arbitrary. Although the material is arbitrary, it is preferable that the material is optically transparent because the position of the second member 12 can be optically detected through the first member 11.

第2部材12は可撓性のある板状又はフィルム状の部材である。第2部材12の可撓性の程度は、曲面状の第2ホルダ2の第2部材装着面に密着して装着でき、かつ、第2ホルダに装着された第2部材12を第1部材11に押しつけて行く工程で破壊することが無ければ、硬度や厚みは任意である。そのためには、第2部材12は、円筒形に曲げたときに破壊しない半径が2[m]以下、好ましくは1[m]以下、さらに好ましくは0.5[m]以下のものである。該半径の下限は実質的にゼロ、即ち角を付けて折り曲げられるものであってよい。第2部材12の厚みは任意であり、例えば1μm〜1cmであり得るが、10μm〜1mmが好ましい。また、第2部材保持機構5により不都合無く保持されるために、引張弾性率と厚みの積が、好ましくは3×10〜3×10「Pa・m]、さらに好ましくは3×10〜3×10「Pa・m]の範囲とする。 The second member 12 is a flexible plate-like or film-like member. The degree of flexibility of the second member 12 can be mounted in close contact with the second member mounting surface of the curved second holder 2, and the second member 12 mounted on the second holder is attached to the first member 11. The hardness and thickness are arbitrary as long as they do not break in the process of pressing against the surface. For this purpose, the second member 12 has a radius that does not break when bent into a cylindrical shape, which is 2 [m] or less, preferably 1 [m] or less, and more preferably 0.5 [m] or less. The lower limit of the radius may be substantially zero, i.e. bendable with a corner. The thickness of the second member 12 is arbitrary, and may be, for example, 1 μm to 1 cm, but is preferably 10 μm to 1 mm. Further, in order to be held without inconvenience by the second member holding mechanism 5, the product of the tensile elastic modulus and the thickness is preferably 3 × 10 2 to 3 × 10 6 “Pa · m”, and more preferably 3 × 10 3. -3 × 10 5 “Pa · m].

第2部材12の材質は任意であるが、上記の可撓性を示す素材として、有機重合体、金属、ガラス、石英などの結晶が好ましく、有機重合体が特に好ましい。勿論、本発明で製造するマイクロ流体デバイスは、前記第1部材11と第2部材12の他に、更に他の部材を積層貼り合わせすることによって作製されるものであっても良い。   The material of the second member 12 is arbitrary, but as the material exhibiting flexibility, crystals such as an organic polymer, metal, glass, and quartz are preferable, and an organic polymer is particularly preferable. Of course, the microfluidic device manufactured by the present invention may be manufactured by laminating and bonding other members in addition to the first member 11 and the second member 12.

[製造方法]
本発明のマイクロ流体デバイスの製造方法は、
(1)本発明の貼り合わせ装置を使用し、
(2)前記第1部材を、前記表面αが前記第2ホルダと対向するように前記第1ホルダに保持させ、
(3)前記第2部材を、前記表面βが前記表面αと対向するように前記第2ホルダの前記第2部材保持面に密着させて保持させ、
(4)前記位置検出機構により、前記第1部材と前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出し、
(5)前記位置合わせ機構により、前記第1部材と前記第2部材を前記貼り合わせ面に平行な面内において位置を合わせ、
(6)前記垂直移動機構により、前記第1ホルダ及び/又は前記第2ホルダを相互の距離を縮める方向に移動させて、前記第1部材と前記第2部材を、前記貼り合わせ面の一部に於いて接触させ、
その後該距離をさらに縮める方向に移動させて、該接触面を漸次広げることにより貼り合わせる。
[Production method]
The manufacturing method of the microfluidic device of the present invention includes:
(1) Using the bonding apparatus of the present invention,
(2) The first member is held by the first holder so that the surface α faces the second holder,
(3) The second member is held in close contact with the second member holding surface of the second holder so that the surface β faces the surface α,
(4) The positional detection mechanism detects a positional relationship between the first member and the second member in a plane parallel to the bonding surface,
(5) By the alignment mechanism, the first member and the second member are aligned in a plane parallel to the bonding surface,
(6) The vertical movement mechanism moves the first holder and / or the second holder in a direction to reduce the mutual distance so that the first member and the second member are part of the bonding surface. In contact,
Thereafter, the distance is moved in the direction of further shrinking, and the contact surfaces are gradually widened to bond together.

位置合わせの精度は、高い方が好ましく、例えば好ましくは0.1〜10μm、更に好ましくは0.1〜3μm、最も好ましくは0.1〜1μmである。本貼り合わせ方法は、本発明の貼り合わせ装置のバリエーションにより、それぞれ好適な製造方法を採ることが出来るが、その方法は前記本発明の貼り合わせ装置の各項に於いて説明したとおりである。   The higher the accuracy of alignment, for example, preferably 0.1 to 10 μm, more preferably 0.1 to 3 μm, and most preferably 0.1 to 1 μm. This bonding method can adopt a suitable manufacturing method depending on variations of the bonding apparatus of the present invention, and the method is as described in each section of the bonding apparatus of the present invention.

本発明の製造方法により貼り合わされた第1部材11と第2部材12は粘着力で固定されているが、さらに強固に貼り合わせさせる場合には、加熱やエネルギー線の照射により半硬化の樹脂の硬化を進めたり、接着剤を硬化させることが出来る。   The first member 11 and the second member 12 bonded together by the manufacturing method of the present invention are fixed with adhesive force. However, in the case of bonding more firmly, the semi-cured resin is heated or irradiated with energy rays. Curing can proceed or the adhesive can be cured.

本発明の貼り合わせ方法は、マイクロ流体デバイスの製造方法に好ましく用いることができる。即ち、前記第1部材又は前記第2部材の少なくとも一方が、表面にまたは表面に達する微細な構造部分が、流路となる該部材の欠損部であるような、マイクロ流体デバイスを構成する部材であり、これらを貼り合わせて空洞状の流路を形成する工程を含むマイクロ流体デバイスの製造方法に好ましく適用できる。   The laminating method of the present invention can be preferably used in a method for producing a microfluidic device. That is, at least one of the first member or the second member is a member constituting a microfluidic device in which a fine structure portion reaching or reaching the surface is a defective portion of the member serving as a flow path. And can be preferably applied to a method of manufacturing a microfluidic device including a step of forming a hollow flow path by bonding them together.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、以下の実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited to the range of a following example.

(実施例1)
本実施例では、本発明における第2ホルダ2の第1態様による貼り合わせ装置を用いたマイクロ流体デバイスの製造方法を示す。
[貼り合わせ装置]
第1ホルダ1は、図1の形状とし、外寸が15cm×15cm×1.5cm、第1部材保持機構3である真空チャックの真空溝は直径8cm、孔4は直径6cmとした。第1ホルダ1は、図4に示したように、真空チャック3面を下向きにして装着した。第1ホルダ1の真空チャック3は、図4に示したように、切り替えバルブ21を経て真空24と大気25に接続した。そして、第1ホルダ1の上方に位置検出機構14として、光学顕微鏡14を2基、紙面奥行き方向に平行に設置した。
Example 1
In this example, a method for manufacturing a microfluidic device using the bonding apparatus according to the first aspect of the second holder 2 of the present invention will be described.
[Lamination device]
The first holder 1 has the shape shown in FIG. 1, the outer dimensions are 15 cm × 15 cm × 1.5 cm, the vacuum groove of the vacuum chuck as the first member holding mechanism 3 has a diameter of 8 cm, and the hole 4 has a diameter of 6 cm. As shown in FIG. 4, the first holder 1 was mounted with the vacuum chuck 3 face down. The vacuum chuck 3 of the first holder 1 was connected to the vacuum 24 and the atmosphere 25 via the switching valve 21 as shown in FIG. Then, two optical microscopes 14 were installed above the first holder 1 as the position detection mechanism 14 in parallel with the depth direction of the paper.

第2ホルダ2は、図3の形状とし、12cm×8cm×1mmの平面状のアクリル樹脂板にレーザー加工機を使用して真空チャック5の真空溝5を形成した。該真空溝5はピッチ1cmの碁盤目状とし、溝幅は約140μm、深さ約150μmである。該2ホルダ2は、真空チャック5面を上向きにし、引張弾性率が約0.5[GPa]のスポンジ製の緩衝材6を介して、2つの止め具7でもってXYZθ方向に移動可能な移動ステージ13(15)に装着した。該移動ステージ13(15)は、位置合わせ機構13と垂直移動機構15の両方の機能を有する物である。   The 2nd holder 2 was made into the shape of FIG. 3, and the vacuum groove | channel 5 of the vacuum chuck 5 was formed in the flat acrylic resin board of 12 cm x 8 cm x 1 mm using the laser processing machine. The vacuum groove 5 has a grid shape with a pitch of 1 cm, the groove width is about 140 μm, and the depth is about 150 μm. The two holders 2 are movable so as to be movable in the XYZθ directions with two stoppers 7 through a cushioning material 6 made of sponge having a tensile elastic modulus of about 0.5 [GPa] with the surface of the vacuum chuck 5 facing upward. Mounted on stage 13 (15). The moving stage 13 (15) has both functions of the alignment mechanism 13 and the vertical moving mechanism 15.

本第2ホルダ2は、引張弾性率が約3[GPa]、「引張弾性率×厚み」の値が約3×10[Pa・m]の、常態では反りのない平面状であって、その中央部を、移動ステージ13(15)に貼り付けられた引張弾性率が約0.5[MPa]のスポンジ製の部材8の上に乗せることにより、弾性的に凸面状にしている。これにより、第2ホルダ2は、両端部に比べて中央部が約1mm凸であるような、円筒の一部である形状とされている。第2ホルダ2の裏面には真空溝5に連絡するフィッティング9を接着した。真空溝5は該フィッティング9から、図4に示したように、切り替えバルブ22を経て真空24と大気25に接続した。 The second holder 2 has a tensile elastic modulus of about 3 [GPa] and a value of “tensile elastic modulus × thickness” of about 3 × 10 6 [Pa · m], and has a flat shape without warping in a normal state. The central portion is elastically convex by placing it on a sponge member 8 having a tensile elastic modulus of about 0.5 [MPa] attached to the moving stage 13 (15). Thereby, the 2nd holder 2 is made into the shape which is a part of cylinder so that the center part may protrude about 1 mm compared with both ends. A fitting 9 connected to the vacuum groove 5 was bonded to the back surface of the second holder 2. The vacuum groove 5 was connected to the vacuum 24 and the atmosphere 25 through the switching valve 22 from the fitting 9 as shown in FIG.

[マイクロ流体デバイスの製造方法]
〔紫外線照射方法〕
本実施例における紫外線照射の方法を以下に示す。
(紫外線ランプ1による照射)
3000Wメタルハライドランプを光源とするアイグラフィックス株式会社製のUE031−353CHC型UV照射装置を用い、365nmにおける紫外線強度が40mW/cmの紫外線を特に指定が無い限り室温、窒素雰囲気中で照射した。
(紫外線ランプ2による照射)
250W高圧水銀ランプを光源とするウシオ電機株式会社製のマルチライト250Wシリーズ露光装置用光源ユニットを用い、365nmにおける紫外線強度が50mW/cmの紫外線を、特に指定が無い限り室温、空気雰囲気中で照射した。
[Microfluidic device manufacturing method]
[Ultraviolet irradiation method]
The method of ultraviolet irradiation in this example is shown below.
(Irradiation with ultraviolet lamp 1)
Using a UE031-353CHC type UV irradiation device manufactured by Eye Graphics Co., Ltd. using a 3000 W metal halide lamp as a light source, ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 were irradiated in a nitrogen atmosphere at room temperature unless otherwise specified.
(Irradiation with ultraviolet lamp 2)
Using a light source unit for multi-light 250W series exposure apparatus manufactured by USHIO INC. Using a 250W high-pressure mercury lamp as a light source, ultraviolet light with an ultraviolet intensity at 365 nm of 50 mW / cm 2 is used at room temperature in an air atmosphere unless otherwise specified. Irradiated.

〔組成物(X)の調製〕
エネルギー線重合性化合物として平均分子量2000の3官能ウレタンアクリレートオリゴマー「ユニディックV−4263」(大日本インキ化学工業株式会社製)70部、ヘキサンジオールジアクリレート「ニューフロンティアHDDA」(第1工業製薬株式会社製)30部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(チバガイギー社製)3部、及び重合遅延剤として2,4−ジフェニル−4−メチル−1−ペンテン(関東化学株式会社製)0.5部を混合して、組成物(X)を調製した。
[Preparation of Composition (X)]
70 parts of trifunctional urethane acrylate oligomer “Unidic V-4263” (Dainippon Ink & Chemicals, Inc.) having an average molecular weight of 2000 as an energy ray polymerizable compound, hexanediol diacrylate “New Frontier HDDA” (Daiichi Kogyo Seiyaku Co., Ltd.) 30 parts), 1 part of 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (manufactured by Ciba Geigy) as a photopolymerization initiator, and 2,4-diphenyl-4-methyl-1-pentene (Kanto) as a polymerization retarder 0.5 parts of Chemical Co., Ltd.) was mixed to prepare composition (X).

〔第1部材の作製〕
10cm×10cm×1mmのアクリル樹脂製の基板101の上に、スピンコーターを用いて組成物(X)を塗工し、流路121、導入路105、流出路106と成す部分、及び2つの位置決めマーク107、108以外の部分にフォトマスクを通して紫外線ランプ2による紫外線照射を40秒照射して組成物(X)を半硬化させ、非照射部分の未硬化の該組成物(X)を50%エタノール水溶液で洗浄除去して、流路121を構成する溝104、導入路105となる溝105、流出路106となる溝106が形成された樹脂層102を形成した。この、基板101と樹脂層102からなる部材を第1部材11とした。
[Production of first member]
The composition (X) is coated on a 10 cm × 10 cm × 1 mm acrylic resin substrate 101 using a spin coater, and the flow passage 121, the introduction passage 105, the portion that forms the outflow passage 106, and two positionings The composition (X) is semi-cured by irradiating the portion other than the marks 107 and 108 with ultraviolet light from the ultraviolet lamp 2 through a photomask for 40 seconds, and the uncured composition (X) in the non-irradiated portion is 50% ethanol. By washing and removing with an aqueous solution, the resin layer 102 in which the groove 104 constituting the flow path 121, the groove 105 serving as the introduction path 105, and the groove 106 serving as the outflow path 106 were formed. This member composed of the substrate 101 and the resin layer 102 was used as the first member 11.

〔第2部材の作製〕
片面がコロナ放電処理された厚さ30μmの2軸延伸ポリプロピレンシート(二村化学株式会社製)を一時的な支持体111として、この上に組成物(X)をスピンコーターを用いて塗工し、紫外線ランプ1により紫外線を40秒照射して、該組成物を半硬化させて樹脂層112とした。
さらに、上記樹脂層112の上に組成物(X)をスピンコーターを用いて塗工し、流路121、導入路115、流出路116と成す部分、及び2つの位置決めマーク117、118以外の部分にフォトマスクを通して紫外線ランプ2による紫外線照射を40秒照射して組成物(X)を半硬化させ、非照射部分の未硬化の該組成物(X)を50%エタノール水溶液で洗浄除去して、流路121を構成する溝114、導入路115となる溝115、第1流出路116となる溝116が形成された樹脂層113を形成した。一時的な支持体111、樹脂層112及び樹脂層113からなる部材を第2部材12とした。本第2部材の引張弾性率は約2.5[GPa」、「引張弾性率×厚み」の値は約7.5×10[Pa・m」である。
[Production of second member]
A biaxially stretched polypropylene sheet (manufactured by Nimura Chemical Co., Ltd.) having a thickness of 30 μm, one side of which was subjected to corona discharge treatment, was used as a temporary support 111, and the composition (X) was coated thereon using a spin coater, The composition was semi-cured by irradiating ultraviolet rays from the ultraviolet lamp 1 for 40 seconds to form a resin layer 112.
Further, the composition (X) is applied onto the resin layer 112 by using a spin coater, and the flow path 121, the introduction path 115, the outflow path 116, and the portions other than the two positioning marks 117 and 118 are formed. The composition (X) is semi-cured by irradiating with ultraviolet light from the ultraviolet lamp 2 through a photomask for 40 seconds, and the uncured composition (X) in the non-irradiated part is washed and removed with a 50% aqueous ethanol solution. The resin layer 113 in which the groove 114 constituting the flow path 121, the groove 115 serving as the introduction path 115, and the groove 116 serving as the first outflow path 116 was formed. A member composed of the temporary support 111, the resin layer 112, and the resin layer 113 was used as the second member 12. The tensile modulus of the second member is about 2.5 [GPa], and the value of “tensile modulus × thickness” is about 7.5 × 10 4 [Pa · m].

〔貼り合わせ〕
上記第1部材11を溝形成面を下側にして第1ホルダ1に真空チャック3で保持し、また上記第2部材12を、溝形成面を上側にして第2ホルダ2に真空チャック5で保持し、XYZθ移動ステージ13(15)を上昇(Z軸方向に移動)させて、中央部に於ける両部材間の距離を1mmに調節した。第2ホルダ2の上方から二つの位置検出機構(光学顕微鏡)14で位置決めマーク107、108、117、118を観察しながら位置調節ステージのX、Y、θを調節して、位置決めマーク107と117、及び位置決めマーク108と118の位置を合わせた。
[Lamination]
The first member 11 is held on the first holder 1 by the vacuum chuck 3 with the groove forming surface facing downward, and the second member 12 is held on the second holder 2 by the vacuum chuck 5 with the groove forming surface facing upward. The XYZθ moving stage 13 (15) was lifted (moved in the Z-axis direction) to adjust the distance between the two members at the center to 1 mm. While observing the positioning marks 107, 108, 117, 118 from above the second holder 2 with the two position detection mechanisms (optical microscopes) 14, the X, Y, θ of the position adjustment stage is adjusted to determine the positioning marks 107, 117. , And the positioning marks 108 and 118 are aligned.

XYZθ移動ステージ13(15)を上昇させると、第2部材12の中央部が、図5の紙面に垂直な方向の線状に第1部材11に接触した。XYZθ移動ステージ13(15)をさらに上昇させると、第2ホルダ2は平面に近づくように変形しながら、第2部材12は中央部から両端方向へと、前記接触した線幅が増すように接触面が広がり、最終的には、第2部材12の全面が第1部材11に接触した。   When the XYZθ moving stage 13 (15) was raised, the central portion of the second member 12 contacted the first member 11 in a line shape in a direction perpendicular to the paper surface of FIG. When the XYZθ moving stage 13 (15) is further raised, the second holder 2 is deformed so as to approach a flat surface, and the second member 12 is contacted so that the line width of the contact increases from the center to both ends. The surface widened, and finally, the entire surface of the second member 12 contacted the first member 11.

次いで、第2ホルダ2の真空チャック5を解除し、XYZθ移動ステージ13(15)を下降させ、第1ホルダ1の真空チャック3を解除して、第1部材11と第2部材12が粘着力により仮に固着しているマイクロ流体デバイス前駆体を得た。   Next, the vacuum chuck 5 of the second holder 2 is released, the XYZθ moving stage 13 (15) is lowered, the vacuum chuck 3 of the first holder 1 is released, and the first member 11 and the second member 12 have adhesive strength. Thus, a microfluidic device precursor temporarily fixed was obtained.

〔固着、及びその他の工程〕
紫外線照射装置(図示略)を用いて60秒間紫外線を照射してエネルギー線硬化性組成物(X)を完全硬化させ、第1部材11と第2部材12を完全に固着した。
その後、第2部材12から一時的な支持体111を剥離除去し、導入路105、流出路106、導入路115、流出路116の各端部において、基板101側からドリルでもって穴を開けて、導入口109、流出口110、導入口119、流出口120を形成し、図8に示されたようなマイクロ流体デバイスを得た。
得られたマイクロ流体デバイスは、第1部材11の溝104と第2部材12の溝114が1μm以下の誤差で完全に重なり合い、毛細管状の流路121が形成されていた。
[Fixing and other processes]
The energy beam curable composition (X) was completely cured by irradiating ultraviolet rays for 60 seconds using an ultraviolet irradiation device (not shown), and the first member 11 and the second member 12 were completely fixed.
Thereafter, the temporary support 111 is peeled and removed from the second member 12, and a hole is drilled from the substrate 101 side at each end of the introduction path 105, the outflow path 106, the introduction path 115, and the outflow path 116. The inlet 109, the outlet 110, the inlet 119, and the outlet 120 were formed to obtain a microfluidic device as shown in FIG.
In the obtained microfluidic device, the groove 104 of the first member 11 and the groove 114 of the second member 12 were completely overlapped with an error of 1 μm or less, and a capillary channel 121 was formed.

本発明の貼り合わせ装置の第1ホルダの(a)平面図および(b)A部断面図である。It is (a) top view and (b) A section sectional drawing of the 1st holder of the bonding apparatus of this invention. 本発明の貼り合わせ装置の第1態様の第2ホルダが、位置合わせ装置上に装着された状態を示す(a)平面図および(b)A部断面図である。It is (a) top view and (b) A section sectional view showing the state where the 2nd holder of the 1st mode of the pasting device of the present invention was equipped on the alignment device. 本発明の貼り合わせ装置の第1態様の第2ホルダが、位置合わせ装置上に装着された状態を示す(a)平面図および(b)A部断面図である。It is (a) top view and (b) A section sectional view showing the state where the 2nd holder of the 1st mode of the pasting device of the present invention was equipped on the alignment device. 本発明の貼り合わせ装置の第2態様の第2ホルダが、位置合わせ装置上に装着された状態を示す(a)平面図および(b)A部断面図である。It is the (a) top view and (b) A section sectional view showing the state where the 2nd holder of the 2nd mode of the pasting device of the present invention was equipped on the positioning device. 本発明の貼り合わせ装置の、配管模式図を含む正面図模式図である。It is a front view schematic diagram including the piping schematic diagram of the bonding apparatus of this invention. 本発明で作製するマイクロ流体デバイスの第1部材の(a)平面図模式図および(b)側面図模式図である。It is the (a) top view schematic diagram and (b) side view schematic diagram of the 1st member of the microfluidic device produced by this invention. 本発明で作製するマイクロ流体デバイスの第2部材の(a)平面図模式図および(b)側面図模式図である。It is the (a) top view schematic diagram and (b) side view schematic diagram of the 2nd member of the microfluidic device produced by this invention. 本発明で作製するマイクロ流体デバイスの(a)平面図模式図および(b)側面図模式図である。It is the (a) top view schematic diagram and (b) side view schematic diagram of the microfluidic device produced by this invention.

符号の説明Explanation of symbols

1 第1ホルダ
2 第2ホルダ
3 第1部材保持機構(真空チャック、真空溝)
4 孔
5 第2部材保持機構(真空チャック、真空溝)
6、8 多孔質体
7 留め具
11 第1部材
12 第2部材
13 位置合わせ機構(XYZθ移動ステージ)
14 位置検出機構(光学顕微鏡)
15 垂直移動機構(XYZθ移動ステージ)
21、22、23 切り替えバルブ
24 真空
25 大気
101 基板
102、112、113 樹脂層
104、114 流路となる溝
105、115 流入路(溝)
106、116 流出路(溝)
107、108、117、118 位置決めマーク
111 一時的な支持体
109、119 流入口
110、120 抽出口
121 流路
DESCRIPTION OF SYMBOLS 1 1st holder 2 2nd holder 3 1st member holding mechanism (vacuum chuck, vacuum groove)
4 hole 5 second member holding mechanism (vacuum chuck, vacuum groove)
6, 8 Porous body 7 Fastener 11 First member 12 Second member 13 Positioning mechanism (XYZθ moving stage)
14 Position detection mechanism (optical microscope)
15 Vertical movement mechanism (XYZθ movement stage)
21, 22, 23 Switching valve 24 Vacuum 25 Air 101 Substrate 102, 112, 113 Resin layer 104, 114 Groove 105, 115 that becomes the flow path (groove)
106,116 Outflow channel (groove)
107, 108, 117, 118 Positioning mark 111 Temporary support body 109, 119 Inlet 110, 120 Extraction port 121 Flow path

Claims (7)

平滑な表面αと該平滑な表面α上に微細な構造部分aとを有する第1部材と、平滑な表面βと該平滑な表面β上に微細な構造部分bとを有し、更に可撓性を有する板状又はフィルム状の第2部材とを、
前記表面αと前記表面βを貼り合わせ面として、前記微細な構造部分aと前記微細な構造部分bの位置関係を調整して貼り合わせるための貼り合わせ装置であって、
(1)前記第1部材を保持する機構を有する第1ホルダと、
(2)前記第1ホルダに対向し、前記第2部材を保持する第2部材保持面を有する第2ホルダと、
(3)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出する位置検出機構と
(4)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内における位置を調整する位置合わせ機構と
(5)前記第1ホルダ及び/又は前記第2ホルダを前記貼り合わせ面に略垂直な方向に移動させて前記第1部材と第2部材を貼り合わせることの出来る垂直移動機構
とを有し、
(6)前記第2ホルダが可撓性のある素材で形成されており、かつ、
(7)前記第2ホルダの前記第2部材保持面が、凸曲面であるか、前記第1ホルダに保持された前記第1部材の貼り合わせ面に対して非平行な平面であり、
(8)前記垂直移動機構により前記第1ホルダ及び/又は前記第2ホルダを相互の距離を縮める方向に移動させた時には、前記第1部材と前記第2部材が、先ず前記貼り合わせ面の一部に於いて接触し、さらなる移動により第2ホルダが変形して、該接触面が広がることにより貼り合わされる
ことを特徴とする貼り合わせ装置。
A first member having a smooth surface α and a fine structure portion a on the smooth surface α, a smooth surface β and a fine structure portion b on the smooth surface β, and further flexible. A plate-like or film-like second member having properties,
A bonding apparatus for adjusting and bonding the positional relationship between the fine structure portion a and the fine structure portion b using the surface α and the surface β as a bonding surface;
(1) a first holder having a mechanism for holding the first member;
(2) a second holder having a second member holding surface facing the first holder and holding the second member;
(3) A position detection mechanism for detecting a positional relationship between the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface. (4) an alignment mechanism that adjusts the position of the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface; 5) a vertical movement mechanism capable of moving the first holder and / or the second holder in a direction substantially perpendicular to the bonding surface to bond the first member and the second member;
(6) The second holder is made of a flexible material, and
(7) The second member holding surface of the second holder is a convex curved surface or a plane non-parallel to the bonding surface of the first member held by the first holder,
(8) When the first holder and / or the second holder are moved in the direction of reducing the mutual distance by the vertical movement mechanism, the first member and the second member are first placed on one side of the bonding surface. A bonding apparatus characterized in that the contact is made at the portion, the second holder is deformed by further movement, and the bonding is performed by spreading the contact surface.
前記第2ホルダが可撓性のある板状である請求項1に記載の貼り合わせ装置。 The bonding apparatus according to claim 1, wherein the second holder has a flexible plate shape. 前記第2ホルダの前記第2部材を保持する機構が真空チャックである請求項1又は2に記載の貼り合わせ装置。 The bonding apparatus according to claim 1, wherein the mechanism for holding the second member of the second holder is a vacuum chuck. 前記第2ホルダの前記第2部材を保持する機構が粘着力によるものである請求項1又は2に記載の貼り合わせ装置。 The bonding apparatus according to claim 1 or 2, wherein a mechanism for holding the second member of the second holder is based on an adhesive force. (1)請求項1〜4のいずれか1項に記載の貼り合わせ装置を使用し、
(2)前記第1部材を、前記表面αが前記第2ホルダと対向するように前記第1ホルダに保持させ、
(3)前記第2部材を、前記表面βが前記表面αと対向するように前記第2ホルダの前記第2部材保持面に密着させて保持させ、
(4)前記位置検出機構により、前記第1部材と前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出し、
(5)前記位置合わせ機構により、前記第1部材と前記第2部材を前記貼り合わせ面に平行な面内において位置を合わせ、
(6)前記垂直移動機構により、前記第1ホルダ及び/又は前記第2ホルダを相互の距離を縮める方向に移動させて、前記第1部材と前記第2部材を、前記貼り合わせ面の一部に於いて接触させ、
その後さらに距離を縮める方向に移動させて、該接触面を広げることにより貼り合わせる
ことを特徴とする貼り合わせ方法。
(1) Use the laminating apparatus according to any one of claims 1 to 4,
(2) The first member is held by the first holder so that the surface α faces the second holder,
(3) The second member is held in close contact with the second member holding surface of the second holder so that the surface β faces the surface α,
(4) The positional detection mechanism detects a positional relationship between the first member and the second member in a plane parallel to the bonding surface,
(5) By the alignment mechanism, the first member and the second member are aligned in a plane parallel to the bonding surface,
(6) The vertical movement mechanism moves the first holder and / or the second holder in a direction to reduce the mutual distance so that the first member and the second member are part of the bonding surface. In contact,
Then, the bonding method is characterized in that the bonding is performed by further moving the distance in a direction to reduce the distance and widening the contact surface.
前記第1ホルダ及び/又は前記第2ホルダを相互の距離を縮める方向に移動させて、前記第1部材と前記第2部材を、前記貼り合わせ面の中央部に於いて略線状に接触させ、
その後、さらに前記第1ホルダと前記第2ホルダの相互の距離を縮めることにより、
前記第1部材及び前記第2部材の両端部方向に、接触部分と非接触部分の境界を略線状に保ちながら、前記略線状の接触部分を面状の接触部分として拡大する請求項5に記載の貼り合わせ方法。
The first holder and / or the second holder are moved in a direction to reduce the mutual distance so that the first member and the second member are brought into contact with each other in a substantially linear manner at the center portion of the bonding surface. ,
Thereafter, by further reducing the distance between the first holder and the second holder,
6. The substantially linear contact portion is enlarged as a planar contact portion while maintaining the boundary between the contact portion and the non-contact portion in a substantially linear shape in the direction of both ends of the first member and the second member. The laminating method as described in 4.
前記第1部材及び前記第2部材がマイクロ流体デバイスを構成する部材であり、前記第1部材及び前記第2部材の少なくとも一方の表面に形成された微細な構造部分が、流路となる欠損部である請求項5又は6に記載の貼り合わせ方法。
The first member and the second member are members constituting a microfluidic device, and a fine structure portion formed on at least one surface of the first member and the second member serves as a flow path. The bonding method according to claim 5 or 6.
JP2006137640A 2006-05-17 2006-05-17 Method and device for affixing together Pending JP2007307644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137640A JP2007307644A (en) 2006-05-17 2006-05-17 Method and device for affixing together

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137640A JP2007307644A (en) 2006-05-17 2006-05-17 Method and device for affixing together

Publications (1)

Publication Number Publication Date
JP2007307644A true JP2007307644A (en) 2007-11-29

Family

ID=38840948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137640A Pending JP2007307644A (en) 2006-05-17 2006-05-17 Method and device for affixing together

Country Status (1)

Country Link
JP (1) JP2007307644A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2066018A2 (en) 2007-11-28 2009-06-03 JTEKT Corporation Motor control device
WO2009125757A1 (en) * 2008-04-11 2009-10-15 コニカミノルタオプト株式会社 Microchip and method for manufacturing microchip
JP2010089240A (en) * 2008-10-10 2010-04-22 Fuji Xerox Co Ltd Article forming method and warped member forming apparatus
JP2010167413A (en) * 2009-01-23 2010-08-05 Millipore Corp Method for providing circuit for biological liquid and obtained circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2066018A2 (en) 2007-11-28 2009-06-03 JTEKT Corporation Motor control device
WO2009125757A1 (en) * 2008-04-11 2009-10-15 コニカミノルタオプト株式会社 Microchip and method for manufacturing microchip
CN101999078A (en) * 2008-04-11 2011-03-30 柯尼卡美能达精密光学株式会社 Microchip and method for manufacturing microchip
JP2010089240A (en) * 2008-10-10 2010-04-22 Fuji Xerox Co Ltd Article forming method and warped member forming apparatus
JP2010167413A (en) * 2009-01-23 2010-08-05 Millipore Corp Method for providing circuit for biological liquid and obtained circuit

Similar Documents

Publication Publication Date Title
JP4998462B2 (en) Manufacturing method of resin composite molded body
US7220334B2 (en) Method of manufacturing microdevice having laminated structure
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
CN102197470A (en) Method of manufacturing wafer laminated body, device of manufacturing wafer laminated body, wafer laminated body, method of peeling support body, and method of manufacturing wafer
JP2003156502A (en) Assembly microchip using breadboard for fluid microchip
US8246774B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
JP2005257283A (en) Microchip
US20170120026A1 (en) Method of manufacturing sheet
JP2007307644A (en) Method and device for affixing together
Vézy et al. Simple method for reversible bonding of a polydimethylsiloxane microchannel to a variety of substrates
US20180028459A1 (en) Method of producing transdermal absorption sheet
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
US20100207301A1 (en) Method of forming fine channel using electrostatic attraction and method of forming fine structure using the same
JP4313682B2 (en) Method for bonding PDMS substrate to other synthetic resin substrate and method for manufacturing microchip
JP2007307643A (en) Method and device for affixing together
KR101373362B1 (en) Apparatus for manufacturing a nano pattern structure
WO2013129096A1 (en) Energy ray curable hydrophilic adhesive composition, adhesive sheet and hydrophilic structure
JP2004058214A (en) Channel connecting method, member for channel connection, microfluidic device, and connecting structure of microfluidic device
JP2004073995A (en) Method for controlling flow rate, micro fluid device, and apparatus for controlling flow rate
KR20160145599A (en) Method and device for embossing a nanostructure
US20120020835A1 (en) Microchip
WO2009125757A1 (en) Microchip and method for manufacturing microchip