JP2006134637A - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP2006134637A
JP2006134637A JP2004320415A JP2004320415A JP2006134637A JP 2006134637 A JP2006134637 A JP 2006134637A JP 2004320415 A JP2004320415 A JP 2004320415A JP 2004320415 A JP2004320415 A JP 2004320415A JP 2006134637 A JP2006134637 A JP 2006134637A
Authority
JP
Japan
Prior art keywords
ceramic
conductive paste
powder
site element
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004320415A
Other languages
Japanese (ja)
Other versions
JP4609039B2 (en
Inventor
Kiyoshi Nakano
清 中野
Yoshihiro Goto
賀弘 後藤
Harunobu Sano
晴信 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004320415A priority Critical patent/JP4609039B2/en
Publication of JP2006134637A publication Critical patent/JP2006134637A/en
Application granted granted Critical
Publication of JP4609039B2 publication Critical patent/JP4609039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein when an internal electrode of a laminated ceramic component is formed using a conductive paste containing base-metal powder to whose surface zirconia oxide adheres, the zirconia remains in a laminated body even after baking the laminated body to be fixed to a ceramic layer, therefore, an another problem that composition of the ceramic layer changes to affect a property occurs. <P>SOLUTION: Conductive metal powder wherein the B-site element and/or the B-site element compound of perovskite ceramics adhered to the base-metal powder and the conductive paste containing the ceramic powder wherein the A site element is excessive than a stoichiometric ratio of the perovskite ceramics are used to form a conductor film for an internal electrode of the ceramic electronic component etc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、セラミック電子部品の導体膜形成に用いられる導電性ペーストに関するものである。   The present invention relates to a conductive paste used for forming a conductor film of a ceramic electronic component.

セラミック電子部品の一例としての積層コンデンサは、一般的に以下のように製造される。   A multilayer capacitor as an example of a ceramic electronic component is generally manufactured as follows.

まず、誘電体セラミック原料を含むセラミックグリーンシートが用意される。誘電体セラミック原料としては、例えば、BaTiO3 を主成分とするものが用いられる。 First, a ceramic green sheet containing a dielectric ceramic raw material is prepared. As the dielectric ceramic raw material, for example, a material mainly composed of BaTiO 3 is used.

次に、所定のセラミックグリーンシートの表面に、導電性ペーストによって所望のパターンの内部電極が形成される。   Next, an internal electrode having a desired pattern is formed on the surface of a predetermined ceramic green sheet with a conductive paste.

次に、内部電極が形成されたシートを含む複数のセラミックグリーンシートが積層、熱圧着され、生の積層体が作製される。   Next, a plurality of ceramic green sheets including the sheet on which the internal electrodes are formed are laminated and thermocompression bonded to produce a raw laminate.

次に、この生の積層体は脱バインダーのために加熱が行なわれ、続いて焼成されて、焼結積層体が得られる。この焼結積層体は、上述したセラミックグリーンシートによって与えられる複数のセラミック層を備える積層構造を有し、焼結積層体の内部には、内部電極がセラミック層を介して静電容量を生じさせるように配置されている。   Next, this raw laminate is heated for debinding and subsequently fired to obtain a sintered laminate. This sintered laminated body has a laminated structure including a plurality of ceramic layers provided by the above-described ceramic green sheet, and internal electrodes generate capacitance through the ceramic layer in the sintered laminated body. Are arranged as follows.

次いで、焼結積層体の端面に、特定の内部電極が電気的に接続されるように外部電極が形成される。このようにして、積層コンデンサが完成される。   Next, external electrodes are formed on the end surfaces of the sintered laminate so that specific internal electrodes are electrically connected. In this way, the multilayer capacitor is completed.

従来、この積層コンデンサの内部電極はPdを用いて形成されてきたが、近年のPdの高騰の影響を受けて、安価なNi,Cu等の卑金属を用いることが一般的となっている。しかしながら、このような卑金属は脱バインダーのため空気中で加熱すると酸化が進むため、意図するサイズより膨張してしまうこととなる。その結果、デラミネーションやクラックが発生する可能性が生じる。   Conventionally, the internal electrodes of this multilayer capacitor have been formed using Pd. However, due to the recent rise in Pd, it is common to use inexpensive base metals such as Ni and Cu. However, since such a base metal is debindered and heated in the air, oxidation proceeds and the base metal expands beyond the intended size. As a result, delamination and cracks may occur.

また、セラミックグリーンシートと導電性ペーストの焼成時の熱収縮温度曲線は異なり、一般的には導電性ペーストの方がより低温から収縮が始まる。この収縮開始温度差の影響を受けて、焼成時に積層体の変形が発生する。   Moreover, the heat shrink temperature curves at the time of firing of the ceramic green sheet and the conductive paste are different, and in general, the conductive paste starts shrinking at a lower temperature. Under the influence of this shrinkage start temperature difference, the laminate is deformed during firing.

このような酸化膨張の問題や変形の問題を解消するものとして、特許文献1がある。特許文献1では、ジルコニアやチタンの酸化物を表面に付着させたNi粉末を導電性ペーストに用いる発明が開示されている。
特開2000−63901号
Japanese Patent Application Laid-Open No. H10-228707 discloses a solution to such problems of oxidative expansion and deformation. Patent Document 1 discloses an invention in which Ni powder in which an oxide of zirconia or titanium is attached to a surface is used as a conductive paste.
JP 2000-63901 A

この特許文献1の導電性ペーストを用いると、Ni粉末表面が酸素と接する面積が減り、酸化膨張は抑制されるので、デラミネーションやクラックが発生する可能性は低減される。また、Ni粒子同士のネッキングが、付着しているジルコニア等により阻害されるため収縮開始が遅くなり、つまり、セラミックグリーンシートの収縮開始温度により近づくことになり、焼成時に起こり得る積層体の変形も抑制される。   When the conductive paste of Patent Document 1 is used, the area where the Ni powder surface is in contact with oxygen is reduced and oxidative expansion is suppressed, so that the possibility of delamination and cracks is reduced. In addition, since the necking between Ni particles is hindered by adhering zirconia or the like, the shrinkage start is delayed, that is, closer to the shrinkage start temperature of the ceramic green sheet, and deformation of the laminate that may occur during firing also occurs. It is suppressed.

しかしながら、特許文献1では、本来は内部電極の形成に必要としない材料であるジルコニアを導電性ペースト内に含有させており、このジルコニアは積層体の焼成が終わった後も積層体内部に留まり、セラミック層に固着することになる。このため、焼成後のセラミック層はジルコニアの影響を受けて化学量論比(ストイキオメトリー)にずれが生じ、温度特性等に影響を与えるという別の問題が生じることになる。   However, in Patent Document 1, zirconia, which is a material that is not originally required for the formation of the internal electrode, is contained in the conductive paste, and this zirconia remains inside the laminated body after the laminated body is fired. It will stick to the ceramic layer. For this reason, the ceramic layer after firing is affected by zirconia, causing a shift in the stoichiometric ratio (stoichiometry), which causes another problem of affecting temperature characteristics and the like.

そこで、本発明の目的は、上述の課題を解決できる導電性ペーストを提供することにある。   Then, the objective of this invention is providing the electrically conductive paste which can solve the above-mentioned subject.

上記の課題を解決すべく請求項1に係る導電性ペーストは、一般式ABO3で表されるペロブスカイト系セラミックを主成分とするセラミック層と導体膜を備えるセラミック電子部品の前記導体膜の形成に用いられ、卑金属粉末に、前記ペロブスカイト系セラミックのBサイト元素および/またはBサイト元素化合物が付着した導電性金属粉末と、前記ペロブスカイト系セラミックの化学量論比よりAサイト元素が過剰であるセラミック粉末を含むことを特徴とする。 In order to solve the above problems, the conductive paste according to claim 1 is used for forming the conductive film of a ceramic electronic component comprising a ceramic layer mainly composed of a perovskite ceramic represented by the general formula ABO 3 and a conductive film. A conductive metal powder in which a B-site element and / or a B-site element compound of the perovskite ceramic is attached to a base metal powder, and a ceramic powder in which the A-site element is excessive from the stoichiometric ratio of the perovskite ceramic. It is characterized by including.

また、請求項2に係る発明は、請求項1に係る導電性ペーストを前提とし、前記卑金属粉末に付着しているBサイト元素のモル量と、前記セラミック粉末の化学量論比より多く含まれているAサイト元素のモル量とが実質的に同一であることを特徴とする。   Further, the invention according to claim 2 is based on the conductive paste according to claim 1, and is included in a larger amount than the stoichiometric ratio of the molar amount of the B site element adhering to the base metal powder and the ceramic powder. The molar amount of the A-site element is substantially the same.

また、請求項3に係る発明は、請求項1または請求項2に記載の発明に係る導電性ペーストを前提とし、前記Aサイト元素はCa,Baから選ばれる少なくとも1種であり、前記Bサイト元素はTi,Zrから選ばれる少なくとも1種であることを特徴とする、
また、請求項4に係る発明は、請求項1から請求項3のいずれかに記載の発明に係る導電性ペーストを前提とし、前記卑金属粉末の量に対し、付着している前記Bサイト元素量の割合が0.1wt%以上3wt%以下の範囲内であることを特徴とする。
The invention according to claim 3 is based on the conductive paste according to claim 1 or 2, wherein the A site element is at least one selected from Ca and Ba, and the B site. The element is at least one selected from Ti and Zr,
Further, the invention according to claim 4 is based on the conductive paste according to any one of claims 1 to 3, and the amount of the B site element adhered to the amount of the base metal powder. Is within the range of 0.1 wt% or more and 3 wt% or less.

本発明の導電性ペーストは、卑金属粉末に、ペロブスカイト系セラミックのBサイト元素および/またはBサイト元素化合物が付着した導電性金属粉末を含んでいることから、導体膜の酸化膨張の問題や焼成時に発生する変形の問題に対しては従来と同様の効果を発揮することができる。これに加え、本発明では、ペロブスカイト系セラミックの化学量論比よりAサイト元素が過剰であるセラミック粉末も含んでいる。このため、セラミック粉末の化学量論比より多く含まれているAサイト元素と上述のBサイト元素とが焼成時に反応し、セラミック層と同等の組成の化合物がセラミック層に固着することになる。したがって、上述の効果を発揮しつつ、かつセラミック層の特性にも実質的に影響を与えることはない。   Since the conductive paste of the present invention contains the conductive metal powder in which the B-site element and / or the B-site element compound of the perovskite ceramic is attached to the base metal powder, there is a problem of oxidative expansion of the conductor film or during firing. The effect similar to the conventional one can be exhibited with respect to the problem of the generated deformation. In addition to this, the present invention also includes a ceramic powder in which the A-site element is excessive from the stoichiometric ratio of the perovskite ceramic. For this reason, the A-site element contained in a larger amount than the stoichiometric ratio of the ceramic powder reacts with the above-mentioned B-site element during firing, and a compound having the same composition as the ceramic layer is fixed to the ceramic layer. Therefore, the above-described effects are exhibited and the characteristics of the ceramic layer are not substantially affected.

図1は、本発明の導電性ペーストを用いた積層コンデンサ10を図解的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a multilayer capacitor 10 using the conductive paste of the present invention.

積層コンデンサ10は、積層体11を備えている。積層体11は、積層される複数の誘電体セラミック層1と、複数の誘電体セラミック層1間の特定の界面に沿ってそれぞれ形成される複数の内部電極2,3とをもって構成される。この誘電体セラミック層1は、一般式ABO3で表されるペロブスカイト系セラミックを主成分としている。 The multilayer capacitor 10 includes a multilayer body 11. The multilayer body 11 includes a plurality of dielectric ceramic layers 1 to be laminated, and a plurality of internal electrodes 2 and 3 that are respectively formed along a specific interface between the plurality of dielectric ceramic layers 1. The dielectric ceramic layer 1 is mainly composed of a perovskite ceramic represented by the general formula ABO 3 .

内部電極2,3は、積層体11の外表面にまで到達するように形成されるが、積層体11の一方の端面4にまで引き出される内部電極2と、他方の端面5にまで引き出される内部電極3とが、積層体11の内部において交互に配置されている。   The internal electrodes 2 and 3 are formed so as to reach the outer surface of the multilayer body 11, but the internal electrode 2 that is led out to one end face 4 of the multilayer body 11 and the inner part that is led out to the other end face 5. The electrodes 3 are alternately arranged inside the stacked body 11.

また、積層体11の外表面上であって、端面4,5上には、外部電極6,7が形成され、内部電極2,3にそれぞれ接続されている。   Further, external electrodes 6 and 7 are formed on the outer surface of the laminate 11 and on the end surfaces 4 and 5, and are connected to the internal electrodes 2 and 3, respectively.

以下の実施例においては、成分の異なる複数の導電性ペーストの試料を作製し、それらを用いて積層コンデンサ10の内部電極2,3を形成し、静電容量を計測する等の各種評価を行なった。   In the following examples, a plurality of conductive paste samples having different components are prepared, and the internal electrodes 2 and 3 of the multilayer capacitor 10 are formed using them, and various evaluations such as measurement of capacitance are performed. It was.

本実施例では、セラミック層の主原料に、一般式ABO3で表されるペロブスカイト系セラミックのCaZrO3(ジルコン酸カルシウム)を用いた。
(1)試料の作製
まず、上記セラミック原料を用いて公知の方法でセラミックグリーンシートを作製した。グリーンシート段階での厚みは、焼成後に3μmとなるよう設定した。
In this example, CaZrO 3 (calcium zirconate) of a perovskite ceramic represented by the general formula ABO 3 was used as the main raw material of the ceramic layer.
(1) Preparation of sample First, the ceramic green sheet was produced by the well-known method using the said ceramic raw material. The thickness at the green sheet stage was set to 3 μm after firing.

次に、内部電極形成用の導電性ペーストを作製した。この導電性ペーストは、導電性金属粉末とセラミック粉末の共材を有機ビヒクル中に混ぜたものである。   Next, a conductive paste for forming internal electrodes was produced. This conductive paste is a mixture of a conductive metal powder and a ceramic powder mixed in an organic vehicle.

導電性金属粉末の作製方法であるが、まず、液相還元法によって平均粒子径が0.2μmのNi粉末100gを作製し、純水1000mLと混合、攪拌し、均一分散させた。この攪拌中、1mol/Lの濃度に調整したZrOCl2水溶液と1mol/Lの濃度に調整したNaOH水溶液を、それぞれ体積比が1対2になるような滴下速度で滴下させてZr(OH)4をNi粉末の表面に付着させた。その後、洗浄、粉砕した後に乾燥し、Zr粉末が表面に付着したNi粉末を得た。なお、上述のZrOCl2水溶液の滴下量を調整することで、Ni粉末の量に対する付着したZrの量の割合が0wt%、0.1wt%、0.3wt%、1.5wt%、3.0wt%、5.0wt%の6種類の粉末を作製した。 As a method for producing a conductive metal powder, first, 100 g of Ni powder having an average particle size of 0.2 μm was produced by a liquid phase reduction method, mixed with 1000 mL of pure water, stirred, and uniformly dispersed. During this stirring, a ZrOCl 2 aqueous solution adjusted to a concentration of 1 mol / L and an NaOH aqueous solution adjusted to a concentration of 1 mol / L were dropped at a dropping rate such that the volume ratio was 1 to 2, respectively, and Zr (OH) 4. Was attached to the surface of the Ni powder. Thereafter, it was washed and pulverized and then dried to obtain a Ni powder having a Zr powder adhered to the surface. By adjusting the amount of the ZrOCl 2 aqueous solution dropped, the ratio of the amount of Zr adhering to the amount of Ni powder is 0 wt%, 0.1 wt%, 0.3 wt%, 1.5 wt%, 3.0 wt%. %, 5.0 wt% of 6 types of powders were produced.

セラミック粉末の共材については、原料であるCaCO3とZrO2を目的比率になるように調合し、その調合した粉末を1100℃で熱処理し、乾式粉砕機で解砕することで得た。 The ceramic powder co-material was obtained by blending raw materials CaCO 3 and ZrO 2 so as to have a target ratio, heat-treating the blended powder at 1100 ° C., and crushing with a dry pulverizer.

このように作製した導電性金属粉末とセラミック粉末とを有機ビヒクルを加えてミキサーで混合し、3本ロールで十分混練し、表1の試料欄に示す10種類の導電性ペーストを得た。   The conductive metal powder and ceramic powder thus prepared were mixed with a mixer after adding an organic vehicle, and kneaded sufficiently with three rolls to obtain 10 types of conductive paste shown in the sample column of Table 1.

Figure 2006134637
Figure 2006134637

試料No1は、Zrを全く含んでいない導電性金属粉末と、化学量論比であるセラミック粉末CaZrO3を含有させたものである。本発明の比較のための試料である。 Sample No1 contains conductive metal powder containing no Zr and ceramic powder CaZrO 3 having a stoichiometric ratio. It is a sample for comparison of the present invention.

試料No2から7は、Zr粉末を付着させた導電性金属粉末と、化学量論比に対してCaが過剰なセラミック粉末CaZrO3を含有させたものである。本発明の対象試料である。導電性ペースト全体に含まれているZrのモル量とCaのモル量とは実質的に同一になるように、CaZrO3に含まれるCaの比率は調整されている。導電性金属粉末のZr量は試料No2からNo7にかけて徐々に増やしているが、セラミック粉末のCaの比率もそれに応じて増やしている。 Samples No. 2 to No. 7 contain conductive metal powder to which Zr powder is adhered and ceramic powder CaZrO 3 in which Ca is excessive with respect to the stoichiometric ratio. It is a target sample of the present invention. The ratio of Ca contained in CaZrO 3 is adjusted so that the molar amount of Zr contained in the entire conductive paste and the molar amount of Ca are substantially the same. The Zr amount of the conductive metal powder is gradually increased from sample No2 to No7, but the Ca ratio of the ceramic powder is also increased accordingly.

試料No8から10は、Zrを含んだ導電性金属粉末と、化学量論比であるセラミック粉末CaZrO3を含有させたものである。本発明の比較のための試料である。 Samples Nos. 8 to 10 contain conductive metal powder containing Zr and ceramic powder CaZrO 3 having a stoichiometric ratio. It is a sample for comparison of the present invention.

こうして得られた導電性ペーストを予め作製しておいたセラミックグリーンシートに印刷し、内部電極が200層形成されるように積層して生の積層体を作製した後、幅2mm、長さ4mm、厚さ1.5mmのチップサイズに切断した。この生チップを300℃の大気中で脱バインダーし、1300℃のN2−H2−H2O雰囲気下で焼成してチップを得た。焼成後、チップを100個抜き取り、実体顕微鏡により外観を観察し、構造欠陥の有無を確認した。 The conductive paste thus obtained was printed on a ceramic green sheet prepared in advance and laminated so that 200 layers of internal electrodes were formed to produce a raw laminate, and then a width of 2 mm, a length of 4 mm, It was cut into a chip size of 1.5 mm in thickness. The green chip was debindered in the atmosphere at 300 ° C. and fired in an N 2 —H 2 —H 2 O atmosphere at 1300 ° C. to obtain a chip. After firing, 100 chips were extracted and the appearance was observed with a stereomicroscope to confirm the presence or absence of structural defects.

次に、欠陥の認められないチップにCu外部電極を形成し、積層セラミック電子部品を作製した。次に、この積層セラミック電子部品の容量、および容量の温度変化率を測定し、JIS規格のCG特性(20℃を基準温度として静電容量の温度係数が0±30ppm/℃)を満足しているかどうかを確認した。
(2)評価
表1の評価欄は、上述の10種類の導電性ペーストを用いた積層コンデンサの評価結果をまとめたものである。
Next, a Cu external electrode was formed on a chip in which no defect was recognized, and a multilayer ceramic electronic component was produced. Next, the capacitance of the multilayer ceramic electronic component and the temperature change rate of the capacitance were measured, and the CG standard CG characteristics (capacitance temperature coefficient of 0 ± 30 ppm / ° C. with 20 ° C. being the reference temperature) were satisfied. Checked whether or not.
(2) Evaluation The evaluation column in Table 1 summarizes the evaluation results of the multilayer capacitor using the 10 types of conductive paste described above.

試料No1は、100個全てに構造欠陥が有ることが認められた。これは、Niの酸化膨張によるためである。   It was recognized that sample 100 had structural defects in all 100 samples. This is due to the oxidative expansion of Ni.

また、試料No8から10は、各々100個全てに構造欠陥は無かったが、温度特性が所定の範囲内には収まらなかった。これは、導電性粉末に含有するZrが焼成後も積層体内に留まり、セラミック層の組成が変化したためである。   Further, all of 100 samples Nos. 8 to 10 had no structural defects, but their temperature characteristics did not fall within the predetermined range. This is because Zr contained in the conductive powder remained in the laminated body even after firing, and the composition of the ceramic layer was changed.

これに対し、試料No2から5と試料No7は、各々100個全てに構造欠陥は無く、温度特性についても所定の範囲内に収まった。また、静電容量についても28〜31nFの範囲内であり、品質に差が殆どないことが確認された。これは導電性粉末に含まれるZrが焼成中にCaZrO3のCaの過剰分と実質的に過不足なく化合して化学量論比のCaZrO3が生じ、これがセラミック層に固着したためと考えられる。 On the other hand, sample Nos. 2 to 5 and sample No. 7 each had no structural defects, and the temperature characteristics were within a predetermined range. The capacitance was also in the range of 28 to 31 nF, and it was confirmed that there was almost no difference in quality. This is presumably because Zr contained in the conductive powder was combined with Ca excess of CaZrO 3 substantially without excess during firing to produce a stoichiometric ratio of CaZrO 3 which adhered to the ceramic layer.

Zrのモル量と化学量論比を越えるCaのモル量とは完全に同一であることが好ましいが、現実的には完全に合わせることは難しいので、若干のズレがあっても構わない。例えば、Zrのモル比を1とした場合、過剰分のCaのモル比が0.95から1.05の範囲内であれば温度特性等への影響は殆どなく、実質的に本発明の効果を損なうことはない。   Although it is preferable that the molar amount of Zr and the molar amount of Ca exceeding the stoichiometric ratio are completely the same, in reality, it is difficult to match them completely, so there may be a slight deviation. For example, assuming that the molar ratio of Zr is 1, if the molar ratio of excess Ca is in the range of 0.95 to 1.05, there is almost no effect on the temperature characteristics and the like, and the effect of the present invention is substantially eliminated. Will not be damaged.

試料No6については、温度特性は所定の範囲内に収まっているが、構造欠陥については100個中5個に欠陥が有ると認められた。これは、Zrの量が多いことからCaとの反応性が高まり、Niの焼結抑制が弱まってしまったためと考えられる。このことから、Niの量に対するZrの量の好ましい割合は、0.1wt%以上3wt%以下の範囲内である。   Regarding sample No. 6, the temperature characteristics were within the predetermined range, but it was recognized that there were 5 defects in 100 structural defects. This is presumably because the reactivity with Ca was increased due to the large amount of Zr, and the sintering suppression of Ni was weakened. Therefore, a preferable ratio of the amount of Zr to the amount of Ni is in the range of 0.1 wt% or more and 3 wt% or less.

本実施例では、セラミック層の主原料に、一般式ABO3で表されるペロブスカイト系セラミックのBaTiO3(チタン酸バリウム)を用いた。
(1)試料の作製
まず、上記セラミック原料を用いて公知の方法でセラミックグリーンシートを作製した。グリーンシート段階での厚みは、実施例1と同様に、焼成後に3μmとなるよう設定した。
In this example, a perovskite ceramic BaTiO 3 (barium titanate) represented by the general formula ABO 3 was used as the main raw material of the ceramic layer.
(1) Preparation of sample First, the ceramic green sheet was produced by the well-known method using the said ceramic raw material. As in Example 1, the thickness at the green sheet stage was set to 3 μm after firing.

次に、内部電極形成用の導電性ペーストを作製した。導電性金属粉末の作製方法であるが、まず、液相還元法によって平均粒子径が0.2μmのNi粉末100gを作製し、純水1000mLと混合、攪拌し、均一分散させた。この攪拌中、1mol/Lの濃度に調整したTiOSO4水溶液と2mol/Lの濃度に調整したNaOH水溶液を、それぞれ体積比が1対1になるような滴下速度で滴下させて、Ti(OH)4をNi粉末の表面に付着させた。その後、洗浄、粉砕した後に乾燥し、Ti粉末が表面に付着したNi粉末を得た。なお、実施例1と同様の調整方法で、Ni粉末の量に対する付着したTiの量の割合が0wt%、0.3wt%、1.5wt%、3.0wt%、5.0wt%の5種類の粉末を作製した。 Next, a conductive paste for forming internal electrodes was produced. As a method for producing a conductive metal powder, first, 100 g of Ni powder having an average particle size of 0.2 μm was produced by a liquid phase reduction method, mixed with 1000 mL of pure water, stirred, and uniformly dispersed. During this stirring, a TiOSO 4 aqueous solution adjusted to a concentration of 1 mol / L and an NaOH aqueous solution adjusted to a concentration of 2 mol / L were dropped at a dropping rate such that the volume ratio was 1: 1, respectively, and Ti (OH) 4 was adhered to the surface of the Ni powder. Thereafter, it was washed and pulverized and then dried to obtain Ni powder having Ti powder adhered to the surface. In addition, in the same adjustment method as in Example 1, the ratio of the amount of Ti attached to the amount of Ni powder was 0 wt%, 0.3 wt%, 1.5 wt%, 3.0 wt%, 5.0 wt% The powder of was produced.

セラミック粉末の共材については、原料であるBaCO3とTiO2を目的比率になるように調合し、その調合した粉末を熱処理し、乾式粉砕機で解砕することで得た。 The ceramic powder co-material was obtained by blending the raw materials BaCO 3 and TiO 2 in the desired ratio, heat treating the blended powder, and crushing with a dry pulverizer.

このように作製した導電性金属粉末とセラミック粉末とを有機ビヒクルを加えてミキサーで混合し、3本ロールで十分混練し、表2の試料欄に示す5種類の導電性ペーストを得た。   The conductive metal powder and ceramic powder thus prepared were added with an organic vehicle, mixed with a mixer, and sufficiently kneaded with three rolls to obtain five types of conductive paste shown in the sample column of Table 2.

Figure 2006134637
Figure 2006134637

試料No1は、Tiを全く含んでいない導電性金属粉末と、化学量論比であるセラミック粉末BaTiO3を含有させたものである。本発明の比較のための試料である。 Sample No1 contains conductive metal powder containing no Ti and ceramic powder BaTiO 3 having a stoichiometric ratio. It is a sample for comparison of the present invention.

試料No2から5は、Ti粉末を付着させた導電性金属粉末と、化学量論比に対してBaが過剰なセラミック粉末BaTiO3を含有させたものである。本発明の対象試料である。導電性ペースト全体に含まれているTiのモル量とBaのモル量とは実質的に同一になるように、BaTiO3に含まれるBaの比率は調整されている。なお、実施例1と同様に、導電性金属粉末のTi量は試料No2からNo5にかけて徐々に増やしているので、セラミック粉末のBaの比率もそれに応じて増やしている。 Samples Nos. 2 to 5 contain conductive metal powder to which Ti powder is adhered and ceramic powder BaTiO 3 in which Ba is excessive with respect to the stoichiometric ratio. It is a target sample of the present invention. The ratio of Ba contained in BaTiO 3 is adjusted so that the molar amount of Ti and the molar amount of Ba contained in the entire conductive paste are substantially the same. As in Example 1, the Ti amount of the conductive metal powder is gradually increased from Sample No. 2 to No. 5, so the ratio of Ba of the ceramic powder is also increased accordingly.

こうして得られた導電性ペーストを予め作製しておいたセラミックグリーンシートに印刷し、内部電極が350層形成されるように積層して生の積層体を作製した後、幅2mm、長さ4mm、厚さ1.5mmのチップサイズになるように切断した。この生チップを300℃の大気中で脱バインダーし、1300℃のN2−H2−H2O雰囲気下で焼成してチップを得た。焼成後、チップを100個抜き取り、実体顕微鏡によりその外観を観察し、実施例1と同様に構造欠陥の有無を確認した。 The conductive paste thus obtained was printed on a ceramic green sheet prepared in advance, and laminated so that 350 layers of internal electrodes were formed to produce a raw laminate, and then a width of 2 mm, a length of 4 mm, It cut | disconnected so that it might become a chip | tip size of thickness 1.5mm. The green chip was debindered in the atmosphere at 300 ° C. and fired in an N 2 —H 2 —H 2 O atmosphere at 1300 ° C. to obtain a chip. After firing, 100 chips were extracted and the appearance was observed with a stereomicroscope, and the presence or absence of structural defects was confirmed in the same manner as in Example 1.

次に、欠陥の認められないチップにCu外部電極を形成し、積層セラミック電子部品を作製した。次に、この積層セラミック電子部品の容量、および容量の温度変化率を測定し、JIS規格のB特性(20℃を基準温度として−25℃から85℃の間で静電容量率の変化率が±10%以内)を満足しているかどうかを確認した。
(2)評価
表2の評価欄は、上述の5種類の導電性ペーストを用いた積層コンデンサの評価結果をまとめたものである。
Next, a Cu external electrode was formed on a chip in which no defect was recognized, and a multilayer ceramic electronic component was produced. Next, the capacitance of the multilayer ceramic electronic component and the temperature change rate of the capacitor were measured, and the B characteristic of JIS standard (the rate of change of the capacitance rate between −25 ° C. and 85 ° C. with 20 ° C. being the reference temperature) (Within ± 10%) was confirmed.
(2) Evaluation The evaluation column in Table 2 summarizes the evaluation results of the multilayer capacitor using the five types of conductive paste described above.

試料No1は、100個全ての構造欠陥が有ることが認められた。これは、Niの酸化膨張によるためである。   Sample No. 1 was found to have all 100 structural defects. This is due to the oxidative expansion of Ni.

これに対し、試料No2から5は、各々100個全てに構造欠陥は無く、温度特性についても所定の範囲内に収まった。また、静電容量についても、設計の10μFを実質的に確保しており、品質に差が殆どなかった。試料No5については静電容量が9.8μFであり若干設計の10μFを下回った。このことから、Niの量に対するTiの量の好ましい割合は、0.1wt%以上3wt%以下の範囲内である。   On the other hand, Samples Nos. 2 to 5 had no structural defects in all 100 samples, and the temperature characteristics were within a predetermined range. In addition, the capacitance of 10 μF of the design was substantially secured, and there was almost no difference in quality. Sample No. 5 had a capacitance of 9.8 μF, which was slightly lower than the designed 10 μF. From this, the preferable ratio of the amount of Ti to the amount of Ni is in the range of 0.1 wt% to 3 wt%.

以上の実施例は内部電極の形成に本発明の導電性ペーストを用いるとしたものであるが、例えば外部電極の形成に用いても本発明の効果を損なうことはなく、本発明は導体膜の形成箇所に限定されるものではない。   In the above examples, the conductive paste of the present invention is used for the formation of the internal electrode. However, even if it is used for the formation of the external electrode, for example, the effect of the present invention is not impaired. It is not limited to the formation location.

また、以上の実施例では積層型のコンデンサを作製して評価しているが、単層型であっても構わない。さらに、コンデンサ以外のも、例えば圧電体部品にも適用できる。   In the above embodiment, a multilayer capacitor is manufactured and evaluated. However, a single-layer capacitor may be used. Further, other than the capacitor, for example, it can be applied to a piezoelectric component.

また、以上の実施例では、Ni粉末に化合物(Zr(OH)4,Ti(OH)4)を付着させたが、単体金属でも混合物でも構わず、本発明はBサイト元素を付着させる方法を限定するものではない。 In the above embodiments, the compound (Zr (OH) 4 , Ti (OH) 4 ) is attached to the Ni powder, but it may be a single metal or a mixture, and the present invention provides a method for attaching the B site element. It is not limited.

また、以上の実施例では、導電性ペーストの主材料としてNiを用いたが、例えばCuを用いても構わず、本発明の効果を損なうものではない。   In the above embodiment, Ni is used as the main material of the conductive paste. However, for example, Cu may be used, and the effect of the present invention is not impaired.

本発明の導電性ペーストを用いた積層コンデンサ10を図解的に示す断面図である。1 is a cross-sectional view schematically showing a multilayer capacitor 10 using a conductive paste of the present invention.

符号の説明Explanation of symbols

1 セラミック層
2,3 内部電極
4,5 端面
6,7 外部電極
10 積層コンデンサ
11 積層体
DESCRIPTION OF SYMBOLS 1 Ceramic layer 2,3 Internal electrode 4,5 End surface 6,7 External electrode 10 Multilayer capacitor 11 Laminated body

Claims (4)

一般式ABO3で表されるペロブスカイト系セラミックを主成分とするセラミック層と導体膜を備えるセラミック電子部品の前記導体膜の形成に用いられる導電性ペーストであって、
卑金属粉末に、前記ペロブスカイト系セラミックのBサイト元素および/またはBサイト元素化合物が付着した導電性金属粉末と、
前記ペロブスカイト系セラミックの化学量論比よりAサイト元素が過剰であるセラミック粉末を含むことを特徴とする、導電性ペースト。
A conductive paste used for forming the conductor film of a ceramic electronic component comprising a ceramic layer mainly composed of a perovskite ceramic represented by the general formula ABO 3 and a conductor film,
A conductive metal powder in which a B-site element and / or a B-site element compound of the perovskite ceramic is attached to a base metal powder;
A conductive paste comprising a ceramic powder having an A-site element in excess of the stoichiometric ratio of the perovskite ceramic.
前記卑金属粉末に付着しているBサイト元素のモル量と、前記セラミック粉末の化学量論比より多く含まれているAサイト元素のモル量とが実質的に同一であることを特徴とする、請求項1記載の導電性ペースト。 The molar amount of the B site element adhering to the base metal powder and the molar amount of the A site element contained in a larger amount than the stoichiometric ratio of the ceramic powder are substantially the same, The conductive paste according to claim 1. 前記Aサイト元素はCa,Baから選ばれる少なくとも1種であり、
前記Bサイト元素はTi,Zrから選ばれる少なくとも1種であることを特徴とする、請求項1または請求項2記載の導電性ペースト。
The A site element is at least one selected from Ca and Ba,
The conductive paste according to claim 1 or 2, wherein the B site element is at least one selected from Ti and Zr.
前記卑金属粉末の量に対し、付着している前記Bサイト元素量の割合が0.1wt%以上3wt%以下の範囲内であることを特徴とする、請求項1から請求項3のいずれかに記載の導電性ペースト。 The ratio of the amount of the B site element adhering to the amount of the base metal powder is in a range of 0.1 wt% or more and 3 wt% or less, according to any one of claims 1 to 3. The conductive paste as described.
JP2004320415A 2004-11-04 2004-11-04 Conductive paste Expired - Fee Related JP4609039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320415A JP4609039B2 (en) 2004-11-04 2004-11-04 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320415A JP4609039B2 (en) 2004-11-04 2004-11-04 Conductive paste

Publications (2)

Publication Number Publication Date
JP2006134637A true JP2006134637A (en) 2006-05-25
JP4609039B2 JP4609039B2 (en) 2011-01-12

Family

ID=36727988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320415A Expired - Fee Related JP4609039B2 (en) 2004-11-04 2004-11-04 Conductive paste

Country Status (1)

Country Link
JP (1) JP4609039B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247632A (en) * 2003-02-17 2004-09-02 Murata Mfg Co Ltd Conductive paste and layered ceramic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247632A (en) * 2003-02-17 2004-09-02 Murata Mfg Co Ltd Conductive paste and layered ceramic capacitor

Also Published As

Publication number Publication date
JP4609039B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP2002080275A (en) Dielectric ceramic and electronic component
JP2007331956A (en) Electronic component, dielectric ceramic composition and method for producing the same
EP2000445A2 (en) Dielectric porcelain composition and electronic component
JP2007331958A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP6624473B2 (en) Multilayer ceramic capacitors
JP2015156470A (en) Laminated ceramic electronic component
JP2022143403A (en) Multilayer ceramic capacitor
JP7351205B2 (en) Dielectric compositions and electronic components
JP2018195672A (en) Multilayer ceramic capacitor and method for manufacturing the same
JP2014239226A (en) Multilayer ceramic capacitor, dielectric ceramic, and method for manufacturing multilayer ceramic capacitor
JP5838968B2 (en) Dielectric ceramic, multilayer ceramic electronic component, and manufacturing method thereof
WO2017094882A1 (en) Dielectric porcelain composition, layered ceramic capacitor, and layered ceramic capacitor production method
JP6795302B2 (en) Ceramic electronic components
JP2007246347A (en) Electronic part, dielectric porcelain composition, and method for manufacturing the same
JP2010024126A (en) Dielectric ceramic composition
JP2007261913A (en) Dielectric porcelain composition, electronic part and multilayer ceramic capacitor
JP2009249257A (en) Dielectric ceramic and laminated ceramic capacitor
JP2008081351A (en) Dielectric ceramic, multilayer ceramic capacitor, and method for manufacturing the same
JP4609039B2 (en) Conductive paste
JP2011132056A (en) Laminated ceramic capacitor
JP5167591B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2007258477A (en) Laminated electronic component and manufacturing method thereof
JP2006036606A (en) Dielectric ceramic, method for manufacturing dielectric ceramic, and laminated ceramic capacitor
JP2007169087A (en) Sintered compact, ceramic capacitor, and their production method
JP2002201064A (en) Dielectric ceramic composition, multilayer ceramic capacitor and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees