JP2006117451A - Cement composition for repairing and repairing method - Google Patents

Cement composition for repairing and repairing method Download PDF

Info

Publication number
JP2006117451A
JP2006117451A JP2004305280A JP2004305280A JP2006117451A JP 2006117451 A JP2006117451 A JP 2006117451A JP 2004305280 A JP2004305280 A JP 2004305280A JP 2004305280 A JP2004305280 A JP 2004305280A JP 2006117451 A JP2006117451 A JP 2006117451A
Authority
JP
Japan
Prior art keywords
cement composition
mortar
repairing
cement
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004305280A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mizushima
一行 水島
Akitoshi Araki
昭俊 荒木
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004305280A priority Critical patent/JP2006117451A/en
Publication of JP2006117451A publication Critical patent/JP2006117451A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the durability of a concrete structure by using a cement composition for repairing which contains blast furnace slowly cooled slag for a surface trowel finishing work and a spraying work and a repairing method aimed to improve the workability. <P>SOLUTION: The cement composition for spraying contains cement, aggregate, a thickener, short fibers, a polymer for cement and the blast furnace slowly cooled slag. Further, the cement composition for repairing additionally comprises ultrafine powder substances and/or expansive admixtures. The repairing method is carried out by thinly spraying or applying with a trowel on the surface of concrete, attaching a fiber sheet thereon and spraying or applying the cement composition for repairing with the trowel thereon and by mixing the cement composition for repairing with compressive air at a place equal to or below 30 m from the tip of a spray nozzle to spray the cement composition for repairing. The concrete structure is repaired using the cement composition of repairing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主に、土木・建築業界において適用されるコンクリート構造物の補修に使用される補修用セメント組成物及び補修工法に関する。
なお、本発明で云うモルタルとは、セメント等に細骨材を混合したモルタル及び必要に応じて粗骨材を混合したコンクリートを総称したものである。
The present invention mainly relates to a repair cement composition and repair method used for repair of a concrete structure applied in the civil engineering and construction industry.
The mortar referred to in the present invention is a general term for mortar in which fine aggregate is mixed with cement or the like and concrete in which coarse aggregate is mixed as required.

近年、鉄筋コンクリート構造物において、二酸化炭素による中性化や塩化物イオンの浸透による塩害が進行し、鉄筋が腐食したコンクリート構造物からコンクリート片が剥落する事故が相次いでいる。このような事故を未然に防止する目的で剥落防止工が行われている(特許文献1参照)。
しかしながら、従来の剥落防止工に用いられる表面被覆材(防錆剤を混ぜたモルタル等)は、物質遮断性を有するものではなく、すなわち、二酸化炭素や塩素イオンの透過を抑止するものではなく、コンクリート構造物の劣化防止の観点から充分に延命化を図れるものではなかった。そのため、コンクリート構造物の耐久性を飛躍的に向上させる表面被覆材や剥落防止工法の開発が強く求められている。
特開2004−52413号公報
In recent years, in a reinforced concrete structure, neutralization by carbon dioxide and salt damage due to penetration of chloride ions have progressed, and there have been a series of accidents in which concrete pieces peel off from a concrete structure in which the rebar has been corroded. Detachment prevention work is performed for the purpose of preventing such an accident in advance (see Patent Document 1).
However, surface coating materials (such as mortar mixed with a rust preventive agent) used for conventional peeling prevention work do not have substance blocking properties, that is, do not inhibit the permeation of carbon dioxide and chloride ions. From the viewpoint of preventing deterioration of concrete structures, the life could not be extended sufficiently. For this reason, there is a strong demand for the development of surface covering materials and peeling prevention methods that dramatically improve the durability of concrete structures.
JP 2004-52413 A

一方、海洋・港湾構造物を中心に予防保全計画が進められている。これは、重要構造物のライフサイクルを考慮し、劣化する前に予防処置を施すという考え方に基づいている。予防保全のための手法はまだ確立していないが、既存のコンクリート構造物に表面被覆材を施工する方法により構造物の延命化を図るものであり、予防保全の観点からも、コンクリート構造物の耐久性を飛躍的に向上させる表面被覆材の開発が強く求められている。   On the other hand, preventive maintenance plans are being promoted mainly for marine and harbor structures. This is based on the idea that the life cycle of important structures is taken into account and preventive measures are taken before deterioration. Although a method for preventive maintenance has not yet been established, it is intended to extend the life of the structure by applying a surface covering material to the existing concrete structure. There is a strong demand for the development of surface coating materials that dramatically improve durability.

本発明者は、鋭意検討を重ねた結果、高炉徐冷スラグを含有した特定の補修用セメント組成物を使用することにより、上記課題を解決できる知見を得て本発明を完成するに至った。   As a result of intensive studies, the present inventor has obtained knowledge that can solve the above problems by using a specific cement composition for repair containing blast furnace slag slag, and has completed the present invention.

すなわち、本発明は、セメント、骨材、粘調剤、短繊維、セメント用ポリマー及び高炉徐冷スラグを含有してなる吹付け用セメント組成物であり、さらに、超微粉末物質を含有してなる前記補修用セメント組成物であり、さらに、膨張材を含有してなる前記補修用セメント組成物である。また、吹付けまたはコテ塗りによりコンクリート表面に薄塗り後、繊維シートを取付けさらにその上に前記補修用セメント組成物を吹付けまたはコテ塗りする補修工法であり、前記補修用セメント組成物と圧搾空気を吹付けノズル先端から30m以下の位置で混合して、前記補修用セメント組成物を吹付ノズルから吹付けることを特徴とする補修工法である。また、前記補修用セメント組成物を用いて補修したコンクリート構造物である。   That is, the present invention is a cement composition for spraying comprising cement, an aggregate, a thickener, short fibers, a polymer for cement, and a blast furnace slow cooling slag, and further comprising an ultrafine powder substance. The repair cement composition, further comprising an expansion material. Further, it is a repairing method in which a fiber sheet is attached after thin coating on a concrete surface by spraying or troweling, and the repairing cement composition is sprayed or troweled thereon, and the repairing cement composition and compressed air Is repaired by mixing at a position of 30 m or less from the tip of the spray nozzle and spraying the repair cement composition from the spray nozzle. Moreover, it is the concrete structure repaired using the said cement composition for repair.

本発明の補修用セメント組成物及び補修工法を使用することにより、二酸化炭素や塩素イオンの透過を抑止し中性化や塩害を抑え、コンクリート構造物の耐久性を飛躍的に向上させるばかりか、強度発現性や施工性が良好であり、さらに、吹付け時のリバウンド、粉塵量を低減でき、作業性の良好なコンクリートの表面コテ仕上げ及び吹付け施工ができる。   By using the repair cement composition and repair method of the present invention, carbon dioxide and chlorine ions are prevented from permeation, neutralization and salt damage are suppressed, and the durability of the concrete structure is dramatically improved. Strength development and workability are good, and further, rebound and dust amount during spraying can be reduced, and surface trowel finishing and spraying of concrete with good workability can be performed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、高炉徐冷スラグを含有した補修用セメント組成物(以下、モルタルという)を表面コテ仕上げ、及び吹付け施工に使用しコンクリート構造物の耐久性を向上させるものであり、さらに、施工性の向上を目的とする補修工法を提供するものである。   The present invention uses a cement composition for repair (hereinafter referred to as mortar) containing blast furnace chilled slag for surface soldering and spraying to improve the durability of a concrete structure. The repair method for the purpose of improving the property is provided.

本発明で使用するセメントとしては、特に限定されるものではなく、普通、早強及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに高炉スラグ又はフライアッシュ等を混合した各種混合セメント、並びに、通常市販されている各種微粒子セメント、エコセメントが挙げられる。中でも、経済性や作業性が良く、スランプロスが少ない点で、普通ポルトランドセメントが好ましい。   The cement used in the present invention is not particularly limited, and usually, various portland cements such as early strength and medium heat, various mixed cements obtained by mixing blast furnace slag or fly ash with these portland cements, and usually Various commercially available fine particle cements and eco-cements can be mentioned. Among these, ordinary Portland cement is preferable in terms of economy and workability and low slump loss.

本発明で使用する骨材としては、粗骨材や細骨材いずれも使用できるが、既設コンクリートの補修用に使用でき、かつ、既設コンクリートへ吹付けた際にリバウンドしにくい点で、細骨材率(容積%)が70〜100%の骨材が好ましく、100%の骨材がより好ましい。骨材の品質は、安定性が高く、密度が2.5cm/g以上のものが好ましい。細骨材としては、川砂、山砂、石灰砂、及び珪砂等が使用でき、粗骨材としては、川砂利、山砂利、及び石灰砂利等が使用でき、最大骨材寸法は10mm下が好ましい。 As the aggregate used in the present invention, either coarse aggregate or fine aggregate can be used, but it can be used for repairing existing concrete and is difficult to rebound when sprayed to the existing concrete. An aggregate with a volume ratio (volume%) of 70 to 100% is preferable, and an aggregate of 100% is more preferable. The quality of the aggregate is preferably stable and has a density of 2.5 cm 3 / g or more. As the fine aggregate, river sand, mountain sand, lime sand, quartz sand and the like can be used, and as the coarse aggregate, river gravel, mountain gravel, lime gravel and the like can be used, and the maximum aggregate size is preferably 10 mm or less. .

本発明のモルタルの配合は、C/S(セメント/骨材比:質量比)=1/1〜1/4が好ましく、1/1.5〜1/3がより好ましい。1/1未満では吹付けたモルタルにクラックが入りやすくなるおそれがあり、1/4を越えると単位セメント量が少なくなり、W/C(水/セメント比:質量比)が上がり、短・長期強度が低いばかりか、ポンプ圧送性が悪くなり、吹付けし難くなる場合がある。   The blending ratio of the mortar of the present invention is preferably C / S (cement / aggregate ratio: mass ratio) = 1/1 to 1/4, and more preferably 1 / 1.5-1 to 1/3. If the ratio is less than 1/1, the sprayed mortar may be easily cracked. If the ratio exceeds 1/4, the amount of unit cement decreases, W / C (water / cement ratio: mass ratio) increases, and short and long terms. Not only is the strength low, but the pumpability may be poor and spraying may be difficult.

本発明で使用する粘調剤は、モルタルの粘度を調整するもので、特に限定されるものではないが、一般に水溶性高分子物質と呼ばれているもので、メチルセルロース(MC)、カルボキシルメチルセルロース(CMC)、ポリビニルアルコール(PVA)及びアクリル酸及びポリエチレンオキサイド(PEO)等が挙げられ、既設コンクリート等と吹付けモルタルの吹付け時の付着性向上、リバウンド低減及びモルタル圧送性の向上を目的に使用される。   The thickener used in the present invention adjusts the viscosity of the mortar and is not particularly limited, but is generally referred to as a water-soluble polymer substance, such as methyl cellulose (MC), carboxymethyl cellulose (CMC). ), Polyvinyl alcohol (PVA), acrylic acid and polyethylene oxide (PEO), etc., and are used for the purpose of improving adhesion, reducing rebound and improving mortar pumpability of existing concrete and sprayed mortar. The

粘調剤の使用量は、通常、セメント100質量部に対して、0.01〜1質量部が好ましく、0.05〜0.5質量部がより好ましい。0.01質量部未満では既設コンクリート等と吹付けモルタルの吹付け時の付着性向上、リバウンド低減及びモルタル圧送性の向上が期待できない場合があり、1質量部を超えると、その効果の向上が期待できないばかりか経済的でない場合がある。   The amount of the thickener used is usually preferably 0.01 to 1 part by mass and more preferably 0.05 to 0.5 part by mass with respect to 100 parts by mass of cement. If it is less than 0.01 parts by weight, there may be cases where improvement in adhesion, reduction of rebound and improvement in mortar pumpability of existing concrete, etc. and spraying mortar cannot be expected. It may not be expected or it may not be economical.

粘調剤の混合方法は、特に限定されるものではないが、予めセメントと混合、若しくは水に溶解等して混合することが好ましい。   The method for mixing the thickener is not particularly limited, but it is preferable to mix with the cement in advance or dissolve in water.

本発明で使用する短繊維は、モルタルの靭性を向上させ、モルタルの剥落による落下等を防ぐため使用されるもので、短繊維として無機質や有機質いずれも使用できる。無機質の繊維としては、ガラス繊維、炭素繊維、ロックウール、石綿、セラミック繊維、及び金属繊維等が挙げられ、有機質の繊維としては、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリル繊維、セルロース繊維、ポリビニルアルコール繊維、アラミド繊維、パルプ、麻、木毛、及び木片等が挙げられる。これらの中では、混合性、作業性、耐久性、耐衝撃性、経済性の点で、金属繊維やビニロン繊維及びポリプロピレン繊維が好ましい。   The short fiber used in the present invention is used to improve the toughness of the mortar and prevent dropping due to peeling of the mortar. As the short fiber, either inorganic or organic can be used. Examples of inorganic fibers include glass fibers, carbon fibers, rock wool, asbestos, ceramic fibers, and metal fibers. Organic fibers include vinylon fibers, polyethylene fibers, polypropylene fibers, polyacrylic fibers, cellulose fibers, Examples thereof include polyvinyl alcohol fiber, aramid fiber, pulp, hemp, wood wool, and wood chip. Among these, metal fiber, vinylon fiber, and polypropylene fiber are preferable in terms of mixing property, workability, durability, impact resistance, and economy.

短繊維の長さは、モルタル圧送性や混合性及び施工性等の点で、20mm以下が好ましく、6〜12mmがより好ましい。20mmを超えると圧送中にモルタルが閉塞する場合があり、モルタル表面の見栄えが悪くなる。   The length of the short fiber is preferably 20 mm or less, and more preferably 6 to 12 mm in terms of mortar pumpability, mixing property, workability, and the like. If it exceeds 20 mm, the mortar may be clogged during pumping, and the appearance of the mortar surface will deteriorate.

短繊維の使用量は、モルタル(水も含む)100容積部中、0.1〜3容積部以下が好ましく、0.1〜1.5容積部以下がより好ましい。0.1容積部未満だと耐衝撃性や弾性の向上の効果が小さい場合があり、3容積部を超えると、モルタルの混練り不良や圧送性の低下等の問題が発生する場合があり、経済的でない。   The amount of short fibers used is preferably 0.1 to 3 parts by volume or less, more preferably 0.1 to 1.5 parts by volume or less, in 100 parts by volume of mortar (including water). If the amount is less than 0.1 part by volume, the effect of improving impact resistance and elasticity may be small. If the amount exceeds 3 parts by volume, problems such as poor mixing of mortar and reduced pumpability may occur. Not economical.

本発明で使用するセメント用ポリマー(以下、ポリマーという)としては、水性ポリマーディスパージョン、再乳化形粉末樹脂、水溶性ポリマー、液状ポリマーが挙げられ、特に限定されるものではない。水性ポリマーディスバージョンとしては、天然ゴムラテックスやアクリルゴム、スチレン・ブタジエンゴム(SBR)、クロロプレンゴム(CR)等の合成ゴムラテックスやエチレン・酢酸ビニル共重合体(EVA)、ポリアクリル酸エステル(PAE)等の樹脂エマルジョン等が挙げられる。ポリマーの形態としては、再乳化型粉末タイプや液体タイプ等があり、モルタルのリバウンド低減や既設コンクリートとの付着性の向上、耐久性向上のため使用される。   Examples of the polymer for cement (hereinafter referred to as polymer) used in the present invention include an aqueous polymer dispersion, a re-emulsifying powder resin, a water-soluble polymer, and a liquid polymer, and are not particularly limited. Examples of aqueous polymer dispersions include natural rubber latex, acrylic rubber, synthetic rubber latex such as styrene / butadiene rubber (SBR) and chloroprene rubber (CR), ethylene / vinyl acetate copolymer (EVA), and polyacrylic acid ester (PAE). ) And the like. As the polymer form, there are a re-emulsification type powder type, a liquid type and the like, which are used for reducing rebound of mortar, improving adhesion to existing concrete, and improving durability.

ポリマーの使用量は、セメント100質量部に対して、固形分換算で1〜15質量部が好ましくは、3〜10質量部がより好ましい。1質量部未満では既設コンクリート等と吹付けモルタルの吹付け時の付着性向上、リバウンド低減及びモルタルの耐久性の向上が期待できない場合があり、15質量部を超えると、その効果の向上が期待できないばかりか経済的でない場合がある。   The amount of the polymer used is preferably 1 to 15 parts by mass, more preferably 3 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of cement. If it is less than 1 part by mass, it may not be possible to expect improvement in adhesion when spraying existing concrete, etc. and sprayed mortar, rebound reduction, and improvement in durability of the mortar. It may not be possible or it may not be economical.

ポリマーの混合方法は、特に限定されるものではないが、粉体の場合は、予めセメントと混合、若しくは混練り時に他の材料と同時投入するか水に懸濁又は溶解して混合する方法等が好ましく、液体の場合は、混練り時に他の材料と同時投入するか、水に混合して使用する方法等が好ましい。   The mixing method of the polymer is not particularly limited, but in the case of powder, a method of mixing with cement or mixing with other materials at the same time or suspending or dissolving in water at the time of kneading, etc. In the case of a liquid, a method of using it simultaneously with other materials at the time of kneading or mixing with water is preferable.

本発明で使用する高炉徐冷スラグは、高炉で熔解したものが徐冷されて結晶化した高炉スラグである。
高炉徐冷スラグの成分は、高炉水砕スラグと同様の組成を有しており、具体的には、SiO、CaO、Al、及びMgO等を主要な化学成分とし、その他、TiO、及びFe等が挙げられる。また、化合物としては、ゲーレナイト2CaO・Al・SiOとアケルマナイト2CaO・MgO・2SiOの混晶であるメリライトを主成分とする。
The blast furnace slow-cooled slag used in the present invention is a blast furnace slag that has been melted and crystallized by melting in the blast furnace.
The components of the blast furnace slow-cooled slag have the same composition as the granulated blast furnace slag. Specifically, SiO 2 , CaO, Al 2 O 3 , MgO, etc. are the main chemical components, and in addition, TiO 2 and Fe 2 O 3 . The main component of the compound is melilite, which is a mixed crystal of gehlenite 2CaO.Al 2 O 3 .SiO 2 and akermanite 2CaO.MgO.2SiO 2 .

本発明で使用する高炉徐冷スラグのガラス化率は、30%以下が好ましく、10%以下がより好ましい。ガラス化率が30%を超えると、本発明の効果、すなわち、二酸化炭素や塩素イオンの透過を抑止し、モルタルの中性化の抑えが充分に得られない場合がある。   The vitrification rate of the blast furnace annealed slag used in the present invention is preferably 30% or less, and more preferably 10% or less. If the vitrification rate exceeds 30%, the effects of the present invention, that is, the permeation of carbon dioxide and chlorine ions may be suppressed, and the neutralization of the mortar may not be sufficiently obtained.

本発明でいうガラス化率(X)は、X(%)=(1−S/S0)×100として求められる。ここで、Sは粉末X線回折法により求められる徐冷スラグ中の主要な結晶性化合物であるメリライト(ゲーレナイトとアケルマナイトの混晶)のメインピークの面積であり、S0は徐冷スラグを1000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却したもののメリライトのメインピークの面積を表す。   The vitrification rate (X) referred to in the present invention is determined as X (%) = (1−S / S0) × 100. Here, S is the area of the main peak of melilite (mixed crystal of gelenite and akermanite) which is the main crystalline compound in the slowly cooled slag obtained by the powder X-ray diffraction method, and S0 is 1000 ° C. Represents the area of the main peak of melilite after being heated at 3 ° C. for 3 hours and then cooled at a cooling rate of 5 ° C./min.

高炉徐冷スラグの粉末度は、通常、ブレーン比表面積で2000〜8000cm/g程度の範囲にあるものが好ましく、3000〜7000cm/g程度のものがより好ましい。ブレーン比表面積が2000cm/g未満では、二酸化炭素や塩化物イオンの透過を抑止してモルタルの中性化や塩害を抑える効果が弱まり、また、8000cm/gを超えて粉砕するには粉砕動力が大きくなり不経済であり、また、高炉徐冷スラグが風化しやすくなり品質の経時的な劣化が大きくなる傾向がある。 Fineness of slowly cooled blast furnace slag, usually, is preferably one in the range of about 2000~8000cm 2 / g in Blaine specific surface area, more preferably about 3000~7000cm 2 / g. The Blaine specific surface area of 2000cm less than 2 / g, weakens the effect which suppresses the permeation of carbon dioxide and chloride ions suppress the neutralization and salt damage of mortar, also crushed to grinding beyond 8000 cm 2 / g Power is increased and this is uneconomical, and the blast furnace slow cooling slag tends to be weathered and the quality tends to deteriorate over time.

高炉徐冷スラグの使用量は、通常、セメントと高炉徐冷スラグの合計100質量部に対して、10〜67質量部が好ましく、25〜50質量部がより好ましい。10質量部未満ではモルタルの中性化や塩害の抑止が充分に得られない場合があり、67質量部を超えると、その効果の向上が期待できない場合があるばかりか強度発現が低い場合がある。   The amount of blast furnace chilled slag used is usually preferably 10 to 67 parts by mass and more preferably 25 to 50 parts by mass with respect to 100 parts by mass in total of cement and blast furnace chilled slag. If it is less than 10 parts by mass, neutralization of mortar and prevention of salt damage may not be sufficiently obtained, and if it exceeds 67 parts by mass, improvement of the effect may not be expected and strength development may be low. .

本発明で使用する超微粉末物質(以下超微粉と言う)は、特に制限されるものではないが、例えば、金属シリコンやフェロシリコン合金等を製造する際に副生するシリカフューム、溶融シリカを製造する際に副生するシリカダスト、超微粉砕したスラグ及びベントナイト等が挙げられる。それらの平均粒子径は、10μm以下のものが好ましく、1μm以下のものがより好ましい。超微粉は、モルタルをポンプ圧送したときの材料分離防止と、吹付けたモルタルのリバウンド低減、剥落防止のため使用される。   The ultrafine powder material (hereinafter referred to as ultrafine powder) used in the present invention is not particularly limited. For example, it produces silica fume or fused silica produced as a by-product when producing metal silicon, ferrosilicon alloy, or the like. And silica dust, by-product slag, bentonite and the like. Their average particle diameter is preferably 10 μm or less, more preferably 1 μm or less. The ultra fine powder is used for preventing material separation when pumping mortar, reducing rebound of sprayed mortar, and preventing peeling.

超微粉の使用量は、通常、セメント100質量部に対して、1〜15質量部が好ましく、3〜10質量部がより好ましい。1質量部未満ではモルタルの材料分離防止、リバウンド低減の期待が出来ない場合があり、15質量部を超えると、その効果の向上が期待できない場合がある。   The amount of ultrafine powder used is usually preferably 1 to 15 parts by mass and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of cement. If it is less than 1 part by mass, it may not be possible to expect mortar material separation prevention and rebound reduction, and if it exceeds 15 parts by mass, the effect may not be expected.

超微粉の混合方法は、特に限定されるものではないが、予めセメントと混合か好ましく、若しくは水と混合してスラリーとして混合しても良い。   The method for mixing the ultrafine powder is not particularly limited, but is preferably mixed with cement in advance, or mixed with water and mixed as a slurry.

膨張材は、市販の何れも使用可能であるが、カルシウムアルミサルホネート系や生石灰系等のものが挙げられ、モルタルの収縮低減のため用いられる。   Any of the commercially available expansion materials can be used, but examples thereof include calcium aluminum sulfonate and quicklime, and are used for reducing shrinkage of mortar.

膨張材の使用量は、単位セメント量により変動するが、通常、セメント100質量部に対して、1〜10質量部が好ましく、3〜7質量部がより好ましい。1質量部未満ではモルタルのひび割れ防止の期待が出来ない場合があり、10質量部を超えると、その効果の向上が期待できないばかりか異常膨張の原因となる場合がある。   Although the usage-amount of an expandable material changes with the amount of unit cement, 1-10 mass parts is preferable with respect to 100 mass parts of cement normally, and 3-7 mass parts is more preferable. If the amount is less than 1 part by mass, it may not be possible to prevent cracking of the mortar. If the amount exceeds 10 parts by mass, an improvement in the effect cannot be expected, and abnormal expansion may be caused.

膨張材の混合方法は、特に限定されるものではないが、予めセメントと混合しておくのが好ましい。   The method for mixing the expansion material is not particularly limited, but it is preferable to mix with the cement in advance.

本発明で使用する水の量は、水と、セメント、超微分及び膨張材からなる結合材との水結合材比(W/B:質量比)で35〜60%が好ましく、40〜50%がより好ましい。35%未満だとモルタルの流動性が悪く、ポンプ圧送性に支障をきたす場合があり、60%を超えると強度発現性が低下する場合がある。   The amount of water used in the present invention is preferably 35 to 60% in terms of a water binder ratio (W / B: mass ratio) between water and a binder made of cement, hyperdifferentiation, and expansion material, and 40 to 50%. % Is more preferable. If it is less than 35%, the fluidity of the mortar is poor, which may impede pumpability, and if it exceeds 60%, strength development may be reduced.

本発明では、モルタルの性状を改善する目的で、減水剤やAE剤等の各種混和剤を併用してもよい。   In the present invention, various admixtures such as water reducing agents and AE agents may be used in combination for the purpose of improving the properties of the mortar.

本発明のモルタルは、通常、既設コンクリートの断面修復する表面に厚さ1〜3mm程度に吹付けかコテで薄塗りを行った後、繊維シートを貼り付けその上にさらに前記モルタルを吹付けかコテ塗りを行い断面補修仕上げ行う。モルタルの施工厚さは凹凸部により若干変動するが、通常3〜20mm程度が好ましい。3mm以下では剥落防止効果が弱く、また、モルタルの中性化の問題が起こる可能性があり、20mmを超えても、大幅な効果改善は期待できなく、経済的でない。   The mortar of the present invention is usually sprayed to a thickness of about 1 to 3 mm on the surface of the existing concrete to be repaired, or thinly coated with a trowel, and then a fiber sheet is applied to the mortar. Apply a trowel and finish the cross section. The construction thickness of the mortar varies slightly depending on the concavo-convex part, but is usually preferably about 3 to 20 mm. If it is 3 mm or less, the peeling prevention effect is weak, and there is a possibility that a problem of neutralization of the mortar may occur. Even if it exceeds 20 mm, a significant improvement in the effect cannot be expected and it is not economical.

本発明で使用する繊維シートとしては、ニ軸、三軸何れの繊維シートも使用可能であるが、既設コンクリートの凹凸に対しての追従性が有り、繊維の引張強度が高いビニロン繊維シート及びアクリル繊維シートが好ましい。繊維シートのメッシュサイズは8〜15mm程度で、メッシュ間隔は6〜10mm程度、厚みは1mm以下が好ましい。   As the fiber sheet used in the present invention, any of biaxial and triaxial fiber sheets can be used. However, the vinylon fiber sheet and the acrylic have high followability to the unevenness of the existing concrete and have high fiber tensile strength. A fiber sheet is preferred. The mesh size of the fiber sheet is preferably about 8 to 15 mm, the mesh interval is about 6 to 10 mm, and the thickness is preferably 1 mm or less.

本発明で使用する吹付けにおける圧搾空気との混合方法としては、例えば以下の方法が挙げられる。モルタルを圧送するポンプ、例えばスクイズポンプ、ピストンポンプ、及びスネークポンプ等により、10MPa以下の圧力でモルタルを圧送して、吹付ノズル先端から手前の位置、好ましくは吹付ノズル先端から30m以下、より好ましくは10m以下の位置で、モルタルと圧搾空気を混合して吹付けモルタルを調製し、この吹付けモルタルを補修吹付け材料として、補修個所に吹付ける方法が挙げられる。30mを越えると圧送管内での圧搾空気の圧力損失が大きく、モルタルが圧送管内で閉塞し、圧送が低下、若しくは圧送不良となる場合がある。   Examples of the mixing method with the compressed air in the spraying used in the present invention include the following methods. The mortar is pumped at a pressure of 10 MPa or less by a pump that pumps the mortar, such as a squeeze pump, a piston pump, and a snake pump, and is preferably at a position in front of the spray nozzle tip, preferably 30 m or less from the spray nozzle tip, more preferably A method of spraying mortar and compressed air at a position of 10 m or less to prepare sprayed mortar and spraying the repaired mortar as a repair spraying material is given. If it exceeds 30 m, the pressure loss of the compressed air in the pumping pipe is large, and the mortar may be blocked in the pumping pipe, resulting in a decrease in pumping or poor pumping.

なお、圧搾空気は、1Mpa以下、好ましくは0.4〜0.7Mpaの圧力で、ホースを経由してY字管又はシャワーリングへ圧送され、Y字管又はシャワーリングから吐出してモルタルと混合し、吹付けモルタルとしてコンクリートの表面仕上げ及び断面修復に吹付けられるものである。   In addition, compressed air is 1Mpa or less, Preferably it is the pressure of 0.4-0.7Mpa, is pumped to a Y-shaped tube or a shower ring via a hose, is discharged from a Y-shaped tube or a shower ring, and is mixed with mortar. However, it is sprayed for surface finishing and cross-section repair of concrete as spraying mortar.

以下、実験例に基づき詳細に説明する。   Hereinafter, it demonstrates in detail based on an experiment example.

実験例1
セメント75質量部、細骨材130質量部、粘調剤0.1質量部、短繊維1容積部(モルタル100容積部中)、ポリマー10質量部(固形分換算)、超微粉4質量部、膨張材4質量部とし、高炉徐冷スラグの使用量を表1に示すように変え、W/B(セメント、高炉徐冷スラグ、微粒分、膨張材含:質量比)=48%、からなるモルタルを調製し、ハンドミキサーで混練り後、40×40cmのコンクリート版表面に厚さ1mmでモルタルをコテ均しした後、所定材齢で圧縮強度試験と中性化試験を実施した。結果を表1に示す。
Experimental example 1
75 parts by mass of cement, 130 parts by mass of fine aggregate, 0.1 part by mass of thickener, 1 part by volume of short fibers (in 100 parts by volume of mortar), 10 parts by mass of polymer (in terms of solid content), 4 parts by mass of ultrafine powder, expansion Mortar comprising 4 parts by mass of the material and changing the amount of blast furnace chilled slag used as shown in Table 1 and W / B (cement, blast furnace chilled slag, fine particles, containing expanded material: mass ratio) = 48% After kneading with a hand mixer, the mortar was crushed with a thickness of 1 mm on the surface of a 40 × 40 cm concrete plate, and then a compression strength test and a neutralization test were performed at a predetermined age. The results are shown in Table 1.

(使用材料)
セメント:普通ポルトランドセメント、市販品、比重3.16
高炉徐冷スラグ:化学組成(質量%)SiO31.7%、CaO39.5%、Al14.8%、ガラス化率5%、ブレーン比表面積6000cm/g
細骨材:新潟県青海町産石灰砂、比重2.67、最大骨材寸法0.6mm
粘調剤:メチルセルロース、市販品
短繊維:ビニロン繊維、市販品、L=12mm
ポリマー:スチレン・ブタジエンゴム(SBR)ラテックス、市販品
超微粉:シリカフューム、市販品、平均粒子径1μm以下
膨張材:アウイン系、市販品
(Materials used)
Cement: Ordinary Portland cement, commercial product, specific gravity 3.16
Blast furnace annealing slag: Chemical composition (mass%) SiO 2 31.7%, CaO 39.5%, Al 2 O 3 14.8%, vitrification rate 5%, Blaine specific surface area 6000 cm 2 / g
Fine aggregate: Lime sand from Aomi Town, Niigata Prefecture, specific gravity 2.67, maximum aggregate size 0.6mm
Viscosity agent: methyl cellulose, commercial short fiber: vinylon fiber, commercial product, L = 12 mm
Polymer: Styrene-butadiene rubber (SBR) latex, commercially available ultrafine powder: silica fume, commercially available product, average particle diameter of 1 μm or less, expanded material: Auin, commercially available product

(測定方法)
中性化試験:打設4週後、温度30℃、湿度60%、CO濃度5%で4週間中性化促進養生による。モルタルの破断面にフェノールフタレインアルコール溶液を塗布し、赤色に変化しない領域を中性化領域とした。
塩素イオン浸透試験:打設4週後、海水(JIS 6205に準拠、NaCl4.5g/L、MgCl11.1g/L、NaSO4.1g/L、KCl0.7g/Lを含んだ人工海水)に4週間浸漬した後、モルタルの破断面に0.1mol/Lの硝酸銀を塗布し、白色に変化した領域を塩素イオンの浸透した領域とした。
圧縮強度:JIS R 5201「セメントの物理試験方法」による。
(Measuring method)
Neutralization test: 4 weeks after placement, neutralization promotion curing at a temperature of 30 ° C., a humidity of 60% and a CO 2 concentration of 5% for 4 weeks. A phenolphthalein alcohol solution was applied to the fracture surface of the mortar, and the region that did not turn red was defined as a neutralized region.
Chlorine ion penetration test: 4 weeks after placement, seawater (according to JIS 6205, NaCl 2 4.5 g / L, MgCl 2 11.1 g / L, Na 2 SO 4 4.1 g / L, KCl 0.7 g / L After immersion for 4 weeks, 0.1 mol / L of silver nitrate was applied to the fracture surface of the mortar, and the area that changed to white was defined as an area in which chlorine ions had permeated.
Compressive strength: According to JIS R 5201 “Physical test method for cement”.

Figure 2006117451
Figure 2006117451

表1より、本発明のモルタル(補修用セメント組成物)は、中性化及び塩素イオンの浸透が抑制されていることが判る。   From Table 1, it can be seen that the mortar (the cement composition for repair) of the present invention has suppressed neutralization and penetration of chloride ions.

実験例2
実験例1の高炉徐冷スラグの使用量を25質量部とし、表2に示すように高炉徐冷スラグの粉末度と種類を変えたこと以外は、実験例1と同様に行った。結果を表2に示す。
Experimental example 2
The experiment was performed in the same manner as in Experimental Example 1 except that the amount of blast furnace annealed slag used in Experimental Example 1 was 25 parts by mass and the fineness and type of the blast furnace annealed slag were changed as shown in Table 2. The results are shown in Table 2.

Figure 2006117451
Figure 2006117451

表2より、本発明のモルタル(補修用セメント組成物)は、中性化が抑制されていることが判る。   From Table 2, it can be seen that neutralization of the mortar (repair cement composition) of the present invention is suppressed.

実験例3
実験例1の高炉徐冷スラグの使用量を25質量部とし、表3に示すように粘調剤の使用量を変えて、実験例1と同様にモルタルを調製しコンクリート表面にモルタルをコテ均しした後、所定材齢で付着強度の試験を実施した。また、施工性の評価も実施した。結果を表3に示す。
Experimental example 3
The amount of the blast furnace slow-cooled slag used in Experimental Example 1 is 25 parts by mass, and the amount of the thickener used is changed as shown in Table 3. After that, an adhesion strength test was performed at a predetermined age. In addition, the workability was also evaluated. The results are shown in Table 3.

(測定方法)
付着強度:JHS 416「コンクリートとの付着試験」による。
施工性:コテによる均し状態を△・・伸びが悪い、○・・普通、◎・・良好、で表す。
(Measuring method)
Adhesion strength: According to JHS 416 “Adhesion test with concrete”.
Workability: The leveled state by a soldering iron is indicated by △ ・ ・ Poor elongation, ○ ・ ・ Normal, ◎ ・ ・ Good.

Figure 2006117451
Figure 2006117451

表3より、本発明のモルタル(補修用セメント組成物)は、施工性が良好で、付着強度が高く剥離し難いことが判る。   From Table 3, it can be seen that the mortar (the cement composition for repair) of the present invention has good workability, high adhesion strength, and is difficult to peel off.

実験例4
実験例3の粘調剤の使用量を0.1質量部とし、表4に示すようにポリマー(固形分換算)の使用量を変えたこと以外は、実験例3と同様に行った。結果を表4に示す。
Experimental Example 4
The same procedure as in Experimental Example 3 was performed except that the amount of the viscous agent used in Experimental Example 3 was 0.1 parts by mass and the amount of the polymer (in terms of solid content) was changed as shown in Table 4. The results are shown in Table 4.

Figure 2006117451
Figure 2006117451

表4より、本発明のモルタル(補修用セメント組成物)は、施工性が良好で、付着強度が高く剥離し難いことが判る。   From Table 4, it can be seen that the mortar (repair cement composition) of the present invention has good workability, high adhesion strength, and is difficult to peel off.

実験例5
実験例3の粘調剤の使用量を0.1質量部とし、表5に示すように超微粉の使用量を変えた以外は、実験例3と同様に行った。この結果を表5に示す。
Experimental Example 5
The same procedure as in Experimental Example 3 was carried out except that the amount of the viscous agent used in Experimental Example 3 was 0.1 parts by mass and the amount of ultrafine powder was changed as shown in Table 5. The results are shown in Table 5.

Figure 2006117451
Figure 2006117451

表5より、本発明のモルタル(補修用セメント組成物)は、施工性が良好で、付着強度が高く剥離し難いことが判る。   From Table 5, it can be seen that the mortar (repair cement composition) of the present invention has good workability, high adhesion strength, and is difficult to peel off.

実験例6
実験例1の高炉徐冷スラグの使用量を25質量部とし、表6に示すように膨張材の使用量を変え、実験例1と同様にモルタルを調製しモルタルの表面状態を観察した。結果を表6に示す。
Experimental Example 6
The amount of the blast furnace slow-cooled slag used in Experimental Example 1 was set to 25 parts by mass, and the used amount of the expanding material was changed as shown in Table 6. Mortar was prepared in the same manner as in Experimental Example 1, and the surface state of the mortar was observed. The results are shown in Table 6.

(測定方法)
表面状態:30×30cmの平版コンクリートにモルタルを厚さ5mmに塗付け、表面をコテで均した後20℃、湿度60%の室内に1週間放置し、表面の亀裂発生状態を観察した。
○・・・・亀裂無し
△・・・・亀裂が1本
×・・・・亀裂が2本以上
(Measuring method)
Surface condition: A mortar was applied to lithographic concrete of 30 × 30 cm to a thickness of 5 mm, the surface was leveled with a trowel, and then left in a room at 20 ° C. and a humidity of 60% for one week, and the surface cracking state was observed.
○ ・ ・ ・ ・ No crack △ ・ ・ ・ ・ ・ ・ 1 crack ×× ・ ・ ・ 2 or more cracks

Figure 2006117451
Figure 2006117451

表6より、本発明のモルタル(補修用セメント組成物)は、モルタル表面に亀裂が発生し難く、外観が良好であることが判る。   From Table 6, it can be seen that the mortar (cement composition for repair) of the present invention is less likely to crack on the mortar surface and has a good appearance.

実験例7
実験例1の高炉徐冷スラグの使用量を25質量部とし、実験例1と同様にモルタル(実験No.1-3)を調製し、ハンドミキサーで混練り後、40×40cmのコンクリート版表面に厚さ1mmでモルタルをコテ均しした後、表7に示す繊維シートをモルタルに押さえつけ、さらに前記モルタルを厚さ3mmでコテ均しを行い、材齢28日に押し抜き試験を実施した。結果を表7に示す。
Experimental Example 7
The amount of blast furnace slow cooling slag used in Experimental Example 1 was 25 parts by mass, mortar (Experiment No. 1-3) was prepared in the same manner as in Experimental Example 1, kneaded with a hand mixer, and then a 40 × 40 cm concrete plate surface After the mortar was flattened with a thickness of 1 mm, the fiber sheet shown in Table 7 was pressed against the mortar, and the mortar was flattened with a thickness of 3 mm, and a punch test was conducted on the age of 28 days. The results are shown in Table 7.

(使用材料)
繊維シートA:ニ軸ビニロン繊維(目幅6mm)、市販品
繊維シートB:ニ軸ビニロン繊維 (目幅8mm)、市販品
繊維シートC:三軸ビニロン繊維 (目幅8mm)、市販品
繊維シートD:ニ軸ビニロン繊維 (目幅9mm)、市販品
繊維シートE:ニ軸アラミド繊維 (目幅9mm)、市販品
(Materials used)
Fiber sheet A: Biaxial vinylon fiber (mesh width 6 mm), commercial fiber sheet B: Biaxial vinylon fiber (mesh width 8 mm), commercial product
Fiber sheet C: Triaxial vinylon fiber (mesh width 8 mm), commercial fiber sheet D: Biaxial vinylon fiber (mesh width 9 mm), commercial fiber sheet E: Biaxial aramid fiber (mesh width 9 mm), commercial product

(測定方法)
押抜き試験:「はく落防止の押抜き試験方法」(JHS 424による)
・規格1.5KN以上(変位10mm以上における最大荷重)
・U型コンクリート蓋(400×600×60mm)中央部裏面をφ100mmで55mmの深さにコアを行い(5mm残す)、表面に実施例1の方法でモルタルを塗付け、材齢28日で裏面より押し抜き試験を実施する。
(Measuring method)
Punching test: “Punching test method to prevent flaking” (according to JHS 424)
・ Standard 1.5KN or more (maximum load at displacement 10mm or more)
-U-shaped concrete lid (400 x 600 x 60 mm), core on the back of the central part to a depth of 55 mm with φ100 mm (5 mm left), mortar is applied to the surface by the method of Example 1, and the back is 28 days old Perform a more punch test.

Figure 2006117451
Figure 2006117451

表7より、本発明の繊維シートを使用した補修工法によりモルタル(補修用セメント組成物)の押抜き強度は高く、剥離し難いことが判る。   From Table 7, it can be seen that the punching strength of the mortar (the cement composition for repair) is high by the repair method using the fiber sheet of the present invention and is difficult to peel.

実験例8
繊維シートA:ニ軸ビニロン繊維(目幅6mm)を使用し、表8に示すように短繊維の使用量(モルタル100容積部中)を変えたこと以外は、実験例7と同様に行った。結果を表8に示す。
Experimental Example 8
Fiber sheet A: Performed in the same manner as in Experimental Example 7, except that biaxial vinylon fibers (mesh width 6 mm) were used and the amount of short fibers used (in 100 parts by volume of mortar) was changed as shown in Table 8. . The results are shown in Table 8.

Figure 2006117451
Figure 2006117451

表8より、本発明の繊維シートを使用した補修工法によりモルタル(補修用セメント組成物)の押抜き強度が高く、剥離し難いことが判る。   From Table 8, it can be seen that the punching strength of the mortar (the cement composition for repair) is high due to the repair method using the fiber sheet of the present invention and is difficult to peel off.

実験例9
実験例1の高炉徐冷スラグの使用量を25質量部とし、実験例1と同様にモルタル(実験No.1-3)を調製し、ダマカットミキサ(50L)で混練りして調製した。このモルタルをスクイズポンプで圧送し、先端8mmφの吹付けノズルの表9に示した混合位置で吹付けノズルシャワーリングから強制的に圧搾空気(0.7MPa)をモルタルに吹き込み(1.2m/h)、モルタルをコンクリート壁に吹付け(O.3m/h)た。なお、圧送ホースは1.5インチφの耐圧ホースを使用し、エアーホースは1/2インチφのホースを使用した。
モルタルと圧搾空気の混合位置を変えて吹付けたモルタルの測定結果を表9に示す。なお、圧搾空気の導入は、混合位置が1m未満ではシャワーリングで行い、1m以上ではY字管を使用して行った。
Experimental Example 9
The amount of the blast furnace slow-cooled slag used in Experimental Example 1 was 25 parts by mass, a mortar (Experiment No. 1-3) was prepared in the same manner as in Experimental Example 1, and kneaded with a Damacut mixer (50 L). This mortar was pumped with a squeeze pump, and compressed air (0.7 MPa) was forcibly blown into the mortar from the spray nozzle shower ring at the mixing position shown in Table 9 of the spray nozzle with a tip of 8 mmφ (1.2 m 3 / h) The mortar was sprayed on the concrete wall (O.3 m 3 / h). The pressure hose used was a 1.5 inch diameter pressure hose, and the air hose was a 1/2 inch diameter hose.
Table 9 shows the measurement results of the mortar sprayed by changing the mixing position of the mortar and compressed air. The compressed air was introduced by showering when the mixing position was less than 1 m, and using a Y-shaped tube when the mixing position was 1 m or more.

Figure 2006117451
Figure 2006117451

表9より、本発明のモルタル(補修用セメント組成物)及び補修工法を使用すると、吹付けモルタルのリバウンド率と付着性が良好であることが判る。   From Table 9, it can be seen that when the mortar (repair cement composition) and the repair method of the present invention are used, the rebound rate and adhesion of the sprayed mortar are good.

本発明の補修用セメント組成物及び補修工法を使用することにより、二酸化炭素や塩素イオンの透過を抑止し中性化や塩害を抑え、コンクリート構造物の耐久性を飛躍的に向上させるばかりか、強度発現性や施工性が良好であり、さらに、吹付け時のリバウンド、粉塵量を低減でき、作業性の良好なコンクリートの表面コテ仕上げ及び吹付け施工ができるため、老朽化したコンクリート構造物の補修に極めて有用である。   By using the repair cement composition and repair method of the present invention, carbon dioxide and chlorine ions are prevented from permeation, neutralization and salt damage are suppressed, and the durability of the concrete structure is dramatically improved. Since the strength development and workability are good, the rebound and dust amount during spraying can be reduced, and the surface trowel finish and spraying work of concrete with good workability can be performed. Very useful for repairs.

Claims (6)

セメント、骨材、粘調剤、短繊維、セメント用ポリマー及び高炉徐冷スラグを含有してなる補修用セメント組成物。 A cement composition for repair, comprising cement, aggregate, thickener, short fiber, polymer for cement, and blast furnace chilled slag. さらに、超微粉末物質を含有してなる請求項1記載の補修用セメント組成物。 Furthermore, the cement composition for repair of Claim 1 formed by containing an ultrafine powder substance. さらに、膨張材を含有してなる請求項1又は2項記載の補修用セメント組成物。 Furthermore, the cement composition for repair of Claim 1 or 2 formed by containing an expansion | swelling material. 請求項1〜3のいずれか1つに記載の補修用セメント組成物を吹付けまたはコテ塗りによりコンクリート表面に薄塗り後、繊維シートを取付けさらにその上に前記補修用セメント組成物を吹付けまたはコテ塗りすることを特徴とする補修工法。 The repair cement composition according to any one of claims 1 to 3 is sprayed or coated on a concrete surface by troweling, and then a fiber sheet is attached thereto, and the repair cement composition is sprayed thereon. Repair method characterized by ironing. 請求項1〜3のいずれか1つに記載の補修用セメント組成物と圧搾空気を吹付けノズル先端から30m以下の位置で混合して、前記補修用セメント組成物を吹付ノズルから吹付けることを特徴とする補修工法。 The repair cement composition according to any one of claims 1 to 3 and compressed air are mixed at a position of 30 m or less from a spray nozzle tip, and the repair cement composition is sprayed from the spray nozzle. Characteristic repair method. 請求項1〜3のいずれか1つに記載の補修用セメント組成物を用いて補修したコンクリート構造物。 The concrete structure repaired using the cement composition for repair as described in any one of Claims 1-3.
JP2004305280A 2004-10-20 2004-10-20 Cement composition for repairing and repairing method Pending JP2006117451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305280A JP2006117451A (en) 2004-10-20 2004-10-20 Cement composition for repairing and repairing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305280A JP2006117451A (en) 2004-10-20 2004-10-20 Cement composition for repairing and repairing method

Publications (1)

Publication Number Publication Date
JP2006117451A true JP2006117451A (en) 2006-05-11

Family

ID=36535703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305280A Pending JP2006117451A (en) 2004-10-20 2004-10-20 Cement composition for repairing and repairing method

Country Status (1)

Country Link
JP (1) JP2006117451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001563A (en) * 2006-06-22 2008-01-10 Denki Kagaku Kogyo Kk Cement composition for spraying and spraying method
JP2013096182A (en) * 2011-11-04 2013-05-20 Eiji Makitani Method for skeleton reinforcement of building
JP2015089860A (en) * 2013-11-06 2015-05-11 住友大阪セメント株式会社 Chloride ion penetration suppression inorganic additive agent for concrete, concrete using the additive agent and manufacturing method therefor
CN105271913A (en) * 2015-11-19 2016-01-27 杭州立平工贸有限公司 Cement grinding aid and preparation method thereof
CN115420605A (en) * 2022-09-15 2022-12-02 中国石油大学(华东) Experimental device and method for transmitting chloride ions in concrete with temperature difference on two sides

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265154A (en) * 1986-01-21 1987-11-18 セル建材工業株式会社 Cement composition and using method
JP2002242445A (en) * 2001-02-15 2002-08-28 Nippon Electric Glass Co Ltd Repairing method of concrete structure
JP2003095721A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, and cement composition
JP2003306370A (en) * 2002-04-17 2003-10-28 Denki Kagaku Kogyo Kk Spray material and spraying method using it
JP2004051422A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement composition for spraying method
JP2004051423A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265154A (en) * 1986-01-21 1987-11-18 セル建材工業株式会社 Cement composition and using method
JP2002242445A (en) * 2001-02-15 2002-08-28 Nippon Electric Glass Co Ltd Repairing method of concrete structure
JP2003095721A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, and cement composition
JP2003306370A (en) * 2002-04-17 2003-10-28 Denki Kagaku Kogyo Kk Spray material and spraying method using it
JP2004051422A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement composition for spraying method
JP2004051423A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001563A (en) * 2006-06-22 2008-01-10 Denki Kagaku Kogyo Kk Cement composition for spraying and spraying method
JP2013096182A (en) * 2011-11-04 2013-05-20 Eiji Makitani Method for skeleton reinforcement of building
JP2015089860A (en) * 2013-11-06 2015-05-11 住友大阪セメント株式会社 Chloride ion penetration suppression inorganic additive agent for concrete, concrete using the additive agent and manufacturing method therefor
CN105271913A (en) * 2015-11-19 2016-01-27 杭州立平工贸有限公司 Cement grinding aid and preparation method thereof
CN115420605A (en) * 2022-09-15 2022-12-02 中国石油大学(华东) Experimental device and method for transmitting chloride ions in concrete with temperature difference on two sides

Similar Documents

Publication Publication Date Title
JP7234001B2 (en) Repair method for polymer cement mortar and reinforced concrete
JP6271249B2 (en) Spraying mortar
JP2022069599A (en) Polymer cement mortar
JP2003306369A (en) Spray material and spraying method using it
JP5064172B2 (en) Abrasion resistant material and repair method using the same
JP3986709B2 (en) Grout material composition, cured product and construction method thereof
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP2001322858A (en) Concrete section repair material
JP2003306370A (en) Spray material and spraying method using it
JP5494049B2 (en) Premix powder of cement composition, hydraulic mortar and hardened mortar
JP2006117451A (en) Cement composition for repairing and repairing method
JP2005047755A (en) Cement composition for spray, and spraying method therewith
JP4672572B2 (en) Cement composition for spraying and spraying method using the same
JP2006169042A (en) Cement composition for repair and repair method using the same
JP2003120041A (en) Repair method for concrete deteriorated by salt damage
JP5777274B2 (en) Sulfuric acid resistant cement composition for spraying method and spraying method using the same
JP4074148B2 (en) Cement composition for spraying method
JP4916786B2 (en) Spray cement composition and spray method
JPH11322397A (en) Quick-setting spraying material
JP4428649B2 (en) Spray cement composition and spray method
JP2000086319A (en) Quick-setting spraying cement concrete and spraying method using the same
JP2003342053A (en) Spraying material and spraying technique using it
JP2000335953A (en) Cement composition for spraying
JP5483695B2 (en) Crack-inhibiting spray material and spraying method using the same
JP4579036B2 (en) Spray cement composition, spray cement mortar, and spray method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601