JP2006108060A - Compound ion exchange electrode - Google Patents

Compound ion exchange electrode Download PDF

Info

Publication number
JP2006108060A
JP2006108060A JP2004314768A JP2004314768A JP2006108060A JP 2006108060 A JP2006108060 A JP 2006108060A JP 2004314768 A JP2004314768 A JP 2004314768A JP 2004314768 A JP2004314768 A JP 2004314768A JP 2006108060 A JP2006108060 A JP 2006108060A
Authority
JP
Japan
Prior art keywords
ion exchange
membrane layer
electrode
exchange membrane
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314768A
Other languages
Japanese (ja)
Inventor
Yurio Nomura
由利夫 野村
Taishin Tani
谷  泰臣
Masahiro Ishitani
雅宏 石谷
Fumihiko Suzuki
文彦 鈴木
Nobuko Kariya
伸子 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HREIN ENERGY KK
Denso Corp
Original Assignee
HREIN ENERGY KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HREIN ENERGY KK, Denso Corp filed Critical HREIN ENERGY KK
Priority to JP2004314768A priority Critical patent/JP2006108060A/en
Publication of JP2006108060A publication Critical patent/JP2006108060A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound ion exchange electrode for an organic hydride direct type fuel cell which prevents seepage of a polymer ion exchange membrane by a reacted substance or a substance after reaction and efficiently generates power by supplying water efficiently to the polymer ion exchange membrane, with respect to a direct type fuel cell system in which a process of dehydrogenation reaction or hydrogenation reaction of an organic hydride is integrated. <P>SOLUTION: The compound ion exchange electrode for the fuel cell consists of a catalyst layer, a palladium film layer, an ion exchange membrane layer, and a positive electrode, and the ion exchange membrane layer is laminated so as to be interposed by the palladium film layer and the positive electrode. The palladium film layer has a moisture supply passage formed for supplying water or water vapor for humidifying the ion exchange membrane layer on the surface contacting the ion exchange membrane layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、燃料電池用の複合イオン交換電極に関する。  The present invention relates to a composite ion exchange electrode for a fuel cell.

有機化合物の水素化物である有機ハイドライドの脱水素反応または水素化反応を用いて、燃料電池用の水素の供給または貯蔵を行う技術は、特開2001−110437号公報、特開2001−198469号公報、特開2002−134141号公報、特開2002−184436号公報、特開2002−187702号公報、特開2002−274801号公報、特開2002−274802号公報、特開2002−274803号公報、特開2002−274804号公報に開示されている。  Techniques for supplying or storing hydrogen for a fuel cell using a dehydrogenation reaction or hydrogenation reaction of an organic hydride that is a hydride of an organic compound are disclosed in Japanese Patent Application Laid-Open Nos. 2001-110437 and 2001-198469. JP, 2002-134141, JP, 2002-184436, JP, 2002-187702, JP, 2002-274801, JP, 2002-274802, JP, 2002-274803, Special This is disclosed in Japanese Unexamined Patent Publication No. 2002-274804.

燃料電池への水素供給源として有機ハイドライドを利用する方法の優れている点としては、有機ハイドライドの脱水素反応により生成される脱水素化合物が、触媒反応により容易に水素化して有機ハイドライドに再生できる点にあり、有機ハイドライドを利用する水素貯蔵・供給システムの確立により、多様な水素源(余剰電力による電気分解水素を含む)と燃料電池システムを結んだ循環型供給システムを構築することができる。このため、燃料電池システムへの水素供給方式における多様な技術的検討の進展が期待されているところである。  The advantage of using organic hydride as a hydrogen supply source for fuel cells is that the dehydrogenated compound produced by the dehydrogenation reaction of organic hydride can be easily hydrogenated and regenerated into organic hydride by catalytic reaction. By establishing a hydrogen storage and supply system that uses organic hydride, it is possible to construct a circulation supply system that connects various hydrogen sources (including electrolysis hydrogen by surplus power) and a fuel cell system. For this reason, progress in various technical studies on the hydrogen supply system to the fuel cell system is expected.

中でも、従来技術が、分散型電源向け燃料電池システムや、自動車搭載用システム、水素供給ステーション用システムなど、大量の水素供給を要する燃料電池システム用の水素発生・貯蔵装置の高効率化にかかるものとなっているが、燃料電池システムの開発が期待される携帯電話やパソコン等の家電品、情報機器向けの水素発生・貯蔵装置の小型化に関する技術開発は十分になされていなかったため、有機ハイドライド利用の燃料電池システムの適用範囲は限定的なものとなってきていた。  Among them, the conventional technology is related to the improvement of the efficiency of hydrogen generation / storage devices for fuel cell systems that require a large amount of hydrogen supply, such as fuel cell systems for distributed power sources, automobile mounted systems, and hydrogen supply station systems. However, technology development related to miniaturization of hydrogen generation and storage devices for home appliances and information devices such as mobile phones and personal computers, for which development of fuel cell systems is expected, has not been sufficiently made. The application range of the fuel cell system has been limited.

これに対し、燃料電池システムの構成に、有機ハイドライドの脱水素反応又は水素化反応のプロセスを内部化して組み込む技術が、特願2003−45449号公報、特願2004−192834号公報、特願2004−247080号公報において開示されている。これは、燃料電池の負極側に有機ハイドライドを供給又は保持して、脱水素化して、連続的に該水素を水素イオン化するものであり、脱水素触媒と水素イオン化触媒を一体化させることで極めて簡素な構成による有機ハイドライド直接型燃料電池システムを実現するというものである。該燃料電池システムは、簡素な構成により水素供給機能を内包することで、小型化することができ、上記の携帯電話やパソコン等の家電品、情報機器向け用途に適合することができるものである。  On the other hand, techniques for internalizing and incorporating an organic hydride dehydrogenation reaction or hydrogenation reaction process into the configuration of a fuel cell system are disclosed in Japanese Patent Application Nos. 2003-45449, 2004-192834, and 2004. -247080. This is to supply or hold an organic hydride on the negative electrode side of the fuel cell, dehydrogenate it, and continuously hydrogenize the hydrogen ion. By integrating the dehydrogenation catalyst and the hydrogen ionization catalyst, An organic hydride direct fuel cell system with a simple configuration is realized. The fuel cell system can be miniaturized by incorporating a hydrogen supply function with a simple configuration, and can be adapted to the above-mentioned applications for home appliances and information devices such as mobile phones and personal computers. .

発明者らは、上記の発明に関連して実証的な研究開発に取り組んできたが、上記技術によれば、有機ハイドライドからの連続的な水素イオン生成を行うことにより、脱水素物質が触媒金属を被覆し被反応物質の接触効率が低下したり、有機ハイドライドと接触する高分子イオン交換膜においてクロスオーバーや構成部材の劣化など見られ、発電効率に悪影響を及ぼすことが確認された。  The inventors have been engaged in empirical research and development in connection with the above invention, but according to the above technology, the dehydrogenation substance is converted into a catalytic metal by performing continuous hydrogen ion generation from an organic hydride. It has been confirmed that the contact efficiency of the reactant to be coated decreases and the polymer ion exchange membrane in contact with the organic hydride has a negative effect on the power generation efficiency.

これに対し、メタノール等の反応後物質と高分子イオン交換膜とが直接に接触することによるクロスオーバを防ぐために水素イオンの透過性を有するパラジウム膜を高分子イオン交換膜に着接する技術が、特願2002−231265号公報において開示されているが、この技術によれば負極側に接する面にパラジウム膜を着接すると、高分子イオン交換膜への水分供給が阻害され、発電効率が著しく低下するものとなっていた。逆に、正極側に接する面にパラジウム膜を着接した場合は、高分子イオン交換膜への反応物質の浸潤を防ぐことができないために技術の有効性が期待できないものであった。  On the other hand, a technique of attaching a palladium membrane having hydrogen ion permeability to the polymer ion exchange membrane in order to prevent crossover due to direct contact between the post-reaction substance such as methanol and the polymer ion exchange membrane, Although disclosed in Japanese Patent Application No. 2002-231265, according to this technique, when a palladium membrane is attached to the surface in contact with the negative electrode side, moisture supply to the polymer ion exchange membrane is hindered, and power generation efficiency is significantly reduced. It was supposed to be. On the other hand, when a palladium membrane is attached to the surface in contact with the positive electrode side, the effectiveness of the technology cannot be expected because the infiltration of the reactant into the polymer ion exchange membrane cannot be prevented.

発明が解決しようとする課題Problems to be solved by the invention

本発明の目的は、このような従来技術の課題点に鑑み、有機ハイドライドの脱水素反応又は水素化反応のプロセスを内部化した直接型燃料電池システムにおいて、被反応物質や反応後物質による高分子イオン交換膜の浸潤を防ぐとともに、効率的に高分子イオン交換膜に水分を供給することで、より効率的に発電する有機ハイドライド直接型燃料電池用の複合イオン交換電極を提供することを目的とする。  An object of the present invention is to provide a direct fuel cell system in which an organic hydride dehydrogenation reaction or hydrogenation reaction process is internalized in view of such problems of the prior art. The purpose of the present invention is to provide a composite ion exchange electrode for an organic hydride direct fuel cell that generates electricity more efficiently by preventing infiltration of the ion exchange membrane and efficiently supplying moisture to the polymer ion exchange membrane. To do.

課題を解決するための手段Means for solving the problem

本願発明者らは上記課題の解決のために鋭意研究開発を行い、負極側のイオン交換膜に着接する面に、イオン交換膜を加湿するための水分供給路を形成し、ここから水分を供給することで、被反応物質や反応後物質によるイオン交換膜への悪影響を防ぐとともに、イオン交換膜を加湿することができる複合イオン交換電極を発明するにいたった。  The inventors of the present application have conducted extensive research and development to solve the above problems, and formed a water supply passage for humidifying the ion exchange membrane on the surface that contacts the ion exchange membrane on the negative electrode side, and supplied water from this Thus, the present inventors have invented a composite ion exchange electrode capable of preventing the ion exchange membrane from being adversely affected by the substance to be reacted and the post-reaction substance, and capable of humidifying the ion exchange membrane.

すなわち、本願請求項1の発明は、面状の多孔質基材11に触媒金属12を担持させてなる触媒層10と、パラジウム膜層20と、イオン交換膜層30と、正極電極40と、からなり、パラジウム膜層20と正極電極40とでイオン交換膜層30を挟着するように積層された燃料電池用の複合イオン交換電極であって、パラジウム膜層20は、イオン交換膜層30に着接する面には、イオン交換膜層30を加湿するための水又は水蒸気を供給するための水分供給路25が形成され、反対面には触媒層10が着接されて、負極電極として外部回路により正極電極40と接続され、水分供給路25に水分が供給されるとともに、負極電極側に水素イオン供給物質50が、正極電極側40には酸素イオンが供給されて、水素イオン供給物質50が触媒層10内で触媒金属15と接触し生成する水素イオンが、パラジウム膜層20とイオン交換膜層30とを連続的に透過するとともに、酸素イオンと反応して水が生成するとともに、電子が、負極電極であるパラジウム膜層20から、外部回路の負荷を経て、正極電極40側に移動することで電流が生じることを特徴とする、複合イオン交換電極を提供する。  That is, the invention of claim 1 of the present application includes a catalyst layer 10 in which a catalytic metal 12 is supported on a planar porous substrate 11, a palladium membrane layer 20, an ion exchange membrane layer 30, a positive electrode 40, A composite ion exchange electrode for a fuel cell, which is laminated so that the ion exchange membrane layer 30 is sandwiched between the palladium membrane layer 20 and the positive electrode 40, and the palladium membrane layer 20 is composed of the ion exchange membrane layer 30. A moisture supply path 25 for supplying water or water vapor for humidifying the ion exchange membrane layer 30 is formed on the surface that contacts the electrode layer, and the catalyst layer 10 is attached on the opposite surface and is externally provided as a negative electrode. The circuit is connected to the positive electrode 40, and moisture is supplied to the moisture supply path 25, a hydrogen ion supply material 50 is supplied to the negative electrode side, and oxygen ions are supplied to the positive electrode side 40, so that the hydrogen ion supply material 50 is supplied. Touch Hydrogen ions generated by contact with the catalyst metal 15 in the layer 10 continuously pass through the palladium membrane layer 20 and the ion exchange membrane layer 30, react with oxygen ions to generate water, and electrons are Provided is a composite ion exchange electrode characterized in that a current is generated by moving from a palladium membrane layer 20 as a negative electrode to a positive electrode 40 side through a load of an external circuit.

本願請求項2の発明は、前記多孔質基材11は、活性炭素繊維、アルミナ、チタニア、ジルコニア、シリカ、ゼオライト、メソ多孔質材、ナノカーボン素材、パラジウム多孔材のいずれかであることを特徴とした、請求項1に記載の複合イオン交換電極を提供する。  The invention of claim 2 of the present application is characterized in that the porous substrate 11 is any one of activated carbon fiber, alumina, titania, zirconia, silica, zeolite, mesoporous material, nanocarbon material, and palladium porous material. The composite ion exchange electrode according to claim 1 is provided.

本願請求項3の発明は、前記導電性多孔質基材11は、導電性を向上するための金属メッキ等の表面処理がなされていることを特徴とする請求項1又は請求項2に記載の燃料電池を提供する。  The invention of claim 3 of the present application is characterized in that the conductive porous substrate 11 is subjected to surface treatment such as metal plating for improving conductivity. A fuel cell is provided.

本願請求項4の発明は、前記触媒金属12は、白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、鉄、レニウム、バナジウム、クロム、タングステン、モリブデン、または銅から構成される群から選定された少なくとも1つ、またはそれらの化合物を含有するもののいずれかであることを特徴とした、請求項1又は請求項3に記載の複合イオン交換電極を提供する。  In the invention of claim 4, the catalyst metal 12 is selected from the group consisting of platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, iron, rhenium, vanadium, chromium, tungsten, molybdenum, or copper. The composite ion exchange electrode according to claim 1 or 3, wherein the composite ion exchange electrode is any one containing at least one of the compounds or a compound thereof.

本願請求項5の発明は、前記水素イオン供給物質50は、水素ガス、一級アルコール類、二級アルコール類、水素化芳香族化合物、水素化金属錯体化合物、ジメチルエーテル、のいずれかを主成分とするものであることを特徴とした、請求項1から請求項4のいずれか1つに記載の複合イオン交換電極を提供する。  In the invention of claim 5 of the present application, the hydrogen ion supply substance 50 is mainly composed of any one of hydrogen gas, primary alcohols, secondary alcohols, hydrogenated aromatic compounds, hydrogenated metal complex compounds, and dimethyl ether. The composite ion exchange electrode according to any one of claims 1 to 4, wherein the composite ion exchange electrode is provided.

本願請求項6の発明は、前記触媒層10の内部又は表面に、水素イオン供給物質50の供給のための流路13が形成されていることを特徴とする、請求項1から請求項5のいずれか1つに記載の複合イオン交換電極を提供する。  The invention of claim 6 of the present application is characterized in that a flow path 13 for supplying the hydrogen ion supply material 50 is formed in or on the surface of the catalyst layer 10. A composite ion exchange electrode according to any one of the above is provided.

本願請求項7の発明は、触媒層10は、反応熱供給用のヒーター13を内臓又は外表面に密着して具備することを特徴とした、請求項1から請求項6のいずれかに記載の複合イオン交換電極を提供する。  The invention according to claim 7 of the present application is characterized in that the catalyst layer 10 comprises a heater 13 for supplying reaction heat in close contact with the internal organs or the outer surface, according to any one of claims 1 to 6. A composite ion exchange electrode is provided.

本願請求項8の発明は、請求項1から請求項7のいずれかの複合イオン交換電極を有することを特徴とする固体高分子形燃料電池を提供する。  The invention of claim 8 of the present application provides a polymer electrolyte fuel cell comprising the composite ion exchange electrode according to any one of claims 1 to 7.

図1に、本願発明の基本構成を示す。本発明は、触媒層10と、パラジウム膜層20と、イオン交換膜層30と、正極電極40とからなり、パラジウム膜層20と正極電極40とでイオン交換膜層30を挟着するように積層された燃料電池用の複合イオン交換電極であって、パラジウム膜層20は、イオン交換膜層30に着接する面に、イオン交換膜層30を加湿するための水又は水蒸気を供給するための水分供給路25が形成された構成をもつ。  FIG. 1 shows the basic configuration of the present invention. The present invention comprises a catalyst layer 10, a palladium membrane layer 20, an ion exchange membrane layer 30, and a positive electrode 40, and the ion exchange membrane layer 30 is sandwiched between the palladium membrane layer 20 and the positive electrode 40. A composite ion exchange electrode for a fuel cell that is laminated, and the palladium membrane layer 20 is for supplying water or water vapor for humidifying the ion exchange membrane layer 30 to a surface that contacts the ion exchange membrane layer 30 The water supply path 25 is formed.

パラジウム膜層20の水分供給路25が形成された面の反対面に着接された触媒層10には、本願請求項5の発明のような水素イオン供給物質50が供給され、触媒層10の触媒金属12に接触し水素イオンを生成する。触媒層10で生成した水素イオンは、パラジウム膜層20を透過してイオン交換膜層30に移動して、正極電極40において酸化イオンと反応し燃料電池反応により電気が発生する。  A hydrogen ion supply material 50 as in the invention of claim 5 is supplied to the catalyst layer 10 attached to the opposite surface of the surface on which the moisture supply path 25 of the palladium film layer 20 is formed. It contacts the catalytic metal 12 and generates hydrogen ions. Hydrogen ions generated in the catalyst layer 10 permeate the palladium membrane layer 20 and move to the ion exchange membrane layer 30, react with oxide ions at the positive electrode 40, and generate electricity by a fuel cell reaction.

触媒層10は、触媒金族12としては、本願請求項4の発明のように、白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、鉄、レニウム、バナジウム、クロム、タングステン、モリブデン、または銅から構成される群から選定された少なくとも1つ、またはそれらの化合物を含有するもののいずれかを選択でき、触媒担体の面状の多孔質基材11としては、本願請求項2の発明のように、活性炭素繊維、アルミナ、チタニア、ジルコニア、シリカ、ゼオライト、メソ多孔質材、ナノカーボン素材、パラジウム多孔材のいずれかが選択できる。  The catalyst layer 10 is made of platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, iron, rhenium, vanadium, chromium, tungsten, molybdenum, or copper as the catalyst metal group 12, as in the invention of claim 4 of the present application. Any one of at least one selected from the group consisting of these or a compound containing those compounds can be selected, and the planar porous substrate 11 of the catalyst support is as in the invention of claim 2 of the present application. , Activated carbon fiber, alumina, titania, zirconia, silica, zeolite, mesoporous material, nanocarbon material, and palladium porous material can be selected.

有機ハイドライドの脱水素化反応は、吸熱反応であり、反応温度により水素生成量が増減する。このため、本願請求項7の発明のように、ヒーター13を触媒層10に内臓又は外表面に密着させて具備させ、触媒層10は概40℃〜400℃の範囲で加熱制御できるようしてもよい。ヒーター13は、電気式の加熱ヒーターでもよいし、燃料等を燃焼させた燃焼ガスヒータでもよく、加熱温度を制御できるものであれば、任意の加熱装置を選択することができる。  The dehydration reaction of organic hydride is an endothermic reaction, and the amount of hydrogen produced increases or decreases depending on the reaction temperature. Therefore, as in the invention of claim 7 of the present application, the heater 13 is provided in close contact with the internal or external surface of the catalyst layer 10 so that the catalyst layer 10 can be controlled to be heated within a range of approximately 40 ° C to 400 ° C. Also good. The heater 13 may be an electric heater or a combustion gas heater that burns fuel or the like, and any heating device can be selected as long as the heating temperature can be controlled.

イオン交換膜層30は、水素イオンを選択的に透過するものであれば任意のものを選択することができ、実用的には固体高分子膜が利用される。ただし、固体高分子膜の耐熱性が、高いものでも200℃前後であるため、より高温の作動温度に耐える金属製やセラミックス製のイオン交換膜を利用することも可能である。  Any ion exchange membrane layer 30 can be selected as long as it selectively transmits hydrogen ions, and a solid polymer membrane is practically used. However, since the high heat resistance of the solid polymer membrane is around 200 ° C., it is possible to use an ion exchange membrane made of metal or ceramic that can withstand a higher operating temperature.

燃料電池の電気化学反応は発熱反応となるため、イオン交換膜10がより高温で作動することで、負極側反応容器35内の有機ハイドライド脱水素触媒50に伝熱させて、吸熱反応である有機ハイドライドの脱水素反応に熱を供給することができ、ヒーター13による触媒層10の消費エネルギー量を低減することができる。  Since the electrochemical reaction of the fuel cell is an exothermic reaction, when the ion exchange membrane 10 operates at a higher temperature, the heat is transferred to the organic hydride dehydrogenation catalyst 50 in the negative electrode side reaction vessel 35, and the organic reaction is an endothermic reaction. Heat can be supplied to the hydride dehydrogenation reaction, and the amount of energy consumed by the catalyst layer 10 by the heater 13 can be reduced.

本願発明では詳細に触れていないが、本願発明の複合イオン交換電極によれば、正極電極40側に水蒸気を供給し、正極電極40、負極電極に通電することで、有機ハイドライドの脱水素化化合物の水素化反応が生じ、有機ハイドライドが生成されるため、バッテリーの充電のように、有機ハイドライドを交換することなく何度も発電させることができる。こうした技術的思想は、特開2003−4549号公報の発明と同様である。  Although not described in detail in the present invention, according to the composite ion exchange electrode of the present invention, by supplying water vapor to the positive electrode 40 side and energizing the positive electrode 40 and the negative electrode, an organic hydride dehydrogenation compound As a result of the hydrogenation reaction, organic hydride is generated, so that power can be generated many times without replacing the organic hydride as in battery charging. Such a technical idea is the same as that of the invention of JP-A-2003-4549.

発明の効果The invention's effect

本発明によれば、有機ハイドライドの脱水素反応又は水素化反応のプロセスを内部化した直接型燃料電池システムにおいて、被反応物質や反応後物質による高分子イオン交換膜の浸潤を防ぐとともに、効率的に高分子イオン交換膜に水分を供給することで、より効率的に発電する有機ハイドライド直接型燃料電池用の複合イオン交換電極を提供することができる。  According to the present invention, in the direct type fuel cell system in which the process of dehydrogenation or hydrogenation of organic hydride is internalized, the infiltration of the polymer ion exchange membrane by the reactant or post-reaction substance is prevented and efficient In addition, by supplying moisture to the polymer ion exchange membrane, it is possible to provide a composite ion exchange electrode for an organic hydride direct fuel cell that generates power more efficiently.

本発明は、上記の説明に限定されることなく、特許請求の範囲に記載された発明の範囲内で、種々の変更が可能であり、それらも本発明の範囲内に包含されることはいうまでもない。  The present invention is not limited to the above description, and various modifications can be made within the scope of the invention described in the claims, and they are also included in the scope of the present invention. Not too long.

本願発明の複合イオン交換電極の基本構成を示した図。  The figure which showed the basic composition of the composite ion exchange electrode of this invention.

符号の説明Explanation of symbols

10 触媒層
20 パラジウム膜層
25 水分供給路
30 イオン交換膜層
40 正極電極
DESCRIPTION OF SYMBOLS 10 Catalyst layer 20 Palladium membrane layer 25 Water supply path 30 Ion exchange membrane layer 40 Positive electrode

Claims (8)

面状の多孔質基材(11)に触媒金属(12)を担持させてなる触媒層(10)と、パラジウム膜層(20)と、イオン交換膜層(30)と、正極電極(40)と、からなり、パラジウム膜層(20)と正極電極(40)とでイオン交換膜層(30)を挟着するように積層された燃料電池用の複合イオン交換電極であって、
パラジウム膜層(20)は、イオン交換膜層(30)に着接する面には、イオン交換膜層(30)を加湿するための水又は水蒸気を供給するための水分供給路(25)が形成され、反対面には触媒層(10)が着接されて、負極電極として外部回路により正極電極(40)と接続され、
水分供給路(25)に水分が供給されるとともに、負極電極側に水素イオン供給物質(50)が、正極電極側(40)には酸素イオンが供給されて、
水素イオン供給物質(50)が触媒層(10)内で触媒金属(15)と接触し生成する水素イオンが、パラジウム膜層(20)とイオン交換膜層(30)とを連続的に透過するとともに、酸素イオンと反応して水が生成するとともに、電子が、負極電極であるパラジウム膜層(20)から、外部回路の負荷を経て、正極電極(40)側に移動することで電流が生じることを特徴とする、
複合イオン交換電極。
A catalyst layer (10) in which a catalyst metal (12) is supported on a planar porous substrate (11), a palladium membrane layer (20), an ion exchange membrane layer (30), and a positive electrode (40) A composite ion exchange electrode for a fuel cell, which is laminated so as to sandwich an ion exchange membrane layer (30) between a palladium membrane layer (20) and a positive electrode (40),
The palladium membrane layer (20) has a water supply channel (25) for supplying water or water vapor for humidifying the ion exchange membrane layer (30) on the surface that contacts the ion exchange membrane layer (30). The catalyst layer (10) is attached to the opposite surface and connected to the positive electrode (40) by an external circuit as a negative electrode,
Moisture is supplied to the water supply path (25), a hydrogen ion supply substance (50) is supplied to the negative electrode side, and oxygen ions are supplied to the positive electrode side (40).
Hydrogen ions generated when the hydrogen ion supply material (50) contacts the catalyst metal (15) in the catalyst layer (10) continuously permeate the palladium membrane layer (20) and the ion exchange membrane layer (30). At the same time, water is generated by reacting with oxygen ions, and electrons are generated by moving from the palladium film layer (20), which is the negative electrode, to the positive electrode (40) side through the load of the external circuit. It is characterized by
Composite ion exchange electrode.
前記多孔質基材(11)は、活性炭素繊維、アルミナ、チタニア、ジルコニア、シリカ、ゼオライト、メソ多孔質材、ナノカーボン素材、パラジウム多孔材のいずれかであることを特徴とした、
請求項1に記載の複合イオン交換電極。
The porous substrate (11) is any of activated carbon fiber, alumina, titania, zirconia, silica, zeolite, mesoporous material, nanocarbon material, palladium porous material,
The composite ion exchange electrode according to claim 1.
前記導電性多孔質基材(11)は、導電性を向上するための金属メッキ等の表面処理がなされていることを特徴とする、
請求項1又は請求項2に記載の燃料電池
The conductive porous substrate (11) is subjected to surface treatment such as metal plating for improving conductivity,
The fuel cell according to claim 1 or 2.
前記触媒金属(12)は、白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、鉄、レニウム、バナジウム、クロム、タングステン、モリブデン、または銅から構成される群から選定された少なくとも1つ、またはそれらの化合物を含有するもののいずれかであることを特徴とした、
請求項1又は請求項3に記載の複合イオン交換電極。
The catalytic metal (12) is at least one selected from the group consisting of platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, iron, rhenium, vanadium, chromium, tungsten, molybdenum, or copper, or Any of those containing those compounds,
The composite ion exchange electrode according to claim 1 or claim 3.
前記水素イオン供給物質(50)は、水素ガス、一級アルコール類、二級アルコール類、水素化芳香族化合物、水素化金属錯体化合物、ジメチルエーテル、のいずれかを主成分とするものであることを特徴とした、
請求項1から請求項4のいずれか1つに記載の複合イオン交換電極。
The hydrogen ion supply substance (50) is mainly composed of any one of hydrogen gas, primary alcohols, secondary alcohols, hydrogenated aromatic compounds, hydrogenated metal complex compounds, and dimethyl ether. And
The composite ion exchange electrode according to any one of claims 1 to 4.
前記触媒層(10)の内部又は表面に、水素イオン供給物質(50)の供給のための流路(13)が形成されていることを特徴とする、
請求項1から請求項5のいずれか1つに記載の複合イオン交換電極。
A flow path (13) for supplying a hydrogen ion supply substance (50) is formed inside or on the surface of the catalyst layer (10),
The composite ion exchange electrode according to any one of claims 1 to 5.
触媒層(10)は、反応熱供給用のヒーター(13)を内臓又は外表面に密着して具備することを特徴とした、
請求項1から請求項6のいずれかに記載の複合イオン交換電極。
The catalyst layer (10) is provided with a heater (13) for supplying reaction heat in close contact with the internal organs or the outer surface,
The composite ion exchange electrode according to any one of claims 1 to 6.
請求項1から請求項7のいずれかの複合イオン交換電極を有することを特徴とする固体高分子形燃料電池。  A solid polymer fuel cell comprising the composite ion exchange electrode according to claim 1.
JP2004314768A 2004-09-30 2004-09-30 Compound ion exchange electrode Pending JP2006108060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314768A JP2006108060A (en) 2004-09-30 2004-09-30 Compound ion exchange electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314768A JP2006108060A (en) 2004-09-30 2004-09-30 Compound ion exchange electrode

Publications (1)

Publication Number Publication Date
JP2006108060A true JP2006108060A (en) 2006-04-20

Family

ID=36377504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314768A Pending JP2006108060A (en) 2004-09-30 2004-09-30 Compound ion exchange electrode

Country Status (1)

Country Link
JP (1) JP2006108060A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196182A (en) * 1992-12-24 1994-07-15 Tanaka Kikinzoku Kogyo Kk Diaphragm humidifying structure for solid high polymer electrolyte electrochemical cell and manufacture thereof
JP2001185170A (en) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Membrane electrode structure for solid polymeric fuel cell and method of operating solid polymeric fuel cell
JP2002231265A (en) * 2001-01-29 2002-08-16 Japan Pionics Co Ltd Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196182A (en) * 1992-12-24 1994-07-15 Tanaka Kikinzoku Kogyo Kk Diaphragm humidifying structure for solid high polymer electrolyte electrochemical cell and manufacture thereof
JP2001185170A (en) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Membrane electrode structure for solid polymeric fuel cell and method of operating solid polymeric fuel cell
JP2002231265A (en) * 2001-01-29 2002-08-16 Japan Pionics Co Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JP5103190B2 (en) Catalyst having dehydrogenation action or hydrogen addition action, fuel cell using the catalyst, and hydrogen storage / supply device
JP4012514B2 (en) Chemical reactor and fuel processor using ceramic technology
JP4989155B2 (en) Fuel cell
TW201222960A (en) Assembly for reversible fuel cell
JP5008368B2 (en) Electrode / membrane assembly, fuel cell having electrode / membrane assembly, and fuel cell system
KR100551036B1 (en) Reformer for fuel cell system and fuel cell system having the same
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP3793801B2 (en) Small fuel cell
KR100599685B1 (en) Reformer for fuel cell system and fuel cell system having the same
KR101155924B1 (en) Fuel cell system, reformer and burner
US20140178794A1 (en) Fuel electrode catalyst for fuel cell, electrode/membrane assembly, and fuel cell and fuel cell system provided with the electrode/membrane assembly
US20030194359A1 (en) Combustion heater and fuel processor utilizing ceramic technology
JP5105710B2 (en) Fuel cell
JP2013514873A (en) Hydrogen or oxygen electrochemical pumping catalyst membrane reactor and use thereof
JP4356966B2 (en) Fuel cell
JP2007115677A (en) Thin plate multilayer type hydrogen fuel battery
JP2006108060A (en) Compound ion exchange electrode
KR100542217B1 (en) Fuel cell system and reformer used thereto
JP2003308869A (en) Fuel cell
KR102500041B1 (en) fuel cell system
KR102453923B1 (en) Reformer for a fuel cell system
KR101030042B1 (en) Reformer for fuel cell system and fuel cell system having thereof
JP4578238B2 (en) Fuel cell starting method, fuel cell system, and vehicle equipped with fuel cell system
JP4501357B2 (en) Catalyst electrode and method for producing the same, membrane-electrode assembly, and electrochemical device
JP2005294152A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101119