JP2006095801A - Method and apparatus for producing thermal insulation panel - Google Patents

Method and apparatus for producing thermal insulation panel Download PDF

Info

Publication number
JP2006095801A
JP2006095801A JP2004283361A JP2004283361A JP2006095801A JP 2006095801 A JP2006095801 A JP 2006095801A JP 2004283361 A JP2004283361 A JP 2004283361A JP 2004283361 A JP2004283361 A JP 2004283361A JP 2006095801 A JP2006095801 A JP 2006095801A
Authority
JP
Japan
Prior art keywords
space
nozzle
panel
inert gas
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004283361A
Other languages
Japanese (ja)
Other versions
JP4404357B2 (en
Inventor
Hikokazu Matsui
彦千 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Panel System Co Ltd
Original Assignee
Nikkei Panel System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Panel System Co Ltd filed Critical Nikkei Panel System Co Ltd
Priority to JP2004283361A priority Critical patent/JP4404357B2/en
Publication of JP2006095801A publication Critical patent/JP2006095801A/en
Application granted granted Critical
Publication of JP4404357B2 publication Critical patent/JP4404357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve safety and production efficiency by using a foaming agent which does not cause environmental destruction such as ozone layer destruction and global warming, however, is inflammable, and needs caution in handling. <P>SOLUTION: In a method for producing a thermal insulation panel comprising a pair of surface plates 10, frame materials 20 and 21 set between the side parts of both surface plates 10, a foamed thermal insulation material using a 5C saturated hydrocarbon injected/packed into in a space 30 formed by both surface plates and the frame materials as a foaming agent, after air in the space is replaced with an inert gas by injecting the inert gas into the space, the foamed thermal insulation material is injected into the space. In the process of replacement with the inert gas, nitrogen gas is injected directly from a main injection port 62 at the tip of a nozzle 60 inserted into an injection hole 25 formed in the middle of the frame material into the space along the central axis of the nozzle 60, and simultaneously the gas is injected from subordinate injection ports 63 of at least two parts having an angle to the direct injection direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、断熱パネルの製造方法及びその装置に関するもので、更に詳細には、一対の表面板と、両表面板の辺部間に装着される枠材とで形成される空間内に、炭素数5の飽和炭化水素を用いた例えば発泡ウレタンフォーム等の発泡断熱材を注入・充填してなる断熱パネルの製造方法及び装置に関するものである。   The present invention relates to a method for manufacturing a heat insulating panel and an apparatus therefor, and more specifically, in a space formed by a pair of surface plates and a frame member mounted between sides of both surface plates. The present invention relates to a method and an apparatus for manufacturing a heat insulating panel formed by injecting and filling a foam heat insulating material such as a urethane foam using saturated hydrocarbons of Formula 5.

従来、この種のパネルの製造方法においては、発泡剤を含むポリオール系原液と、ポリイソシアネート系原液とを混合し、この混合組成物を一対の表面板間に注入し発泡・充填する方法が知られている。この製造方法において、発泡剤として、CC13Fフロンが使用されていたが、このCC13Fフロンは、現在「オゾンホール」の主原因であるため、使用が禁止されている。 Conventionally, in this type of panel manufacturing method, there is known a method in which a polyol-based stock solution containing a foaming agent and a polyisocyanate-based stock solution are mixed, and this mixed composition is injected between a pair of face plates to be foamed and filled. It has been. In this manufacturing method, CC1 3 F Freon was used as a foaming agent, but since CC1 3 F Freon is the main cause of “ozone hole”, its use is prohibited.

また、上記CC13Fフロンに代わり、オゾンを破壊しにくいC23FCl2(CCl2F−CH3)フロンが使用されていたが、これにおいても現在では使用が禁止されている。 Further, C 2 H 3 FCl 2 (CCl 2 F—CH 3 ) chlorofluorocarbon, which hardly destroys ozone, has been used in place of the above CC1 3 F chlorofluorocarbon. However, its use is prohibited even now.

その他の代替発泡剤としてフッ素含有炭化水素あるいは炭化水素が知られている。このうちフッ素含有炭化水素はオゾンを破壊しないが、地球温暖化の原因物質であり、使用に不向きである。一方、炭化水素はオゾンを破壊せず、地球温暖化にも起因しないが、沸点の低いものは引火・爆発の虞がある。   Fluorine-containing hydrocarbons or hydrocarbons are known as other alternative blowing agents. Of these, fluorine-containing hydrocarbons do not destroy ozone, but are causative substances for global warming and are not suitable for use. On the other hand, hydrocarbons do not destroy ozone and are not caused by global warming, but those with low boiling points may ignite or explode.

そこで、上記問題を解決する手段として、フロンの代替発泡剤に高沸点の炭化水素、特に炭素数5の飽和系炭化水素が使用されている。   Therefore, as a means for solving the above problems, high-boiling hydrocarbons, particularly saturated hydrocarbons having 5 carbon atoms, are used as substitute blowing agents for Freon.

しかし、炭素数5の飽和系炭化水素からなる上記代替発泡剤は、従来のフロン系発泡剤と異なり可燃性であるため、パネルの製造過程において、パネル内部に気化した発泡剤とパネル内部の空気と混合されることから、発泡中にパネル内で爆発する危険性がある。   However, the alternative foaming agent composed of saturated hydrocarbons having 5 carbon atoms is flammable, unlike conventional fluorocarbon foaming agents, so that the foaming agent vaporized inside the panel and the air inside the panel during the panel manufacturing process. There is a risk of explosion in the panel during foaming.

そのため、従来では、発泡断熱材を注入・充填する前に、枠材に形成された注入孔から不活性ガス注入ノズルを挿入し、不活性ガスを吐出することによりパネル内の空気を不活性ガスに置換している(例えば、特許文献1参照)。   Therefore, conventionally, before injecting and filling the foam insulation, an inert gas injection nozzle is inserted from an injection hole formed in the frame material, and the inert gas is discharged to remove the inert gas from the panel. (For example, refer to Patent Document 1).

また、不活性ガス注入ノズルに伸長長さ制御機構を具備させて、寸法の異なるパネルの空間部の、空気のパージに最も適切な位置に不活性ガス注入ノズルの吐出口を位置するように調整している(例えば、特許文献2参照)。
特開2004−98320(特許請求の範囲、図3) 特開2004−106385(特許請求の範囲、図3、図4)
In addition, the inert gas injection nozzle is equipped with an extension length control mechanism so that the discharge port of the inert gas injection nozzle is positioned at the most suitable position for purging air in the space of the panel having different dimensions. (For example, refer to Patent Document 2).
JP-A-2004-98320 (Claims, FIG. 3) JP 2004-106385 (Claims, FIGS. 3 and 4)

しかしながら、上記従来の断熱パネルの製造方法においては、不活性ガス注入ノズルの先端の吐出口からパネルの空間内に不活性ガスを注入するため、不活性ガスが空間内に均一に流れにくい上、特に、不活性ガス注入ノズルの先端部と基端部との間の領域には空気溜まりが生じるので、置換効率が低下すると共に、置換に多量の不活性ガスを必要とするという問題があった。   However, in the conventional method for manufacturing a heat insulation panel, since the inert gas is injected into the space of the panel from the discharge port at the tip of the inert gas injection nozzle, it is difficult for the inert gas to flow uniformly in the space. In particular, since an air pool is generated in the region between the front end and the base end of the inert gas injection nozzle, there is a problem that the replacement efficiency is lowered and a large amount of inert gas is required for the replacement. .

この発明は、上記事情に鑑みてなされたもので、オゾン層破壊・地球温暖化等の環境破壊を起こさないが可燃性であり取扱いに細心の注意を要する発泡剤を用いた断熱パネルの製造を、安全かつ効率よく行えるようにした断熱パネルの製造方法及びその装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances. It is an object of the present invention to provide a method and an apparatus for manufacturing a heat insulation panel that can be safely and efficiently performed.

上記課題を解決するために、請求項1記載の発明は、一対の表面板と、上記両表面板の辺部間に装着される枠材と、上記両表面板と枠材とで形成される空間内に注入・充填される炭素数5の飽和炭化水素を発泡剤とする発泡断熱材とからなる断熱パネルの製造方法であって、 上記空間内に不活性ガスを注入して空間内を不活性ガスで置換する工程と、 上記不活性ガスで置換する工程の後、上記空間内に上記発泡断熱材を注入する工程とを有し、 上記不活性ガス置換工程の際、上記枠材の中央部に設けられた注入用孔に挿入されたノズルの先端から、上記不活性ガスを、ノズルの中心軸に沿って上記空間内に直状に注入すると同時に、直状注入方向に対して角度を有する少なくとも2箇所から側方に注入することを特徴とする。   In order to solve the above problems, the invention according to claim 1 is formed of a pair of surface plates, a frame member mounted between the side portions of the both surface plates, and the both surface plates and the frame member. A method for producing a heat insulation panel comprising a foam heat insulating material using a saturated hydrocarbon having 5 carbon atoms injected / filled into a space as a blowing agent, wherein an inert gas is injected into the space to inactivate the space. A step of substituting with the active gas; and a step of injecting the foam heat insulating material into the space after the step of substituting with the inert gas, and the center of the frame member during the inert gas replacement step The inert gas is injected straight into the space along the central axis of the nozzle from the tip of the nozzle inserted in the injection hole provided in the section, and at the same time the angle with respect to the straight injection direction is increased. It is characterized by being injected laterally from at least two locations.

この発明において、上記不活性ガスの側方への注入を、ノズルの中心軸に対して対称に行う方が好ましい(請求項2)。   In the present invention, it is preferable to inject the inert gas laterally symmetrically with respect to the central axis of the nozzle (claim 2).

また、上記不活性ガス置換工程を、所定温度に設定されたパネルの処理温度雰囲気内に上記表面板と枠材を組み立てて設置保持した状態で行う方が好ましい(請求項3)。   Further, it is preferable to perform the inert gas replacement step in a state where the surface plate and the frame material are assembled and installed in the processing temperature atmosphere of the panel set at a predetermined temperature.

請求項4記載の発明は、請求項1記載の断熱パネルの製造方法を具現化するもので、 一対の表面板と、上記両表面板の辺部間に装着される枠材と、上記両表面板と枠材とで形成される空間内に注入・充填される炭素数5の飽和炭化水素を発泡剤とする発泡断熱材とからなる断熱パネルの製造装置であって、 上記空間内に上記発泡断熱材を注入する前に、上記枠材の中央部に設けられた注入用孔に挿入されて上記空間内に不活性ガスを注入するノズルを具備してなり、 上記ノズルは、先端に開口する主注入口と、該主注入口に連通する連通路に連通すると共に、主注入口付近に設けられる少なくとも2個以上の副注入口と、を具備することを特徴とする。   Invention of Claim 4 embodies the manufacturing method of the heat insulation panel of Claim 1, Comprising: A frame material with which it mounts between a pair of surface plates, the edge part of the said both surface plates, and both said table | surfaces An apparatus for producing a heat insulating panel comprising a foam heat insulating material using a saturated hydrocarbon having 5 carbon atoms injected and filled into a space formed by a face plate and a frame material, the foaming in the space Before injecting the heat insulating material, it is provided with a nozzle that is inserted into an injection hole provided in the center of the frame material and injects an inert gas into the space, and the nozzle opens at the tip. A main injection port and at least two or more sub-injection ports provided in the vicinity of the main injection port as well as communicating with a communication path communicating with the main injection port are provided.

請求項4記載の断熱パネルの製造装置において、上記各副注入口は、ノズルの中心軸に対して大きさ、数及び形状が対称に形成されている方が好ましい(請求項5)。この場合、副注入口は大きさ及び形状が対称であれば任意の形状でよく、例えば円形,楕円形あるいは長孔状等に形成することができる。   In the heat insulation panel manufacturing apparatus according to claim 4, it is preferable that each of the sub-injections is formed symmetrically with respect to the central axis of the nozzle. In this case, the sub-injection port may have any shape as long as the size and shape are symmetric. For example, the sub-injection port can be formed in a circular shape, an elliptical shape, a long hole shape, or the like.

また、上記ノズルは、先端に向かって狭小テーパ状の截頭円錐状に形成されるノズルヘッドを具備すると共に、このノズルヘッド内に形成される連通路を先端に向かって狭小テーパ状に形成し、かつ、連通路に副注入口を連通してなる方が好ましい(請求項6)。   The nozzle has a nozzle head formed in a truncated conical shape having a narrow taper toward the tip, and a communication path formed in the nozzle head is formed in a narrow taper toward the tip. In addition, it is preferable that the sub-inlet communicate with the communication passage.

また、上記表面板と枠材を組み立てて設置保持した状態に収容する温調部を更に具備し、該温調部を、ノズルから空間内に不活性ガスを注入する際に、パネルの処理温度雰囲気に温調可能に形成する方が好ましい(請求項7)。   In addition, the apparatus further includes a temperature control unit that accommodates the surface plate and the frame material in an assembled and held state, and when the inert gas is injected from the nozzle into the space, the processing temperature of the panel is further increased. It is preferable to form the atmosphere so that the temperature can be controlled.

(1)請求項1,4記載の発明によれば、枠材の中央部に設けられた注入用孔に挿入されるノズルの先端から、不活性ガスを、ノズルの中心軸に沿って空間内に直状に注入すると同時に、直状注入方向に対して角度を有する少なくとも2箇所から側方に注入することにより、不活性ガスの流れを複数かつ均一にすることができる。したがって、不活性ガスによる置換を効率よく行うことができる。また、不活性ガスの使用量を抑制することができると共に、置換時間の短縮が図れるので、コストの低廉化が図れると共に、生産性の向上が図れる。   (1) According to the first and fourth aspects of the present invention, the inert gas is introduced into the space along the central axis of the nozzle from the tip of the nozzle inserted into the injection hole provided in the central portion of the frame member. Simultaneously injecting into a straight line, and simultaneously injecting from at least two locations having an angle with respect to the straight injection direction, a plurality of inert gas flows can be made uniform. Therefore, substitution with an inert gas can be performed efficiently. In addition, since the amount of inert gas used can be suppressed and the replacement time can be shortened, the cost can be reduced and the productivity can be improved.

(2)請求項2,5記載の発明によれば、不活性ガスの側方への注入を、ノズルの中心軸に対して対称に行うことにより、不活性ガスの注入を均一にすることができるので、上記(1)に加えて更に生産効率の向上を図ることができる。   (2) According to the inventions of claims 2 and 5, the inert gas can be uniformly injected by injecting the inert gas to the side symmetrically with respect to the central axis of the nozzle. Therefore, in addition to the above (1), the production efficiency can be further improved.

(3)請求項3,7記載の発明によれば、不活性ガス置換工程を、所定温度に設定されたパネルの処理温度(例えば、35℃)の雰囲気内に表面板と枠材を組み立てて設置保持した状態で行うことにより、置換後の不活性ガスの膨張によるパネル外部から再び空気がパネル空間内に侵入するのを防ぐことができる。また、パネル空間内で酸素と発泡剤が混合するのを防止することができ、発泡断熱材の注入・充填を安全に行うことができる。したがって、上記(1),(2)に加えて更に安全性と生産性の向上を図ることができる。   (3) According to the third and seventh aspects of the invention, the inert gas replacement step is performed by assembling the surface plate and the frame material in an atmosphere of the panel processing temperature (for example, 35 ° C.) set to a predetermined temperature. By performing the installation and holding, air can be prevented from entering the panel space again from the outside of the panel due to the expansion of the inert gas after the replacement. Further, mixing of oxygen and the foaming agent in the panel space can be prevented, and injection and filling of the foam insulation can be performed safely. Therefore, safety and productivity can be further improved in addition to the above (1) and (2).

(4)請求項6記載の発明によれば、ノズルを、先端に向かって狭小テーパ状の截頭円錐状に形成することにより、パネルに設けられた注入用孔内にノズルを容易に挿入することができるので、上記(1)〜(3)に加えて更に不活性ガス及び発泡断熱材の注入を効率よく行うことができ、生産性の向上を図ることができる。また、ノズルヘッド内に形成される連通路を先端に向かって狭小テーパ状に形成し、かつ、連通路に副注入口を連通することにより、注入のために供給される不活性ガスが連通路内で漸次加圧されるので、主注入口及び副注入口からの流量を均一にすることができる。   (4) According to the invention described in claim 6, the nozzle is formed into a narrow tapered frustoconical shape toward the tip, thereby easily inserting the nozzle into the injection hole provided in the panel. Therefore, in addition to the above (1) to (3), the inert gas and the foamed heat insulating material can be injected more efficiently, and the productivity can be improved. Further, the communication path formed in the nozzle head is formed in a narrow taper shape toward the tip, and the sub-injection port is communicated with the communication path so that the inert gas supplied for injection is communicated with the communication path. Since the pressure is gradually increased, the flow rate from the main inlet and the sub inlet can be made uniform.

以下に、この発明の最良の実施形態を添付図面に基づいて詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、この発明における断熱パネルの一例を示す斜視図、図2は、図1のI−I線に沿う断面図である。   FIG. 1 is a perspective view showing an example of a heat insulation panel according to the present invention, and FIG. 2 is a cross-sectional view taken along the line II of FIG.

上記断熱パネルPは、図1及び図2に示すように、一対の鋼板製の表面板10と、両表面板10の辺部間に装着されるプラスチック製例えば塩化ビニル製の直状枠材20及びコーナー枠材21と、両表面板10と枠材20,21とで形成される空間30内に、後述する不活性ガス例えば窒素(N)ガスの供給手段であるNガス注入ノズル60から注入されるNガスで置換された後、発泡断熱材注入ノズル70によって注入・充填される発泡断熱材40とで主に構成されている。 As shown in FIGS. 1 and 2, the heat insulating panel P includes a pair of surface plates 10 made of steel plates and a straight frame member 20 made of plastic, for example, made of vinyl chloride, which is mounted between the side portions of both surface plates 10. In addition, an N 2 gas injection nozzle 60 serving as a supply means of an inert gas, for example, nitrogen (N 2 ) gas, which will be described later, is placed in a space 30 formed by the corner frame member 21, the both surface plates 10, and the frame members 20 and 21. The foamed heat insulating material 40 is mainly composed of the foam heat insulating material 40 injected and filled by the foam heat insulating material injecting nozzle 70 after being replaced with N 2 gas injected.

この場合、上記表面板10の辺部に折曲された折曲片11が、直状枠材20及びコーナー枠材21の上下端部にそれぞれ設けられた嵌合溝22内に僅かな隙間をおいて嵌挿されて表面板10と枠材20,21とが固定されている。   In this case, the bent pieces 11 bent at the side portions of the surface plate 10 have a slight gap in the fitting grooves 22 provided at the upper and lower ends of the straight frame member 20 and the corner frame member 21, respectively. The surface plate 10 and the frame members 20 and 21 are fixed by being inserted in the above.

また、直状枠材20の側面には、断熱パネルP同士を接合するために設けられる凹条部又は凸条部(図面では凹条部23を示す)が設けられている。この凹条部23は、開口側が拡開するテーパ状に形成されている。なお、凸条部を設ける場合は、先端が狭小なテーパ状に形成される。   Further, the side surface of the straight frame member 20 is provided with a concave portion or a convex portion (indicated in the drawing, the concave portion 23) provided for joining the heat insulating panels P to each other. The concave line portion 23 is formed in a tapered shape in which the opening side is expanded. In addition, when providing a protruding item | line part, the front-end | tip is formed in a narrow taper shape.

上記のように構成される直状枠材20の中間部における凹条部23の底部24には、不活性ガスであるNガス及び発泡断熱材40の注入用孔25が設けられている。また、直状枠材20の空間側すなわち内方側には、注入用孔25を閉塞すべく可撓性を有する薄い膜材50が配設されている。この膜材50は、例えば紙製材料にて形成されており、その下部のみが例えば接着剤51によって直状枠材20に接着されて、上端部側が自由に変位し得るようになっている(図3参照)。したがって、上記空間30内に不活性ガスであるNガスを注入する場合や発泡断熱材40を注入する場合に、注入用孔25を介して断熱パネルPの空間30内に、Nガス注入ノズル60又は発泡断熱材注入ノズル70が挿入されると、膜材50は、図3(a)に二点鎖線で示すように、空間30の内方側に変位してNガス又は発泡断熱材40の注入を可能にする。そして、発泡断熱材40が注入されて発泡・充填された際に、発泡断熱材40は下部から充填されるので、膜材50は発泡断熱材40によって下方側から押されて注入用孔25を閉塞する(図2参照)。これにより、発泡断熱材40の外部への露呈が防止される。 An injection hole 25 for N 2 gas, which is an inert gas, and the foam heat insulating material 40 is provided in the bottom 24 of the concave strip 23 in the intermediate portion of the straight frame member 20 configured as described above. Further, on the space side, that is, the inner side of the straight frame member 20, a flexible thin film member 50 is disposed so as to close the injection hole 25. This film material 50 is formed of, for example, a paper material, and only the lower part thereof is bonded to the straight frame member 20 with, for example, an adhesive 51 so that the upper end side can be freely displaced ( (See FIG. 3). Therefore, when N 2 gas that is an inert gas is injected into the space 30 or when the foam heat insulating material 40 is injected, N 2 gas is injected into the space 30 of the heat insulation panel P through the injection holes 25. When the nozzle 60 or foam insulation injection nozzle 70 is inserted, film material 50, as shown by the two-dot chain line in FIG. 3 (a), N 2 gas displaced inward side of the space 30 or foam insulation Allows injection of material 40. When the foam heat insulating material 40 is injected and foamed / filled, the foam heat insulating material 40 is filled from below, so that the membrane material 50 is pushed from the lower side by the foam heat insulating material 40 to open the injection hole 25. Occlusion (see FIG. 2). Thereby, exposure to the exterior of the foam heat insulating material 40 is prevented.

また、コーナー枠材21の側面には、直状枠材20に設けられた凹条部又は凸条部に連なる凹条部又は凸条部(図面では凹条部23Aを示す)が設けられている。この凹条部23Aも直状枠材20の凹条部23と同様に開口側が拡開するテーパ状に形成されている。また、各コーナー枠材21には、ガス抜き孔26が設けられている。このようにコーナー枠材21にガス抜き孔26を設けることによって、断熱パネルPの空間内に注入されるNガスを空間30内に満遍なく均一に供給して空間30内をNガスで置換した後、置換に供されたNガスをガス抜き孔26から外部に排出することができると共に、発泡断熱材40を空間30内に注入した際に発生するガスを外部へ排出することができる。したがって、パネル内圧による表面板10の膨れや外れを防止することができる。 Further, the side surface of the corner frame member 21 is provided with a concave strip portion or a convex strip portion (showing the concave strip portion 23 </ b> A in the drawing) connected to the concave strip portion or the convex strip portion provided in the straight frame member 20. Yes. Similarly to the concave strip portion 23 of the straight frame member 20, the concave strip portion 23A is also formed in a tapered shape in which the opening side is expanded. Each corner frame member 21 is provided with a gas vent hole 26. By providing the vent holes 26 in the corner frame member 21 in this way, N 2 gas injected into the space of the heat insulating panel P is uniformly supplied into the space 30 and the space 30 is replaced with N 2 gas. After that, the N 2 gas used for replacement can be discharged to the outside from the gas vent hole 26, and the gas generated when the foam heat insulating material 40 is injected into the space 30 can be discharged to the outside. . Therefore, the swelling and detachment of the surface plate 10 due to the panel internal pressure can be prevented.

上記Nガス注入ノズル60は、図4及び図5に示すように、Nガス供給源(図示せず)に接続し、先端に向かって狭小テーパ状の截頭円錐状のノズルヘッド61を具備しており、このノズルヘッド61の先端に主注入口62が形成され、この主注入口62に連通する連通路64は、ノズルヘッド61と相似形をなすように先端に向かって狭小テーパ状に形成され、該連通路64に対して対称位置に同一の大きさすなわち直径の円形状の2個の副注入口63が連通されている。 As shown in FIGS. 4 and 5, the N 2 gas injection nozzle 60 is connected to an N 2 gas supply source (not shown), and a narrow conical nozzle head 61 having a narrow tapered shape toward the tip is provided. The main injection port 62 is formed at the tip of the nozzle head 61, and the communication path 64 communicating with the main injection port 62 is narrowly tapered toward the tip so as to be similar to the nozzle head 61. The two sub-injection ports 63 having the same size, that is, the diameter of the circle, communicate with each other in a symmetrical position with respect to the communication path 64.

上記のように、ノズル60の先端部を截頭円錐状に形成することにより、注入用孔25内にノズル60を容易に挿入することができる。また、ノズルヘッド61の先端に主注入口62を形成し、連通路64に対して対称位置に同一形状の副注入口63を形成することにより、Nガスは、図4に示すように、ノズル60の中心軸に沿って空間30内に直状に注入すると同時に、直状注入方向に対して角度を有する2箇所から側方に注入されるので、Nガスの流れを複数かつ均一にすることができる。また、ノズルヘッド61に形成される連通路64は、先端に向かって狭小テーパ状に形成されているので、注入のために供給されるNガスは漸次加圧されて主注入口62及び副注入口63から空間30内に注入されるので、流量を均一にすることができる。これにより、Nガスによる空間30内の置換を効率よく行うことができる。また、Nガスの使用量を抑制することができると共に、置換時間の短縮が図れるので、コストの低廉化が図れると共に、生産性の向上が図れる。 As described above, the nozzle 60 can be easily inserted into the injection hole 25 by forming the tip of the nozzle 60 in the shape of a truncated cone. Further, by forming the main injection port 62 at the tip of the nozzle head 61 and forming the auxiliary injection port 63 having the same shape at a symmetrical position with respect to the communication path 64, the N 2 gas is, as shown in FIG. Injecting straight into the space 30 along the central axis of the nozzle 60 and simultaneously injecting laterally from two locations having an angle with respect to the direct injection direction, a plurality of N 2 gas flows are made uniform and uniform. can do. Further, the communication path 64 formed in the nozzle head 61 is formed in a narrow taper shape toward the tip, so that the N 2 gas supplied for injection is gradually pressurized so that the main inlet 62 and the sub-inlet are supplied. Since it is injected into the space 30 from the injection port 63, the flow rate can be made uniform. Thus, it is possible to perform replacement in the space 30 by the N 2 gas efficiently. In addition, since the amount of N 2 gas used can be suppressed and the replacement time can be shortened, the cost can be reduced and the productivity can be improved.

なお、Nガスの置換処理を行う場合には、多段に平積みされた仮組パネルP0を、処理温度雰囲気例えば約35℃に設定された処理室100内に搬入した状態で行う方が好ましい。このように、Nガス置換工程を、所定温度に設定されたパネルの処理温度(例えば、35℃)の雰囲気内に表面板と枠材を組み立てて設置保持した状態で行うことにより、置換後のNガスの膨張によるパネル外部から再び空気がパネル空間内に侵入するのを防ぐことができる。また、Nガス置換工程後の発泡断熱材注入工程において、パネル空間内で酸素と発泡剤が混合するのを防止することができ、発泡断熱材の注入・充填を安全に行うことができる。したがって、安全性と生産性の向上を図ることができる。 When performing the N 2 gas replacement process, it is preferable to perform the temporary assembly panel P0 stacked in multiple stages in a state where it is carried into a process chamber 100 set to a process temperature atmosphere, for example, about 35 ° C. . Thus, after the replacement, the N 2 gas replacement step is performed in a state where the surface plate and the frame material are assembled and held in an atmosphere of the panel processing temperature (for example, 35 ° C.) set to a predetermined temperature. It is possible to prevent air from entering the panel space again from the outside of the panel due to the expansion of the N 2 gas. Further, in the foam heat insulating material injecting step after the N 2 gas replacement step, it is possible to prevent oxygen and the foaming agent from mixing in the panel space, and the foam heat insulating material can be injected and filled safely. Therefore, safety and productivity can be improved.

上記実施形態では、Nガス注入ノズル60は、2個の副注入口63を具備する場合について説明したが、副注入口63は、主注入口62から注入される直状注入方向に対して角度を有する少なくとも2箇所から側方に注入するものであれば、必ずしも2個である必要はない。例えば、図7及び図8に示すように、Nガス注入ノズル60のノズルヘッド61の中心軸に対して左右対称な2組(4個)の副注入口65を設けて、図8に示すように、4箇所からNガスを注入するようにしてもよい。また、図9に示すように、ノズルヘッド61の中心軸に対して左右対称な2組(4個)の副注入口65に加えて副注入口65と直交する上下方向に2個の副注入口66を設けて、計6箇所からNガスを注入するようにしてもよい。このように、副注入口65,66の数を増やすことにより、多量のNガスを短時間内に注入することができ、Nガス置換処理を短時間に行うことができる。 In the above embodiment, the case where the N 2 gas injection nozzle 60 includes the two sub injection ports 63 has been described. However, the sub injection port 63 corresponds to the straight injection direction injected from the main injection port 62. It is not always necessary that the number is two as long as it is injected laterally from at least two places having an angle. For example, as shown in FIGS. 7 and 8, two sets (four) of sub-injection ports 65 that are symmetrical with respect to the central axis of the nozzle head 61 of the N 2 gas injection nozzle 60 are provided, as shown in FIG. Thus, N 2 gas may be injected from four locations. As shown in FIG. 9, in addition to two sets (four) of sub-injection ports 65 that are symmetrical with respect to the central axis of the nozzle head 61, two sub-notes in the vertical direction perpendicular to the sub-injection ports 65 are provided. The inlet 66 may be provided, and N 2 gas may be injected from a total of six locations. Thus, by increasing the number of sub-injection ports 65 and 66, a large amount of N 2 gas can be injected within a short time, and the N 2 gas replacement process can be performed in a short time.

上記のようにしてNガス置換工程を行った後、図6に示すように、注入用孔25を介して断熱パネルPの空間30内に、発泡断熱材注入ノズル70を挿入して、空間30内に発泡断熱材40を注入・充填する。 After performing the N 2 gas replacement step as described above, the foam heat insulating material injection nozzle 70 is inserted into the space 30 of the heat insulation panel P through the injection holes 25 as shown in FIG. 30 is filled with a foam insulation 40.

なお、上記発泡断熱材40は、水を有するポリオール系原液と、ポリイソシアネート系原液と、発泡剤として炭素数5の飽和系炭化水素例えばシクロペンタンとの混合組成物にて形成されている。このように形成される発泡断熱材40は、図示しないミキシング装置に接続する発泡断熱材注入ノズル70から断熱パネルPの空間30内に注入・充填される。   The foam heat insulating material 40 is formed of a mixed composition of a polyol stock solution having water, a polyisocyanate stock solution, and a saturated hydrocarbon having 5 carbon atoms such as cyclopentane as a foaming agent. The foam heat insulating material 40 thus formed is injected and filled into the space 30 of the heat insulating panel P from the foam heat insulating material injection nozzle 70 connected to a mixing device (not shown).

なお、ポリオール系原液は、ポリオール(多価アルコール),整泡剤,難燃剤及び他助剤等を混合・調製したものである。このうち、ポリオールはポリウレタンフォームの性質に最も大きな影響を及ぼす原料である。また、整泡剤は気泡を均一あるいは安定させるもので例えばシリコン系界面活性剤にて形成される。触媒はポリウレタンフォームの生成時の諸反応を促進し、樹脂化と発泡のバランスをとりながら目的にあったフォームを生成するために使用される助剤で、例えば第3級アミン,有機錫化合物あるいは有機酸の金属塩等が使用される。また、難燃剤はフォームを難燃化するためのもので、添加型の難燃剤としてリン酸エステル,ハロゲン化リン酸エステルが使用され、更に難燃性を高めるために水酸化アルミニウム等の無機化合物が併用される。その他必要に応じて使用される他助剤には、例えば架橋剤,着色剤,充填剤,安定剤あるいは可塑剤等が使用される。   The polyol stock solution is prepared by mixing and preparing a polyol (polyhydric alcohol), a foam stabilizer, a flame retardant, and other auxiliary agents. Of these, polyol is a raw material that has the greatest influence on the properties of polyurethane foam. Further, the foam stabilizer makes the bubbles uniform or stable and is formed of, for example, a silicon-based surfactant. The catalyst is an auxiliary agent used to promote various reactions during the formation of polyurethane foam, and to produce a foam suitable for the purpose while balancing resination and foaming. For example, a tertiary amine, an organic tin compound or Metal salts of organic acids are used. In addition, flame retardants are used to make foams flame retardant. Phosphoric acid esters and halogenated phosphoric acid esters are used as additive-type flame retardants, and inorganic compounds such as aluminum hydroxide are used to further increase flame retardancy. Are used together. In addition, for example, a crosslinking agent, a colorant, a filler, a stabilizer, or a plasticizer is used as another auxiliary agent used as necessary.

また、発泡剤は成形時のガス源となるもので、代替フロンであるシクロペンタンと水を有する。このシクロペンタンと、水とイソシアネートが反応して生成される炭酸ガス(CO2)との比を適宜選択することにより、発泡圧を調整することができる。   The foaming agent is a gas source at the time of molding, and has cyclopentane and water, which are alternative chlorofluorocarbons. The foaming pressure can be adjusted by appropriately selecting the ratio of this cyclopentane and the carbon dioxide (CO2) produced by the reaction of water and isocyanate.

一方、ポリイソシアネート系原液は、ポリイソシアネートと界面活性剤等他助剤とを混合・調製したものである。   On the other hand, the polyisocyanate-based stock solution is prepared by mixing and preparing polyisocyanate and other auxiliary agents such as a surfactant.

次に、上記断熱パネルを製造する手順の一例を、図10、図11及び図12に示すフローチャートを参照して説明する。   Next, an example of a procedure for manufacturing the heat insulation panel will be described with reference to flowcharts shown in FIGS. 10, 11, and 12.

まず、図10及び図11に示すように、一対の表面板10の辺部間に直状枠材20及びコーナー枠材21を装着した仮組パネルP0を、下ベース盤80と上ベース盤81との間に、塩化ビニルを被覆したアルミニウム製の定盤82(以下に平盤82という)及びアルミニウム製のスペーサ83を介して多段に平積みし、下ベース盤80と上ベース盤81に突設されたフランジ84,85を連結ボルト86とナット87によって固定する(ステップ12−1)。なお、平盤82の表面に塩化ビニルを被覆した理由は、仮組パネルP0との接触によって傷が付くのを防止するためである。このようにして仮組パネルP0を平積みした後、多段に平積みされた仮組パネルP0を処理室100内に搬入する。この処理室100内の処理温度雰囲気は約35℃に設定される。この際、製造する断熱パネルPの厚さ寸法に合わせてスペーサ83の高さ寸法を適宜変更する。この場合、平盤82を仮組パネルP0の表面板10よりも大きくすると共に、各平盤82間に配置されるスペーサ83の高さを仮組パネルP0の厚さより若干高くして、その差分の隙間Sが設けられている。この場合、隙間Sは、0.1mm以上1.0mm以下に設定する方がよい。なお、ここでは、下ベース盤80と上ベース盤81とを連結ボルト86とナット87によって固定しているが、上ベース盤81によって最上段の仮組パネルP0を押さえない状態で複数の仮組パネルP0を平積みするようにしてもよい。   First, as shown in FIGS. 10 and 11, a temporary assembly panel P0 in which the straight frame member 20 and the corner frame member 21 are mounted between the side portions of the pair of surface plates 10 is connected to the lower base board 80 and the upper base board 81. Are stacked in multiple stages via an aluminum surface plate 82 coated with vinyl chloride (hereinafter referred to as a flat plate 82) and an aluminum spacer 83, and project into the lower base plate 80 and the upper base plate 81. The provided flanges 84 and 85 are fixed by the connecting bolt 86 and the nut 87 (step 12-1). The reason why the surface of the flat plate 82 is coated with vinyl chloride is to prevent the surface of the flat plate 82 from being damaged by contact with the temporary assembly panel P0. After the temporary assembly panels P0 are stacked in this manner, the temporary assembly panels P0 stacked in multiple stages are loaded into the processing chamber 100. The processing temperature atmosphere in the processing chamber 100 is set to about 35 ° C. At this time, the height dimension of the spacer 83 is appropriately changed according to the thickness dimension of the heat insulating panel P to be manufactured. In this case, the flat plate 82 is made larger than the surface plate 10 of the temporary assembly panel P0, and the height of the spacers 83 arranged between the flat plates 82 is slightly higher than the thickness of the temporary assembly panel P0, and the difference between them. Gap S is provided. In this case, the gap S is preferably set to 0.1 mm or more and 1.0 mm or less. Here, the lower base board 80 and the upper base board 81 are fixed by connecting bolts 86 and nuts 87. However, the upper base board 81 does not hold down the uppermost temporary assembly panel P0, and a plurality of temporary assemblies. The panels P0 may be stacked.

次に、平積みされた仮組パネルP0を図示しない移動機構によって水平移動して注入用孔25とNガス注入ノズル60とを位置調整する(ステップ12−2)。この際、Nガス注入ノズル60を垂直方向のみに移動してNガス注入ノズル60と注入用孔25とを位置合せすることができる。そして、図4又は図8に示すように、注入用孔25にNガス注入ノズル60を挿入し、仮組パネルP0の空間30内に処理温度未満のNガスを注入する。この際、Nガスはノズル60の主注入口62から中心軸に沿って直状に注入されると同時に、直状注入方向に対して角度を有する少なくとも2個の副注入口63,65から側方又は更に副注入口66から上下方向に注入されて、空間30内をNガスで置換する(ステップ12−3)。なお、このときのNガスの供給量は1000L/min以上である。このとき、Nガスは処理温度雰囲気未満すなわち35℃未満の温度であるので、パネル空間30内に注入された後、膨張して外部から空間30内に空気が侵入するのを積極的に防止することができる。そして、置換に供されたNガスはパネルコーナー部すなわちコーナー枠材21に設けられたガス抜き孔26を介して外部に排出される。これにより、パネル内圧による表面板10の膨れや外れが防止される。なお、この際、最上段の仮組パネルP0の上部を押さえない場合では、最上段の仮組パネルP0の空間30内にはNガスを注入せず、後述する発泡断熱材40の注入直前に手動によってNガスを注入する。なお、この仮組パネルP0の押さえは、発泡断熱材40の注入工程を行う場所に仮組パネルP0を移動させる際にエアバックによって行う。 Next, the temporarily stacked temporary panel P0 is horizontally moved by a moving mechanism (not shown) to adjust the position of the injection hole 25 and the N 2 gas injection nozzle 60 (step 12-2). In this case, it is possible to align the injection openings 25 and N 2 gas injection nozzle 60 by moving the N 2 gas injection nozzle 60 only in the vertical direction. Then, as shown in FIG. 4 or FIG. 8, the injection hole 25 to insert the N 2 gas injection nozzle 60 is injected N 2 gas under the processing temperature in the space 30 of the temporary assembly panel P0. At this time, N 2 gas is injected straight from the main injection port 62 of the nozzle 60 along the central axis, and at the same time, from at least two sub injection ports 63 and 65 having an angle with respect to the straight injection direction. Injected in the vertical direction from the side or further from the sub-injection port 66, the space 30 is replaced with N 2 gas (step 12-3). In addition, the supply amount of N 2 gas at this time is 1000 L / min or more. At this time, since the N 2 gas has a temperature lower than the processing temperature atmosphere, that is, a temperature lower than 35 ° C., after being injected into the panel space 30, the N 2 gas expands and actively prevents air from entering the space 30 from the outside. can do. The N 2 gas used for the replacement is discharged to the outside through the gas vent hole 26 provided in the panel corner portion, that is, the corner frame member 21. Thereby, the swelling and detachment of the surface plate 10 due to the panel internal pressure are prevented. At this time, in the case where the upper part of the uppermost temporary assembly panel P0 is not pressed, N 2 gas is not injected into the space 30 of the uppermost temporary assembly panel P0, but immediately before the injection of the foam insulation 40 described later. Inject N 2 gas manually. The pressing of the temporary assembly panel P0 is performed by an air bag when the temporary assembly panel P0 is moved to a place where the foaming heat insulating material 40 is injected.

次に、平積みされ、Nガスで置換された仮組パネルP0を移動機構(図示せず)によって水平移動して注入用孔25と発泡断熱材供給ノズル70とを位置調整する(ステップ12−4)。この際、発泡断熱材供給ノズル70を垂直方向のみに移動して発泡断熱材供給ノズル70と注入用孔25とを位置合せすることができる。そして、図6に示すように、注入用孔25に発泡断熱材供給ノズル70を挿入し、仮組パネルP0の空間30内に、発泡断熱材40{具体的には、上記水を有するポリオール系原液、ポリイソシアネート系原液及び発泡剤としてのシクロペンタンの混合組成物}を注入し、発泡・充填する(ステップ12−5)。この発泡断熱材40の注入工程において発生するガスは、ガス抜き孔26から外部に排出される。これにより、パネル内圧による表面板10の膨れや外れが防止される。 Next, the temporarily assembled panel P0, which is stacked and replaced with N 2 gas, is moved horizontally by a moving mechanism (not shown) to adjust the position of the injection hole 25 and the foam insulation supply nozzle 70 (step 12). -4). At this time, the foam heat insulating material supply nozzle 70 can be moved only in the vertical direction to align the foam heat insulating material supply nozzle 70 with the injection hole 25. Then, as shown in FIG. 6, the foam heat insulating material supply nozzle 70 is inserted into the injection hole 25, and the foam heat insulating material 40 {specifically, the polyol-based water-containing material is used in the space 30 of the temporary assembly panel P 0. A stock solution, a polyisocyanate-based stock solution and a mixed composition of cyclopentane as a foaming agent} are injected, foamed and filled (step 12-5). The gas generated in the step of injecting the foam heat insulating material 40 is discharged from the gas vent hole 26 to the outside. Thereby, the swelling and detachment of the surface plate 10 due to the panel internal pressure are prevented.

上記発泡断熱材40の注入工程の際、上記ポリオール系原液と、ポリイソシアネート系原液と、シクロペンタンは、それぞれ計量されて所定の割合例えばシクロペンタン:ポリオール系原液:ポリイソシアネート系原液は、例えば5.5:75:100の割合で配合された後、所定の圧力に調整されてミキシング装置へ供給され、ミキシング装置で所定の割合に攪拌・混合された後、その混合組成物は発泡断熱材供給ノズル70から適宜間隔をおいて配置された一対の表面板10間に注入されて発泡し、その後硬化して断熱材(フォーム)が成形される。なお、混合組成物の注入時の処理温度雰囲気(処理室100内の室温)を発泡温度(例えば35℃)に設定しておく方が好ましい。   In the step of injecting the foam heat insulating material 40, the polyol stock solution, the polyisocyanate stock solution, and the cyclopentane are respectively weighed in a predetermined ratio, for example, cyclopentane: polyol stock solution: polyisocyanate stock solution, for example, 5 After mixing at a ratio of 5: 75: 100, the pressure is adjusted to a predetermined pressure, supplied to the mixing device, stirred and mixed at a predetermined ratio by the mixing device, and then the mixed composition is supplied to the foam insulation. It inject | pours between a pair of surface boards 10 arrange | positioned from the nozzle 70 at appropriate intervals, it foams, and it hardens | cures after that, and a heat insulating material (foam | foam) is shape | molded. In addition, it is preferable to set the processing temperature atmosphere (room temperature in the processing chamber 100) at the time of injection of the mixed composition to the foaming temperature (for example, 35 ° C.).

なお、異なる寸法の断熱パネルPすなわち仮組パネルP0の高さ寸法に応じて最適な量の発泡断熱材40を注入する必要があるので、予め設定された断熱パネルPの寸法すなわち仮組パネルP0の高さ寸法とパネル温度の情報を記憶した制御手段例えば中央演算処理装置(CPU)からの制御信号に基づいて発泡断熱材供給ノズル70から所定量の発泡断熱材40を空間30内に注入する。あるいは、仮組パネルP0を仮組するときに、例えば仮組パネルP0を平積みする各平盤82あるいは直状枠材20に断熱パネルPの寸法(仮組パネルP0の高さ寸法)に応じた情報を記憶した記号例えばバーコードを設け、発泡断熱材40を注入する前に、温度センサによってパネル温度を検出すると共に、上記バーコードの情報を読み取り、その検出信号をCPUに伝達に伝達し、CPUにおいて、この検出信号と予め記憶された情報とを比較して、その制御信号を発泡機(図示せず)に送り、発泡断熱材供給ノズル70から所定量の発泡断熱材40を空間30内に注入する。   In addition, since it is necessary to inject | pour the optimal quantity of foam heat insulating materials 40 according to the height dimension of the heat insulation panel P which is a different dimension, ie, the temporary assembly panel P0, the dimension of the heat insulation panel P previously set, ie, the temporary assembly panel P0. A predetermined amount of foam heat insulating material 40 is injected into the space 30 from the foam heat insulating material supply nozzle 70 based on a control signal that stores information on the height dimension and panel temperature, for example, a control signal from a central processing unit (CPU). . Or, when temporarily assembling the temporary assembly panel P0, for example, according to the dimension of the heat insulation panel P (the height dimension of the temporary assembly panel P0) on each flat plate 82 or the straight frame member 20 on which the temporary assembly panel P0 is stacked. A bar code is provided, for example, a bar code, and before injecting the foam insulation 40, the panel temperature is detected by a temperature sensor, the bar code information is read, and the detection signal is transmitted to the CPU. The CPU compares the detection signal with information stored in advance, sends the control signal to a foaming machine (not shown), and sends a predetermined amount of foam insulation 40 from the foam insulation supply nozzle 70 to the space 30. Inject into.

上述のようにして仮組パネルP0の空間30内に発泡断熱材40を注入し、発泡・充填した後、約2〜5分間待機させる(ステップ12−6)。この待機中において、パネル内への発泡断熱材40の発泡・充填後に生じるシクロペンタンのパネル外への漏出が、注入工程が行われる場所のみに存在することになる。そのため、注入工程が行われる場所に、図示しない排気設備,静電気除去設備及び可燃性気体検出設備等の各種安全設備を備えることで、パネル製造設備全体の高い安全性を保つことができる。そして、発泡・充填した後、約2〜5分間待機させて安全を確認した後、作製された断熱パネルPを所定の場所に搬出する。   As described above, the foam heat insulating material 40 is injected into the space 30 of the temporary assembly panel P0, foamed and filled, and then waited for about 2 to 5 minutes (step 12-6). During this standby, leakage of cyclopentane to the outside of the panel that occurs after foaming and filling of the foam heat insulating material 40 into the panel exists only at the place where the injection process is performed. Therefore, by providing various safety equipment such as exhaust equipment, static electricity removal equipment, and combustible gas detection equipment (not shown) at the place where the injection process is performed, high safety of the entire panel manufacturing equipment can be maintained. And after foaming and filling, after waiting for about 2-5 minutes and confirming safety, the produced heat insulation panel P is carried out to a predetermined place.

この発明における断熱パネルの一例を示す斜視図である。It is a perspective view which shows an example of the heat insulation panel in this invention. 図1のI−I線に沿う拡大断面図である。It is an expanded sectional view which follows the II line | wire of FIG. 仮組パネルの空間内にノズルを挿入する状態を示す拡大断面図(a)及び(a)のII矢視図(b)である。It is an expanded sectional view (a) which shows the state which inserts a nozzle in the space of a temporary assembly panel, and II arrow directional view (b) of (a). ガスの注入状態を示す概略断面図である。It is a schematic sectional view showing an injection state of N 2 gas. この発明におけるNガス注入ノズルの第1実施形態を示す要部斜視図(a)及び(a)のIII−III線に沿う断面図(b)である。It is a partial perspective view showing a first embodiment of a N 2 gas injection nozzle (a) and a cross-sectional view taken along the line III-III of (a) (b) in the present invention. 発泡断熱材の注入状態を示す概略平面断面図である。It is a schematic plane sectional view which shows the injection | pouring state of a foam heat insulating material. この発明におけるNガス注入ノズルの第2実施形態を示す要部斜視図(a)及び(a)のIV−IV線に沿う断面図(b)である。It is a partial perspective view showing a second embodiment of a N 2 gas injection nozzle in the present invention (a) and a cross-sectional view taken along the line IV-IV of (a) (b). 第2実施形態のNガス注入ノズルを用いたNガスの注入状態を示す概略断面図である。It is a schematic sectional view showing the injection state of the N 2 gas with N 2 gas injection nozzle of the second embodiment. この発明におけるNガス注入ノズルの第3実施形態を示す要部斜視図(a)及び(a)のV−V線に沿う断面図(b)である。A partial perspective view showing a third embodiment of the N 2 gas injection nozzle (a) and a cross-sectional view taken along the line V-V (a) (b) in the present invention. この発明に係る断熱パネルの製造方法における断熱パネルの平積み状態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the flat stacked state of the heat insulation panel in the manufacturing method of the heat insulation panel which concerns on this invention. 図10の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 断熱パネルの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a heat insulation panel.

符号の説明Explanation of symbols

P 断熱パネル
P0 仮組パネル
10 表面板
20 直状枠材
21 コーナー枠材
25 注入用孔
30 空間
40 発泡断熱材
60 Nガス注入ノズル(不活性ガス注入ノズル)
61 ノズルヘッド
62 主注入口
63,65,66 副注入口
64 連通路
70 発泡断熱材注入ノズル
100 処理室
P heat insulation panel P0 temporary assembly panel 10 surface plate 20 straight frame material 21 corner frame material 25 injection hole 30 space 40 foam insulation 60 N 2 gas injection nozzle (inert gas injection nozzle)
61 Nozzle head 62 Main injection port 63, 65, 66 Sub injection port 64 Communication path 70 Foam insulation injection nozzle 100 Processing chamber

Claims (7)

一対の表面板と、上記両表面板の辺部間に装着される枠材と、上記両表面板と枠材とで形成される空間内に注入・充填される炭素数5の飽和炭化水素を発泡剤とする発泡断熱材とからなる断熱パネルの製造方法であって、
上記空間内に不活性ガスを注入して空間内を不活性ガスで置換する工程と、
上記不活性ガスで置換する工程の後、上記空間内に上記発泡断熱材を注入する工程とを有し、
上記不活性ガス置換工程の際、上記枠材の中央部に設けられた注入用孔に挿入されたノズルの先端から、上記不活性ガスを、ノズルの中心軸に沿って上記空間内に直状に注入すると同時に、直状注入方向に対して角度を有する少なくとも2箇所から側方に注入することを特徴とする断熱パネルの製造方法。
A pair of surface plates, a frame member mounted between the side portions of the both surface plates, and a saturated hydrocarbon having 5 carbon atoms injected and filled into a space formed by the both surface plates and the frame member. A method for producing a heat insulating panel comprising a foam heat insulating material as a foaming agent,
Injecting an inert gas into the space and replacing the space with the inert gas;
After the step of replacing with the inert gas, the step of injecting the foam insulation into the space,
During the inert gas replacement step, the inert gas is directly introduced into the space along the central axis of the nozzle from the tip of the nozzle inserted in the injection hole provided in the center of the frame member. The method for manufacturing a heat insulating panel is characterized by simultaneously injecting into the side from at least two places having an angle with respect to the straight injection direction.
請求項1記載の断熱パネルの製造方法において、
上記不活性ガスの側方への注入を、ノズルの中心軸に対して対称に行うことを特徴とする断熱パネルの製造方法。
In the manufacturing method of the heat insulation panel of Claim 1,
A method for manufacturing a heat insulating panel, wherein the inert gas is injected laterally symmetrically with respect to a central axis of the nozzle.
請求項1又は2記載の断熱パネルの製造方法において、
上記不活性ガス置換工程を、所定温度に設定されたパネルの処理温度雰囲気内に上記表面板と枠材を組み立てて設置保持した状態で行うことを特徴とする断熱パネルの製造方法。
In the manufacturing method of the heat insulation panel of Claim 1 or 2,
A method for manufacturing a heat insulating panel, wherein the inert gas replacement step is performed in a state where the surface plate and the frame material are assembled and held in a processing temperature atmosphere of the panel set at a predetermined temperature.
一対の表面板と、上記両表面板の辺部間に装着される枠材と、上記両表面板と枠材とで形成される空間内に注入・充填される炭素数5の飽和炭化水素を発泡剤とする発泡断熱材とからなる断熱パネルの製造装置であって、
上記空間内に上記発泡断熱材を注入する前に、上記枠材の中央部に設けられた注入用孔に挿入されて上記空間内に不活性ガスを注入するノズルを具備してなり、
上記ノズルは、先端に開口する主注入口と、該主注入口に連通する連通路に連通すると共に、主注入口付近に設けられる少なくとも2個以上の副注入口と、を具備することを特徴とする断熱パネルの製造装置。
A pair of surface plates, a frame member mounted between the side portions of the both surface plates, and a saturated hydrocarbon having 5 carbon atoms injected and filled into a space formed by the both surface plates and the frame member. A heat insulation panel manufacturing apparatus comprising a foam heat insulating material as a foaming agent,
Before injecting the foam heat insulating material into the space, comprising a nozzle that is inserted into an injection hole provided in the center of the frame material and injects an inert gas into the space,
The nozzle includes a main inlet opening at a tip thereof, and at least two or more sub-injectors provided in the vicinity of the main inlet while communicating with a communication path communicating with the main inlet. Insulation panel manufacturing equipment.
請求項4記載の断熱パネルの製造装置において、
上記各副注入口は、ノズルの中心軸に対して大きさ、数及び形状が対称に形成されていることを特徴とする断熱パネルの製造装置。
In the manufacturing apparatus of the heat insulation panel of Claim 4,
Each of the sub-injections is formed symmetrically in size, number and shape with respect to the central axis of the nozzle.
請求項4又は5記載の断熱パネルの製造装置において、
上記ノズルは、先端に向かって狭小テーパ状の截頭円錐状に形成されるノズルヘッドを具備すると共に、このノズルヘッド内に形成される連通路を先端に向かって狭小テーパ状に形成し、かつ、連通路に副注入口を連通してなることを特徴とする断熱パネルの製造装置。
In the manufacturing apparatus of the heat insulation panel of Claim 4 or 5,
The nozzle includes a nozzle head formed in a narrow tapered frustoconical shape toward the tip, and a communication path formed in the nozzle head is formed in a narrow taper toward the tip, and An apparatus for manufacturing a heat insulation panel, characterized in that a sub-injection port is communicated with a communication passage.
請求項4ないし6のいずれかに記載の断熱パネルの製造装置において、
上記表面板と枠材を組み立てて設置保持した状態に収容する温調部を更に具備し、該温調部を、ノズルから空間内に不活性ガスを注入する際に、パネルの処理温度雰囲気に温調可能に形成してなることを特徴とする断熱パネルの製造装置。
In the heat insulation panel manufacturing apparatus according to any one of claims 4 to 6,
The apparatus further includes a temperature control unit that accommodates the surface plate and the frame material in an assembled and held state. When the inert gas is injected into the space from the nozzle, the temperature control unit is brought into the processing temperature atmosphere of the panel. An apparatus for manufacturing a heat insulating panel, characterized in that it is formed so as to be capable of temperature control.
JP2004283361A 2004-09-29 2004-09-29 Manufacturing method and apparatus for heat insulation panel Expired - Fee Related JP4404357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283361A JP4404357B2 (en) 2004-09-29 2004-09-29 Manufacturing method and apparatus for heat insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283361A JP4404357B2 (en) 2004-09-29 2004-09-29 Manufacturing method and apparatus for heat insulation panel

Publications (2)

Publication Number Publication Date
JP2006095801A true JP2006095801A (en) 2006-04-13
JP4404357B2 JP4404357B2 (en) 2010-01-27

Family

ID=36236080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283361A Expired - Fee Related JP4404357B2 (en) 2004-09-29 2004-09-29 Manufacturing method and apparatus for heat insulation panel

Country Status (1)

Country Link
JP (1) JP4404357B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254305A (en) * 2007-04-04 2008-10-23 Toyo Tire & Rubber Co Ltd Method of manufacturing hard polyurethane foam panel
JP2009101561A (en) * 2007-10-23 2009-05-14 Nikkei Panel System Kk Heat insulating panel
KR20180029171A (en) * 2016-09-09 2018-03-20 삼성중공업 주식회사 Cargo for liquefied gas
GB2542110B (en) * 2015-07-01 2018-04-11 Scotframe Timber Engineering Ltd Improved timber frame insulating elements

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254305A (en) * 2007-04-04 2008-10-23 Toyo Tire & Rubber Co Ltd Method of manufacturing hard polyurethane foam panel
JP2009101561A (en) * 2007-10-23 2009-05-14 Nikkei Panel System Kk Heat insulating panel
GB2542110B (en) * 2015-07-01 2018-04-11 Scotframe Timber Engineering Ltd Improved timber frame insulating elements
KR20180029171A (en) * 2016-09-09 2018-03-20 삼성중공업 주식회사 Cargo for liquefied gas
KR102404669B1 (en) * 2016-09-09 2022-06-03 삼성중공업 주식회사 Cargo for liquefied gas

Also Published As

Publication number Publication date
JP4404357B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
CN102066859A (en) Units insulated with foams and having flexible outer skins
JP4371943B2 (en) Insulating panel manufacturing method
JP4404357B2 (en) Manufacturing method and apparatus for heat insulation panel
DE50312836D1 (en) CREATED MATERIAL AND MANUFACTURING PROCESS FOR THE FOAMED MATERIAL
JP2010052425A (en) Foam molding apparatus having die cooling pipe, and foam molding method using the same
CA2225139A1 (en) Process and apparatus for vacuum foaming of panels
JP2013104267A (en) Resin sandwich structure panel material and manufacturing method for the same
JP4969401B2 (en) Thermal insulation panel
JP4969402B2 (en) Insulating panel manufacturing method
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
KR20160095229A (en) Poly-urethane manufacturing method using n_2 adsorbent
JP4341966B2 (en) Insulation panel manufacturing equipment
JP4977852B2 (en) Floss process rigid polyurethane foam production equipment
JP2006044181A (en) Method for manufacturing thermal insulation panel
JP4047106B2 (en) Manufacturing method of sandwich panel
KR102123921B1 (en) Process for the continuous production of foams in pipes
WO2013027416A1 (en) Device and method for manufacturing expanded polyurethane foam, and heat insulation structure
JP2001182183A (en) Method for forming heat-insulating layer
JPH11179826A (en) Composite heat-insulating panel structure
JPH07278335A (en) Production of foamed fluororubber
JPH0641161B2 (en) Method for producing styrene resin foam sheet and styrene resin foam sheet for thermoforming
JP2009051997A (en) Process for producing rigid polyurethane foam by froth method and method for applying rigid polyurethane foam thermal insulation layer
JP2009114342A (en) Method for spraying polyurethane foam
JP3998185B2 (en) Method for producing molded product filled with rigid polyurethane foam
JP2005329616A (en) Method for producing non-flammable thermal insulation panel

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees