JP2006088136A - Biomass ethanol product and manufacturing method for biomass ethanol product - Google Patents

Biomass ethanol product and manufacturing method for biomass ethanol product Download PDF

Info

Publication number
JP2006088136A
JP2006088136A JP2004307400A JP2004307400A JP2006088136A JP 2006088136 A JP2006088136 A JP 2006088136A JP 2004307400 A JP2004307400 A JP 2004307400A JP 2004307400 A JP2004307400 A JP 2004307400A JP 2006088136 A JP2006088136 A JP 2006088136A
Authority
JP
Japan
Prior art keywords
saccharification
glucose
ethanol
biomass
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004307400A
Other languages
Japanese (ja)
Inventor
Katsutoshi Okubo
捷敏 大久保
Yasuyo Fujii
康代 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004307400A priority Critical patent/JP2006088136A/en
Publication of JP2006088136A publication Critical patent/JP2006088136A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing clean biomass ethanol with excellent efficiency on mild conditions not directly dependent on delignification technique, in light of the present state depending on a sulfuric acid process which discharges secondary waste such as gypsum and has the fear of incorporating sulfur component, or the like, although ethanol production from wood type waste is desired from a viewpoint of biomass application. <P>SOLUTION: Waste raw material such as waste paper which is delignified beforehand and contains cellulose of the extent of 80% is pulverized into optimum size and is efficiently saccharized into glucose by cellulase enzyme and, thereafter, clean ethanol is obtained by fermentation. According to this invention, ultrafiltration membrane separation of enzyme and glucose brings about long-term utilization of avoiding the deactivation of the enzyme, the discharge of secondary waste can be avoided through the utilization of fertilization residue to greening growth mat material, and the like, and the manufacture of biomass ethanol having drastically reduced environmental load is permitted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は持続的再生型社会形成に向けた環境適合性を保有する液体燃料生産に係る分野であり、近年の温暖化対策及びそのための二酸化炭素の世界的削減計画の一環として提案されている未利用バイオマス利活用政策におけるセルロース系バイオマスからの硫黄等の不純物を含まないバイオマスエタノールおよびその製造方法に関する。  The present invention is an area related to liquid fuel production that possesses environmental suitability for the formation of a sustainable regenerative society, and has not been proposed as part of recent global warming countermeasures and a global reduction plan for carbon dioxide. The present invention relates to biomass ethanol not containing impurities such as sulfur from cellulosic biomass in a utilization biomass utilization policy and a method for producing the same.

バイオマスから製造されるエタノールは、二酸化炭素の排出削減に直結するガソリン添加剤として極めて重要な低級アルコール燃料として認知されており、バイオマスから硫黄分等の不純物を含まないエタノール燃料の生成と当該物の製造方法が希求されている。バイオマスエタノールは、サトウキビやトウモロコシ等の澱粉アミロース系バイオマスのエタノール発酵により得られているのが主流であり、未利用バイオマス利活用の観点から注目される間伐材や建設廃材等の木質系バイオマスからのエタノール製造技術は現状では開発中といっても過言ではない。また、生ゴミや糞尿等のバイオマスからのエタノール製造については、レストランや食堂等の廃棄食物の澱粉利用は可能なものの、生ゴミや糞尿等から十分な澱粉やセルロース成分が期待できないため、バイオマスエタノール製造の原材料として適用し難く、一般的にはメタン発酵法によるバイオガス メタンの入手原料とされている(
)。
Ethanol produced from biomass is recognized as a very important lower alcohol fuel as a gasoline additive that directly reduces carbon dioxide emissions. The production of ethanol fuel that does not contain impurities such as sulfur from biomass and A manufacturing method is desired. Biomass ethanol is mainly obtained by ethanol fermentation of starch amylose-based biomass such as sugarcane and corn, and it is derived from woody biomass such as thinned wood and construction waste that attracts attention from the viewpoint of utilizing unused biomass. It is no exaggeration to say that ethanol production technology is currently under development. In addition, for ethanol production from biomass such as garbage and manure, although starch can be used for waste food such as restaurants and canteens, biomass ethanol cannot be expected from food waste and manure, etc. It is difficult to apply as a raw material for production, and it is generally regarded as a raw material for obtaining biogas methane by the methane fermentation method (
).

間伐材や建設廃材等の木質系バイオマスから硫黄分等の不純物を含まないエタノールの製造および製造技術が求められているが、木質系バイオマスはリグニンとセルロースを主成分とするため、セルロースを分解してグルコースにする糖化工程を疎外するリグニン除去が前処理として要求される。現状では、脱リグニン前処理を省いた強引な方法として、濃硫酸または希硫酸を用いた硫酸法によるセロース分解糖化法よりグルコースを得て、従来の酵母利用によるエタノール発酵でバイオマスエタノールを得る方法が検討されている(非特許文献2)。しかし、この硫酸法では、少なくとも100〜200℃でセロースの分解糖化後にエタノール発酵を行うための硫酸除去処理すなわち水酸化カルシウム等のアルカリ剤による硫酸の中和を必要とし、現実には水酸化カルシウムを用いた中和により硫酸カルシウムいわゆる石膏を残査として排出しており、石膏処理にコストをかける必要が生じている。また、硫酸法は、生産工程における装置類の酸腐食を生じることになり、製造プラントの設計上も耐酸性を要求する欠点を持つことになる。さらに、硫酸法は、その中和過程で完全に硫酸すなわち硫黄成分を除去できずにエタノール発酵を行うことになりやすく、硫黄分を含んだエタノールを生産することになり、硫黄成分等の不純物を含まないバイオマスエタノールの製造法に最適とは言い難い。  There is a demand for production and production technology of ethanol that does not contain impurities such as sulfur from woody biomass such as thinned wood and construction waste, but woody biomass contains lignin and cellulose as the main components, so it decomposes cellulose. Therefore, lignin removal that excludes the saccharification step to make glucose is required as a pretreatment. At present, as a brute force method without delignification pretreatment, there is a method for obtaining biomass ethanol by ethanol fermentation using conventional yeast by obtaining glucose from the cellulose decomposition saccharification method using sulfuric acid method using concentrated sulfuric acid or dilute sulfuric acid. It has been studied (Non-Patent Document 2). However, this sulfuric acid method requires a sulfuric acid removal treatment for performing ethanol fermentation after degrading saccharification of cellulose at least at 100 to 200 ° C., that is, neutralizing sulfuric acid with an alkaline agent such as calcium hydroxide. As a result of the neutralization using calcium sulfate, calcium sulfate, so-called gypsum, is discharged as a residue, and there is a need to cost the gypsum treatment. In addition, the sulfuric acid method causes acid corrosion of equipment in the production process, and has a drawback of requiring acid resistance in designing the manufacturing plant. Furthermore, in the sulfuric acid method, the sulfuric acid, that is, the sulfur component cannot be completely removed during the neutralization process, and ethanol fermentation is likely to be performed. As a result, ethanol containing sulfur is produced, and impurities such as sulfur components are removed. It is hard to say that it is optimal for the production method of biomass ethanol that does not contain it.

木質系バイオマス廃棄物からのエタノールの製造には、木質系バイオマスから効率良くリグニンを除去する技術および脱リグニン処理により得られた環状6炭糖のセルロースさらには環状5炭糖のヘミセルロースの糖化発酵技術の確立が不可欠であるが、現在、硫酸法による脱リグニン行程の省略と、ヘミセルロースの糖化を考慮した遺伝子組み換え大腸菌を用いる5炭糖及び6炭糖成分のエタノール化発酵等が試みられている(
)。
For the production of ethanol from woody biomass waste, technologies for efficiently removing lignin from woody biomass and saccharification and fermentation technology for cellulose of cyclic 6-carbon sugar obtained by delignification treatment and further hemicellulose of cyclic 5-carbon sugar However, at present, attempts are being made to eliminate the delignification process by the sulfuric acid method, and ethanol fermentation of pentose and hexose components using genetically modified Escherichia coli considering saccharification of hemicellulose.
).

難解な脱リグニン処理を迂回する意味で、予め脱リグニン処理が行われておりセルロースを主成分とする古紙や段ボール等のセルロース系バイオマス廃棄物からのエタノール製造が注目を浴びることになるが、原料である古紙や段ボールはそのまま再生利用が可能なために原料コストが高くなると憶測され、廃木材等の木質系バイオマスに比べて技術開発が遅れている。周知されている範囲では、我が国で1社が古紙や段ボール等のセルロース系バイオマス廃棄物からのエタノール製造を目指している
In order to circumvent the esoteric delignification treatment, delignification treatment has been carried out in advance, and ethanol production from cellulose-based biomass waste such as waste paper and corrugated cardboard mainly composed of cellulose will attract attention. As waste paper and cardboard can be recycled as they are, it is speculated that the cost of raw materials will increase, and technical development is delayed compared to woody biomass such as waste wood. As far as is known, one company in Japan aims to produce ethanol from cellulosic biomass waste such as waste paper and cardboard.
.

古紙や段ボール等のセルロース系バイオマス廃棄物からのエタノール製造に関わる技術の詳細は現状では不明であり、またそのバイオマスエタノール生成物及び製造方法に関わる特許も存在しない。すなわち、硫黄分等の不純物を含まないバイオマスエタノール生成物並びに原料の糖化までの前処理、酵素を用いた糖化工程およびエタノール発酵工程の詳細な規格化に基づく最適なバイオマスエタノール生成物製造方法が明確化されることが期待されているのが現状である。  Details of the technology relating to ethanol production from cellulosic biomass waste such as waste paper and cardboard are currently unknown, and there are no patents relating to the biomass ethanol product and production method. In other words, a biomass ethanol product that does not contain impurities such as sulfur and pretreatment until saccharification of raw materials, a saccharification process using enzymes, and a detailed standardization of ethanol fermentation process are clarified optimal biomass ethanol product production method The current situation is expected to be realized.

株式会社荏原製作所、鹿島建設株式会社等「平成16年1月20日付、日経産業新聞」Ebara Manufacturing Co., Ltd., Kashima Construction Co., Ltd. “Nikkei Sangyo Shimbun, January 20, 2004” 日揮株式会社、月島機械株式会社「日経バイオビジネス」2002年9号、p55−56JGC Corporation, Tsukishima Machine Co., Ltd. “Nikkei Bio Business” 2002 No. 9, p55-56 日本食糧株式会社「日経バイオビジネス」2002年9号、p.57.「富士総合研究所Mime」2002年、No2、p11Nihon Foods Co., Ltd. “Nikkei Biobusiness” No. 9, 2002, p. 57. "Fuji Research Institute Mime" 2002, No2, p11

未利用バイオマス利活用の観点から注目される間伐材や建設廃材等の木質系バイオマスのセルロース成分を糖化してグルコースを得、そのグルコースのエタノール発酵から得られるバイオマスエタノールは、優れたガソリン添加剤としてすでに認知されており、また、コスト的に見合えば発電等の燃料あるいは水素製造原料としても十分期待できる環境適合型の極めて優れたクリーンな液体燃料である。しかるに、間伐材や建設廃材等の木質系バイオマスからのエタノール製造は、木質系バイオマスが保有するリグニンによりセルロース成分の加水分解すなわち糖化反応が著しく阻害され、有効な脱リグニン技術が存在しない限り、バイオマスエタノールの製造を困難にしているのが現状である。  Biomass ethanol obtained by saccharifying the cellulose component of woody biomass such as thinned wood and construction waste, which is attracting attention from the viewpoint of utilizing unused biomass, to obtain glucose, and ethanol fermentation of that glucose is an excellent gasoline additive It is an environmentally friendly and extremely clean liquid fuel that has already been recognized and that can be expected as a fuel for power generation or a hydrogen production raw material in terms of cost. However, ethanol production from woody biomass, such as thinned wood and construction waste, will not be effective unless the hydrolysis of the cellulose component, that is, saccharification, is significantly inhibited by the lignin held by the woody biomass and there is no effective delignification technology. Currently, it is difficult to produce ethanol.

したがって、未利用木質バイオマスの利活用の観点から、有効な脱リグニン技術の確立を待たずに木質系バイオマスからエタノール製造を行うことができれるバイオマスエタノールの製造方法が開拓されること、製造されたバイオマスエタノールが硫黄成分等の不純物を極力含まないクリーンな環境適合型燃料であること、並びにバイオマスエタノールの製造工程において環境負荷廃棄物が排出されないことが乗り越えるべき課題となる。  Therefore, from the viewpoint of utilization of unused woody biomass, a biomass ethanol production method that can produce ethanol from woody biomass without waiting for the establishment of effective delignification technology was pioneered and produced. The issues that must be overcome are that biomass ethanol is a clean environmentally-friendly fuel that contains as little impurities as possible, such as sulfur components, and that no environmentally hazardous waste is discharged in the biomass ethanol production process.

前記の3つの大きな課題(  The above three major issues (

及びas well as

に記載)を乗り越えるのに、脱リグニンを意識しないで木質バイオマスの糖化を行える硫酸法を用いると、糖化工程における100〜200度の熱エネルギー供給の必要性や反応装置の硫酸酸性への耐性等が問題もあるが、糖化後に水酸化カルシウムによる硫酸の中和すなわち石膏化が完全に行えない限り、エタノール発酵工程に硫黄成分が混入して製造されたバイオマスエタノールが硫黄成分を含む可能性が発生し、バイオマスエタノールの製造工程において環境負荷廃棄物すなわち石膏等が排出されることになる。したがって、If the sulfuric acid method that allows saccharification of woody biomass without considering delignification is used to overcome this problem, the necessity of supplying heat energy of 100 to 200 degrees in the saccharification process and the resistance to sulfuric acidity of the reactor, etc. However, there is a possibility that biomass ethanol produced by mixing sulfur components in the ethanol fermentation process may contain sulfur components unless sulfuric acid can be completely neutralized with calcium hydroxide after saccharification. In addition, environmentally hazardous waste, that is, gypsum and the like is discharged in the biomass ethanol production process. Therefore,

及びas well as

に記載した乗り越えるべき課題を未解決状態で残すこととなる硫酸法の適用は最適でなく、より改善されたバイオマスエタノール製造法による硫黄成分等の不純物が混入しないバイオマスエタノール生成物が要求される。The application of the sulfuric acid method, which leaves unsolved problems to be overcome, is not optimal, and a biomass ethanol product that does not contain impurities such as sulfur components by a more improved biomass ethanol production method is required.

前記の  Above

及びas well as

で述べた木質系バイオマスからのエタノール製造に関わる諸々の課題は、予め脱リグニン処理済みでセルロース成分(80%程度)で主に構成される古紙や段ボール等のセルロース系バイオマス廃棄物から硫黄成分等の不純物を含まないバイオマスエタノールを少量の熱エネルギー供給で効率良く製造することで脱却できる。したがって、高活性なセルロース分解酵素いわゆるセルラーゼ酵素を用いる常温近傍でのセルロースからグルコースへの糖化、酵素利用糖化法に最適な原料の微粉化とセルラーゼ酵素の高活性状態の簡便な維持方法すなわち水素イオン濃度pH緩衝液等を不要としたpH制御とセルラーゼ酵素の失活を避けた長期的利用方法、簡便で効率的にグルコースをエタノールに変換するエタノール発酵、糖化発酵残渣の高付加価値化利用(例えば、屋上緑化育成マット材料等)を行う解決策を確立することが具体的課題となる。The various problems related to ethanol production from woody biomass mentioned in the section are the sulfur components from cellulose biomass waste such as waste paper and corrugated cardboard that have been delignified in advance and mainly composed of cellulose components (about 80%) It is possible to escape by efficiently producing biomass ethanol that does not contain any impurities by supplying a small amount of thermal energy. Therefore, saccharification of cellulose to glucose at near room temperature using a highly active cellulose-degrading enzyme, so-called cellulase enzyme, pulverization of raw materials optimal for enzyme-based saccharification, and simple maintenance method of cellulase enzyme in a highly active state, that is, hydrogen ions Long-term usage method avoiding inactivation of cellulase enzyme, pH control that does not require concentration pH buffer, etc., ethanol fermentation that converts glucose into ethanol simply and efficiently, high-value-added use of saccharification and fermentation residue (for example, Establishing solutions for rooftop greening mat materials, etc.) is a specific issue.

予め脱リグニンされている古紙や段ボール等のセルロース系バイオマス廃棄物からセルラーゼ酵素利用によるセルロースからグルコースへの糖化及び酵母等の利用によるグルコースからアルコールへの発酵工程を経てバイオマスエタノールを製造する場合の主な課題として以下の3つが挙げられる。すなわち、古紙や段ボール等のセルロース系バイオマス原料が糖化酵素と高効率反応を起こすための原料微粉化等の適切な前処理を必要とすること。高活性なセルラーゼ酵素が糖化生成物グルコースの活性阻害を避けて長期的に活性維持しながらセルロース原料をグルコースに効率良く糖化できる仕組みを設定した糖化工程にすること。効率良いエタノール発酵を行うために、グルコースあるいはエタノールにより機能が阻害される酵母が阻害影響を避けられるグルコースの発酵槽への導入方法と生成エタノールの発酵槽からの排出方法、さらには簡便な効率的な発酵槽内での酵母の育成と増殖法を確立することである。課題を一言すれば、一貫したプロセスにより、セルロース系バイオマス廃棄物から環境負荷物を排出せずかつ硫黄分等の不純物を含まないバイオマスエタノール生成物を効率良く製造する方法を提供することにある。  Mainly in the case of producing biomass ethanol from cellulosic biomass waste such as waste paper and cardboard that has been delignified in advance through saccharification from cellulose to glucose using cellulase enzyme and fermentation process from glucose to alcohol using yeast etc. There are the following three issues. That is, it requires appropriate pretreatment such as pulverization of raw materials for cellulosic biomass raw materials such as waste paper and cardboard to cause a highly efficient reaction with saccharifying enzymes. A saccharification process is set up in which a highly active cellulase enzyme avoids inhibiting the activity of the saccharification product glucose and maintains a long-term activity while efficiently saccharifying the cellulose raw material into glucose. In order to carry out efficient ethanol fermentation, the method of introducing glucose into the fermentor, the method of discharging the produced ethanol from the fermenter, and the simple and efficient method that can prevent the effects of inhibition by yeasts whose functions are inhibited by glucose or ethanol To establish a method for growing and growing yeast in a fermenter. In short, the objective is to provide a method for efficiently producing a biomass ethanol product that does not discharge environmental burdens from cellulosic biomass waste and does not contain impurities such as sulfur by a consistent process. .

本発明者らは前記目的を達成すべく鋭意研究を重ねた結果、予め脱リグニンされている古紙や段ボール等のセルロース系バイオマス原料を適切に微粉化する工程と、微粉化したセルロースを高活性セルラーゼ酵素でグルコース糖化する工程と、糖化工程中にエタノール発酵で生じる二酸化炭素の利用によるセルラーゼ酵素の高活性と安定性を維持する水素イオン濃度pH条件の設定並びに高活性セルラーゼ酵素とグルコースとの効率良い膜分離による酵素の長期利用を図る工程と、得られたグルコースをザイモモナス等の菌体より安定な酵母を用いエタノール化し、酵母の増殖活性を維持するために適宜エタノールを取出す発酵工程の全てを直結させるプロセスにより、エタノール製造収率を高く維持しつつ全工程から外部への環境負荷を極めて低く抑制することが出来、しかも硫黄分等の不純物を含まない優良な品質のバイオマスエタノールを蒸留工程の追加により高純度で得ることに成功した。  As a result of intensive studies to achieve the above object, the present inventors have appropriately pulverized cellulosic biomass raw materials such as waste paper and cardboard that have been delignified in advance, and highly active cellulase from the pulverized cellulose. Enzymatic glucose saccharification with an enzyme, setting of pH conditions for hydrogen ion concentration to maintain high activity and stability of cellulase enzyme by using carbon dioxide generated by ethanol fermentation during saccharification process, and efficient use of highly active cellulase enzyme and glucose Directly connecting the process of long-term use of the enzyme by membrane separation and the fermentation process in which the obtained glucose is ethanolized using yeast that is more stable than microbial cells such as Zymomonas, and the ethanol is appropriately extracted to maintain the growth activity of the yeast. Process to maintain the high ethanol production yield and minimize the environmental impact from all processes to the outside. Te can be suppressed low and succeeded in obtaining a high purity by the addition of excellent quality biomass ethanol distillation step that does not contain impurities sulfur and the like.

前記工程の説明において、古紙や段ボール等のセルロース系バイオマス原料の微粉化工程の後に、バイオマス原料に幾分含まれるリグニンを除去することにより更に主成分のセルロース含有率を向上させたい場合には、過酸化水素とタングステン酸ソーダまたは過酸化水素とモリブデン酸ソーダ等の混合脱リグニン酸化剤あるいはオゾン酸化剤を用いた酸化工程を追加することもあり、また、高純度のバイオマスエタノールを容易に得るために蒸留工程の前に水−エタノール分離膜によるエタノール濃縮工程を追加することもある。  In the description of the process, after the pulverization step of the cellulose-based biomass raw material such as waste paper or cardboard, when it is desired to further improve the cellulose content of the main component by removing lignin contained in the biomass raw material somewhat, Oxidation process using mixed delignification oxidizer or ozone oxidizer such as hydrogen peroxide and sodium tungstate or hydrogen peroxide and sodium molybdate may be added. In addition, an ethanol concentration step using a water-ethanol separation membrane may be added before the distillation step.

バイオマスエタノールを高効率で得るために、図1のバイオマスエタノール製造プロセスで示す工程すなわち予め脱リグニンされている古紙や段ボール等のセルロース系バイオマス原料を適切に微粉化する工程、微粉化したセルロースを高活性セルラーゼ酵素でグルコース糖化する工程、糖化工程中にエタノール発酵で生じる二酸化炭素の利用によるセルラーゼ酵素の高活性と安定性を維持する水素イオン濃度pH条件5.0前後の設定、並びに高活性セルラーゼ酵素とグルコースとの効率良い膜分離による酵素の長期利用を図る工程、得られたグルコースを予め15〜25重量%に濃縮する工程、濃縮したグルコースをザイモモナス等の菌体より安定な酵母を用いエタノール化し、酵母の増殖活性を維持するために適宜エタノールを取出す発酵工程の全てを直結させるプロセスにより、エタノール製造収率を高く維持しつつ全工程から外部への環境負荷を極めて低く抑制することが出来、しかも硫黄分等の不純物を含まない優良な品質のバイオマスエタノールを蒸留工程の追加により高純度で得ることに成功している。  In order to obtain biomass ethanol with high efficiency, the step shown in the biomass ethanol production process of FIG. 1, that is, the step of appropriately pulverizing cellulosic biomass raw materials such as waste paper and cardboard that have been delignified in advance, A step of saccharifying glucose with an active cellulase enzyme, a setting of around 5.0 pH conditions for maintaining the high activity and stability of the cellulase enzyme by using carbon dioxide produced by ethanol fermentation during the saccharification step, and a highly active cellulase enzyme For the long-term use of the enzyme by efficient membrane separation of glucose and glucose, the step of concentrating the obtained glucose to 15 to 25% by weight in advance, and ethanolizing the concentrated glucose using yeast that is more stable than microbial cells such as Zymomonas Remove ethanol as appropriate to maintain yeast growth activity A process that directly connects all fermentation processes, while maintaining a high ethanol production yield, can control the environmental impact from the entire process to the outside extremely low, and does not contain impurities such as sulfur. It has succeeded in obtaining ethanol with high purity by adding a distillation step.

前記の古紙や段ボール等のセルロース系バイオマス原料を微粉化する前処理工程において、図2に示した前処理微粉化装置は原料に付着した雑菌を微粉化カッターで発生する熱により消滅させ、1〜2ミリメータ以下望ましくは800ミクロン以下の粒径に原料を粉砕する。この微粉化工程では、一定方向に裁断処理をして得られる繊維状(すなわち綿状)の毛羽立ち度の高い微粉化による吸水性の増大を極力さけ、重量当たりの吸水量が高くならない微粉体にすることが糖化反応を効率良く進める上で極めて重要なこととなる。具体的には、糖化工程における微粉体初濃度が40重量%溶液で十分流動性を維持できることが重要であり、原料濃度を20重量%以上に高めることが出来ない吸水性に富む繊維状に毛羽立った形状を避けることが必須となる。この限りにおいて、微粉体の流動性及び同一のセルラーゼ酵素に対する反応性は、微粉体濃度が一律である限り微粉体サイズにより極端に変化するものではないことを明確にしているので、高活性なセルラーゼ酵素を利用する限り、原料微粉体サイズを極端に小さくする(例えば100メッシュ250ミクロン程度)ことなく、古紙や段ボール等のセルロース系バイオマス原料からグルコースへの生成効率を向上させられる。  In the pretreatment step of pulverizing the cellulosic biomass raw material such as waste paper and corrugated cardboard, the pretreatment pulverization apparatus shown in FIG. 2 eliminates the germs adhering to the raw material by the heat generated by the pulverization cutter, The raw material is ground to a particle size of 2 millimeters or less, preferably 800 microns or less. In this pulverization process, the increase in water absorption due to pulverization with a high fluffiness obtained by cutting in a certain direction is avoided as much as possible, and the amount of water absorption per weight is not increased. This is extremely important for efficient saccharification reaction. Specifically, it is important that the initial fine powder concentration in the saccharification process can maintain sufficient fluidity with a 40% by weight solution, and the raw material concentration cannot be increased to 20% by weight or more. It is essential to avoid the shape. To this extent, it has been clarified that the fluidity of the fine powder and the reactivity to the same cellulase enzyme do not change extremely depending on the size of the fine powder as long as the concentration of the fine powder is uniform. As long as the enzyme is used, the production efficiency of glucose from cellulosic biomass materials such as waste paper and cardboard can be improved without extremely reducing the size of the raw material fine powder (for example, about 100 mesh, 250 microns).

古紙や段ボール等のバイオマス原料の微粉体が前記の適切なサイズと形状をもって場合、微粉体セルロースからグルコースへの糖化に必要なセルラーゼ酵素の選択に関しては、極めて厳密になる必要はない。すなわち、糖化工程の水溶液温度50度、水素イオン濃度pH5前後で安定性を維持して高活性を発揮できるセルラーゼ酵素を入手し易い一般的なセルラーゼ酵素から選択すればよい。むしろ重要なことは、セルラーゼ酵素がセルロース糖化生成物のグルコースにより活性阻害を受けての失活を避けることにあり、酵素とグルコースを逆浸透膜で連続的に分離し、常に酵素が高い活性を保持して利用あるいは再利用できるようにすることに成功しており、この点は後述する(  When the fine powder of biomass raw material such as waste paper or corrugated cardboard has the appropriate size and shape as described above, the selection of the cellulase enzyme required for saccharification from fine powder cellulose to glucose does not have to be extremely strict. That is, a cellulase enzyme that can maintain its stability at an aqueous solution temperature of 50 degrees Celsius and a hydrogen ion concentration of pH 5 and can exhibit high activity may be selected from general cellulase enzymes that are easily available. Rather, the important thing is that the cellulase enzyme avoids inactivation due to inhibition of activity by glucose of the cellulose saccharification product. The enzyme and glucose are continuously separated by a reverse osmosis membrane, and the enzyme always has high activity. It has been successfully made available for reuse or reuse, and this will be discussed later (

を参照)。したがって、糖化工程に用いるセルラーゼ酵素量は限定されるものでないが、一定の微粉体原料濃度で酵素濃度を希薄にすると酵素当たりのグルコースの生成量は増大するが、微粉体原料のグルコース化いわゆる糖化率は逆に減少することが判明しているので、そのバランスを考慮して0.1〜20重量%の範囲、望ましくは1〜5重量%で使用すれば良い。See). Therefore, the amount of cellulase enzyme used in the saccharification process is not limited, but diluting the enzyme concentration at a constant fine powder raw material concentration increases the amount of glucose produced per enzyme, but the glycation of the fine powder raw material is the so-called saccharification. It has been found that the rate decreases conversely, so that the balance is taken into consideration and the range of 0.1 to 20% by weight, preferably 1 to 5% by weight may be used.

前記のバイオマス原料の微粉体の糖化工程におけるセルラーゼ酵素の高活性の維持は、糖化槽内の水溶液のpH(水素イオン濃度)をpH5前後にする必要がある。このためには、水溶液を0.1モル/リットル程度の酢酸緩衝液等にして用いれば良いが、望ましきは酢酸緩衝液等を使用しない簡便法が良く、エタノール発酵で排出する二酸化炭素を糖化槽に導入することにより、適切な糖化溶液のpHをpH4.5〜pH6.5の範囲で酢酸緩衝液等を用いず制御できると共に糖化反応促進のための撹拌を不要にすることの知見を得ている。さらに、糖化槽内で二酸化炭素ブローアによる穏やかな二酸化炭素放出でセルラーゼ酵素が望む最適なpHすなわちpH5.0前後が保たれることを見出している。  In order to maintain the high activity of the cellulase enzyme in the saccharification step of the biomass raw material fine powder, the pH (hydrogen ion concentration) of the aqueous solution in the saccharification tank needs to be around pH 5. For this purpose, the aqueous solution may be used as an acetate buffer solution of about 0.1 mol / liter. However, if desired, a simple method not using an acetate buffer solution is preferred, and carbon dioxide discharged by ethanol fermentation is preferably used. The knowledge that by introducing into a saccharification tank, the pH of an appropriate saccharification solution can be controlled without using an acetate buffer in the range of pH 4.5 to pH 6.5, and stirring for saccharification reaction promotion is unnecessary. It has gained. Furthermore, it has been found that the optimum pH desired by the cellulase enzyme, that is, around pH 5.0, is maintained by gentle carbon dioxide release by the carbon dioxide blower in the saccharification tank.

前記の糖化工程におけるセルラーゼ酵素と生成物グルコースとの分離及び分離酵素の再利用は、糖化槽とエタノール発酵槽の間に設置した限外濾過膜装置により行う。すなわち、グルコースによるセルラーゼ酵素の阻害はグルコース濃度に比例し、例えば1.0重量%酵素利用の場合20重量%のグルコース生成で酵素活性が相対的に1/10程度に低下する。糖化槽内のグルコース濃度を低減させるために限外濾過膜によりグルコースは任意の濃度で発酵槽に、酵素は活性を維持したまま糖化槽に再導入させることでグルコースによるセルラーゼ酵素の阻害を避けたセルラーゼ酵素活性維持と恒常的利用に成功している。この限外濾過膜装置により糖化槽内でのグルコース濃度は10重量%以下望ましくは5重量%程度に保ち、限外濾過膜の分画分子量値は、5,000から50,000であり、出来れば10,000から30,000が好ましい。なお、限外濾過膜により分離されたグルコース水溶液は、予め濃縮器により15〜25重量%に濃縮した後に発酵槽に導入してエタノール化発酵を促進することが望まれる。  Separation of the cellulase enzyme and product glucose in the saccharification step and reuse of the separated enzyme are performed by an ultrafiltration membrane device installed between the saccharification tank and the ethanol fermentation tank. That is, the inhibition of the cellulase enzyme by glucose is proportional to the glucose concentration. For example, in the case of using 1.0 wt% enzyme, the enzyme activity is relatively reduced to about 1/10 with 20 wt% glucose production. In order to reduce the glucose concentration in the saccharification tank, the ultrafiltration membrane prevented glucose from being inhibited by the cellulase enzyme by re-introducing the glucose into the fermentation tank at an arbitrary concentration and maintaining the activity of the enzyme in the saccharification tank. Cellulase enzyme activity has been successfully maintained and used constantly. With this ultrafiltration membrane device, the glucose concentration in the saccharification tank is kept at 10% by weight or less, preferably about 5% by weight, and the molecular weight cut-off value of the ultrafiltration membrane is 5,000 to 50,000. If it is 10,000 to 30,000, it is preferable. It is desired that the aqueous glucose solution separated by the ultrafiltration membrane is preliminarily concentrated to 15 to 25% by weight with a concentrator and then introduced into a fermenter to promote ethanolization fermentation.

前記の限外濾過膜装置より発酵槽へ導入されたグルコースはエタノールに変換され、更に連続蒸留塔により硫黄分等の不純物を含まない高純度のバイオマスエタノール生成物として取り出される。酵母を用いたエタノール発酵は周知された技術であり、嫌気下での発酵活性が高いザイモモナス菌体の利用も可能である。グルコースやエタノールに対する安定性が優れた酵母による発酵では、清酒、ビール、ウイスキー、ワイン、パン酵母等のいずれでも用いることが出来、酵母の増殖と発酵活性とを保つために生成するエタノールの濃度が10〜15重量%を越えないように留意する必要がある。グルコースが100%エタノールに転換する場合、生成するエタノールの重量%は発酵槽に導入されたグルコースの重量%の半分に相当するので、濃度が15重量%程度のグルコースを37℃前後でエタノール発酵することが望ましい。  Glucose introduced into the fermentor from the ultrafiltration membrane device is converted to ethanol, and is further taken out as a high-purity biomass ethanol product that does not contain impurities such as sulfur by a continuous distillation column. Ethanol fermentation using yeast is a well-known technique, and it is also possible to use Zymomonas cells having high anaerobic fermentation activity. In yeast fermentation with excellent stability to glucose and ethanol, any of sake, beer, whiskey, wine, baker's yeast, etc. can be used, and the concentration of ethanol produced to maintain yeast growth and fermentation activity Care must be taken not to exceed 10-15% by weight. When glucose is converted to 100% ethanol, the ethanol weight produced is equivalent to half the weight percent of glucose introduced into the fermenter, so that glucose having a concentration of about 15 weight percent is subjected to ethanol fermentation at around 37 ° C. It is desirable.

前記のグルコースを酵母発酵法によりエタノールに変換する工程において、変換効率を向上させるために発酵槽内で酵母の育成と望ましくは増殖が不可欠であり、栄養となるグルコース以外にカゼインペプトン及びミネラル等が要求される。酵母の育成と増殖は、酵母抽出エキスのみで発酵効率を低下させることなくグルコースのエタノール化に成功しており、カゼインペプトンのみでも幾分発酵効率を低下させるものの利用を可能にすること見出している。発酵により得られたエタノールを蒸留により高濃度にすることにより、前述の硫酸法では生じうる硫黄成分等を含まないバイオマスエタノールを生成物として得られ、ガソリン添加剤燃料等として利用できることになる。  In the step of converting glucose to ethanol by the yeast fermentation method, it is essential to grow and desirably grow yeast in the fermenter in order to improve the conversion efficiency. Casein peptone, minerals, and the like, in addition to nutrient glucose Required. It has been found that the growth and growth of yeast has succeeded in the ethanolation of glucose without reducing the fermentation efficiency only with the yeast extract, and it is possible to use the case of using a casein peptone alone that slightly reduces the fermentation efficiency. . By increasing the ethanol obtained by fermentation to a high concentration by distillation, biomass ethanol that does not contain sulfur components and the like that can be generated by the above-described sulfuric acid method can be obtained as a product and used as a gasoline additive fuel or the like.

前記糖化工程で糖化槽底部から排出する未反応分及び不溶成分は100メッシュの濾布で回収し、発酵工程での発酵槽底部から排出する酵母及び滓は300メッシュの濾布で回収し、両回収物は屋上緑化植生マット等に活用する。これら糖化及び発酵槽からの回収操作によりセルラーゼ酵素あるいは発酵酵母を幾分損失することになるので、必要により補充することが望ましい。  Unreacted components and insoluble components discharged from the bottom of the saccharification tank in the saccharification step are collected with a 100 mesh filter cloth, and yeast and koji discharged from the bottom of the fermentation tank in the fermentation process are collected with a 300 mesh filter cloth. The collected materials will be used for rooftop vegetation mats. These saccharification and recovery operations from the fermenter result in some loss of cellulase enzyme or fermenting yeast, so it is desirable to replenish as necessary.

前記の  Above

~

で述べた糖化工程前処理から発酵工程後処理までを直結したシステムプロセスとしてバイオマス原料から極めて収率良く、外部への環境負荷を低減した状態で、生成したバイオマスエタノールは硫黄成分等の不純物を含まない高純度の特性を維持出来る。As a system process that directly connects from the pretreatment of the saccharification process to the post-treatment of the fermentation process described in, biomass biomass produced contains impurities such as sulfur components in an extremely high yield from biomass raw materials and reduced external environmental impact. High purity characteristics can be maintained.

以下に、本発明の本質を確認することを目的として、本発明に係るバイオマスアルコールの製造工程の各工程を実験室的な簡易型反応装置を用いて行った実験結果によってさらに具体的に説明する。もとより本発明はこれら実施例に限定されるものではない。  Hereinafter, for the purpose of confirming the essence of the present invention, each process of the production process of biomass alcohol according to the present invention will be described more specifically by the results of experiments conducted using a laboratory simple reactor. . Of course, the present invention is not limited to these examples.

実施例1 前処理、糖化、発酵の全行程における古紙セルロース変換の概要
図1に示した前処理、糖化、及び発酵の全行程において、前処理微粉化行程で得た約80%のセルロース成分を含む古紙の30〜150メッシュ(約800〜160ミクロン)の粒径を持つ微粉体のいずれかの0.1kgを15.0重量%として糖化槽に入れ、1.5重量%のセルラーゼ酵素(たとえば、洛東化成工業株式会社製エンチロンCM)を用い、pH5.0(発酵槽から排出する二酸化炭素のバブリングまたは0.1モル/リットル酢酸緩衝液で調製)、50℃で約1日半反応を行った糖化行程で得られる生成グルコース量56gは約6重量%に押さえられており(セルラーゼ酵素活性維持のため)、限外濾過膜装置で酵素は回収しグルコースは糖化槽からグルコース濃縮器へ導入する。グルコース濃縮器において、グルコース濃度をエタノール発酵で酵母が阻害を受けない15重量%(56g量)まで濃縮してエタノール発酵槽へ送る。溶液全量1.5リットルとする発酵槽内において、エタノール耐性が高い「サッカロミセスセルビシエ(Saccharomyces cerevisiae)」(酵母の一種)のパン酵母1gを用い、グルコース10重量%と酵母エキス10重量%のみの系で発酵(30℃)した場合、約16時間でエタノール濃度が4.5重量%(変換率89%)になることに留意して、12重量%以下で発酵槽外に敷設した蒸留塔に送り、80.0%エタノールにして貯蔵する。80.0%エタノールは、さらに精密蒸留により99.5%バイオマスエタノールとして製品化される。これらの詳細については、以下の実施例に呈示した。
Example 1 Outline of Waste Paper Cellulose Conversion in All Processes of Pretreatment, Saccharification, and Fermentation In the entire process of pretreatment, saccharification, and fermentation shown in FIG. Containing 0.1 kg of a fine powder having a particle size of 30 to 150 mesh (about 800 to 160 microns) containing 15.0 wt% in a saccharification tank and adding 1.5 wt% cellulase enzyme (for example, , Enchiron CM manufactured by Toto Kasei Kogyo Co., Ltd.), pH 5.0 (prepared with bubbling of carbon dioxide discharged from the fermenter or 0.1 mol / liter acetate buffer), and reaction at 50 ° C. for about a day and a half The amount of produced glucose 56g obtained in the saccharification process performed is suppressed to about 6% by weight (in order to maintain cellulase enzyme activity), the enzyme is recovered by the ultrafiltration membrane device, and glucose is collected from the saccharification tank. It is introduced into the glucose concentrator. In the glucose concentrator, the glucose concentration is concentrated to 15% by weight (56 g amount) at which the yeast is not inhibited by ethanol fermentation and sent to the ethanol fermenter. In a fermenter with a total solution volume of 1.5 liters, 1 g of baker's yeast of “Saccharomyces cerevisiae” (a type of yeast) with high ethanol tolerance is used, and only 10% by weight of glucose and 10% by weight of yeast extract are used. Note that when fermented in the system (30 ° C), the ethanol concentration will be 4.5 wt% (conversion rate 89%) in about 16 hours. Feed and store in 80.0% ethanol. 80.0% ethanol is further commercialized as 99.5% biomass ethanol by precision distillation. These details are presented in the examples below.

実施例2 古紙の微粉化形状と吸水効果(前処理微粉化装置)
図2に示した前処理工程微粉化装置におけるスクリューフィーダーとカッターで古紙を微粉化粉砕する際、一方向に裁断されたものは毛羽立った繊維状の綿状になり吸水性が極めて高く、10重量%以上の水溶液濃度にすると流動性を消失して糖化槽内での糖化反応を困難にする。一方、多方向に裁断されて微粉化されたものは微粉体となる。例えば、30〜150メッシュ(約800〜160ミクロン)の粒径を持つ微粉体は、それらの粒径によらずほぼ同じ吸水性を示し、40重量%でも流動性を呈示して糖化反応に適した状態を取ることが判明した。したがって、前処理工程微粉化装置における原料の微粉化において、セルラーゼ酵素と反応性に富むと期待される毛羽立ち度の高い繊維状の形状への微粉化は避けることが肝要である(実施例3を参照)。
Example 2 Finely pulverized shape and water absorption effect of a used paper (pretreatment pulverization device)
When the used paper is pulverized and pulverized with a screw feeder and a cutter in the pretreatment process pulverizing apparatus shown in FIG. 2, the paper cut in one direction becomes a fluffy fibrous cotton and has extremely high water absorption. When the aqueous solution concentration is at least%, the fluidity is lost and the saccharification reaction in the saccharification tank becomes difficult. On the other hand, what is cut in multiple directions and pulverized becomes a fine powder. For example, a fine powder having a particle size of 30 to 150 mesh (about 800 to 160 microns) exhibits almost the same water absorption regardless of the particle size and exhibits fluidity even at 40% by weight and is suitable for a saccharification reaction. It turned out to take a state. Therefore, in the pulverization of the raw material in the pretreatment process pulverization apparatus, it is important to avoid pulverization into a fibrous shape having a high fuzziness expected to be highly reactive with the cellulase enzyme (Example 3). reference).

実施例3 糖化行程における古紙微粉体の粒径と形状の効果(前処理と糖化槽反応)
図3に示した糖化槽において、工業用水に入れて調整した濃度2.5、10、20及び30重量%の30、60、100及び150メッシュ(それぞれ、約800、400、250及び160ミクロン)の古紙微粉体をセルラーゼ酵素エンチロンCM(洛東化成工業株式会社製)0.1重量%によりpH5.0(0.1モル/リットル酢酸緩衝液または二酸化炭素バブリングで調製)、50℃で糖化反応を3、8、12及び26時間行った結果、生成グルコース濃度は古紙微粉体濃度10重量%、糖化時間3〜5時間まで比例して増大し、更なる微粉濃度と糖化時間の増加により次第に飽和していくが、古紙の粒径が小さいものが幾分良い結果を示すものの、粒径の異なりよる顕著な差は見られなかった。すなわち、
Example 3 Effect of Particle Size and Shape of Used Paper Fine Powder in Saccharification Process (Pretreatment and Saccharification Tank Reaction)
In the saccharification tank shown in FIG. 3, 30, 60, 100 and 150 meshes of concentrations of 2.5, 10, 20 and 30% by weight adjusted in industrial water (about 800, 400, 250 and 160 microns, respectively) Saccharification reaction at 50 ° C. with 0.1% by weight of cellulase enzyme Entilon CM (manufactured by Nitto Kasei Kogyo Co., Ltd.), pH 5.0 (prepared by 0.1 mol / liter acetate buffer or carbon dioxide bubbling) As a result of performing 3, 8, 12 and 26 hours, the concentration of produced glucose increased in proportion to 10% by weight of waste paper fine powder and saccharification time of 3 to 5 hours, and gradually became saturated with further increase of fine powder concentration and saccharification time. However, although a small paper size of the used paper shows somewhat good results, no significant difference due to the difference in particle size was found. That is,

で記載した望ましいセルラーゼ酵素濃度の1〜5重量%を糖化工程で使用する限り、低活性なセルラーゼ酵素の使用を除き、微粉体の粒径が1〜2ミリメータ以下であれば粒径サイズによる著しい差はないものの、糖化槽内でのセルラーゼ酵素との接触頻度や拡散を考慮すると800ミクロン(約30メッシュ)以下が望ましいといえる。一方、古紙微粉化原料の形状の差異は糖化効率に著しく影響する。前記実施例で記載した通り、古紙を繊維化して毛羽立たせ綿状にした試料は極めて吸水性に富み、水溶液中で10重量%以上の濃度にすると流動性を消失して糖化反応はかなり困難となる。この繊維化試料を凍結乾燥した後に水を加えて10あるいは20重量%にしたものと粒径250ミクロンの古紙微粉体10あるいは20重量%を上記と同一の条件下(0.1重量%酵素、pH5.0、50℃)で24時間糖化すると、微粉体の方が1.5倍程度グルコース化され易く、他の試料濃度あるいは酵素濃度においても微粉体の方が同程度にグルコース生成量を多くする。
また、上記と同一の条件下(0.1重量%酵素、pH5.0、50℃)で2重量%の古紙微粉体(粒径250ミクロン)及び繊維状形状の古紙と段ボールを24時間糖化すると、糖化率はそれぞれ43%及び30%と27%となり、繊維状形状に比べて微粉体形状の方が糖化され易いことが示された。更に、上記古紙微粉体(粒径250ミクロン)に含まれる10%前後のリグニンを30%過酸化水素水と1%タングステン酸ソーダの利用した90℃の脱リグニン反応で除去し、十分水洗した後に上記と同一の条件下(0.1重量%酵素、pH5.0、50℃)で24時間糖化すると、上述の43%の糖化率が48%に向上したが、顕著な変化ではなかった。したがって、糖化工程における古紙あるいは段ボール等の形状は繊維化して毛羽立たせ綿状にしたものでなく、微粉体であることが推奨され、更なる脱リグニン処理は不要として差し支えない。
As long as 1 to 5% by weight of the desired cellulase enzyme concentration described in (1) is used in the saccharification step, the particle size of the fine powder is remarkable depending on the particle size unless the particle size of the fine powder is 1 to 2 millimeters, except for the use of low-activity cellulase enzyme Although there is no difference, it can be said that 800 microns or less (about 30 mesh) or less is desirable in consideration of the contact frequency and diffusion with the cellulase enzyme in the saccharification tank. On the other hand, the difference in the shape of the waste paper pulverizing raw material significantly affects the saccharification efficiency. As described in the previous examples, the sample made of fluffed and fluffed waste paper is extremely rich in water absorption, and when the concentration is 10% by weight or more in an aqueous solution, the fluidity is lost and the saccharification reaction is quite difficult. Become. This fiberized sample was freeze-dried and then added with water to make 10 or 20% by weight and 10 or 20% by weight of waste paper fine powder with a particle size of 250 microns under the same conditions (0.1% by weight enzyme, When saccharified for 24 hours at pH 5.0 and 50 ° C., the fine powder is about 1.5 times more likely to be glycated, and the fine powder produces the same amount of glucose at other sample concentrations or enzyme concentrations. To do.
In addition, when saccharifying 24% of waste paper fine powder (particle size 250 microns), fibrous waste paper and corrugated cardboard for 24 hours under the same conditions as above (0.1% enzyme, pH 5.0, 50 ° C.) The saccharification rates were 43%, 30% and 27%, respectively, indicating that the fine powder form is more easily saccharified than the fibrous form. Furthermore, after removing about 10% lignin contained in the above-mentioned waste paper fine powder (particle size 250 microns) by a delignification reaction at 90 ° C. using 30% hydrogen peroxide and 1% sodium tungstate, and thoroughly washing with water When saccharification was performed for 24 hours under the same conditions as described above (0.1 wt% enzyme, pH 5.0, 50 ° C.), the saccharification rate of 43% was improved to 48%, but this was not a significant change. Accordingly, it is recommended that the used paper or cardboard in the saccharification process is not finely fibered and fluffed, but is a fine powder, and further delignification treatment may be unnecessary.

実施例4 糖化工程における物質収支
糖化工程において、図3に示した糖化槽内に0.1kgの古紙微粉体(セルロース約80g、リグニン約10g、インク分等の非反応物質約10g)とセルラーゼ酵素エンチロンCM(洛東化成工業株式会社製)7.5gを392ミリリットルの工業用水入れ、二酸化炭素ブロアーによりpH5.0に調製した糖化反応溶液を限外濾過膜装置の非稼働状態で約1日半、50℃で糖化すると、糖化槽内はおおよそ6.0重量%のグルコース、10.0重量%の未反応セルロース、5.0重量%のリグニン等の固形物、1.5重量%の酵素及び75重量%の水分組成を持ち、ほぼ物質収支を満足することが判明した。この状態では、44gの未反応セルロースを糖化槽内に残していることになり、限外濾過膜装置を稼働して約55g(6.0重量%)のグルコース水溶液を糖化槽外に放出することが出来る。
Example 4 In the material balance saccharification step in the saccharification step, 0.1 kg of waste paper fine powder (about 80 g of cellulose, about 10 g of lignin, about 10 g of non-reacting substances such as ink) and cellulase enzyme in the saccharification tank shown in FIG. Enchilon CM (manufactured by Nitto Kasei Kogyo Co., Ltd.) 7.5 g of 392 ml of industrial water is added to a saccharification reaction solution adjusted to pH 5.0 with a carbon dioxide blower for about one and a half days with the ultrafiltration membrane device not operating. When saccharified at 50 ° C., the saccharification tank is approximately 6.0% by weight glucose, 10.0% by weight unreacted cellulose, 5.0% by weight solids such as lignin, 1.5% by weight enzyme and It was found to have a moisture composition of 75% by weight and almost satisfy the mass balance. In this state, 44 g of unreacted cellulose is left in the saccharification tank, and the ultrafiltration membrane device is operated to release about 55 g (6.0 wt%) of the aqueous glucose solution outside the saccharification tank. I can do it.

実施例5 糖化工程における二酸化炭素利用(糖化槽反応)
図3に示した糖化槽において、水素イオン濃度調整をpH5.0の0.1モル/リットル酢酸緩衝液(ケース1)、pH5.5の二酸化炭素溶存液(ケース2)、又はpH6.5の水道水(ケース3)で行い、2.0重量%の古紙微粉体(粒径250ミクロン)を0.1重量%のセルラーゼ酵素エンチロンCM(洛東化成工業株式会社製)あるいはセルラーゼXP−425(長瀬産業株式会社製)を用い50℃で24時間糖化したところ、エンチロンCMの場合の糖化率は57.7%(ケース1)、53.8%(ケース2)及び43.8%(ケース3)となり、セルラーゼXP−425の場合の糖化率は34.6%(ケース1)、28.5%(ケース2)及び16.2%(ケース3)となった。この際、pH5.5の二酸化炭素溶存液は二酸化炭素を連続してバブリングしていないので、50℃での糖化反応では溶存している二酸化炭素が次第に放出されるため、pHは水道水のpH6.5になっていくことを考慮しても、pH5.0の酢酸緩衝液(ケース1)の糖化率に比べて、二酸化炭素を利用した場合の糖化率は極端に劣っていないことがわかる。すなわち、糖化槽内に連続して二酸化炭素をバブリングした二酸化炭素溶液にすればpH5.0を保持でき(飽和二酸化炭素水はpH5.0以下)、糖化工程におけるセルラーゼ酵素の活性及び安定性の維持に使用する酢酸緩衝液に替わり二酸化炭素利用が可能であるといえる。
Example 5 Utilization of carbon dioxide in saccharification process (saccharification tank reaction)
In the saccharification tank shown in FIG. 3, the hydrogen ion concentration is adjusted to 0.1 mol / liter acetate buffer (case 1) at pH 5.0, carbon dioxide-dissolved solution at pH 5.5 (case 2), or pH 6.5. It is carried out with tap water (case 3), and 2.0% by weight of used paper fine powder (particle size: 250 microns) is added to 0.1% by weight of cellulase enzyme enchilon CM (manufactured by Tohto Kasei Kogyo Co., Ltd.) or cellulase XP-425 ( When saccharification was performed at 50 ° C. for 24 hours using Nagase Sangyo Co., Ltd., the saccharification rates in the case of enchilon CM were 57.7% (case 1), 53.8% (case 2), and 43.8% (case 3). In the case of cellulase XP-425, the saccharification rates were 34.6% (Case 1), 28.5% (Case 2), and 16.2% (Case 3). At this time, since the carbon dioxide-dissolved solution having a pH of 5.5 does not continuously bubble carbon dioxide, the dissolved carbon dioxide is gradually released in the saccharification reaction at 50 ° C., so that the pH is pH 6 of tap water. It can be seen that the saccharification rate when carbon dioxide is used is not extremely inferior to the saccharification rate of pH 5.0 acetate buffer (Case 1) even when considering that it becomes 0.5. That is, if the carbon dioxide solution is obtained by continuously bubbling carbon dioxide in the saccharification tank, pH 5.0 can be maintained (saturated carbon dioxide water is pH 5.0 or less), and the activity and stability of the cellulase enzyme in the saccharification process can be maintained. It can be said that carbon dioxide can be used instead of the acetate buffer used in the process.

実施例6 糖化工程に付属する限外濾過膜の効果(限外濾過膜装置)
図3で示される糖化工程において、0.1重量%のセルラーゼ酵素エンチロンCM(洛東化成工業株式会社製)による2重量%の250ミクロンサイズ古紙微粉体の糖化反応(pH5.5、50℃)より生成したグルコースの糖化槽からの分離排出は、付属する限外濾過膜器の濾過膜分画分子量が5,000、10,000、30,000、あるいは50,000のいずれを用いても成功するが、セルラーゼ酵素の回収は分画5,000で目詰まりを生じ、分画50,000では酵素の素通りが多く、分画10,000〜30,000が適していることが判明した。すなわち、1気圧加圧下で15分〜1時間の限外濾過でのセルラーゼ酵素の回収率は82%以上(分画10,000)及び58%以上(分画30,000)、4気圧加圧下で70%以上(分画10,000)、0.2気圧加圧下において87%以上(分画30,000)となり、限外濾過膜器にかける圧力も酵素回収に大きく影響した。さらに、回収したセルラーゼ酵素の活性は、上記の糖化反応における酵素1ミリグラム当たりのグルコース生成量が1.10ミリグラム(新鮮なセルラーゼ酵素)〜1.20ミリグラム(分画10,000、4.2気圧下70%以上で回収したセルラーゼ酵素)と誤差範囲内で一致し、回収酵素の活性低下は全く見られなかった。したがって、糖化工程に付属する限外濾過膜装置の利用は、グルコースの糖化槽外への連続的排出によるセルラーゼ酵素のグルコース阻害の回避、糖化槽内へ返される回収酵素の長期間の活性発揮とグルコースの連続的生成をもたらし、極めて有用であることが明確となった。
Example 6 Effect of ultrafiltration membrane attached to saccharification process (ultrafiltration membrane device)
In the saccharification step shown in FIG. 3, a saccharification reaction (pH 5.5, 50 ° C.) of 2% by weight of 250 micron size waste paper fine powder by 0.1% by weight of cellulase enzyme Entilon CM (manufactured by Nitto Kasei Kogyo Co., Ltd.) Separation and discharge of the glucose produced from the saccharification tank succeeds regardless of whether the attached membrane membrane has a molecular weight of 5,000, 10,000, 30,000, or 50,000. However, it was found that the cellulase enzyme was clogged in the fraction 5,000, and the fraction 50,000 had a lot of enzyme flow, and the fraction 10,000 to 30,000 was suitable. That is, the recovery rates of cellulase enzyme by ultrafiltration for 15 minutes to 1 hour under 1 atm pressure are 82% or more (fraction 10,000) and 58% or more (fraction 30,000) under 4 atm pressure. 70% or more (fraction 10,000) and 87% or more (fraction 30,000) under a pressure of 0.2 atm, and the pressure applied to the ultrafiltration membrane apparatus greatly affected the enzyme recovery. Furthermore, the activity of the recovered cellulase enzyme is such that the amount of glucose produced per milligram of enzyme in the saccharification reaction is 1.10 milligrams (fresh cellulase enzyme) to 1.20 milligrams (fraction 10,000, 4.2 atmospheres). The cellulase enzyme recovered below 70% or less) was within the error range, and the activity of the recovered enzyme was not reduced at all. Therefore, the use of the ultrafiltration membrane device attached to the saccharification process is to avoid the inhibition of glucose of cellulase enzyme by continuous discharge of glucose outside the saccharification tank, and to demonstrate the long-term activity of the recovered enzyme returned to the saccharification tank. It has been shown to be very useful, resulting in continuous production of glucose.

実施例7 グルコースの簡易エタノール発酵(エタノール発酵槽)
図4で示した発酵する工程が30℃あるいは37℃に保たれた発酵槽内で「サッカロミセス セルビシエ(Saccharomyces cerevisiae)」(酵母の一種)のパン用、清酒用JCM1817及びJCM2214、ビール用JCM5710、ウイスキー等の蒸留酒用酵母JCM2215等を育成した結果、それらの増殖速度はいずれの場合もほとんど変わらなかったので、発酵槽内に1gのパン酵母が入った全量1.5リットルとなる状態で、10重量%のグルコースのエタノール発酵を、グルコースと10重量%酵母エキスと5重量%カゼインペプトンの系、グルコースと10重量%酵母エキスの系、グルコースと5重量%カゼインペプトンの系、及びグルコースのみの系で行ったところ、30℃、20時間後のエタノールへの変換率はそれぞれ100、83、65、及び2%となり、酵母エキスのみ使用によるグルコースの簡易型エタノール発酵が可能と判断された。ちなみに、上記反応での10重量%グルコースと10重量%酵母エキスと5重量%カゼインペプトンの系及び10重量%グルコースと10重量%酵母エキスの系での16時間後のエタノールへの変換率は共に約80%であった。また、上記の30℃での発酵を37℃に上げると、いずれの酵母においても発酵効率は如実に向上した。例えばパン酵母、JCM1817、及びJCM2215の場合、10時間の発酵でアルコールへのそれぞれの変換率(30℃)である50、61、及び86%が37℃でそれぞれ100、91、及び100%となり、37℃の適応がより良いことがわかる。
Example 7 Simple ethanol fermentation of glucose (ethanol fermenter)
In a fermenter in which the fermentation process shown in FIG. 4 is maintained at 30 ° C. or 37 ° C., “Saccharomyces cerevisiae” (a type of yeast) for bread, sake JCM1817 and JCM2214, beer JCM5710, whiskey As a result of growing YCM for distilled liquor JCM2215, etc., the growth rate was almost the same in either case, so that in a state where the total amount is 1.5 liters containing 1 g of baker's yeast in the fermenter, 10 Ethanol fermentation of glucose by weight, glucose and 10 wt% yeast extract and 5 wt% casein peptone system, glucose and 10 wt% yeast extract system, glucose and 5 wt% casein peptone system, and glucose only system At 30 ° C. for 20 hours Each conversion rate to Le 100,83,65, and becomes 2%, it is determined that the possible simplified ethanol fermentation of glucose by using only the yeast extract. By the way, the conversion rate to ethanol after 16 hours in the system of 10% by weight glucose, 10% by weight yeast extract and 5% by weight casein peptone in the above reaction and the system of 10% by weight glucose and 10% by weight yeast extract are both. About 80%. In addition, when the fermentation at 30 ° C. was raised to 37 ° C., the fermentation efficiency was improved in any yeast. For example, in the case of baker's yeast, JCM1817, and JCM2215, 50, 61, and 86%, which are conversion rates to alcohol (30 ° C) in 10 hours of fermentation, become 100, 91, and 100% at 37 ° C, respectively. It can be seen that the 37 ° C adaptation is better.

古紙、段ボール等のセルロース系原料からバイオマスエタノールを製造する全工程All processes for producing biomass ethanol from cellulosic materials such as waste paper and cardboard 古紙、段ボール等のセルロース系原料を前処理微粉化する工程Process for pre-treating cellulosic materials such as waste paper and cardboard 前処理微粉体をセルラーゼ酵素によりグルコース化する糖化工程Saccharification process in which pretreated fine powder is glucosylated with cellulase enzyme 得られたグルコースを発酵法によりエタノール化する工程Step of ethanolizing the obtained glucose by fermentation

符号の説明Explanation of symbols

1 前処理工程微粉化装置
2 原料ホッパー
3 スクリューフィーダー
4 多方向カッター
5 糖化工程糖化反応槽
6 糖化槽
7 予備攪拌機
8 二酸化炭素ブロアー
9 残渣フィルター
10 限外濾過用ポンプ
11 限外濾過膜装置
12 グルコース濃縮槽
13 濃縮加熱管
14 発酵槽
15 発酵槽攪拌機
16 蒸留ポンプ
17 蒸留塔
18 蒸留塔コンデンサー
19 エタノール貯蔵タンク
DESCRIPTION OF SYMBOLS 1 Pretreatment process pulverization apparatus 2 Raw material hopper 3 Screw feeder 4 Multidirectional cutter 5 Saccharification process Saccharification reaction tank 6 Saccharification tank 7 Pre-stirrer 8 Carbon dioxide blower 9 Residual filter 10 Ultrafiltration pump 11 Ultrafiltration membrane apparatus 12 Glucose Concentration tank 13 Concentration heating tube 14 Fermenter 15 Fermenter agitator 16 Distillation pump 17 Distillation tower 18 Distillation tower condenser 19 Ethanol storage tank

Claims (10)

原料物質である古紙、段ボール等のセルロース系材料を糖化するための微粉化する前処理工程と糖化する工程と発酵する工程により得られるバイオマスエタノール生成物Biomass ethanol product obtained by pulverizing pretreatment process, saccharification process and fermentation process for saccharifying cellulosic materials such as used paper and corrugated cardboard 原料物質である古紙、段ボール等のセルロース系材料を糖化するための微粉化する前処理工程と糖化する工程と発酵する工程により得られるバイオマスエタノール生成物の製造方法Production method of biomass ethanol product obtained by pulverizing pretreatment process for saccharifying cellulosic materials such as waste paper and corrugated cardboard as raw materials, saccharifying process and fermenting process 前処理工程における古紙、段ボール等のセルロース系材料の微粉化において、微粉化された原材料の粒径および形状を規格化する方法により、糖化工程におけるセルロースからグルコースの生成ひいてはエタノール発酵におけるグルコースからバイオマスエタノールの生成を効率良く促進する方法である請求項1および2In the pulverization of cellulosic materials such as waste paper and corrugated cardboard in the pretreatment process, the method of standardizing the particle size and shape of the pulverized raw material enables the production of glucose from cellulose in the saccharification process, and the glucose to biomass ethanol in ethanol fermentation. A method for efficiently promoting the production of 糖化する工程が微粉化された古紙、段ボール等のセルロース系材料の適切な濃度(80重量%以下)の微粉体と適切な濃度(0.1〜20重量%)のセルラーゼ酵素を水素イオン濃度pH5.0前後及び温度50℃前後に保たれた糖化槽内で反応させることにより、セルロース系材料からエタノール発酵原料のグルコースを効率良く得る方法である請求項1および2A fine powder of an appropriate concentration (80% by weight or less) of a cellulosic material such as waste paper or corrugated cardboard in which saccharification is pulverized and a cellulase enzyme of an appropriate concentration (0.1 to 20% by weight) are mixed with a hydrogen ion pH of 5 A method for efficiently obtaining glucose as an ethanol fermentation raw material from a cellulosic material by reacting in a saccharification tank maintained at around 0.0 and at a temperature of around 50 ° C. 発酵する工程が37℃前後に保たれた発酵槽内でエタノール耐性が高い「サッカロミセスセルビシエ(Saccharomyces cerevisiae)」(酵母の一種)のパン用、清酒用、ビール用等の酵母のいずれかを用いてグルコースをエタノールに変換する際に、酵母の育成と増殖をグルコースと酵母エキスのみの系、グルコースとカゼインペプトンのみの系、グルコースと酵母エキスとカゼインペプトンの系、あるいはそれらの系に無機塩等を加えた混合系のいずれかで行い、グルコース濃度が25重量%以下で発酵槽内に導入し、エタノール濃度が12重量%以下で発酵槽外に排出することによりエタノール発酵を促進する方法である請求項1および2Use either yeast for Saccharomyces cerevisiae (a kind of yeast) for bread, sake or beer in a fermenter where the fermentation process is maintained at around 37 ° C. When converting glucose to ethanol, the growth and growth of yeast can be achieved by using only glucose and yeast extract, only glucose and casein peptone, glucose and yeast extract and casein peptone, or inorganic salts in those systems. In which the glucose concentration is 25% by weight or less and introduced into the fermenter, and the ethanol concentration is 12% by weight or less and discharged outside the fermenter to promote ethanol fermentation. Claims 1 and 2 前処理の工程における古紙、段ボール等のセルロース系材料の微粉化は、吸水性に富む一定方向に裁断して微粉化した繊維状すなわち綿状の毛羽立ち度が高いものでなく、多方向に裁断して微粉化することにより重量当たりの吸水量が高くならない(40重量%前後でも流動性ある)微粉体で、粒径が1〜2ミリメータ以下、望ましくは800ミクロン以下に規格化できる微粉化法である請求項3Cellulose materials such as waste paper and corrugated cardboard in the pretreatment process are not pulverized in a certain direction rich in water absorption, and are not pulverized, i.e., the fluffiness of cotton fluff is high and is cut in multiple directions. By fine powdering, the water absorption per weight does not increase (it is fluid even at around 40% by weight), and the particle size can be standardized to 1 to 2 millimeters or less, preferably 800 microns or less. A certain claim 3 糖化する工程がセルラーゼ酵素の活性と安定性を保持するために要求する水素イオン濃度pH5.0前後を設定するために、糖化反応液へ二酸化炭素をバブリングして処理するかあるいは酢酸緩衝液の利用にて処理する方法である請求項4Process the saccharification reaction solution by bubbling carbon dioxide into the saccharification reaction solution or use an acetate buffer to set the hydrogen ion concentration around 5.0 which is required for the saccharification process to maintain the activity and stability of the cellulase enzyme. 5. The method of processing by 糖化する工程が糖化生成物であるグルコースとセルラーゼ酵素を分離する限外濾過膜装置を付属させることによりセルラーゼ酵素を阻害する糖化生成物グルコースを糖化槽から発酵槽に排出してセルラーゼ酵素の活性を維持することにより糖化効率を向上させる方法である請求項4By attaching an ultrafiltration membrane device that separates the saccharification product glucose and the cellulase enzyme in the saccharification process, the saccharification product glucose that inhibits the cellulase enzyme is discharged from the saccharification tank to the fermenter to increase the activity of the cellulase enzyme. 5. A method for improving saccharification efficiency by maintaining the saccharification efficiency. 前処理工程で古紙、段ボール等に含まれるリグニンを過酸化水素とタングステン(あるいはモリブデン)酸ソーダにより除去し粒径及び形状を規格化して得られた微粉体を用いることにより、セルラーゼ酵素による糖化反応を促進させる方法である請求項6Saccharification reaction by cellulase enzyme by using the fine powder obtained by removing the lignin contained in waste paper, corrugated cardboard, etc. with hydrogen peroxide and tungsten (or molybdenum) acid soda and standardizing the particle size and shape in the pretreatment process 7. A method for promoting 限外濾過膜の分画分子暈が5,000〜50,000、望ましくは10,000〜30,000である限外濾過膜装置を用いる方法である請求項89. The method of using an ultrafiltration membrane device wherein the molecular weight of the ultrafiltration membrane is from 5,000 to 50,000, preferably from 10,000 to 30,000.
JP2004307400A 2004-09-24 2004-09-24 Biomass ethanol product and manufacturing method for biomass ethanol product Pending JP2006088136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307400A JP2006088136A (en) 2004-09-24 2004-09-24 Biomass ethanol product and manufacturing method for biomass ethanol product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307400A JP2006088136A (en) 2004-09-24 2004-09-24 Biomass ethanol product and manufacturing method for biomass ethanol product

Publications (1)

Publication Number Publication Date
JP2006088136A true JP2006088136A (en) 2006-04-06

Family

ID=36229611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307400A Pending JP2006088136A (en) 2004-09-24 2004-09-24 Biomass ethanol product and manufacturing method for biomass ethanol product

Country Status (1)

Country Link
JP (1) JP2006088136A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230983A (en) * 2007-03-16 2008-10-02 National Institute Of Advanced Industrial & Technology Method for producing sugar, method for producing ethanol, and method for producing lactic acid
JP2009178064A (en) * 2008-01-29 2009-08-13 National Research Inst Of Brewing Method for producing ethanol
JP2009240167A (en) * 2008-03-28 2009-10-22 Honda Motor Co Ltd Method for producing ethanol
WO2010013696A1 (en) 2008-07-28 2010-02-04 国立大学法人京都大学 Microwave irradiation device, linked microwave irradiation device, and method of manufacturing glycocomponent from plant material
JP2010036058A (en) * 2008-07-31 2010-02-18 Oji Paper Co Ltd Saccharification system, method of manufacturing saccharified liquid, fermentation system, and method of manufacturing fermented liquid
WO2010134455A1 (en) * 2009-05-22 2010-11-25 独立行政法人農業・食品産業技術総合研究機構 Method for converting lignocellulose-based biomass
JP2011173755A (en) * 2010-02-24 2011-09-08 Kinki Univ Cement admixture, cement composition, and hardened mortar material
WO2011142290A1 (en) * 2010-05-12 2011-11-17 本田技研工業株式会社 Method for processing lignocellulose-based biomass
WO2011162009A1 (en) 2010-06-24 2011-12-29 東レ株式会社 Process for production of aqueous refined sugar solution
US8167144B2 (en) 2008-07-14 2012-05-01 Honda Motor Co., Ltd. Water separation membrane
US8211678B2 (en) 2008-07-14 2012-07-03 Honda Motor Co., Ltd. Ethanol preparation method
US8303810B2 (en) 2009-04-03 2012-11-06 Honda Motor Co., Ltd. Ethanol water solution concentrating device
US8419941B2 (en) 2009-04-03 2013-04-16 Honda Motor Co., Ltd. Ethanol water solution concentrating method
CN103421863A (en) * 2013-07-24 2013-12-04 河北工业大学 Pre-processing method for improving enzymolysis saccharifying effect of biomass
JP2016013550A (en) * 2009-02-11 2016-01-28 キシレコ インコーポレイテッド Processing method of biomass
CN106975360A (en) * 2017-04-19 2017-07-25 中南大学 A kind of method that many sodium molybdate solutions are prepared based on bipolar membrane electrodialysis
CN107020018A (en) * 2017-04-19 2017-08-08 中南大学 A kind of method that many ammonium molybdate solutions are prepared based on bipolar membrane electrodialysis
WO2022023686A1 (en) 2020-07-31 2022-02-03 Suez Groupe Method for producing a sugar syrup from a residual lignocellulosic biomass

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230983A (en) * 2007-03-16 2008-10-02 National Institute Of Advanced Industrial & Technology Method for producing sugar, method for producing ethanol, and method for producing lactic acid
JP2009178064A (en) * 2008-01-29 2009-08-13 National Research Inst Of Brewing Method for producing ethanol
JP2009240167A (en) * 2008-03-28 2009-10-22 Honda Motor Co Ltd Method for producing ethanol
US8167144B2 (en) 2008-07-14 2012-05-01 Honda Motor Co., Ltd. Water separation membrane
US8211678B2 (en) 2008-07-14 2012-07-03 Honda Motor Co., Ltd. Ethanol preparation method
WO2010013696A1 (en) 2008-07-28 2010-02-04 国立大学法人京都大学 Microwave irradiation device, linked microwave irradiation device, and method of manufacturing glycocomponent from plant material
JP2010036058A (en) * 2008-07-31 2010-02-18 Oji Paper Co Ltd Saccharification system, method of manufacturing saccharified liquid, fermentation system, and method of manufacturing fermented liquid
JP2016013550A (en) * 2009-02-11 2016-01-28 キシレコ インコーポレイテッド Processing method of biomass
US8303810B2 (en) 2009-04-03 2012-11-06 Honda Motor Co., Ltd. Ethanol water solution concentrating device
US8419941B2 (en) 2009-04-03 2013-04-16 Honda Motor Co., Ltd. Ethanol water solution concentrating method
JP2011004730A (en) * 2009-05-22 2011-01-13 National Agriculture & Food Research Organization Method for converting lignocellulosic biomass
WO2010134455A1 (en) * 2009-05-22 2010-11-25 独立行政法人農業・食品産業技術総合研究機構 Method for converting lignocellulose-based biomass
JP2011173755A (en) * 2010-02-24 2011-09-08 Kinki Univ Cement admixture, cement composition, and hardened mortar material
WO2011142290A1 (en) * 2010-05-12 2011-11-17 本田技研工業株式会社 Method for processing lignocellulose-based biomass
WO2011162009A1 (en) 2010-06-24 2011-12-29 東レ株式会社 Process for production of aqueous refined sugar solution
CN103421863A (en) * 2013-07-24 2013-12-04 河北工业大学 Pre-processing method for improving enzymolysis saccharifying effect of biomass
CN106975360A (en) * 2017-04-19 2017-07-25 中南大学 A kind of method that many sodium molybdate solutions are prepared based on bipolar membrane electrodialysis
CN107020018A (en) * 2017-04-19 2017-08-08 中南大学 A kind of method that many ammonium molybdate solutions are prepared based on bipolar membrane electrodialysis
WO2022023686A1 (en) 2020-07-31 2022-02-03 Suez Groupe Method for producing a sugar syrup from a residual lignocellulosic biomass
FR3113068A1 (en) 2020-07-31 2022-02-04 Suez Groupe METHOD FOR THE PRODUCTION OF A SUGAR SYRUP FROM RESIDUAL LIGNOCELLULOSIC BIOMASS

Similar Documents

Publication Publication Date Title
JP2006088136A (en) Biomass ethanol product and manufacturing method for biomass ethanol product
Zheng et al. A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments
CN103189521B (en) The method of the enzymatic saccharification treatment process of the biomass of lignocellulose-containing and the biomass manufacture ethanol by lignocellulose-containing
Reginatto et al. Fermentative hydrogen production from agroindustrial lignocellulosic substrates
Doran et al. Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway
JP4038577B2 (en) Alcohol production system and alcohol production method
JP2006149343A (en) Glucose product from wood-based biomass and method for producing glucose product
EP2185715A1 (en) Cellulase enzyme based method for the production of alcohol and glucose from pretreated lignocellulosic feedstock
JP2008104452A (en) Alcohol production system and alcohol production method
Fan et al. Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading
CN101638673B (en) Method for manufacturing alcohol by utilizing fermentation of plant straws
CN101497894B (en) Method for preparing ethanol from wood fiber raw material
CN105579586A (en) Production of ethanol and recycle water in a cellulosic fermentation process
CN101613722B (en) Alcohol and succinic acid production method by fermenting cellulosic raw material
JP2012017462A (en) Method of manufacturing soil conditioner
CN102827898B (en) Method for vacuum-assisted hydrothermal pretreatment of biomass
US9611492B2 (en) Use of vinasse in the process of saccharification of lignocellulosic biomass
US10920247B2 (en) Methods and systems for propagation of a microorganism using a pulp mill and/or a paper mill waste by-product, and related methods and systems
CN101497897B (en) Method for preparing ethanol from wood fiber raw material
CN101497896B (en) Method for preparing ethanol from wood fiber raw material
Jiang et al. Advances in dark fermentation hydrogen production technologies
CN101445796A (en) Method for manufacturing liquid xylanase through fermentation
CN102643868B (en) Method for preparing butanol
Sharma et al. Pretreatment impact on biomethanation of Lignocellulosic waste
WO2023136104A1 (en) Methane generation system and methane generation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210