JP2011173755A - Cement admixture, cement composition, and hardened mortar material - Google Patents

Cement admixture, cement composition, and hardened mortar material Download PDF

Info

Publication number
JP2011173755A
JP2011173755A JP2010039015A JP2010039015A JP2011173755A JP 2011173755 A JP2011173755 A JP 2011173755A JP 2010039015 A JP2010039015 A JP 2010039015A JP 2010039015 A JP2010039015 A JP 2010039015A JP 2011173755 A JP2011173755 A JP 2011173755A
Authority
JP
Japan
Prior art keywords
residue
mortar
saccharification
curing
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010039015A
Other languages
Japanese (ja)
Inventor
Masato Nomura
正人 野村
Takeshi Morimura
毅 森村
Hiroo Suzuki
大生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUON KK
Kinki University
Original Assignee
JUON KK
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUON KK, Kinki University filed Critical JUON KK
Priority to JP2010039015A priority Critical patent/JP2011173755A/en
Publication of JP2011173755A publication Critical patent/JP2011173755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new lightweight building material and other practical materials by incorporating into mortar or other cement compositions a residue produced as a by-product in the process of converting paper fibers to ethanol as part of a fine aggregate composition therefore. <P>SOLUTION: There is provided a cement admixture prepared by adding a residue produced in the process of converting paper fibers to ethanol to a fine aggregate in a former/latter ratio of 5-20 pts.wt./100 pts.wt. In this case, the residue produced in the process of converting paper fibers into ethanol is an unreacted solid residue produced as a by-product in the course of producing bioethanol from a raw material being paper fibers derived from shredded paper or other used paper and comprises cellulose and/or hemicellulose. Also provided are mortar and other cement compositions formulated from the cement admixture and a hardened mortar material prepared by being hardened by air curing or water curing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セメント混和剤、セメント組成物及びモルタル硬化体材料に係り、詳しくは、紙繊維のエタノール化処理残渣物を含有するセメント混和剤、及び該セメント混和剤を配合したセメント組成物、並びにこれらをモルタルの配合条件に適用して硬化させたモルタル硬化体材料に関する。   TECHNICAL FIELD The present invention relates to a cement admixture, a cement composition, and a mortar hardened material, and more specifically, a cement admixture containing an ethanolization residue of paper fibers, a cement composition containing the cement admixture, and The present invention relates to a mortar cured body material which is cured by applying these to mortar compounding conditions.

従来より、繊維状体(植物由来の繊維を含む)をセメント混和剤として配合したセメント組成物及びその硬化体が知られている(特許文献1〜4を参照)。   Conventionally, a cement composition containing a fibrous body (including plant-derived fibers) as a cement admixture and a cured body thereof are known (see Patent Documents 1 to 4).

ここでは、概してフレッシュ性状での流動性や硬化性状での曲げ強度特性の改善を目的としている。   Here, it aims at the improvement of the bending strength characteristic in the fluidity | liquidity in a fresh property, and the hardening property generally.

また、製紙過程で副生するペーパースラッジを軽量骨材とする外壁パネルが提案されている(特許文献5を参照)。ペーパースラッジはセルロース質を多量に含有するが、自然水(非処理水)を利用するため細菌付着に起因する悪臭の発生という問題がある。   In addition, an outer wall panel has been proposed in which paper sludge produced as a by-product in the papermaking process is used as a lightweight aggregate (see Patent Document 5). Paper sludge contains a large amount of cellulosic material, but uses natural water (untreated water), and thus has a problem of generation of malodor caused by bacterial adhesion.

さらに、微生物由来のセルロース(誘導体)を用いてセメント組成物の性状(特にブリーディングの抑制や強度特性)を改善しようとするものがある(特許文献6を参照)。   Furthermore, there is one that attempts to improve the properties (particularly suppression of bleeding and strength properties) of a cement composition using cellulose (derivative) derived from microorganisms (see Patent Document 6).

特開2005−314199号公報JP 2005-314199 A 特開2004−75409号公報JP 2004-75409 A 特開2001−192253号公報JP 2001-192253 A 特開平7−187738号公報JP-A-7-187738 特開平9−100614号公報Japanese Patent Application Laid-Open No. 9-100614 特開2000−103661号公報JP 2000-103661 A

こうしたなかで、本発明者らは、裁断紙エタノール化後に出る残渣物を細骨材として利用して、少なくとも建設用材として適用可能なセメント混和剤及びセメント組成物並びにモルタル硬化体材料の研究・開発を進めてきた。残渣物の添加・混入に関しては、モルタルの配合条件が核心となるので、以下、この種のモルタルを残渣モルタルという。   Under these circumstances, the present inventors have made research and development of cement admixtures and cement compositions that can be applied at least as construction materials, and mortar hardened body materials by using the residue produced after ethanolization of cut paper as fine aggregates. Has advanced. Regarding the addition / mixing of residue, the blending conditions of mortar are the core, so this type of mortar is hereinafter referred to as residue mortar.

すなわち、残渣物を普通モルタルに混入して残渣モルタルを作製し、モルタル中のセメントペーストを介して、ある程度の強度を持つ残渣モルタル硬化体に生まれ変わらせることができると構想してきた。   That is, it has been envisaged that a residue mortar can be produced by mixing a residue into ordinary mortar and reborn into a cured residue mortar having a certain degree of strength through a cement paste in the mortar.

これを実証するために、残渣モルタル硬化体の力学的特性を試験し、建築用材としての適用可能性を検討した。少なくとも建築用材としての力学的特性が確認できれば、その特性に応じた製品に応用できるからである。例えば、その軽量性から利用先としてブロックなどの成型製品とすることが有望である。ここで建築用材としての適用可能性は、一つは建築構造材として、もう一つは非構造材で内装材としてである。   In order to prove this, the mechanical properties of the cured mortar residue were tested, and the applicability as a building material was examined. This is because, if at least the mechanical characteristics as a building material can be confirmed, it can be applied to products according to the characteristics. For example, it is promising to be a molded product such as a block as a user because of its light weight. Here, the applicability as a building material is one as a building structural material, and the other is a non-structural material as an interior material.

発明が解決しようとする課題は、残渣モルタルの配合条件等を見出し、フレッシュ状態及び硬化状態での性状(物性を含む)を検証することにより、少なくとも建築用材として適用可能な材料開発に根拠を与えることである。   The problem to be solved by the invention is to find out the blending conditions of residual mortar, etc., and to verify the properties (including physical properties) in the fresh state and the cured state, thereby providing a basis for at least the material development applicable as a building material That is.

本発明は、後述の実験的事実により得られた知見及び成果に基づき、本発明を完成するに至ったものであって、紙繊維のエタノール化処理残渣物を含有するセメント混和剤、及び該セメント混和剤を配合したセメント組成物、並びにこれらをモルタルの配合条件に適用して硬化させたモルタル硬化体材料を提供するものである。   The present invention has been completed based on the findings and results obtained from the experimental facts described later, and includes a cement admixture containing an ethanolization residue of paper fiber, and the cement. The present invention provides a cement composition containing an admixture, and a mortar hardened material obtained by applying the cement composition to mortar compounding conditions and curing it.

課題を解決するために第1の発明は、セメント混和剤であって、細骨材100重量部のうち5〜20重量部の割合で配合され、紙繊維のエタノール化処理残渣物からなることを特徴とするものである。   In order to solve the problem, the first invention is a cement admixture, which is blended at a ratio of 5 to 20 parts by weight out of 100 parts by weight of fine aggregate, and consists of an ethanolization residue of paper fibers. It is a feature.

第2の発明は、モルタルその他のセメント組成物であって、細骨材100重量部のうち、紙繊維を原料とするバイオエタノールの生産過程で副生する未反応固形残渣物を5〜20重量部配合してなることを特徴とするものである。   2nd invention is mortar and other cement composition, Comprising: 5-20 weight of unreacted solid residue byproduced in the production process of the bioethanol which uses paper fiber as a raw material among 100 weight parts of fine aggregates It is characterized by being partly blended.

第3の発明は、モルタル硬化体材料であって、標準的なモルタル配合における細骨材100重量部のうち、紙繊維を原料とするバイオエタノールの生産過程で副生する未反応固形残渣物を5〜20重量部配合し、混練り後、気中養生又は水中養生してなることを特徴とするものである。   3rd invention is mortar hardened | cured material material, Comprising: The unreacted solid residue byproduced in the production process of the bioethanol which uses paper fiber as a raw material among 100 weight parts of fine aggregates in standard mortar mixing | blending 5-20 weight part is mix | blended, and after kneading | mixing, it is characterized by carrying out air curing or underwater curing.

後述の各実施例において確認されるように、本発明は、残渣物の細骨材への配合において適切な残渣物重量比を調整することにより、少なくとも建築用構造材又は建築用非構造材として選択的に使用可能な力学的特性を獲得することができるので、新たな実用材の開発に寄与することができる。   As will be confirmed in each example described later, the present invention is at least as a structural material for construction or a non-structural material for construction by adjusting an appropriate residue weight ratio in the blending of the residue into the fine aggregate. Since mechanical properties that can be selectively used can be obtained, it is possible to contribute to the development of new practical materials.

糖化後(*1)及び糖化・発酵・蒸留後(*2)における水中養生(●▲)による残渣物重量比とフロー値の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio by flow curing (● ▲) and the flow value after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と密度の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio and density by the curing comparison after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と曲げ強度の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio and bending strength by the curing comparison after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と圧縮強度の関係を示すデータプロットである。It is a data plot which shows the relationship between the weight ratio of a residue and compressive strength by the curing comparison after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と最大曲げ歪量の関係を示すデータプロットである。It is a data plot which shows the relationship between the weight ratio of a residue by the curing comparison, and the maximum bending strain amount after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と最大圧縮歪量の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio by the curing comparison, and the maximum amount of compressive strain after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による曲げ強度と最大曲げ歪量の関係を示すデータプロットである。It is a data plot which shows the relationship between the bending strength by the curing comparison after saccharification (* 1) and after saccharification, fermentation, and distillation (* 2), and the maximum bending strain amount. 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による圧縮強度と最大圧縮歪量の関係を示すデータプロットである。It is a data plot which shows the relationship between the compressive strength by the curing comparison and the maximum amount of compressive strain after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). 糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比とヤング係数の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio and Young's modulus by the curing comparison after saccharification, fermentation, and distillation (* 2). 残渣物重量比とフロー値の関係を示すデータプロットである。It is a data plot which shows the relationship between a residue weight ratio and a flow value. 糖化後(*1)における養生比較による残渣物重量比と密度の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio and density by the curing comparison after saccharification (* 1). 糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と密度の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio and density by the curing comparison after saccharification, fermentation, and distillation (* 2). 糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と試験体の重量軽減比の関係を示すデータプロットである。It is a data plot which shows the relationship between the residue weight ratio by the curing comparison, and the weight reduction ratio of a test body after saccharification (* 1) and after saccharification / fermentation / distillation (* 2).

第1の本発明の実施形態は、上記のセメント混和剤において、紙繊維のエタノール化処理残渣物が、裁断紙その他の古紙由来の紙繊維を原料とするバイオエタノールの生産過程で副生する未反応固形残渣物であって、セルロースおよび/またはヘミセルロースからなるものである。   In the first embodiment of the present invention, in the above cement admixture, the residue of the ethanol treatment of paper fiber is a by-product that is produced as a by-product in the production process of bioethanol using paper fiber derived from cut paper or other used paper. The reaction solid residue is composed of cellulose and / or hemicellulose.

第2の本発明の実施形態は、上記のセメント組成物において、紙繊維が裁断紙その他の古紙由来のものであり、未反応固形残渣物がセルロースおよび/またはヘミセルロースである。   In the second embodiment of the present invention, in the above cement composition, the paper fiber is derived from cut paper or other used paper, and the unreacted solid residue is cellulose and / or hemicellulose.

第3の本発明の実施形態は、上記のモルタル硬化体材料において、紙繊維が裁断紙その他の古紙由来のものであり、未反応固形残渣物がセルロースおよび/またはヘミセルロースである。   In the third embodiment of the present invention, in the mortar cured material described above, the paper fiber is derived from cut paper or other used paper, and the unreacted solid residue is cellulose and / or hemicellulose.

本発明の各実施例を実験的事実に基づき以下に説明する。当然のことながら、本発明の保護範囲を逸脱しない限り、実施例材料に何ら限定されるものではない。   Each embodiment of the present invention will be described below based on experimental facts. As a matter of course, the material of the embodiment is not limited at all without departing from the protection scope of the present invention.

1.実験目的
水セメント比(C/W) 60%、セメントと砂を1:2の割合で作ったモルタル(JIS R 5210に準拠)を基準として、細骨材100重量部に対して糖化後及び糖化・発酵・蒸留後の残渣物〔実施例セメント混和剤に同じ〕を0〜50重量部(以下、単に%表示する)の5%刻みでモルタル中に混合して出来上がるセメント組成物〔以下、残渣モルタルという〕を三連型枠の中に入れて気中養生と水中養生の試験体を作製し28日間養生後〔実施例モルタル硬化体材料に同じ;以下、残渣モルタル硬化体〕、曲げ試験と圧縮試験を行い、その力学的特性についてまとめる。
1. Experimental purpose Water cement ratio (C / W) 60%, after saccharification and saccharification for 100 parts by weight of fine aggregate based on mortar (based on JIS R 5210) made of cement and sand at a ratio of 1: 2.・ Cement composition obtained by mixing the residue after fermentation / distillation (same as the cement admixture in Examples) into mortar in 5% increments of 0 to 50 parts by weight (hereinafter simply expressed as%) (Mortar) is put in a triple mold and air-cured and water-cured specimens are prepared and cured for 28 days (same as Example mortar cured material; hereinafter, residual mortar cured material), bending test and A compression test is performed and the mechanical properties are summarized.

上記の残渣物は、紙繊維のエタノール化処理残渣物である。より詳しくは、裁断紙その他の古紙由来の紙繊維を原料とするバイオエタノールの生産過程で副生する未反応固形残渣物であって、セルロースおよび/またはヘミセルロースからなるものである。   The above residue is a residue obtained by ethanolization of paper fibers. More specifically, it is an unreacted solid residue produced as a by-product in the production process of bioethanol using paper fibers derived from cut paper and other used paper, and is composed of cellulose and / or hemicellulose.

2.実験計画
まず、供試モルタルは上記の標準配合比(JIS R 5210に準拠)で作製する。そのモルタル中に細骨材重量に対する残渣物の割合を0%〜50%、5%刻みの11種の残渣モルタル試験体を作製し、その強度試験を28日後に行う。その際、残渣物は糖化後のものと、糖化・発酵・蒸留後のものを用いた。残渣物の違いによる試験体も併せて作製した。その力学的特性の比較も併せて行うものとする。
2. Experimental plan First, the test mortar is prepared with the above standard mixing ratio (conforming to JIS R 5210). In the mortar, 11 types of residual mortar specimens having a ratio of the residue to the fine aggregate weight of 0% to 50% and 5% increments are prepared, and the strength test is performed after 28 days. At that time, the residue was used after saccharification and after saccharification / fermentation / distillation. Test specimens with different residues were also prepared. Comparison of the mechanical properties shall also be performed.

(2.1)試験体作製及び試験体数
試験体は、モルタルを組成する各材料を配合後混練し、三連型枠挿入後、気中養生と水中養生を施すことにより作製した。
(2.1) Preparation of test specimen and number of test specimens A test specimen was prepared by blending each material composing the mortar and kneading and inserting a triple mold, followed by air curing and water curing.

試験体の寸法は、幅40mm×縦40mm×長さ160mm であり、1種類について気中養生・水中養生のそれぞれ3体ずつで11種類、計66体を作製した。試験体の作製方法は、まずセメント 600gと細骨材(以後、砂と呼ぶ)を1200g天秤で正確に計る。計測後、普通モルタルは、水を 360g計り、それらをステンレス製のポールに入れて3〜5分程度よく混練する。   The dimensions of the test specimens were 40 mm wide x 40 mm long x 160 mm long. A total of 66 types were prepared for each of the three types, one for air curing and one for water curing. As a method for preparing the test body, first, 600 g of cement and fine aggregate (hereinafter referred to as sand) are accurately measured with a 1200 g balance. After the measurement, ordinary mortar measures 360 g of water, puts them in a stainless steel pole, and kneads them well for about 3 to 5 minutes.

また、残渣物混入の場合は、標準モルタル配合に、さらに砂1200gの5%〜50%、5%刻み、すなわち60g、 120g、 180g、 240g、 300g、 360g、 420g、 480g、 540g、 600gの10種類の残渣物を計りポールに入れて上述と同じ方法で残渣モルタルを作製する。残渣物の重量は水を除いた純粋なものを用いている。出来上がった、残渣モルタルは三連型枠に入れて、24時間気中養生後、1種類に3体ずつ脱型して気中養生と水中養生に分けて試験前日まで養生した。   In addition, in the case of residues, 10% of 60g, 120g, 180g, 240g, 300g, 360g, 420g, 480g, 540g, 600g is added to the standard mortar formulation in increments of 5% to 50% and 5% of 1200g of sand. Residues of various types are weighed and placed in a pole to produce a residue mortar by the same method as described above. The weight of the residue is pure, excluding water. The completed residue mortar was placed in a triple mold, and after 24 hours in-air curing, three of them were demolded and separated into in-air and underwater curing until the day before the test.

(2.2)試験方法
試験体は4週間(28日)経過後、気中養生ものと水中から引き揚げた試験体の表面を良く拭き、それぞれの重量と寸法を計測し、記録する。その後、曲げ試験用は試験体中央下端にストレインゲージを貼り、円柱テストピースは2枚を圧縮用、2枚をポアソン用に貼った。貼付けたストレインゲージは歪測定器に取り付けて、曲げ試験及び圧縮試験を行った〔図示省略〕。実験結果及びフロー値は下記に示すとおりである。
(2.2) Test method After 4 weeks (28 days), wipe the surface of the air-cured material and the surface of the test sample that has been lifted from the water, and measure and record the weight and dimensions of each. After that, for the bending test, a strain gauge was attached to the lower center of the specimen, and two cylindrical test pieces were attached for compression and two for Poisson. The attached strain gauge was attached to a strain measuring instrument and subjected to a bending test and a compression test (not shown). Experimental results and flow values are as shown below.

3.実験結果
以上のような実験方法によって残渣モルタル硬化前のフレッシュモルタル時の軟らかさを表すフロー値の測定値及び残渣モルタル硬化体の曲げ試験と圧縮試験を行った結果は下記のとおりである。
3. Experimental Results The measurement values of the flow value representing the softness of the fresh mortar before curing of the residual mortar and the results of the bending test and the compression test of the cured residual mortar are as follows.

すなわち、図1には残渣モルタルの中の残渣物重量比によるフレッシュモルタルの軟らかさを示すフロー値、すなわちモルタルの広がりの関係を示した。   That is, FIG. 1 shows the relationship between the flow value indicating the softness of fresh mortar according to the weight ratio of the residue in the residue mortar, that is, the spread of the mortar.

また、図2には試験体重量を密度で表わし、残渣物重量比による密度比較を示した。さらに、気中養生と水中養生による曲げ強度と残渣物重量比の関係及び圧縮強度と残渣物重量比の関係をそれぞれ図3及び図4に示した。   In FIG. 2, the weight of the test specimen is expressed by density, and the density comparison by the residue weight ratio is shown. Further, FIG. 3 and FIG. 4 show the relationship between the bending strength and the residue weight ratio and the relationship between the compressive strength and the residue weight ratio by air curing and underwater curing, respectively.

図5及び図6には気中養生と水中養生の残渣物重量比による曲げ歪量及び圧縮歪量の関係をそれぞれ示した。   FIG. 5 and FIG. 6 show the relationship between the amount of bending strain and the amount of compressive strain depending on the weight ratio of the residue in air curing and water curing, respectively.

図7に養生比較による曲げ強度と最大曲げ歪量の関係、図8に養生比較による圧縮強度と最大圧縮歪量の関係、及び図9に養生比較による残渣物重量比とヤング係数の関係をそれぞれ示した。   Fig. 7 shows the relationship between bending strength and maximum bending strain by curing comparison, Fig. 8 shows the relationship between compressive strength and maximum compressive strain by curing comparison, and Fig. 9 shows the relationship between residue weight ratio and Young's modulus by curing comparison. Indicated.

4.考察及び比較検討
その実験結果を踏まえて次のように考察される。
4). Discussion and comparative study Based on the experimental results, the following is considered.

(4.1)フロー試験
図10に示すように糖化後の場合、残渣物重量比0%は 140mmから 230mmに広がったのに対し、残渣物重量比5%は 110mmから 220mmであった。すなわち、軟度については殆ど同じ傾向であった。それに対し残渣物重量比10%−25%は80mmから 140mm〜100mm と急激に広がりが小さくなった。さらに、残渣物重量比30%〜50%については、殆ど広がりはなかった。
(4.1) Flow test As shown in FIG. 10, in the case of saccharification, the residue weight ratio 0% spread from 140 mm to 230 mm, while the residue weight ratio 5% ranged from 110 mm to 220 mm. That is, the softness was almost the same. On the other hand, the residue weight ratio 10% -25% suddenly decreased from 80mm to 140mm-100mm. Furthermore, there was almost no spread for the residue weight ratio of 30% to 50%.

図1は糖化後(*1)と糖化・発酵・蒸留後(*2)の残渣モルタルのフロー試験結果の比較したものである。それによると、残渣物重量比5%では殆ど差が無かったが、それ以外の残渣物重量比では糖化・発酵・蒸留後(*2)の残渣モルタルの方が糖化後(*1)の残渣モルタルより軟らかさが大きい。これは、糖化・発酵・蒸留後(*2)の残渣モルタルの方が軟らかくする作用があったものと考えられる。   Figure 1 compares the flow test results of residual mortar after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). According to this, there was almost no difference at the residue weight ratio of 5%, but at other residue weight ratios, the residue mortar after saccharification / fermentation / distillation (* 2) was the residue after saccharification (* 1). Softer than mortar. This is probably because the residue mortar after saccharification, fermentation and distillation (* 2) had a softening effect.

(4.2)試験体の密度比較
図11は通常のモルタルに残渣物をセメント量に対して5%刻みで0%〜50%まで混入して求めた糖化後(*1)の残渣物重量比に対する密度変化である。水中養生は▲で表わし、気中養生は△で表わした。図11からわかるように、水中養生及び気中養生ともに残渣物重量比が大きくなると密度は小さくなる傾向を示した。ここで、水中養生では残渣量が増加すると、ほぼ直線的に減少傾向を示した。それに対し、気中養生では残渣物重量比が0%〜20%までは、ほぼ直線的に推移するが25%で若干高くなり、30%〜35%では急激に0.0005[g/mm3] 程度小さくなり、それ以降はほぼ同一の密度で推移した。最終的に(45%以上で)、水中養生では0.0003[g/mm3] 程度の密度減少に対し、気中養生では 0.00076[g/mm3] 程度の密度減少であった。
(4.2) Density comparison of test specimens Figure 11 shows the weight of residue after saccharification (* 1) obtained by mixing residue in normal mortar from 0% to 50% in 5% increments relative to the amount of cement. It is the density change with respect to the ratio. Underwater curing is represented by ▲, and air curing is represented by △. As can be seen from FIG. 11, the density tended to decrease as the weight ratio of the residue increased in both underwater curing and in-air curing. Here, underwater curing showed a decreasing trend almost linearly as the amount of residue increased. On the other hand, in the air curing, the residue weight ratio changes almost linearly from 0% to 20%, but increases slightly at 25%, and suddenly increases to about 0.0005 [g / mm 3 ] at 30% to 35%. After that, it remained at the same density. Finally (at 45% or more), underwater curing showed a density decrease of about 0.0003 [g / mm 3 ], while under air curing, the density decreased by about 0.00076 [g / mm 3 ].

図12は通常のモルタルに残渣物をセメント量に対して5%刻みで0%〜50%まで混入して求めた糖化・発酵・蒸留後(*2)の残渣物重量比に対する密度変化である。水中養生は●で表わし、気中養生は○で表わした。図12からわかるように、水中養生及び気中養生ともに残渣物重量比が大きくなると密度は小さくなる傾向を示した。また、水中養生と気中養生を比較すると、気中養生の方が水中養生より小さくなることがわかった。この結果の相違は、気中養生では試験体内の水分(余剰水)の蒸発と残渣物重量比増加が寄与する軽量化の促進であり、水中養生では残渣物重量比増加のみが寄与する軽量化の促進であると認められる。   Fig. 12 shows the change in density with respect to the weight ratio of residue after saccharification, fermentation and distillation (* 2) obtained by mixing residue in normal mortar from 0% to 50% in 5% increments relative to the cement amount. . Underwater curing is represented by ●, and air curing is represented by ○. As can be seen from FIG. 12, both the underwater curing and the in-air curing tended to decrease the density as the residue weight ratio increased. In addition, comparing underwater curing with air curing, it was found that air curing is smaller than underwater curing. The difference between the results is the promotion of weight reduction that contributes to the evaporation of moisture (surplus water) and the residue weight ratio in the air curing, and the weight reduction that only the residue weight ratio contributes to in the water curing. It is recognized that

図1において、水セメント比60%の普通モルタルは水のようになりフローテーブルの直径 300mmを超えてしまうので、このグラフの中には印を記していない。   In FIG. 1, normal mortar with a 60% water cement ratio becomes water and exceeds the diameter of the flow table of 300 mm, so no mark is shown in this graph.

それに対して残渣物重量比が5%〜20%では 210mm〜126mm と急速にモルタルが固くなる傾向を示すが、それ以降の20%〜50%では 130mm前後でほぼ横ばいに推移する傾向を示した。すなわち、残渣物重量比が0%から20%へ混入量が増加すると残渣モルタルは急速に硬くなり、混入量(残渣物重量比)が20%を超えるとほぼ一定の固さで推移することがわかった。   On the other hand, when the weight ratio of the residue is 5% to 20%, the mortar tends to harden rapidly from 210mm to 126mm, but from 20% to 50% after that, it tends to be almost flat at around 130mm. . In other words, the residue mortar rapidly hardens when the amount of residue increases from 0% to 20%, and the amount of the mixture (residue weight ratio) exceeds 20% and may remain almost constant. all right.

また、図2の糖化後(*1)と糖化・発酵・蒸留後(*2)との比較では、水中養生(●▲)では糖化・発酵・蒸留後(*2)の方が若干密度が小さくなるが、その差は小さい。それに対して気中養生(○△)では残渣物重量比30%以降でかなり大きな差が生じた。従って、30%以降では糖化後(*1)の残渣モルタルの方が密度が小さくなることがわかった。   In addition, in the comparison between saccharification (* 1) and saccharification / fermentation / distillation (* 2) in FIG. 2, saccharification / fermentation / distillation (* 2) is slightly more dense in water curing (● ▲). Although small, the difference is small. On the other hand, in the air curing (○ △), a considerable difference occurred after the residue weight ratio of 30%. Therefore, it was found that after 30%, the density of the residual mortar after saccharification (* 1) is smaller.

(4.3)各試験体の曲げ強度比較
図3は残渣物重量比を0%〜50%とした糖化後(*1)と糖化・発酵・蒸留後(*2)のそれぞれの残渣モルタルについて曲げ強度を比較したものである。水中養生は●と▲で表わし、気中養生は○と△で表わした。
(4.3) Comparison of bending strength of each specimen Figure 3 shows the residual mortar after saccharification (* 1) and after saccharification / fermentation / distillation (* 2) with a residue weight ratio of 0% to 50%. This is a comparison of bending strength. Underwater curing is represented by ● and ▲, and air curing is represented by ○ and △.

図3からわかるように、糖化後(*1)の水中養生(▲)、気中養生(△)とも残渣物重量比が0%〜35%と大きくなるに従って小さくなる傾向を示した。その後、水中養生(●)では35%〜45%において若干の増加傾向を示した。気中養生(○)では、ほぼ一定であったが、曲げ強度は非常に小さい。   As can be seen from FIG. 3, both the underwater curing (▲) and the air curing (Δ) after saccharification (* 1) tended to decrease as the residue weight ratio increased from 0% to 35%. Thereafter, underwater curing (●) showed a slight increasing trend at 35% to 45%. In the air curing (○), it was almost constant, but the bending strength is very small.

また、糖化・発酵・蒸留後(*2)の残渣モルタルは残渣物重量比が0%〜15%までは、ほとんど曲げ強度は減少せず、20%〜50%と増加させると徐々に減少する傾向を示した。特に、5%と15%は普通モルタルよりも曲げ強度が大きくなった。また、残渣物重量比20%〜30%の場合でも4N/mm2 〜5N/mm2 と強度がかなりみられることがわかった。 The residual mortar after saccharification / fermentation / distillation (* 2) has almost no decrease in bending strength when the weight ratio of the residue is 0% to 15%, and gradually decreases when it is increased from 20% to 50%. Showed a trend. In particular, 5% and 15% had higher bending strength than ordinary mortar. Further, it was found that 4N / mm 2 ~5N / mm 2 and strength even in the case of residue weight ratio of 20% to 30% can be fairly seen.

糖化後(*1)と糖化・発酵・蒸留後(*2)との曲げ強度比較では、図3より水中養生は糖化・発酵・蒸留後(*2)の方(●)が全体的に小さい。それに対して気中養生では残渣物重量比30%まではほぼ近似しているが、それ以降は糖化後(*1)の方(△)が若干小さくなっている。   In comparison of bending strength after saccharification (* 1) and after saccharification / fermentation / distillation (* 2), as shown in FIG. 3, underwater aging is generally smaller after saccharification / fermentation / distillation (* 2) (●). . On the other hand, in the air curing, the residue weight ratio is almost approximate up to 30%, but after that (* 1) is slightly smaller after saccharification (* 1).

(4.4)各試験体の圧縮強度比較
図4からわかるように、糖化後(*1)の残渣モルタルの残渣物重量比に対する圧縮強度は、水中養生(▲)及び気中養生(△)ともに0%〜20%で急激に小さくなるが、それ以降は、水中養生(▲)がほぼ一定になるのに対し、気中養生(△)ではさらに小さくなることがわかった。
(4.4) Comparison of compressive strength of test specimens As can be seen from Fig. 4, the compressive strength of the residue mortar after saccharification (* 1) with respect to the residue weight ratio is underwater curing (▲) and air curing (△). In both cases, it decreased rapidly from 0% to 20%, but after that, the underwater curing (▲) became almost constant, while the air curing (△) further decreased.

また、糖化・発酵・蒸留後(*2)は残渣物重量比が0%〜50%と増加すると、圧縮強度は急激に減少する傾向を示した。しかし、5%〜10%の5%で15 N/mm2減少を示したが、10%〜15%までは18 N/mm2〜20N/mm2 もあり、実用的には使用可能な範囲にあることがわかった。20%以降においては圧縮強度が 15N/mm2以下になり実用的には適さないことがわかる。 In addition, after saccharification / fermentation / distillation (* 2), when the weight ratio of residue increased from 0% to 50%, the compressive strength tended to decrease rapidly. However, although the 15 N / mm 2 reduction with 5% 5% to 10%, up to 10% to 15% is also 18 N / mm 2 ~20N / mm 2, it is practically usable range I found out. It can be seen that after 20%, the compressive strength is 15 N / mm 2 or less, which is not practical.

図4の糖化後(*1)と糖化・発酵・蒸留後(*2)の比較では気中養生(〇△)は非常によく似た関係が得られたが、水中養生(●▲)では糖化・発酵・蒸留後(*2)の方(●)が若干大きく出ている。しかし、全体的な傾向の差は殆ど見られなかった。   The comparison between after saccharification (* 1) and after saccharification / fermentation / distillation (* 2) in Fig. 4 showed a very similar relationship with air curing (○ △), but underwater curing (● ▲). After saccharification / fermentation / distillation (* 2) is slightly larger (●). However, there was little difference in overall trends.

(4.5)曲げ歪量の比較
図5は気中養生(〇△)・水中養生(●▲)における糖化後(*1)と糖化・発酵・蒸留後(*2)の最大曲げ歪量と残渣物重量比の関係を表したものである。
(4.5) Comparison of bending strain Figure 5 shows the maximum bending strain after saccharification (* 1) and after saccharification / fermentation / distillation (* 2) in air curing (○ △) and underwater curing (● ▲). And the weight ratio of the residue.

図5より糖化後(*1)では気中養生(△)の場合、残渣物重量比が0%〜50%と大きくなるごとに最大曲げ歪量は小さくなる傾向を示した。それに対し水中養生(▲)の場合、0%〜35%にかけて同様な傾向であったが、35%〜40%で2200μまで急激に増大し、50%値では 500μ程度まで減少した。   From FIG. 5, after saccharification (* 1), in the case of air curing (Δ), the maximum bending strain tended to decrease as the residue weight ratio increased from 0% to 50%. On the other hand, in the case of underwater curing (▲), the same tendency was observed from 0% to 35%, but it increased rapidly to 2200μ at 35% to 40% and decreased to about 500μ at 50% value.

糖化・発酵・蒸留後(*2)では気中養生(〇)の場合、残渣物重量比が0%〜10%で曲げ歪量は増大するが、15%値では 500μ以下に減少し50%まで殆ど変化はなかった。それに対し水中養生(●)の場合、残渣物重量比が0%〜15%で曲げ歪量は増大するが、20%値で 500μ以下に減少し50%までは 200μ〜 800μ範囲で変動した。   After saccharification / fermentation / distillation (* 2), in the case of air curing (O), the bending strain increases when the weight ratio of the residue is 0% to 10%, but at 15% the value decreases to 500μ or less and 50% There was almost no change. On the other hand, in the case of underwater curing (●), the bending strain increased at a residue weight ratio of 0% to 15%, but decreased to 500μ or less at a 20% value and varied in the range of 200μ to 800μ up to 50%.

(4.6)圧縮歪量の比較
図6は糖化後(*1)の気中養生(△)と糖化・発酵・蒸留後(*2)の水中養生(●)におけるの最大圧縮歪量と残渣物重量比の関係を表したものである。図から理解されるように、糖化後(*1)の気中養生(△)では残渣物重量比が0%〜50%と大きくなるごとに最大圧縮歪量は若干小さくなる傾向を示したが、その差はわずかである。それに対して糖化・発酵・蒸留後(*2)の水中養生(●)では残渣物重量比が35%で大きく減少するが、全体としては残渣物重量比が0%〜50%と高くなると増加する傾向を示した。両養生とも残渣物重量比が増加すると靭性が増加する傾向がみられ、その原因は繊維中のセルロースが影響しているものと考えられる。
(4.6) Comparison of amount of compressive strain Figure 6 shows the maximum amount of compressive strain in air curing after saccharification (* 1) and in water curing after saccharification, fermentation and distillation (* 2) (●). It shows the relationship of the weight ratio of the residue. As can be seen from the figure, the maximum amount of compressive strain tended to become slightly smaller as the weight ratio of residue increased from 0% to 50% in the air curing (△) after saccharification (* 1). The difference is slight. In contrast, underwater curing (●) after saccharification / fermentation / distillation (●), the residue weight ratio decreases greatly at 35%, but as a whole the residue weight ratio increases from 0% to 50%. Showed a tendency to In both types of curing, there is a tendency for toughness to increase as the weight ratio of the residue increases, and this is thought to be due to the cellulose in the fiber.

(4.7)曲げ強度と曲げ歪量の関係
図7は糖化後(*1)と糖化・発酵・蒸留後(*2)における気中養生(○△)と水中養生(●▲)の曲げ強度と最大曲げ歪量の関係を表したものである。その図より、両養生とも糖化後(*1)と糖化・発酵・蒸留後(*2)に関係なく、曲げ強度が増加するほど最大曲げ歪量も増加する傾向が見られた。
(4.7) Relationship between bending strength and bending strain Figure 7 shows the bending of air curing (○ △) and water curing (● ▲) after saccharification (* 1) and after saccharification, fermentation, and distillation (* 2). This shows the relationship between strength and maximum bending strain. From the figure, regardless of whether saccharification (* 1) and after saccharification / fermentation / distillation (* 2), the maximum bending strain tended to increase as the bending strength increased.

(8)圧縮強度と圧縮歪量の関係
図8は糖化後(*1)と糖化・発酵・蒸留後(*2)における気中養生(△)と水中養生(●)の圧縮応力度と最大圧縮歪量の関係を表したものである。その図から糖化後(*1)の気中養生(△)では圧縮強度が増加すると最大圧縮歪量は若干増加する傾向を示した。
(8) Relationship between compressive strength and compressive strain Figure 8 shows the compressive stress level and maximum of air curing (△) and water curing (●) after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). This shows the relationship between the amount of compressive strain. From the figure, in the air curing (△) after saccharification (* 1), the maximum compressive strain amount tended to increase slightly as the compressive strength increased.

それに対して、糖化・発酵・蒸留後(*2)の水中養生(●)では圧縮強度が増加しても圧縮歪量は増加しない傾向を示した。この原因は、水中養生の場合、セメントと水が水和反応して圧縮強度が気中養生よりも増加し、さらに残渣物に水分が含まれるため気泡のような役割をするものと考えられる。そのため靭性が増加すると考えられ、水中養生は強度も靭性もあるといえる。一方、気中養生は紙質の水分が経過日数と共に減少するため体積が縮小し、空隙ができ圧縮強度と共に靭性も減少するものと考えられる。   In contrast, after saccharification / fermentation / distillation (* 2) underwater curing (●), the compressive strain did not increase even when the compressive strength increased. In the case of underwater curing, the cause is considered to be a bubble-like role because the cement and water are hydrated to increase the compressive strength as compared to the in-air curing, and the residue contains moisture. Therefore, toughness is considered to increase, and it can be said that underwater curing has both strength and toughness. On the other hand, in the air curing, since the water content of paper decreases with the elapsed days, the volume is reduced, voids are formed, and the toughness as well as the compressive strength is reduced.

以上のとおり、残渣モルタル硬化体の圧縮強度は残渣物重量比が15%までの範囲なら気中及び水中に関らず 18N/mm2以上の圧縮強度が得られることから、モルタルとして使用可能範囲であるがわかった。また、圧縮歪量もほぼ普通モルタルと同程度以上であることがわかった。このことから、残渣物重量比は5%〜15%の範囲で有効である。 As mentioned above, the compressive strength of the cured residue mortar can be used as a mortar because the compressive strength of 18N / mm 2 or more can be obtained regardless of whether it is in the air or under water if the weight ratio of the residue is up to 15%. I understand. It was also found that the amount of compressive strain was almost equal to or higher than that of ordinary mortar. From this, the residue weight ratio is effective in the range of 5% to 15%.

(4.9)残渣モルタル硬化体の剛性について
図9は、糖化・発酵・蒸留後(*2)の残渣モルタル硬化体のヤング係数を残渣物重量比の関係で表したものである。その結果、残渣モルタル硬化体の剛性を表すヤング係数は、気中養生(○)では残渣重量比に応じて小さくなっているが、水中養生(●)では5%〜15%の範囲で剛性低下が見られなかったが、20%以後は急激な剛性低下を示している。これらのことから、気中・水中養生とも、5%〜15%の範囲の剛性であれば残渣モルタル硬化体として床材などの構造用材に使用可能であると考える。また、20%〜30%の範囲の残渣モルタルは剛性が若干小さいが内装壁に使用可能といえる。
(4.9) Stiffness of Residual Mortar Product FIG. 9 shows the Young's modulus of the cured residue mortar material after saccharification, fermentation and distillation (* 2) in terms of the residue weight ratio. As a result, the Young's modulus representing the rigidity of the residual mortar cured product decreases with the residue weight ratio in the air curing (○), but the rigidity decreases in the range of 5% to 15% with the underwater curing (●). Was not seen, but after 20% it shows a sharp decrease in stiffness. Based on these facts, both in-air and underwater curing can be used as a residual mortar cured body for structural materials such as flooring if the rigidity is in the range of 5% to 15%. Moreover, although the residual mortar in the range of 20% to 30% has a little small rigidity, it can be used as an interior wall.

5.まとめ
糖化後及び糖化・発酵・蒸留後の残渣物は普通モルタル中に残渣物重量比(細骨材重量に対する残渣物重量の割合)で残渣物を混入して残渣モルタルとして用いた場合、それぞれのフレッシュな残渣モルタルや残渣モルタル硬化体の力学的性質にどのような影響を与えるのかについて比較検討を行った。また、糖化後及び糖化・発酵・蒸留後の残渣物を用いて作製した残渣モルタル硬化体の強度比較を行い、どちらの残渣物の方が力学的特性に有利に作用するかを合わせて比較検討を行った。
5. Summary Residues after saccharification and saccharification / fermentation / distillation are usually mixed in the mortar with a residue weight ratio (ratio of residue weight to fine aggregate weight). A comparative study was conducted on the effects on the mechanical properties of fresh residue mortar and cured residue mortar. In addition, the strength of mortar cured mortars made using residues after saccharification and saccharification / fermentation / distillation will be compared, and a comparison will be made to determine which residue has a better effect on mechanical properties. Went.

その結果、次のことがわかった。
(1)フレッシュ残渣モルタルは糖化後よりも糖化・発酵・蒸留後のものを用いた方が軟らかい残渣モルタルが作製できることがわかった。
(2)密度比較では、水中養生が気中養生よりも密度が増加することがわかった。それは残渣モルタル硬化体にかなりの水分が気中養生よりも多量に含まれているためと考えられる。
(3)曲げ強度及び圧縮強度とも残渣物重量比が増加すると、それに比例して強度が減少することが確認された。その割合は、水中養生では、糖化後の残渣モルタル硬化体が強度を増加させる作用がみられたが、気中養生では糖化後及び糖化・発酵・蒸留後の強度差は殆どなかった。
(4)残渣モルタル硬化体の剛性を表すヤング係数は、気中養生では残渣重量比に応じて小さくなっているが、水中養生では5〜15%の範囲で剛性低下が見られなかった。すなわち、構造体に使用可能な範囲と考えられる。
(5)靭性は、基本的には曲げ強度が増加すると、それに比例して靭性は増加するが、圧縮強度は今日が増加してもそれが靭性増加に繋がらないことがわかった。
As a result, the following was found.
(1) It was found that a soft residue mortar can be produced by using a fresh residue mortar after saccharification / fermentation / distillation rather than after saccharification.
(2) In the density comparison, it was found that the underwater curing has a higher density than the air curing. This is probably because the hardened residue mortar contains a larger amount of water than air curing.
(3) It was confirmed that the strength decreased in proportion to the increase in the residue weight ratio for both bending strength and compressive strength. The ratio of the cured mortar after saccharification increased the strength in water curing, but there was almost no difference in strength between saccharification and saccharification / fermentation / distillation in air curing.
(4) The Young's modulus representing the rigidity of the cured residue mortar was small in accordance with the residue weight ratio in the air curing, but no decrease in rigidity was observed in the range of 5 to 15% in the underwater curing. That is, it can be considered as a usable range for the structure.
(5) It was found that the toughness basically increases as the bending strength increases, but the toughness increases proportionally, but even if the compressive strength increases today, it does not lead to an increase in toughness.

以上のことから建築用材として用いる場合は2つ考えられる。一つは構造材として、もう一つは非構造材(例えば内装材)としての実用可能性である。   From the above, two cases are considered when used as building materials. One is a practical possibility as a structural material, and the other is a non-structural material (for example, an interior material).

上記した力学的特性のとおり、糖化後と糖化・発酵・蒸留後における残渣モルタルの配合条件(実験結果の範囲内)では、構造材として用いる場合は残渣物重量比が0%〜15%範囲、また、内装材等の非構造材として用いる場合は0%〜30%範囲でそれぞれ使用可能な強度と靭性が得られた。   According to the mechanical properties described above, the residue mortar blending conditions after saccharification and saccharification / fermentation / distillation (within the range of experimental results), when used as a structural material, the residue weight ratio is in the range of 0% to 15%. Further, when used as a non-structural material such as an interior material, usable strength and toughness were obtained in the range of 0% to 30%.

さらに、残渣物を配合することによる材料の軽量化が図れる。図13に、糖化後(*1)及び糖化・発酵・蒸留後(*2)における養生比較による残渣物重量比と試験体の重量軽減比の関係を示すように、気中養生(〇△)では糖化後(*1)及び糖化・発酵・蒸留後(*2)ともに普通モルタル重量に比して残渣物重量比15%で10%重量軽減、同30%で14%重量軽減、同35%以上では35〜36%重量軽減となっている。   Furthermore, weight reduction of the material by mix | blending a residue can be achieved. Fig. 13 shows air curing (○ △) to show the relationship between weight ratio of residue and weight reduction ratio of test specimens after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). In saccharification (* 1) and after saccharification / fermentation / distillation (* 2), the residue weight ratio is 15%, 10% weight reduction, 30%, 14% weight reduction, 35% In the above, the weight is reduced by 35 to 36%.

一方、水中養生(●▲)では糖化後及び糖化・発酵・蒸留後(*2)ともに残渣物重量比15%で6%重量軽減、同30%で10%重量軽減、同35%以上では12〜13%重量軽減となっている。   On the other hand, in water curing (● ▲), after saccharification and after saccharification / fermentation / distillation (* 2), a residue weight ratio of 15% is 6% weight reduction, 30% is 10% weight reduction, and 35% or more is 12%. ~ 13% weight reduction.

また、糖化後(*1)と糖化・発酵・蒸留後(*2)における残渣物の重量軽減(比)への寄与は、残渣物重量比30%までは気中養生(○△)、水中養生(●▲)ともに殆ど変わらないが、35%以上では糖化後の気中養生において大幅に重量軽減(軽量化)している。   In addition, after saccharification (* 1) and after saccharification / fermentation / distillation (* 2), the contribution to weight reduction (ratio) of the residue is up to 30% of the residue weight ratio. The curing (● ▲) is almost the same, but over 35%, the weight of the aerial curing after saccharification has been significantly reduced (lightened).

以上のことから、残渣物を通常に(上記実用材として)用いる場合、糖化後(*1)と糖化・発酵・蒸留後(*2)で気中養生、水中養生ともに殆ど差はなく、その重量軽減量(軽量化の効果)はそれぞれ10〜15%であることがわかった。   From the above, when residues are used normally (as above-mentioned practical materials), there is almost no difference between air curing and water curing after saccharification (* 1) and after saccharification / fermentation / distillation (* 2). It was found that the amount of weight reduction (lightening effect) was 10 to 15%.

本発明材料は、残渣物の細骨材への配合において適切な残渣物重量比をもってすれば、構造材及び内装材(非構造材)として選択的に使用可能であり、新たな軽量化建築用材として有用である。   The present invention material can be selectively used as a structural material and an interior material (non-structural material) as long as it has an appropriate residue weight ratio in blending the residue into fine aggregates. Useful as.

*1 糖化後
*2 糖化・発酵・蒸留後
* 1 After saccharification
* 2 After saccharification / fermentation / distillation

Claims (6)

モルタルその他のセメント組成物において、
細骨材100重量部のうち5〜20重量部の割合で配合され、紙繊維のエタノール化処理残渣物からなることを特徴とするセメント混和剤。
In mortar and other cement compositions,
A cement admixture comprising 5 to 20 parts by weight of 100 parts by weight of fine aggregate and comprising a residue of an ethanolization treatment of paper fibers.
紙繊維のエタノール化処理残渣物が、裁断紙その他の古紙由来の紙繊維を原料とするバイオエタノールの生産過程で副生した未反応固形残渣物であって、セルロースおよび/またはヘミセルロースからなるものである請求項1記載のセメント混和剤。   The paper fiber ethanolization residue is an unreacted solid residue produced as a by-product in the production process of bioethanol using paper fibers derived from cut paper and other waste paper, and consists of cellulose and / or hemicellulose. The cement admixture according to claim 1. モルタルその他のセメント組成物において、
細骨材100重量部のうち、紙繊維を原料とするバイオエタノールの生産過程で副生した未反応固形残渣物を5〜20重量部配合してなることを特徴とするセメント組成物。
In mortar and other cement compositions,
A cement composition comprising 5 to 20 parts by weight of an unreacted solid residue produced as a by-product in the production process of bioethanol using paper fiber as a raw material, out of 100 parts by weight of fine aggregate.
紙繊維が裁断紙その他の古紙由来のものであり、未反応固形残渣物がセルロースおよび/またはヘミセルロースからなるものである請求項3記載のセメント組成物。   The cement composition according to claim 3, wherein the paper fiber is derived from cut paper or other used paper, and the unreacted solid residue is composed of cellulose and / or hemicellulose. モルタル硬化体材料において、
標準的なモルタル配合における細骨材100重量部のうち、紙繊維を原料とするバイオエタノールの生産過程で副生した未反応固形残渣物を5〜20重量部配合し、混練り後、気中養生又は水中養生してなることを特徴とするモルタル硬化体材料。
In mortar cured material,
Out of 100 parts by weight of fine aggregate in standard mortar blending, 5-20 parts by weight of unreacted solid residue produced as a by-product in the production process of bioethanol using paper fiber as raw material is blended. A cured mortar material characterized by curing or curing in water.
紙繊維が裁断紙その他の古紙由来のものであり、未反応固形残渣物がセルロースおよび/またはヘミセルロースからなるものである請求項5記載のモルタル硬化体材料。   The mortar hardened material according to claim 5, wherein the paper fiber is derived from cut paper or other used paper, and the unreacted solid residue is composed of cellulose and / or hemicellulose.
JP2010039015A 2010-02-24 2010-02-24 Cement admixture, cement composition, and hardened mortar material Pending JP2011173755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039015A JP2011173755A (en) 2010-02-24 2010-02-24 Cement admixture, cement composition, and hardened mortar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039015A JP2011173755A (en) 2010-02-24 2010-02-24 Cement admixture, cement composition, and hardened mortar material

Publications (1)

Publication Number Publication Date
JP2011173755A true JP2011173755A (en) 2011-09-08

Family

ID=44687001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039015A Pending JP2011173755A (en) 2010-02-24 2010-02-24 Cement admixture, cement composition, and hardened mortar material

Country Status (1)

Country Link
JP (1) JP2011173755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372063B1 (en) * 2021-11-17 2022-03-11 주식회사 한국고서이엔지 Method of manufacturing permeable block and the permeable block thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333152A (en) * 1995-06-01 1996-12-17 Sumitomo Seika Chem Co Ltd Cement composition and auxiliary for its extrusion molding
JPH11183471A (en) * 1997-12-24 1999-07-09 Taiheiyo Cement Corp Measuring method for sugar content in vegetable fiber, treatment method for low saccharization of vegetable fiber, low saccharized vegetable fiber and vegetable-fiber cement molded body using the vegetable fiber
JP2006088136A (en) * 2004-09-24 2006-04-06 Katsutoshi Okubo Biomass ethanol product and manufacturing method for biomass ethanol product
WO2008047679A1 (en) * 2006-10-16 2008-04-24 National Institute Of Advanced Industrial Science And Technology Ethanol producing process and apparatus
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333152A (en) * 1995-06-01 1996-12-17 Sumitomo Seika Chem Co Ltd Cement composition and auxiliary for its extrusion molding
JPH11183471A (en) * 1997-12-24 1999-07-09 Taiheiyo Cement Corp Measuring method for sugar content in vegetable fiber, treatment method for low saccharization of vegetable fiber, low saccharized vegetable fiber and vegetable-fiber cement molded body using the vegetable fiber
JP2006088136A (en) * 2004-09-24 2006-04-06 Katsutoshi Okubo Biomass ethanol product and manufacturing method for biomass ethanol product
WO2008047679A1 (en) * 2006-10-16 2008-04-24 National Institute Of Advanced Industrial Science And Technology Ethanol producing process and apparatus
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372063B1 (en) * 2021-11-17 2022-03-11 주식회사 한국고서이엔지 Method of manufacturing permeable block and the permeable block thereby

Similar Documents

Publication Publication Date Title
Xie et al. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties
de Almeida Melo Filho et al. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems
de Oliveira et al. Physical and mechanical behaviour of recycled PET fibre reinforced mortar
Tian et al. Mechanical behaviours of green hybrid fibre-reinforced cementitious composites
Janne Pauline S et al. Development of abaca fiber-reinforced foamed fly ash geopolymer
KR102074494B1 (en) Self-healing concrete pole for centrifugal mold using self-healing inorganic binder paste and manufacturing method thereof
Danso Effect of rice husk on the mechanical properties of cement-based mortar
Femandez Flax fiber reinforced concrete-a natura1 fiber biocomposite for sustainable building materials
CN108298915A (en) A kind of exterior wall Crack-resistance Front Mortar and preparation method thereof containing fiberglass recycled fiber
KR100502277B1 (en) Composition of mortar that is mixed suface modified fiber for repair and renovation of concrete structures and its manufacturing process
Priyadharshini et al. A novel approach for the rheological behaviour of polymer modified untreated and treated sisal fibre reinforced cement mortar composites
JP2011173755A (en) Cement admixture, cement composition, and hardened mortar material
Wang et al. Effects of shrinkage reducing agent and expanded cement on UHPC fluidity, mechanical properties, and shrinkage performance
EP3415478B1 (en) New building material comprising a plant based granulate
US20080282937A1 (en) Compositions of and methods for making of a concrete-like material containing cellulosic derivatives
CN112028559A (en) Erosion-resistant concrete and preparation process thereof
Sisman et al. Effects of rice husk on the lightweight concrete properties produced by natural zeolite for agricultural buildings
US11851371B2 (en) Biomass waste materials as a set-retardation agent in cement or concrete
KR0160943B1 (en) Cement matrix
JP2014189437A (en) Cracking-reduced type blast furnace cement composition and production method thereof
Becker et al. Study of mechanical, acoustic, and microstructure properties of lightweight mortars produced with expanded clay
KR101902616B1 (en) Method for the Manufacturing of Mortar using the Wastepaper
Aramburu et al. Cement matrix reinforced with microfibrillated cellulose treated with furfuryl alcohol
Ahmad et al. Shrinkage of Malaysian palm oil clinker concrete
dos Santos Alberton et al. Properties of coconut fiber-reinforced mortars for sustainable solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028