JP2006086317A - Magnetic fine particles manufacturing method - Google Patents

Magnetic fine particles manufacturing method Download PDF

Info

Publication number
JP2006086317A
JP2006086317A JP2004269191A JP2004269191A JP2006086317A JP 2006086317 A JP2006086317 A JP 2006086317A JP 2004269191 A JP2004269191 A JP 2004269191A JP 2004269191 A JP2004269191 A JP 2004269191A JP 2006086317 A JP2006086317 A JP 2006086317A
Authority
JP
Japan
Prior art keywords
fine particles
magnetic
thin film
magnetic fine
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004269191A
Other languages
Japanese (ja)
Inventor
Satoshi Okamoto
岡本  聡
Osamu Kitagami
北上  修
Hiroshi Shimada
島田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004269191A priority Critical patent/JP2006086317A/en
Publication of JP2006086317A publication Critical patent/JP2006086317A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing magnetic fine particles that can be used for a magnetical recording medium, and can independently control magnetic characteristics and fine particles formation. <P>SOLUTION: The magnetic fine particles manufacturing method can independently control the magnetic characteristics and fine particles formation by using ion etching. Magnetic fine particles are manufactured by irradiating a high energy ion to a ferromagnetic thin film or a laminate film of nonmagnetic layer/ferromagnetic layer. Desired magnetic characteristics can be found by adjusting film deposition conditions during manufacturing of the ferromagnetic thin film, and the fine particles formation and structure thereof can be controlled by the ion etching thereafter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁気記録媒体に活用できる磁性微粒子の作製技術に関わり,更に詳しくは磁性粒子のサイズならびに配列の制御,ならびに磁性粒子の磁気特性の改善に関する。   The present invention relates to a technique for producing magnetic fine particles that can be used in a magnetic recording medium, and more particularly to control of the size and arrangement of magnetic particles and improvement of magnetic properties of magnetic particles.

情報社会の発展に伴い,高密度記録技術の開発が切望されている。特に,ビット単価が安く,不揮発かつ大容量記録が可能な磁気記録においては,高密度記録の可能な磁気記録媒体の開発が強く要求され,種々の研究開発によりここ数年で著しい高密度化が実現された。しかし記録密度の飛躍的増加に伴い,S/N確保のために磁気記録媒体を構成している個々の磁性粒子の体積を一層低減することが強く求められるようになった。このような構成粒子のサイズ低減は,以下に述べる磁化の熱擾乱(記録状態の不安定化)という実用上深刻な問題を引き起こす。 With the development of the information society, development of high-density recording technology is eagerly desired. In particular, for magnetic recording that is inexpensive and can be recorded in a nonvolatile manner and has a large capacity, there is a strong demand for the development of magnetic recording media capable of high-density recording. Realized. However, with the dramatic increase in recording density, there has been a strong demand to further reduce the volume of individual magnetic particles constituting the magnetic recording medium in order to secure S / N. Such a reduction in the size of the constituent particles causes a serious problem in practice such as thermal disturbance (destabilization of recording state) of magnetization described below.

記録媒体を構成する磁性粒子が有する磁気異方性エネルギ−をKu,粒子体積をVとすると,それらの積KuVが磁化の安定性の指標となる。熱エネルギ−はkT (k:ボルツマン定数,T:温度)と表されるから,この量がKuVに比べ無視できなくなると,熱擾乱が顕著となり,磁化状態(メモリ−情報)の消失につながる。またそれ以外にも,このようなサイズ領域では,粒子サイズ分散や個々の粒子の結晶軸方位の分散はS/Nを大きく低下させることになり,構成粒子のサイズならびに結晶軸を揃えることも強く要求されている。 Assuming that the magnetic anisotropy energy of the magnetic particles constituting the recording medium is Ku and the particle volume is V, the product Kuu V is an indicator of the stability of magnetization. Thermal energy - is kT (k: Boltzmann constant, T: temperature) from denoted, if this amount is not negligible compared with the K u V, thermal disturbance becomes remarkable, the magnetization state - the loss of (memory information) Connected. In addition, in such a size region, the particle size dispersion and the dispersion of the crystal axis orientation of individual particles greatly reduce the S / N, and the size and crystal axes of the constituent particles are strongly aligned. It is requested.

つまり,熱安定性の面からKuVを確保し,S/Nの面からはVの微小化という互いに相反する要求を同時に満足しつつ,且つVと結晶軸の分散を抑制するという多くの難題を克服することが将来の超高密度記録媒体の実現に必須となっている。 In other words, K u V is ensured from the viewpoint of thermal stability, while the contradictory requirements of V miniaturization from the S / N aspect are satisfied at the same time, and dispersion of V and crystal axes is suppressed. Overcoming the difficulties is essential for the future realization of ultra-high density recording media.

現行の磁気記録媒体用薄膜は,CoCrを主体とする合金薄膜であり,この薄膜を構成する個々の微粒子内では磁気相分離によりCoリッチ強磁性領域の中心部を非磁性Crリッチの殻が取り囲む構造をとっている。この構造は,強磁性粒子間の磁気的結合を低減させ,その結果優れたS/Nの実現を可能にしている。しかしながら,CoCr系合金のKuは106 erg/cc程度であるため,粒子サイズが10
nm以下ではKuVの大きさが充分ではなく熱安定性の確保が困難となる。
The current thin film for magnetic recording media is an alloy thin film mainly composed of CoCr, and in each fine particle constituting this thin film, a non-magnetic Cr-rich shell surrounds the center of the Co-rich ferromagnetic region by magnetic phase separation. It has a structure. This structure reduces the magnetic coupling between the ferromagnetic particles and, as a result, makes it possible to realize an excellent S / N. However, since the K u of CoCr-based alloy is about 10 6 erg / cc, particle size 10
Below nm, the size of K u V is not sufficient and it is difficult to ensure thermal stability.

一方,上記永久磁石材料であるSm-Co, Nd-Fe-Bなどの希土類化合物やCuAu型FePt, CoPtなどの規則合金は~
108 erg/cc程度の非常に高いKuを有しており,将来の磁気記録媒体材料として期待されている。
On the other hand, rare earth compounds such as Sm-Co, Nd-Fe-B and ordered alloys such as CuAu type FePt, CoPt are
It has a very high K u of about 10 8 erg / cc, and is expected as a future magnetic recording medium material.

ところが,これらの材料ではCoCr系合金のような磁気相分離は存在しないため,非磁性マトリックス中に分散析出させたグラニュラー薄膜,化学合成による自己組織化微粒子アレイ,島状成長を利用した微粒子アレイなどがこれまでに多く研究されてきた。しかし,これまでの研究を通じて,上記手法では大きいKu等の記録媒体に必要な磁気特性を発現させるプロセスと望ましいサイズや結晶軸方向をもつ微粒子構造を実現するプロセスの両立が極めて困難であることが分かってきた。 However, since these materials do not have magnetic phase separation like CoCr alloys, granular thin films dispersed and precipitated in a nonmagnetic matrix, self-assembled fine particle arrays by chemical synthesis, fine particle arrays using island growth, etc. There has been much research to date. However, through the research so far, it is extremely difficult to achieve both the process for realizing the magnetic properties necessary for recording media such as large Ku and the process for realizing the fine particle structure with the desired size and crystal axis direction. I understand.

例えば,グラニュラー薄膜や化学合成による自己組織化微粒子では磁性粒子の磁気特性制御のための高温熱処理プロセスが必要となるが,この際に粒子同士の合体凝集による粗大化が避けられず,望ましい微粒子構造の制御ができない。   For example, granular thin films and self-assembled fine particles by chemical synthesis require a high-temperature heat treatment process to control the magnetic properties of the magnetic particles. In this case, coarsening due to coalescence and aggregation of particles is inevitable, and the desired fine particle structure Cannot be controlled.

このような問題点は,磁気特性の制御と微粒子形成を単一のプロセスで行っていること
に起因しており,両方の最適条件を同時に満足させるために膨大な労力が費やされてきたにも関わらず,上記の全ての要件を満たす結果は得られていない。もし,磁気特性の制御と微粒子形成のプロセスを独立に組み合わせて制御できれば,上記問題点を解消できることが期待される。
特許第3328692号
These problems are caused by the control of magnetic properties and the formation of fine particles in a single process, and enormous efforts have been expended to satisfy both optimum conditions simultaneously. Nevertheless, results that satisfy all the above requirements have not been obtained. If the control of magnetic properties and the process of particle formation can be controlled independently, it is expected that the above problems can be solved.
Japanese Patent No. 3328692

上記のように従来の技術では,磁気特性の制御と微粒子形成を同一のプロセスで制御していたため,高密度磁気記録媒体の実現に必要なそれぞれの特性を同時に満足させることが非常に困難という問題があった。   As described above, in the conventional technology, the control of magnetic characteristics and the formation of fine particles are controlled by the same process, so that it is very difficult to satisfy each characteristic necessary for realizing a high-density magnetic recording medium at the same time. was there.

本発明は,従来技術が抱えてきた上記の問題点を解消することを目的とし,磁気特性の制御と微粒子形成をそれぞれ独立に制御可能な磁性微粒子の製造方法を提供することを目的としている。   An object of the present invention is to solve the above-described problems of the prior art, and to provide a method for producing magnetic fine particles capable of independently controlling the control of magnetic properties and the formation of fine particles.

本発明によれば,磁気特性の制御と微粒子形成をそれぞれ独立に制御可能であることを特徴とする磁性微粒子の製造方法を提供することが出来る。これは,強磁性薄膜,若しくは非磁性層
/ 強磁性層の積層薄膜に高エネルギーイオンを照射することにより磁性微粒子を作製することを特徴としている。
According to the present invention, it is possible to provide a method for producing magnetic fine particles characterized in that the control of magnetic properties and the formation of fine particles can be independently controlled. This is a ferromagnetic thin film or non-magnetic layer
/ The magnetic fine particles are produced by irradiating high energy ions to the laminated thin film of the ferromagnetic layer.

また本発明は,前記強磁性薄膜ならびに非磁性薄膜を所定の基板上及び下地膜上に気相凝集法により1 nm ~ 1000 nmの範囲で堆積させたものであることを特徴とする磁性微粒子の製造方法を提供する。   Further, the present invention provides a magnetic fine particle characterized by depositing the ferromagnetic thin film and the nonmagnetic thin film on a predetermined substrate and an underlying film by vapor phase aggregation in the range of 1 nm to 1000 nm. A manufacturing method is provided.

また本発明は,前記強磁性層が,Cr, Mn, Fe, Co, 及びNiから選ばれる少なくとも1種の元素を含有することを特徴とする磁性微粒子の製造方法を提供する。   The present invention also provides a method for producing magnetic fine particles, wherein the ferromagnetic layer contains at least one element selected from Cr, Mn, Fe, Co, and Ni.

また本発明は,前記非磁性層が,III族からV族に含まれる半導体元素ならびにそれらの化合物,酸化物であることを特徴とする磁性微粒子の製造方法を提供する。   In addition, the present invention provides a method for producing magnetic fine particles, wherein the nonmagnetic layer is a semiconductor element contained in a group III to a group V, or a compound or oxide thereof.

また本発明は,前記高エネルギーイオン照射は,He, Ar, Kr, Xeから選ばれる少なくとも1種類の希ガスを含む単一若しくは混合ガスを電離することにより得られるイオンを用い,電圧100
V 〜 10 kVの範囲で加速することにより行われることを特徴とする磁性微粒子の製造方法を提供する。
In the present invention, the high energy ion irradiation uses ions obtained by ionizing a single or mixed gas containing at least one kind of rare gas selected from He, Ar, Kr, and Xe, and has a voltage of 100.
Provided is a method for producing magnetic fine particles, which is performed by accelerating in the range of V to 10 kV.

本発明によれば,イオンエッチングを用いることにより,磁気特性の制御と微粒子形成をそれぞれ独立に制御可能な磁性微粒子作製が可能であり,従来技術が抱えてきた本質的な問題点を解消し,高密度磁気記録媒体の作製に対してきわめて有効な微粒子作製技術を提供することができる。   According to the present invention, by using ion etching, it is possible to produce magnetic fine particles capable of independently controlling the control of magnetic properties and the formation of fine particles, eliminating the essential problems that the prior art has had, It is possible to provide a fine particle production technique that is extremely effective for the production of a high-density magnetic recording medium.

本発明者等は,高密度磁気記録媒体の作製において従来技術が抱えてきた本質的な問題点が,磁気特性の制御と微粒子形成を同時に行っていることが原因であることに着目し,これらを独立に制御できる技術の開発を目的として鋭意検討を重ねてきた。その過程において,従来から知られていた微細パターン作製技術の一つであるGaSb等の表面へのイオンエッチングを上手く活用することにより,上記目的の磁性微粒子作製が可能であるという着想を得た。   The present inventors have focused on the fact that the essential problems that the prior art has in the production of high-density magnetic recording media are caused by the simultaneous control of magnetic properties and fine particle formation. Has been intensively studied for the purpose of developing a technology that can control these independently. In the process, the idea that magnetic fine particles for the above-mentioned purpose can be produced by utilizing ion etching on the surface of GaSb or the like, which is one of the fine pattern production techniques known in the past, was obtained.

これは,III‐V族化合物半導体の一つであるGaSb薄膜表面に、数100 V程度で加速された高エネルギーイオン照射によるエッチングを施すことにより,数10
nm程度のドット状微細パターンが自己組織的に形成されるというものである。
This is achieved by etching the surface of a GaSb thin film, which is one of III-V compound semiconductors, with high-energy ion irradiation accelerated at about several hundred volts.
A dot-like fine pattern of about nm is formed in a self-organized manner.

まず磁性薄膜を所望の基板,若しくは下地上に形成し,その上にGaSb薄膜を堆積させた積層薄膜とする。その上からイオンエッチングを行うことにより,GaSb薄膜表面に自己組織化微細パターンが形成される。更にエッチングを進めることにより磁性薄膜にまでパターンが転写され,磁性薄膜の膜厚が充分に薄ければ,ドット部にのみ孤立した磁性微粒子が得られることになる。   First, a magnetic thin film is formed on a desired substrate or substrate, and a GaSb thin film is deposited thereon to form a laminated thin film. By performing ion etching from there, a self-organized fine pattern is formed on the surface of the GaSb thin film. Further, the pattern is transferred to the magnetic thin film by further etching, and if the magnetic thin film is sufficiently thin, magnetic fine particles isolated only at the dot portion can be obtained.

この手法では,形成される磁性微粒子の磁気特性や結晶軸の方向は,最初の磁性薄膜の特性がそのまま保持されるため,微細パターンの形成とは全く独立にこれら特性を制御することが可能となる。また微細パターンのサイズや間隔は,エッチング時のイオンエネルギーやイオン種で制御することができ,更に微細パターン形成層としてGaSb以外の材料を用いれば微細パターンの構造も制御できる。つまり,エッチング条件や微細パターン形成層の材料を適当に選ぶことにより所望のサイズならびに間隔を有する磁性微粒子を得ることが出来る。   In this method, the magnetic properties and crystal axis direction of the magnetic particles to be formed retain the properties of the first magnetic thin film, and can be controlled completely independently of the formation of the fine pattern. Become. Further, the size and interval of the fine pattern can be controlled by ion energy and ion species at the time of etching, and the structure of the fine pattern can be controlled by using a material other than GaSb as the fine pattern formation layer. That is, magnetic fine particles having a desired size and interval can be obtained by appropriately selecting the etching conditions and the material of the fine pattern forming layer.

以上に述べたような磁性微粒子の形成は,微細パターン形成層として現在のところGaSbを用いた場合に最も明瞭な粒子構造が得られたが,それ以外にもエッチング条件を最適化することによりInSb,Si,GeなどのIII族からV族に含まれる半導体元素ならびにそれらの化合物,更にはSiO2,
Al2O3などの酸化物系でも可能であった。
The formation of magnetic fine particles as described above has the clearest particle structure when GaSb is used as a fine pattern formation layer. However, by optimizing the etching conditions, InSb , Si, Ge and other Group III to Group V semiconductor elements and their compounds, as well as SiO 2 ,
It was possible even with oxides such as Al 2 O 3 .

エッチングに用いるイオン種は,Ar, Kr, Xeなどの希ガスを用いることができ,照射時のイオンエネルギーの大きさを変えることが可能であり,また,微細パターン形成層に用いる材料を選ぶことにより,形成される磁性微粒子の大きさを制御することができる。即ち,原子番号の大きな希ガス若しくは大きなイオンエネルギーにおいて,磁性微粒子は大きくなる様子が確認できた。   As the ion species used for etching, rare gases such as Ar, Kr, and Xe can be used. The ion energy during irradiation can be changed, and the material used for the fine pattern formation layer should be selected. Thus, the size of the formed magnetic fine particles can be controlled. That is, it was confirmed that the magnetic fine particles became large in a rare gas having a large atomic number or a large ion energy.

このようなイオンエッチングによる微細パターン形成は拡散反応過程と呼ばれる現象の一種と理解されているが,その詳細なメカニズムは現在までに十分に明らかにはされていない。   Such fine pattern formation by ion etching is understood as a kind of phenomenon called diffusion reaction process, but its detailed mechanism has not been clarified enough to date.

そのため,どの材料で微細パターンが形成され易いか,また更に細かなパターン形成へのアプローチなどは経験的な積み重ねを要する。非磁性の微細パターン形成層を用いることなく磁性薄膜に直接イオンエッチングを施すことにより微細パターンが形成されればプロセスを簡単にすることができる。   For this reason, it is necessary to empirically accumulate in which material fine patterns are easily formed and approaches to finer pattern formation. If a fine pattern is formed by directly performing ion etching on a magnetic thin film without using a nonmagnetic fine pattern forming layer, the process can be simplified.

ガラス基板上に形成したFe, Co, Ni膜ならびにg‐Fe2O3などの酸化物で検討した結果,その効果は確認することが出来た。 As a result of examining Fe, Co, Ni films formed on glass substrates and oxides such as g-Fe 2 O 3 , the effect was confirmed.

以下,本発明を実施例により説明する。   Hereinafter, the present invention will be described by way of examples.

ガラス基板上に、直流マグネトロンスパッタにより,室温で膜厚10 nmのGaSbを非磁性シード層として形成し,その上に強磁性層としてFePtを1 nm形成し,更に微細パターン形成層としてGaSbを100
nm形成した。
On a glass substrate, a 10 nm-thick GaSb film is formed as a nonmagnetic seed layer at room temperature by DC magnetron sputtering, and 1 nm of FePt is formed thereon as a ferromagnetic layer, and 100 GaSb is formed as a fine pattern formation layer.
nm formed.

またFePt / GaSb界面には,相互拡散防止層として1
nm程度のPt層を挿入してある。微細パターン形成の様子は原子間力顕微鏡(AFM)で観察した。イオン種にはArを用い,加
速電圧 1 kV,イオン入射束〜 1〜1014 cm-2s-1の条件でエッチングを行った。このときのGaSbのエッチングレートは 〜 0.055 nm/sであった。
In addition, the FePt / GaSb interface has 1
A Pt layer of about nm is inserted. The state of fine pattern formation was observed with an atomic force microscope (AFM). The ion species was Ar, and etching was performed under the conditions of an acceleration voltage of 1 kV and an ion incident flux of 1 to 10 14 cm -2 s -1 . The etching rate of GaSb at this time was ˜0.055 nm / s.

イオンエッチング前の表面形態は非常に平滑であったが,数100秒程度のイオンエッチングを施すことにより微細パターン形成層であるGaSb表面に直径50 nm程度のドット状微細パターンの形成が明瞭に確認できた。GaSb層がほぼエッチングされ,強磁性層に達した領域でも同様のドット状微細パターンが残っており,強磁性層に微細パターンが転写されている様子が確認できた。このときのAFM像を図に示す。   The surface morphology before ion etching was very smooth, but the formation of a dot-like fine pattern with a diameter of about 50 nm was clearly confirmed on the surface of GaSb, which is a fine pattern formation layer, by performing ion etching for several hundred seconds. did it. The GaSb layer was almost etched, and the same dot-like fine pattern remained even in the region that reached the ferromagnetic layer, confirming that the fine pattern was transferred to the ferromagnetic layer. The AFM image at this time is shown in the figure.

エッチング後の磁気特性は,エッチング前と全く変っておらず,イオンダメージなどの影響は見られない。すなわち,微粒子形成は磁気特性に影響を及ぼすことなく行われたことが実証できた。次に,イオン種としてAr, Kr, Xeと変えた場合,ならびに加速電圧を500 Vから2
kVまで変えた場合に形成される磁性微粒子のサイズを表1にまとめた。
The magnetic characteristics after the etching are not changed at all and the influence of ion damage or the like is not seen. That is, it was proved that the fine particle formation was performed without affecting the magnetic properties. Next, when the ion species are changed to Ar, Kr, and Xe, the acceleration voltage is changed from 500 V to 2
Table 1 summarizes the size of the magnetic fine particles formed when changing to kV.

本発明に係る磁性微粒子の製造方法は,高密度磁気記録媒体に関する基盤技術として利用できる。   The method for producing magnetic fine particles according to the present invention can be used as a basic technology for high-density magnetic recording media.

また本発明によって製造された磁性微粒子は,高密度磁気記録媒体だけでなく,マイクロマシンやマイクロセンサー用の高性能な薄膜磁石としても広く用いることが出来る。   The magnetic fine particles produced by the present invention can be widely used not only as a high-density magnetic recording medium but also as a high-performance thin film magnet for micromachines and microsensors.

本発明の実施の形態にあるイオンエッチング後の原子間力顕微鏡像である。(観察エリア 500 nm〜500 nm)It is an atomic force microscope image after ion etching in an embodiment of the present invention. (Observation area 500 nm to 500 nm)

Claims (5)

強磁性薄膜,若しくは非磁性層 / 強磁性層の積層薄膜に高エネルギーイオンを照射することにより磁性微粒子を作製する方法。 A method for producing magnetic fine particles by irradiating a ferromagnetic thin film or a non-magnetic layer / ferromagnetic layer thin film with high energy ions. 前記強磁性薄膜ならびに非磁性薄膜は,所定の基板上及び下地膜上に気相凝集法により1nm〜1000nmの範囲で堆積させたものであることを特徴とする請求項1に記載の磁性微粒子の製造方法。 2. The magnetic fine particle according to claim 1, wherein the ferromagnetic thin film and the nonmagnetic thin film are deposited in a range of 1 nm to 1000 nm by a vapor phase aggregation method on a predetermined substrate and an underlying film. Production method. 前記強磁性層が,Cr, Mn, Fe, Co, 及びNiから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1に記載の磁性微粒子の製造方法。 2. The method for producing magnetic fine particles according to claim 1, wherein the ferromagnetic layer contains at least one element selected from Cr, Mn, Fe, Co, and Ni. 前記非磁性層が,III族からV族に含まれる半導体元素ならびにそれらの化合物,酸化物であることを特徴とする請求項1に記載の磁性微粒子の製造方法。 2. The method for producing magnetic fine particles according to claim 1, wherein the nonmagnetic layer is a semiconductor element contained in group III to group V, or a compound or oxide thereof. 前記高エネルギーイオン照射は,He, Ar, Kr, Xeから選ばれる少なくとも1種類の希ガスを含む単一若しくは混合ガスを電離することにより得られるイオンを用い,電圧100V〜10
kVの範囲で加速することにより行われることを特徴とする請求項1に記載の磁性微粒子の製造方法。
The high energy ion irradiation uses ions obtained by ionizing a single or mixed gas containing at least one kind of rare gas selected from He, Ar, Kr, and Xe, and has a voltage of 100V to 10V.
2. The method for producing magnetic fine particles according to claim 1, wherein the method is carried out by accelerating in the range of kV.
JP2004269191A 2004-09-16 2004-09-16 Magnetic fine particles manufacturing method Pending JP2006086317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269191A JP2006086317A (en) 2004-09-16 2004-09-16 Magnetic fine particles manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269191A JP2006086317A (en) 2004-09-16 2004-09-16 Magnetic fine particles manufacturing method

Publications (1)

Publication Number Publication Date
JP2006086317A true JP2006086317A (en) 2006-03-30

Family

ID=36164571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269191A Pending JP2006086317A (en) 2004-09-16 2004-09-16 Magnetic fine particles manufacturing method

Country Status (1)

Country Link
JP (1) JP2006086317A (en)

Similar Documents

Publication Publication Date Title
US7067207B2 (en) Magnetic recording medium having a patterned soft magnetic layer
US6383597B1 (en) Magnetic recording media with magnetic bit regions patterned by ion irradiation
JP3816911B2 (en) Magnetic recording medium
KR100776383B1 (en) Enhanced sputter target alloy compositions
JP2006147148A (en) Magnetic recording medium
JP2004362746A (en) Magnetic recording medium, magnetic storage device, and method of producing magnetic recording medium
JP2006351164A (en) Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JP2001273622A (en) Nanogranular thin film and magnetic recording medium
JP4069205B2 (en) Method for manufacturing magnetic recording medium
KR20030095218A (en) A perpendicular magnetic memory medium, a manufacturing method thereof, and a magnetic memory storage
JP2006086317A (en) Magnetic fine particles manufacturing method
JP2002163819A (en) Information recording medium and information recording device using the same
JP4621899B2 (en) Magnetic media
JP2002133635A (en) Information recording medium and information recording device
JP2001202611A (en) Magnetic recording medium, method for producing same and information reproducing devce
JP2007102833A (en) Perpendicular magnetic recording medium
JP2003289005A (en) Manufacturing method for highly oriented magnetic thin film
JP4590600B2 (en) Magnetizable magnetic thin film structure and manufacturing method thereof
JP2853923B2 (en) Soft magnetic alloy film
JP2011081873A (en) Recording layer for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for manufacturing ferromagnetic metal film
Choi et al. Control of MH loop shape in perpendicular recording media by ion implantation
Zana et al. Electrodeposited Co-Pt permanent micromagnet arrays on Cu [111]-Si [110] substrates
Zhou Development of L1 0-Ordered FePt Thin Film for Magnetic Recording Application