JP2006082163A - Dimple forming method and dimple forming device - Google Patents

Dimple forming method and dimple forming device Download PDF

Info

Publication number
JP2006082163A
JP2006082163A JP2004267766A JP2004267766A JP2006082163A JP 2006082163 A JP2006082163 A JP 2006082163A JP 2004267766 A JP2004267766 A JP 2004267766A JP 2004267766 A JP2004267766 A JP 2004267766A JP 2006082163 A JP2006082163 A JP 2006082163A
Authority
JP
Japan
Prior art keywords
workpiece
dimple processing
dimple
processing method
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004267766A
Other languages
Japanese (ja)
Other versions
JP4460981B2 (en
Inventor
Takashi Ogawara
孝 大河原
Jiro Ozono
次郎 尾園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2004267766A priority Critical patent/JP4460981B2/en
Publication of JP2006082163A publication Critical patent/JP2006082163A/en
Application granted granted Critical
Publication of JP4460981B2 publication Critical patent/JP4460981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimple forming method which dispenses with pre-treatment and after-treatment, dispenses with a high energy source, and is implemented with high efficiency and high accuracy by a very simple device structure, and to provide a dimple forming device. <P>SOLUTION: According to the dimple forming method, an oscillator 5 is arranged near a surface of a workpiece 7 which is formed of a metallic or a nonmetallic material, via a liquid 9, and the oscillator 5 is subjected to high frequency oscillation, to thereby generate fine cavitation bubbles in the liquid. By virtue of an action of shock waves generated at the time of collapse of the cavitation bubbles, a large number of dimples are formed in the surface of the workpiece due to plastic deformation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、キャビテーション泡の崩壊時に発生する衝撃波を利用して、被加工物の表面に微細な凹部を形成するディンプル加工方法およびディンプル加工装置に関する。   The present invention relates to a dimple processing method and a dimple processing apparatus for forming a fine recess on a surface of a workpiece by using a shock wave generated when a cavitation bubble collapses.

例えば車両の動力伝達用コネクティングロッドの軸受のように、軸受面圧が高い軸受装置においては、摺動面の狭い空間に対し、いかに潤滑油を効果的に保持するかが重要なポイントとなっている。   For example, in bearing devices with high bearing surface pressure, such as bearings for connecting rods for power transmission in vehicles, it is an important point how to effectively retain lubricating oil in a narrow space on the sliding surface. Yes.

従来では、きさげ仕上げなどによって軸受摺動面に微細な窪み(凹部)を多数加工し、その窪みに潤滑油を保持させ、軸と軸受摺動面との摩擦抵抗を少なくする工夫がなされてきた。   Conventionally, a number of fine depressions (recesses) are formed on the bearing sliding surface by scraping finish, etc., and lubricating oil is held in the depressions, so that the frictional resistance between the shaft and the bearing sliding surface is reduced. It was.

しかし、これらの加工は、人間の手作業によるところが多く、また、熟練作業者のカンに頼るところが大きいため、一部の機械の適用に留まっている。   However, these processes are often performed manually by humans, and rely heavily on the skillful workers' cans, so that only some machines are applicable.

一方、近年においては、機械的手段によって被加工物の表面に凹部を形成するディンプル加工方法が種々開発されており、例えばサンドブラスト、あるいは鋼球やセラミックス球を用いたショットピーニングによって、軸受摺動部材の表面にディンプル加工を施す方法が提案されている(例えば、特許文献1〜3参照)。また、同様の加工をレーザパルスの照射によって行う方法も提案されている(例えば、特許文献4参照)。
特開2003−184883号公報 特開2003−42153号公報 特開2001−205394号公報 特開2002−103064号公報
On the other hand, in recent years, various dimple processing methods for forming concave portions on the surface of a workpiece by mechanical means have been developed. For example, a bearing sliding member by sand blasting or shot peening using a steel ball or a ceramic ball. There has been proposed a method of performing dimple processing on the surface of the film (see, for example, Patent Documents 1 to 3). A method of performing similar processing by laser pulse irradiation has also been proposed (see, for example, Patent Document 4).
JP 2003-184883 A JP 2003-42153 A JP 2001-205394 A JP 2002-103064 A

上述したサンドブラスト、あるいは鋼球やセラミックス球を用いたショットピーニングによるディンプル加工においては、鋼球やセラミックス球等の加工素材を多量に必要とし、その材料コストが必要となるだけでなく、鋼球やセラミックス球を準備するための前処理工程に多くの手間を必要とする。しかも、加工後においては仕上げ処理を必要とするほか、鋼球やセラミックス球等の材料廃棄等の後処理工程にも多くの手間を要するうえ、一旦使用した鋼球やセラミックス球等の加工素材は再使用できず、不経済である等の難点もある。   In dimple processing by shot peening using the above-mentioned sand blasting or steel balls or ceramic balls, a large amount of processing materials such as steel balls or ceramic balls are required, and not only the material cost is required, but also steel balls and A lot of labor is required for the pretreatment process for preparing the ceramic balls. Moreover, after processing, finishing treatment is required, and post-processing steps such as disposal of materials such as steel balls and ceramic balls require a lot of work, and once used processing materials such as steel balls and ceramic balls are used. There are also disadvantages that it cannot be reused and is uneconomical.

また、レーザパルスの照射によるディンプル加工方法では、極めて高いエネルギ源を必要とし、さらに加工範囲の制約等を受けたり、作業に高度の技術を要する等の難点がある。   In addition, the dimple processing method using laser pulse irradiation requires a very high energy source, and further suffers from limitations on the processing range and the like, and requires advanced techniques for work.

本発明は、このような事情に鑑みてなされたもので、鋼球やセラミックス球を用いたショットピーニングのような前処理や後処理を必要とすることなく、またレーザパルスの照射によるディンプル加工方法のような高エネルギ源も必要とすることなく、極めて簡易な装置構成によって、高能率かつ高精度のディンプル加工を行うことができるディンプル加工方法およびディンプル加工装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and does not require pre-processing or post-processing such as shot peening using steel balls or ceramic balls, and is a dimple processing method by laser pulse irradiation. An object of the present invention is to provide a dimple processing method and a dimple processing apparatus capable of performing high-efficiency and high-precision dimple processing with an extremely simple apparatus configuration without requiring such a high energy source.

前記の目的を達成するため、請求項1に係る発明では、金属または非金属からなる物質により構成された被加工物の表面に液体を介在させて振動体を近接配置し、前記振動体を高周波振動させることにより前記液体中に微細なキャビテーション泡を発生させ、このキャビテーション泡の崩壊時における衝撃波の作用により、前記被加工物の表面に塑性変形による多数の凹部を形成するディンプル加工方法を提供する。   In order to achieve the above object, according to the first aspect of the present invention, a vibrating body is disposed close to a surface of a workpiece made of a substance made of a metal or a non-metal with a liquid interposed therebetween, and the vibrating body is placed at a high frequency. Provided is a dimple processing method for generating fine cavitation bubbles in the liquid by oscillating and forming a large number of recesses due to plastic deformation on the surface of the workpiece by the action of a shock wave when the cavitation bubbles collapse. .

請求項2に係る発明では、前記振動体を超音波領域にて振動させるディンプル加工方法を提供する。   The invention according to claim 2 provides a dimple processing method for vibrating the vibrating body in an ultrasonic region.

請求項3に係る発明では、前記振動体を凹形または凸形のコマとし、このコマと前記被加工物の表面との問に発生する衝撃波を、前記コマと前記被加工物の表面との聞にて反射させるディンプル加工方法を提供する。   In the invention according to claim 3, the vibrating body is a concave or convex piece, and a shock wave generated between the piece and the surface of the workpiece is detected between the piece and the surface of the workpiece. A dimple processing method that reflects the sound is provided.

請求項4に係る発明では、前記コマと前記被加工物の表面との間に介在させる液体として、水もしくは水溶液を使用するディンプル加工方法を提供する。   The invention according to claim 4 provides a dimple processing method using water or an aqueous solution as a liquid interposed between the top and the surface of the workpiece.

請求項5に係る発明では、被加工物の表面とコマとの間隔を10mm以下とするディンプル加工方法を提供する。   In the invention which concerns on Claim 5, the dimple processing method which makes the space | interval of the surface of a workpiece and a frame | top | piece 10 mm or less is provided.

請求項6に係る発明では、前記被加工物を固定し、前記コマを複数の方向から加振させるディンプル加工方法を提供する。   The invention according to claim 6 provides a dimple processing method in which the workpiece is fixed and the top is vibrated from a plurality of directions.

請求項7に係る発明では、前記被加工物を振動可能な台に固定し、前記コマと前記台とを高周波で加振させるディンプル加工方法を提供する。   In the invention which concerns on Claim 7, the said to-be-processed object is fixed to the stand which can be vibrated, and the dimple processing method which vibrates the said top and the said stand at a high frequency is provided.

請求項8に係る発明では、高周波振動を発生させる高周波振動発生装置と、この高周波振動発生装置に連結して高周波振動するコマと、前記高周波振動発生装置および前記コマを支持し、前記コマの一面を前記被加工物の表面に間隙を有して対向する位置に配置させる支持装置と、少なくとも前記コマと前記被加工物との隙間に液体を介在させる液体保持装置とを備えたディンプル加工装置を提供する。   In the invention according to claim 8, a high-frequency vibration generator that generates high-frequency vibration, a piece that is coupled to the high-frequency vibration generator and vibrates at high frequency, the high-frequency vibration generator and the piece are supported, and one surface of the piece A dimple processing apparatus comprising: a support device that disposes a surface of the workpiece at a position facing each other with a gap; and a liquid holding device that interposes a liquid in at least a gap between the top and the workpiece. provide.

請求項9に係る発明では、前記高周波振動発生装置は、超磁歪材料または圧電型セラミックス材料を用いて構成した振動部を有するディンプル加工装置を提供する。   In the invention according to claim 9, the high frequency vibration generator provides a dimple processing apparatus having a vibration part configured using a giant magnetostrictive material or a piezoelectric ceramic material.

請求項10に係る発明では、前記コマは、キャビテーション泡にて壊食されにくい高硬度材料により構成されているディンプル加工装置を提供する。   In the invention which concerns on Claim 10, the said top provides the dimple processing apparatus comprised with the high hardness material which is hard to be eroded by a cavitation bubble.

請求項11に係る発明では、前記コマは、前記被加工物の表面形状に対応する平坦面、もしくは前記被加工物の表面の曲率と同程度の曲率をもつ曲面を有するディンプル加工装置を提供する。   According to an eleventh aspect of the present invention, there is provided a dimple processing apparatus in which the top has a flat surface corresponding to the surface shape of the workpiece or a curved surface having a curvature comparable to the curvature of the surface of the workpiece. .

本発明によれば、金属または非金属からなる物質により構成された被加工物の表面に液体を介在させて振動体を近接配置し、この振動体を多次元で高周波振動させることによりキャビテーション作用を行わせ、被加工物の表面に多数の凹部を形成するので、鋼球やセラミックス球を用いたショットピーニングのような前処理や後処理を必要とすることなく、またレーザパルスの照射によるディンプル加工方法のような高エネルギ源も必要とすることなく、極めて簡易な装置構成によって、高能率かつ高精度のディンプル加工を行うことができる。   According to the present invention, a vibrating body is disposed close to a surface of a workpiece made of a substance made of a metal or a non-metal with a liquid interposed therebetween, and the vibrating body is caused to vibrate at a high frequency in a multidimensional manner. Since many concave parts are formed on the surface of the workpiece, dimple processing by laser pulse irradiation without the need for pre-processing and post-processing such as shot peening using steel balls and ceramic balls High-efficiency and high-precision dimple processing can be performed with an extremely simple apparatus configuration without requiring a high energy source as in the method.

以下、本発明に係るディンプル加工方法およびディンプル加工装置の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a dimple processing method and a dimple processing apparatus according to the present invention will be described with reference to the drawings.

[第1実施形態](図1〜図4)
図1は、本発明の第1実施形態によるディンプル加工装置を示す構成図であり、図2は、ディンプル加工装置の作用部の説明図である。図3は、キャビテーションによるディンプル加工作用を示す説明図であり、図4は、ディンプル加工による施工面の状態を示す説明図である。
First Embodiment (FIGS. 1 to 4)
FIG. 1 is a configuration diagram showing a dimple processing apparatus according to a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of an action part of the dimple processing apparatus. FIG. 3 is an explanatory view showing a dimple processing action by cavitation, and FIG. 4 is an explanatory view showing a state of a construction surface by dimple processing.

まず、図1により本実施形態のディンプル加工装置1の構成を概略的に説明する。このディンプル加工装置1は、例えば縦方向(y軸方向)の高周波振動を発生させる第1の高周波振動発生装置2と、横方向(x軸方向)の高周波振動を発生させる第2の高周波振動発生装置4とを備えている。   First, the configuration of the dimple processing apparatus 1 of the present embodiment will be schematically described with reference to FIG. The dimple processing apparatus 1 includes, for example, a first high-frequency vibration generating device 2 that generates high-frequency vibration in the vertical direction (y-axis direction) and a second high-frequency vibration generation that generates high-frequency vibration in the horizontal direction (x-axis direction). Device 4.

これら第1、第2の高周波振動発生装置2,4は、それぞれ高周波コイル2a,4aと、超磁歪材料または圧電型セラミックス材料を用いて構成した振動部としての振動子2b、4bとを有し、高周波電源装置3から電線3a,3bを介して供給される高周波電流によって高周波振動する構成とされている。   These first and second high-frequency vibration generators 2 and 4 have high-frequency coils 2a and 4a, respectively, and vibrators 2b and 4b as vibration parts configured using a giant magnetostrictive material or a piezoelectric ceramic material. The high frequency power supply device 3 is configured to vibrate at a high frequency by a high frequency current supplied via the electric wires 3a and 3b.

第1、第2の高周波振動発生装置2,4には、それぞれ縦方向(y軸方向)の軸2cおよび横方向(x軸方向)の軸4cがそれぞれ設けられ、これらの軸2c,4cは連結ピン2eを有する連結部2dにより互に連結され、これにより多次元動作、例えば縦横方向(x、y方向)の合成された振動を出力できるようになっている。   The first and second high-frequency vibration generators 2 and 4 are each provided with a longitudinal axis (y-axis direction) 2c and a lateral (x-axis direction) axis 4c. These axes 2c and 4c are respectively They are connected to each other by a connecting portion 2d having a connecting pin 2e, so that a multi-dimensional operation, for example, a combined vibration in the vertical and horizontal directions (x and y directions) can be output.

また、第1、第2の高周波振動発生装置2,4には、それぞれ縦方向の軸2cおよび横方向の軸4cを介して連結されて高周波振動する振動体としてコマ5が備えられている。このコマ5は、後述するキャビテーション泡にて壊食されにくい高硬度材料により構成されている。そして、コマ5は被加工物7の表面形状に対応する平坦面、もしくは被加工物7の表面の曲率と同程度の曲率をもつ曲面を有している。   The first and second high-frequency vibration generators 2 and 4 are each provided with a top 5 as a vibrating body that is coupled via a longitudinal axis 2c and a lateral axis 4c to vibrate at high frequency. The top 5 is made of a high-hardness material that is not easily eroded by cavitation bubbles, which will be described later. The top 5 has a flat surface corresponding to the surface shape of the workpiece 7 or a curved surface having a curvature similar to the curvature of the surface of the workpiece 7.

さらに、高周波振動発生装置1,4およびコマ5を支持し、コマ5の一面を被加工物7の表面に間隙を有して対向する位置に配置させる支持装置14、15と、少なくともコマ5と被加工物7との隙間に液体である清水9を介在させる液体保持装置としての水槽8とが備えられている。   Furthermore, supporting devices 14 and 15 for supporting the high-frequency vibration generators 1 and 4 and the top 5 and arranging one surface of the top 5 at a position facing the surface of the workpiece 7 with a gap, and at least the top 5 A water tank 8 is provided as a liquid holding device in which clear water 9 as a liquid is interposed in a gap with the workpiece 7.

以下、詳述する。第1の高周波振動発生装置2には、高周波コイル2aと振動子2bとが内包されており、高周波コイル2aには高周波電源装置3から高周波電流が供給される。高周波コイル2aに供給された高周波電流は高周波コイル2aにて高周波の交番磁界に変換され、振動子2bに交番磁界が付与され、振動子2bを高周波にて上下方向(y方向)に伸縮運動させるようになっている。振動子2bには、垂直下方に伸びる縦軸2cが固接されており、振動子2bの交番振動が直接縦軸2cに伝達される。   Details will be described below. The first high-frequency vibration generator 2 includes a high-frequency coil 2 a and a vibrator 2 b, and a high-frequency current is supplied from the high-frequency power supply device 3 to the high-frequency coil 2 a. The high-frequency current supplied to the high-frequency coil 2a is converted into a high-frequency alternating magnetic field by the high-frequency coil 2a, the alternating magnetic field is applied to the vibrator 2b, and the vibrator 2b expands and contracts in the vertical direction (y direction) at high frequency. It is like that. A vertical axis 2c extending vertically downward is fixed to the vibrator 2b, and the alternating vibration of the vibrator 2b is directly transmitted to the vertical axis 2c.

第2の高周波振動発生装置4には、高周波コイル4aと振動子4bとが内包されており、高周波コイル4aには高周波電源装置3から高周波電流が供給される。高周波コイル4aに供給された高周波電流は高周波コイル4aにて高周波の交番磁界に変換され、振動子4bに交番磁界が付与され、振動子4bを高周波にて横方向(x方向)に伸縮運動させるようになっている。振動子4bには、横方向に伸びる横軸4cが固接されており、振動子4bの交番振動が直接横軸4cに伝達される。この横軸4cの先端が、縦軸2cの中間に設けられた連結部2dにおいて、連結ピン2eを介して回転自在に連結されている。   The second high-frequency vibration generator 4 includes a high-frequency coil 4 a and a vibrator 4 b, and a high-frequency current is supplied from the high-frequency power supply device 3 to the high-frequency coil 4 a. The high-frequency current supplied to the high-frequency coil 4a is converted into a high-frequency alternating magnetic field by the high-frequency coil 4a, an alternating magnetic field is applied to the vibrator 4b, and the vibrator 4b expands and contracts in the lateral direction (x direction) at high frequency. It is like that. A horizontal axis 4c extending in the horizontal direction is fixed to the vibrator 4b, and the alternating vibration of the vibrator 4b is directly transmitted to the horizontal axis 4c. The tip of the horizontal axis 4c is rotatably connected via a connecting pin 2e at a connecting portion 2d provided in the middle of the vertical axis 2c.

縦軸2cの先端部(下端部)には、コマ5が強固に固接されている。コマ5は、例えば上半が直方体状で、かつ下半が横向き半円柱状とされている。このコマ5に対し、第1の高周波振動発生装置2は上下方向の振動を印加し、第2の高周波振動発生装置4は、水平方向の振動を印加する。すなわち、コマ5は、両高周波振動発生装置2,4により、多次元振動を行う。   The frame 5 is firmly fixed to the tip (lower end) of the vertical axis 2c. The top 5 has, for example, a rectangular parallelepiped shape in the upper half and a horizontal semi-cylindrical shape in the lower half. The first high frequency vibration generator 2 applies vertical vibrations to the top 5, and the second high frequency vibration generator 4 applies horizontal vibrations. That is, the top 5 performs multi-dimensional vibration by both the high-frequency vibration generators 2 and 4.

コマ5は清水9を満たした水槽8に浸漬されている。そして、上下振動と水平振動を付与されたコマ5は、隙間を有して設置・固定された被加工物7に対して上下振動と水平振動を行う。これに対し、被加工物7は、例えばコマ5の下面に対応する形状、すなわち半円筒状のものであり、支持装置16により水槽8内に凹面側を上向きとして支持されるとともに、上端縁部が保持部材17により、下方に向って押圧保持されている。なお、保持部材17は、図示省略の保持機構により、被加工物7を強固に、かつ着脱可能に保持することができる。   The top 5 is immersed in a water tank 8 filled with fresh water 9. The top 5 to which the vertical vibration and the horizontal vibration are applied performs the vertical vibration and the horizontal vibration with respect to the workpiece 7 that is installed and fixed with a gap. On the other hand, the workpiece 7 has, for example, a shape corresponding to the lower surface of the top 5, that is, a semi-cylindrical shape, and is supported by the support device 16 with the concave surface side facing upward in the water tank 8. Is held downward by the holding member 17. The holding member 17 can hold the workpiece 7 firmly and detachably by a holding mechanism (not shown).

このような状態で、第1、第2の高周波振動発生装置2、4により発生する高周波振動によってコマ5がx、y方向に振動すると、被加工物7の上向き内面側の凹状をなす施工面7aと、コマ5の下端面との空間部において、キャビテーション泡が発生および崩壊を繰り返して行われ、泡の崩壊時に大きな衝撃波を発生させる。この作用を、図2に示したキャビテーション泡の発生部の拡大図を参照して説明する。   In this state, when the top 5 vibrates in the x and y directions due to the high frequency vibration generated by the first and second high frequency vibration generators 2 and 4, the construction surface forms a concave shape on the upward inner surface side of the workpiece 7. Cavitation bubbles are repeatedly generated and collapsed in the space between 7a and the lower end surface of the top 5, and a large shock wave is generated when the bubbles collapse. This operation will be described with reference to the enlarged view of the cavitation bubble generating part shown in FIG.

図2において、キャビテーション泡6は、コマ5と被加工物7の施工面7aとの間に設けられた狭隘な空間部に発生する。上下方向(y方向)の振動の振幅と、水平方向(x方向)の振幅と位相を適当な値に調整することにより、コマ5のキャビテーション発生面5aは施工面7aに対して垂直に高周波にて振動することができる。施工面7aに対してキャビテーション発生面を垂直に振動させることにより、微細なキャビテーション泡6を狭隘な空間部に多量に発生させることができる。   In FIG. 2, the cavitation bubbles 6 are generated in a narrow space provided between the top 5 and the work surface 7 a of the workpiece 7. By adjusting the amplitude of vibration in the vertical direction (y direction) and the amplitude and phase in the horizontal direction (x direction) to appropriate values, the cavitation generating surface 5a of the top 5 has a high frequency perpendicular to the construction surface 7a. Can vibrate. By vibrating the cavitation generating surface perpendicular to the construction surface 7a, a large amount of fine cavitation bubbles 6 can be generated in a narrow space.

なお、キャビテーション泡6の崩壊時における衝撃波の圧力は数百MPaにも達する。そこで、施工面7a以外でキャビテーション泡6による壊食を防止するため、コマ5の上側部である非キャビテーション発生部であるコマ外周部5b,5dにはキャビテーション泡6が発生しにくい弾力性のあるゴムなどによる被覆が施されている。また、コマ5には、被加工物7に対する非施工面である箇所には大きな空間部5cが設けられ、キャビテーション泡6が発生しにくい非キャビテーション発生部とされている。次に、図3により、キャビテーション泡6とその衝撃波の作用原理について説明する。   Note that the pressure of the shock wave when the cavitation bubbles 6 collapse reaches several hundred MPa. Therefore, in order to prevent erosion due to the cavitation bubbles 6 other than the construction surface 7a, the outer peripheral portions 5b and 5d, which are the non-cavitation generation portions that are the upper portions of the top 5, have elasticity in which the cavitation bubbles 6 are not easily generated. Covered with rubber or the like. In addition, the top 5 is provided with a large space 5c in a portion that is a non-working surface with respect to the workpiece 7, and is a non-cavitation generating portion in which the cavitation bubbles 6 are not easily generated. Next, the principle of action of the cavitation bubble 6 and its shock wave will be described with reference to FIG.

図3において、コマ5のキャビテーション発生部5aと被加工物7の施工面7aが清水9により満たされ、ギャップaの距離を保って狭隘な空間部が形成されている。今、ギャップaが10mm以下の微少な間隙を保った状態でキャビテーション発生部5aが上方に瞬時に移動すると、キャビテーション発生部5aの表面は瞬間的に負圧となり、清水9の飽和蒸気圧以下の圧力場が形成され、キャビテーション泡6としての微細な泡が発生する。   In FIG. 3, the cavitation generating part 5a of the top 5 and the construction surface 7a of the workpiece 7 are filled with fresh water 9, and a narrow space part is formed while maintaining the distance of the gap a. Now, when the cavitation generating part 5a instantaneously moves upward while maintaining a minute gap of 10 mm or less in the gap a, the surface of the cavitation generating part 5a instantaneously becomes a negative pressure, which is below the saturated vapor pressure of the fresh water 9 A pressure field is formed, and fine bubbles as cavitation bubbles 6 are generated.

次に、キャビテーション発生部5aが下方に瞬時に移動すると、発生していたキャビテーション泡6が圧力により崩壊する。この時、数百MPaに達する衝撃波6aが発生する。このとき、発生する衝撃波6aは距離が大きくなるに従って拡散、減衰されるため、数十mm離れた施工面に対しては、ほとんど衝撃波としての作用を及ぼさないが、ギャップaを10mmから数百μmの値にすると、キャビテーション泡6の崩壊によって生じた衝撃波6aは他のキャビテーション泡と相互に作用しながら衝撃波を発生し、その一部はキャビテーション発生面5aと施工面7aの間を反射を繰り返す。すなわち、本実施形態では、コマ5と被加工物7の表面との問に発生する衝撃波6aを、コマ5と被加工物7の表面との聞にて反射させる。   Next, when the cavitation generating unit 5a instantaneously moves downward, the generated cavitation bubbles 6 are collapsed by pressure. At this time, a shock wave 6a reaching several hundred MPa is generated. At this time, since the generated shock wave 6a is diffused and attenuated as the distance increases, it hardly acts as a shock wave on the construction surface separated by several tens of mm, but the gap a is changed from 10 mm to several hundred μm. The shock wave 6a generated by the collapse of the cavitation bubble 6 generates a shock wave while interacting with other cavitation bubbles, and a part of the wave repeatedly reflects between the cavitation generation surface 5a and the construction surface 7a. That is, in the present embodiment, the shock wave 6 a generated between the top 5 and the surface of the workpiece 7 is reflected at the boundary between the top 5 and the surface of the workpiece 7.

キャビテーション泡6を狭い空間で高密度に発生させると、この傾向は顕著に表れる。これにより、キャビテーション泡6にて生じた衝撃波6aを施工面7aの表面に作用させることにより、施工面7aの表面を衝撃波により塑性変形させ、施工面7aの表面に微細な凹凸を多数生じさせる。被加工物7の材質や硬さと所要の硬化深さにより、第1の高周波振動発生装置2と第2の高周波振動発生装置4との振動数と、ストロークおよび位相を適度な値に調整することにより、狭隘な空間部にキャビテーション泡6を高密度に発生させ、所要の微細な凹部7bの加工を行わせることができる。このキャビテーションによって加工された施工面7aの表面状態の構成を図4に示している。   This tendency is prominent when the cavitation bubbles 6 are generated at a high density in a narrow space. Thereby, the shock wave 6a generated in the cavitation bubble 6 is caused to act on the surface of the construction surface 7a, so that the surface of the construction surface 7a is plastically deformed by the shock wave, and many fine irregularities are generated on the surface of the construction surface 7a. The frequency, stroke, and phase of the first high-frequency vibration generator 2 and the second high-frequency vibration generator 4 are adjusted to appropriate values according to the material and hardness of the workpiece 7 and the required curing depth. Thus, the cavitation bubbles 6 can be generated at a high density in a narrow space portion, and the required fine recesses 7b can be processed. The structure of the surface state of the construction surface 7a processed by this cavitation is shown in FIG.

図4において、キャビテーション泡の崩壊によって生じた衝撃波により、凹部7bが施工面7aに多数形成されている。施工面7aへの衝撃波の作用時間、ギャップ、周波数、ストロークなどを適宜制御することにより、所要の大きさの凹部7bの施工条件を予め試験により求めておき、求められた施工条件により施工することにより、所定の大きさと深さを有した凹部7bを施工することができる。   In FIG. 4, a large number of recesses 7b are formed on the construction surface 7a due to shock waves generated by the collapse of the cavitation bubbles. By appropriately controlling the action time, gap, frequency, stroke, etc. of the shock wave to the construction surface 7a, the construction conditions for the recesses 7b of the required size are obtained in advance by testing and construction is performed under the obtained construction conditions. Thus, the recess 7b having a predetermined size and depth can be constructed.

本実施形態によれば、曲面が複雑に変化する被加工物においても、その被加工物の表面形状に沿って振動子としてのコマ5を倣い加工と同じように一定のギャップ値を保って振動させることが可能となり、複雑な曲面に対しても、キャビテーション泡6を面状に高密度に発生させることが可能となる。そして、キャビテーション泡6の崩壊時の衝撃波6aを利用して微細な凹部7bの形状を施工面7aに高い密度で表面に得ることができる。   According to the present embodiment, even in a workpiece whose curved surface changes in a complicated manner, the workpiece 5 vibrates while keeping a constant gap value along the surface shape of the workpiece, as in the case of copying the top 5 as a vibrator. Therefore, even for a complicated curved surface, the cavitation bubbles 6 can be generated in a surface with high density. And the shape of the fine recessed part 7b can be obtained on the surface with a high density in the construction surface 7a using the shock wave 6a at the time of collapse of the cavitation bubble 6. FIG.

すなわち、本実施形態では、以上のディンプル加工方法により、金属または非金属からなる物質により構成された被加工物7の表面に液体としての清水9を介在させて振動体としてのコマ5を近接配置し、このコマ5を高周波振動させることにより清水9中に微細なキャビテーション泡6を発生させ、このキャビテーション泡6の崩壊時における衝撃波6aの作用により、被加工物7の表面に塑性変形による多数の凹部7bを形成することにより、ウォータージェットによるピーニングのような高圧水による反力が発生せず、かつ一度の施工によって被加工物7の表面に高密度の微細な凹部7bを加工することができるため、ウォータージェットのように細いジェット流を施工面にトラバースして施工するトラバース装置も不要となる等多くの利点がある。 That is, in the present embodiment, the top 5 as the vibrating body is disposed close to the surface of the workpiece 7 made of a substance made of metal or nonmetal by interposing the fresh water 9 as the liquid by the above dimple processing method. Then, the top 5 is vibrated at a high frequency to generate fine cavitation bubbles 6 in the fresh water 9, and by the action of the shock wave 6a when the cavitation bubbles 6 are collapsed, the surface of the workpiece 7 is subjected to a large number of plastic deformations. By forming the concave portion 7b, a reaction force due to high-pressure water such as peening by a water jet does not occur, and a high-density fine concave portion 7b can be processed on the surface of the workpiece 7 by a single construction. Therefore, there is no need for a traverse device for traversing a thin jet flow to the construction surface like a water jet. There is an advantage.

しかも、本実施形態によれば、鋼球やセラミックス球を用いたショットピーニングのような前処理や後処理を必要とすることなく、またレーザパルスの照射によるディンプル加工方法のような高エネルギ源も必要とすることなく、極めて簡易な装置構成によって、高能率かつ高精度のディンプル加工を行うことができる。   Moreover, according to the present embodiment, there is no need for pre-processing or post-processing such as shot peening using steel balls or ceramic balls, and there is also a high energy source such as a dimple processing method by laser pulse irradiation. It is possible to perform high-efficiency and high-precision dimple processing with an extremely simple apparatus configuration without necessity.

なお、本実施形態において、振動体としてのコマ5の振動数については、上述した高周波振動(例えば500Hz以上)、望ましくは超音波領域(20kHz〜80kHz)とする。   In the present embodiment, the vibration frequency of the top 5 as the vibrating body is the above-described high-frequency vibration (for example, 500 Hz or more), desirably the ultrasonic region (20 kHz to 80 kHz).

また、上記の例では、振動体としてのコマ5を,下面凸形状としたが、下面凹形状とし、上面凸形の被加工物へのディンプル加工を行うようにしてもよい。   Further, in the above example, the top 5 as the vibrating body has a convex shape on the lower surface, but may be a concave shape on the lower surface, and dimple processing may be performed on a workpiece having a convex shape on the upper surface.

また、上記の例では、コマ5と被加工物7の表面との間に介在させる液体として、清水9を適用したが、それ以外の水もしくは水溶液を使用することも可能である。   Further, in the above example, the clear water 9 is applied as the liquid interposed between the top 5 and the surface of the workpiece 7, but other water or aqueous solution can be used.

[第2実施形態](図5)
図5は、本発明の第2実施形態によるディンプル加工装置を示す構成図である。
[Second Embodiment] (FIG. 5)
FIG. 5 is a configuration diagram showing a dimple processing apparatus according to a second embodiment of the present invention.

図5に示すように、本実施形態が第1実施形態と異なる点は、コマ5を高周波振動させるための高周波振動発生装置を、上下方向(y方向)振動用の第1の高周波振動発生装置2のみとし、被加工物7の支持装置16を例えば車輪18により横方向(x方向)に往復動可能な移動式構成とし、この支持装置16を横方向(x方向)振動用の第2の高周波振動発生装置4によって振動させるようにした点にある。被加工物7は移動用の車輪18を有する支持装置16の台車部16aに保持具17等によって振動などでゆるみを生じないように強固に固定される。   As shown in FIG. 5, the present embodiment is different from the first embodiment in that a high-frequency vibration generator for high-frequency vibration of the top 5 is replaced with a first high-frequency vibration generator for vertical (y-direction) vibration. 2, the support device 16 for the workpiece 7 is configured to be movable so that it can reciprocate in the lateral direction (x direction) by, for example, the wheels 18, and the support device 16 is a second component for lateral (x direction) vibration. The high frequency vibration generator 4 vibrates. The workpiece 7 is firmly fixed to the carriage portion 16a of the support device 16 having the moving wheels 18 by the holder 17 or the like so as not to be loosened due to vibration or the like.

すなわち、第1実施形態では、被加工物7を固定し、コマ5を複数の方向から加振させるディンプル加工技術について説明したが、本実施形態では、被加工物7を振動可能な台としての支持装置16に固定し、コマ5と支持装置16とを高周波で加振させることにより多次元に振動させるディンプル加工方法を実施するものである。   That is, in the first embodiment, the dimple processing technology for fixing the workpiece 7 and vibrating the piece 5 from a plurality of directions has been described. In the present embodiment, the workpiece 7 is used as a table that can be vibrated. A dimple processing method is performed in which the frame 5 and the support device 16 are vibrated in a multi-dimensional manner by being fixed to the support device 16 and being vibrated at a high frequency.

その他の内容については、第1実施形態と略同様であるから、図5に図1と同一の符号を付して、重複する説明を省略する。   Since the other contents are substantially the same as those in the first embodiment, the same reference numerals as those in FIG.

このようなディンプル装置の構成およびディンプル方法によっても、第1実施形態と同様に、予め試験により求めておき、求められた施工条件により施工することにより、所定の大きさと深さを有した凹部7bを施工することができる。   Also with such a dimple device configuration and dimple method, as in the first embodiment, a recess 7b having a predetermined size and depth is obtained in advance by a test, and is constructed according to the obtained construction conditions. Can be constructed.

そして、曲面が複雑に変化する被加工物7においても、被加工物7の表面形状に沿ってコマ5を倣い加工と同じように一定のギャップ値を保って振動させることが可能となり、複雑な曲面に対しても、前述したキャビテーション泡6を面状に高密度に発生させることができ、キャビテーション泡6の崩壊時の衝撃波6aを利用して、微細な凹凸形状を施工面に高い密度で得ることができる。   Further, even in the workpiece 7 whose curved surface changes in a complicated manner, it is possible to vibrate the top 5 along the surface shape of the workpiece 7 while maintaining a constant gap value in the same manner as in copying. Even for curved surfaces, the above-described cavitation bubbles 6 can be generated in a high density in a planar shape, and a fine uneven shape can be obtained at a high density on the construction surface by using the shock wave 6a when the cavitation bubbles 6 collapse. be able to.

[第3実施形態](図6)
図6は、本発明の第3実施形態によるディンプル加工装置を示す構成図である。
[Third Embodiment] (FIG. 6)
FIG. 6 is a block diagram showing a dimple processing apparatus according to a third embodiment of the present invention.

図6に示すように、本実施形態が第1実施形態と異なる点は、被加工物7を清水9に満たされた水槽8の中に浸漬した状態で、この被加工物7を揺動可能な状態に回転ローラ20を介して支持装置16に回動可能に支持させた点にある。   As shown in FIG. 6, this embodiment is different from the first embodiment in that the workpiece 7 can be swung in a state where the workpiece 7 is immersed in a water tank 8 filled with fresh water 9. In this state, the support device 16 is rotatably supported via the rotating roller 20.

そして、このような状態にて回転ローラ20に支持されている被加工物7に対し、コマ5を高周波で振動させながら被加工物7を揺動させることにより、施工面7aに上述したキャビテーション泡6の崩壊時に発生する衝撃波6aにより、凹部7bを形成させるものである。   Then, the above-described cavitation bubbles are formed on the construction surface 7a by swinging the workpiece 7 while vibrating the top 5 at a high frequency with respect to the workpiece 7 supported by the rotating roller 20 in such a state. The concave portion 7b is formed by the shock wave 6a generated when 6 collapses.

他の内容については、第1実施形態または第2実施形態と略同様であるから、図5に図1と同一の符号を付して、重複する説明を省略する。   Since the other contents are substantially the same as those in the first embodiment or the second embodiment, the same reference numerals as those in FIG.

本実施形態によると、被加工物7が揺動可能な湾曲した形状の場合には、高周波振動発生装置が1台にて済む効果があり、大きな軸受メタル等に施工する場合には高額な大型の高周波振動発生装置が少なくできるので、大きな経済的利点が得られる。   According to this embodiment, when the workpiece 7 has a curved shape capable of swinging, there is an effect that only one high-frequency vibration generator is required. Therefore, a large economic advantage can be obtained.

[第4実施形態](図7)
図7は、本発明の第4実施形態として、被加工物7の具体例を示した構成図である。
[Fourth Embodiment] (FIG. 7)
FIG. 7 is a configuration diagram showing a specific example of the workpiece 7 as the fourth embodiment of the present invention.

この図7に示すように、本実施形態の被加工物7は、例えば車両用エンジンなどに使用されるコネクティングロッド21として実施したものである。   As shown in FIG. 7, the workpiece 7 of the present embodiment is implemented as a connecting rod 21 used in, for example, a vehicle engine.

コネクティングロッド21には軸受部22が設けられており、軸受メタル23が上部軸受メタル23aと下部軸受メタル23bに分割されている。このような軸受メタル23を取付けているケース24のボルト25をはずし、ケース24から軸受メタル23(23a,23b)を取り出して上述の方法により、軸受摺動面に微細な凹部を多数施工することにより、凹部に潤滑油を多く保持することが可能となり、高負荷荷重下での軸受けの焼き付け防止が有効に図れるようになる。   The connecting rod 21 is provided with a bearing portion 22, and the bearing metal 23 is divided into an upper bearing metal 23a and a lower bearing metal 23b. The bolt 25 of the case 24 to which such a bearing metal 23 is attached is removed, the bearing metal 23 (23a, 23b) is taken out from the case 24, and a large number of minute recesses are formed on the bearing sliding surface by the above-described method. As a result, a large amount of lubricating oil can be held in the recess, and the bearing seizure can be effectively prevented from being burned under a high load.

本発明の第1実施形態のディンプル加工装置を示す構成図。The block diagram which shows the dimple processing apparatus of 1st Embodiment of this invention. 本発明の第1実施形態のディンプル加工装置の作用部構成を示す拡大図。The enlarged view which shows the action part structure of the dimple processing apparatus of 1st Embodiment of this invention. 本発明の第1実施形態のキャビテーション作用によるディンプル加工の状態を示す作用説明図。Action | operation explanatory drawing which shows the state of the dimple process by the cavitation effect | action of 1st Embodiment of this invention. 本発明の第1実施形態のディンプル加工による施工面の状態を示す拡大図。The enlarged view which shows the state of the construction surface by the dimple process of 1st Embodiment of this invention. 本発明の第2実施形態のディンプル加工装置を示す構成図。The block diagram which shows the dimple processing apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態のディンプル加工装置を示す構成図。The block diagram which shows the dimple processing apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態のディンプル加工品の例を示す構成図。The block diagram which shows the example of the dimple processed goods of 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 ディンプル加工装置
2 第1の高周波振動発生装置
2a 高周波コイル
2b 振動子
2c 縦軸
2d 連結部
2e 連結ピン
3 高周波電源装置
4 第2の高周波振動発生装置
4a 高周波コイル
4b 振動子
4c 横軸
5 コマ
5a キャビテーション発生面
5b コマ外周部
5c 非キャビテーション発生部
5d 非キャビテーション発生部
6 キャビテーション泡
6a 衝撃波
6b 反射波
7 被加工物
7a 施工面
7b 凹部
8 水槽
9 清水
14 支持装置
15 支持装置
16 支持装置
17 保持装置
18 車輪
20 回転ローラ
21 コネクティングロッド
22 軸受部
23 軸受メタル
24 ケース
25 ボルト
DESCRIPTION OF SYMBOLS 1 Dimple processing apparatus 2 1st high frequency vibration generator 2a High frequency coil 2b Vibrator 2c Vertical axis 2d Connection part 2e Connection pin 3 High frequency power supply device 4 Second high frequency vibration generator 4a High frequency coil 4b Vibrator 4c Horizontal axis 5 Top 5a Cavitation generation surface 5b Frame outer peripheral part 5c Non-cavitation generation part 5d Non-cavitation generation part 6 Cavitation bubble 6a Shock wave 6b Reflected wave 7 Work piece 7a Work surface 7b Recess 8 Water tank 9 Fresh water 14 Support device 15 Support device 16 Support device 17 Holding Device 18 Wheel 20 Rotating roller 21 Connecting rod 22 Bearing portion 23 Bearing metal 24 Case 25 Bolt

Claims (11)

金属または非金属からなる物質により構成された被加工物の表面に液体を介在させて振動体を近接配置し、前記振動体を高周波振動させることにより前記液体中に微細なキャビテーション泡を発生させ、このキャビテーション泡の崩壊時における衝撃波の作用により、前記被加工物の表面に塑性変形による多数の凹部を形成することを特徴とするディンプル加工方法。 A vibrating body is disposed in proximity to the surface of a workpiece made of a metal or non-metal material, and a fine cavitation bubble is generated in the liquid by high-frequency vibration of the vibrating body, A dimple processing method, wherein a large number of recesses are formed on a surface of the workpiece by plastic deformation by the action of a shock wave when the cavitation bubbles collapse. 前記振動体を超音波領域にて振動させる請求項1記載のディンプル加工方法。 The dimple processing method according to claim 1, wherein the vibrator is vibrated in an ultrasonic region. 前記振動体を凹形または凸形のコマとし、このコマと前記被加工物の表面との問に発生する衝撃波を、前記コマと前記被加工物の表面との聞にて反射させる請求項1または2記載のディンプル加工方法。 2. The vibration body is a concave or convex piece, and a shock wave generated between the piece and the surface of the workpiece is reflected at an angle between the piece and the surface of the workpiece. Or the dimple processing method of 2. 前記コマと前記被加工物の表面との間に介在させる液体として、水もしくは水溶液を使用する請求項1から3までのいずれかに記載のディンプル加工方法。 The dimple processing method according to any one of claims 1 to 3, wherein water or an aqueous solution is used as the liquid interposed between the top and the surface of the workpiece. 被加工物の表面とコマとの間隔を10mm以下とする請求項1から4までのいずれかに記載のディンプル加工方法。 The dimple processing method according to any one of claims 1 to 4, wherein a distance between the surface of the workpiece and the top is 10 mm or less. 前記被加工物を固定し、前記コマを複数の方向から加振させる請求項1から5までのいずれかに記載のディンプル加工方法。 The dimple processing method according to any one of claims 1 to 5, wherein the workpiece is fixed and the top is vibrated from a plurality of directions. 前記被加工物を振動可能な台に固定し、前記コマと前記台とを高周波で加振させる請求項1から6までのいずれかに記載のディンプル加工方法。 The dimple processing method according to claim 1, wherein the workpiece is fixed to a oscillating table, and the top and the table are vibrated at a high frequency. 請求項1から7までのいずれかに記載の方法を実施するためのディンプル加工装置であって、高周波振動を発生させる高周波振動発生装置と、この高周波振動発生装置に連結して高周波振動するコマと、前記高周波振動発生装置および前記コマを支持し、前記コマの一面を前記被加工物の表面に間隙を有して対向する位置に配置させる支持装置と、少なくとも前記コマと前記被加工物との隙間に液体を介在させる液体保持装置とを備えたことを特徴とするディンプル加工装置。 A dimple processing apparatus for performing the method according to any one of claims 1 to 7, a high-frequency vibration generating apparatus that generates high-frequency vibrations, and a coma that is coupled to the high-frequency vibration generating apparatus and that vibrates at high frequencies. A support device for supporting the high-frequency vibration generating device and the piece, and disposing one surface of the piece at a position facing the surface of the workpiece with a gap, and at least the piece and the workpiece A dimple processing apparatus comprising: a liquid holding device that interposes a liquid in the gap. 前記高周波振動発生装置は、超磁歪材料または圧電型セラミックス材料を用いて構成した振動部を有する請求項9記載のディンプル加工装置。 The dimple processing apparatus according to claim 9, wherein the high-frequency vibration generating device includes a vibration portion configured using a giant magnetostrictive material or a piezoelectric ceramic material. 前記コマは、キャビテーション泡にて壊食されにくい高硬度材料により構成されている請求項8または請求項9記載のディンプル加工装置。 The dimple processing apparatus according to claim 8 or 9, wherein the top is made of a high-hardness material that is not easily eroded by cavitation bubbles. 前記コマは、前記被加工物の表面形状に対応する平坦面、もしくは前記被加工物の表面の曲率と同程度の曲率をもつ曲面を有する請求項8ないし請求項10のいずれかに記載のディンプル加工装置。 The dimple according to any one of claims 8 to 10, wherein the top has a flat surface corresponding to a surface shape of the workpiece or a curved surface having a curvature comparable to the curvature of the surface of the workpiece. Processing equipment.
JP2004267766A 2004-09-15 2004-09-15 Dimple processing method and dimple processing apparatus Expired - Fee Related JP4460981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267766A JP4460981B2 (en) 2004-09-15 2004-09-15 Dimple processing method and dimple processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267766A JP4460981B2 (en) 2004-09-15 2004-09-15 Dimple processing method and dimple processing apparatus

Publications (2)

Publication Number Publication Date
JP2006082163A true JP2006082163A (en) 2006-03-30
JP4460981B2 JP4460981B2 (en) 2010-05-12

Family

ID=36161078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267766A Expired - Fee Related JP4460981B2 (en) 2004-09-15 2004-09-15 Dimple processing method and dimple processing apparatus

Country Status (1)

Country Link
JP (1) JP4460981B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307682A (en) * 2006-05-22 2007-11-29 Toshiba Plant Systems & Services Corp Modified material working method and modified material working device
JP2009078305A (en) * 2007-09-25 2009-04-16 Toshiba Plant Systems & Services Corp Surface-treatment equipment and method
JP2010210081A (en) * 2009-02-13 2010-09-24 Seiko Instruments Inc Bearing device and information recording and reproducing device
JP2011506855A (en) * 2007-12-28 2011-03-03 日産自動車株式会社 Sliding device with sliding bearing
CN110744142A (en) * 2019-10-31 2020-02-04 中北大学 Ultrasonic micro-pit processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509714B2 (en) * 2004-09-15 2010-07-21 東芝プラントシステム株式会社 Surface modification method and surface modification apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307682A (en) * 2006-05-22 2007-11-29 Toshiba Plant Systems & Services Corp Modified material working method and modified material working device
JP2009078305A (en) * 2007-09-25 2009-04-16 Toshiba Plant Systems & Services Corp Surface-treatment equipment and method
JP2011506855A (en) * 2007-12-28 2011-03-03 日産自動車株式会社 Sliding device with sliding bearing
US9109627B2 (en) 2007-12-28 2015-08-18 Nissan Motor Co., Ltd. Sliding device including sliding bearing
JP2010210081A (en) * 2009-02-13 2010-09-24 Seiko Instruments Inc Bearing device and information recording and reproducing device
CN110744142A (en) * 2019-10-31 2020-02-04 中北大学 Ultrasonic micro-pit processing device

Also Published As

Publication number Publication date
JP4460981B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US9649722B2 (en) Ultrasound-assisted water-confined laser micromachining
Wang et al. Micro wire electrode electrochemical cutting with low frequency and small amplitude tool vibration
CN105619187A (en) Two-dimensional ultrasonic vibration polishing device and method
RU2387531C2 (en) Procedure for ultra-sonic impact machine treatment of body surfaces to correct defects and to strengthen working surfaces
US20180304308A1 (en) Oscilation excitation method for langevin ultrasonic transducer, ultrasonic machining method, and ultrasonic transmission method
JP4460981B2 (en) Dimple processing method and dimple processing apparatus
JP4509714B2 (en) Surface modification method and surface modification apparatus
Yadava et al. Design of horn for rotary ultrasonic machining using the finite element method
Pan et al. Vibration analysis and experiments on electrochemical micro-machining using cathode vibration feed system
JP2003048152A (en) Recessed spherical face machining device by ultrasonic wave and method therefor
JP2017221932A (en) Ultrasonic vibrator and vibration excitation method thereof
Ni et al. A novel free-form transducer for the ultra-precision diamond cutting of die steel
Moriwaki Development of 2DOF ultrasonic vibration cutting device for ultraprecision elliptical vibration cutting
JP2006082162A5 (en)
TW201607667A (en) An ultrasonic micron precision molding apparatus
JP7311098B2 (en) Vibration cutting device, vibration device and cutting method
WO2021199223A1 (en) Cutting apparatus and cutting method
Ganiev et al. Ultrasonic treatment by an intermediate striker: Tool dynamics and material improvement
RU2293012C2 (en) Combination method for working openings and apparatus for performing the same
EP3787837B1 (en) Fluid jet processing
JP2009078305A (en) Surface-treatment equipment and method
JP2007307682A (en) Modified material working method and modified material working device
JP6793912B2 (en) Vibration processing equipment and vibration processing method
CN202039104U (en) Nonlinear combined resonance type vibration aging device
JP4486697B2 (en) Ultra high pressure water peening method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4460981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees