JP2003048152A - Recessed spherical face machining device by ultrasonic wave and method therefor - Google Patents

Recessed spherical face machining device by ultrasonic wave and method therefor

Info

Publication number
JP2003048152A
JP2003048152A JP2001240216A JP2001240216A JP2003048152A JP 2003048152 A JP2003048152 A JP 2003048152A JP 2001240216 A JP2001240216 A JP 2001240216A JP 2001240216 A JP2001240216 A JP 2001240216A JP 2003048152 A JP2003048152 A JP 2003048152A
Authority
JP
Japan
Prior art keywords
spherical
tool
spherical tool
electromagnets
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001240216A
Other languages
Japanese (ja)
Inventor
Yuta Nishide
雄太 西出
Takashige Shiratori
貴重 白鳥
Shinya Iida
慎弥 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001240216A priority Critical patent/JP2003048152A/en
Publication of JP2003048152A publication Critical patent/JP2003048152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recessed spherical face machining device capable of suppressing eccentric wear of a spherical tool and eccentricity of a recessed spherical face when machining a spherical face of a concave lens having a deep spherical segment and supplying and discharging a working fluid smoothly to improve machining quality and machining efficiency. SOLUTION: This recessed spherical face machining device has the spherical tool 2 made of a magnetic substance for machining the recessed spherical face of the lens 1, a horn 3 transmitting ultrasonic wave vibration generated from an ultrasonic wave generator 4 to the spherical tool 2 while holding the spherical tool 2 so as to roll, a pressing cylinder 11 bringing the spherical tool 2 into contact with the lens 1, a working fluid supply device 6 for supplying the working fluid 5 in which abrasive grains are dispersed to a contact position of the spherical tool 2 and the lens 1, a plurality of electromagnets 7 facing outer periphery of the spherical tool 2 in radial arrangement, and an electromagnet controller 8 for making a rotating and displacing magnetic attraction force act for the spherical tool 2 due to switching of magnetic pole by controlling electrical conductivity to the electromagnets 7 to rotate the spherical tool 2 in the direction of arrangement face of the electromagnets 7 at the contact position of the spherical tool 2 with the lens 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を用いてレ
ンズを凹球面に加工する凹球面加工装置及び凹球面加工
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concave spherical surface processing apparatus and a concave spherical surface processing method for processing a lens into a concave spherical surface using ultrasonic waves.

【0002】[0002]

【従来の技術】従来、レンズを球面加工する際に使用す
る加工装置及び加工方法に関する先行技術として、特開
平1−333702号公報の球面創成加工装置及び加工
方法に開示された技術が知られている。同公報の球面創
成加工装置の概要を図10、図11、図12を参照して
説明する。
2. Description of the Related Art Conventionally, as a prior art relating to a processing apparatus and a processing method used for spherically processing a lens, the technology disclosed in the spherical surface creation processing apparatus and processing method of Japanese Patent Laid-Open No. 1-333702 is known. There is. The outline of the spherical surface generating / processing apparatus of the publication will be described with reference to FIGS. 10, 11 and 12.

【0003】図10において、加工を行う側の工具軸部
140が上方に、加工が施される側のワーク軸部141
が下方に配置されている。工具軸部140は図示を省略
した架台上部に取り付けたガイド121に沿って上下動
に移動可能になっているとともに、この移動が定位置で
固定されるようになっている。
In FIG. 10, the tool shaft portion 140 on the machining side is upward, and the work shaft portion 141 on the machining side.
Is located below. The tool shaft 140 can move up and down along a guide 121 attached to the top of a gantry (not shown), and this movement is fixed at a fixed position.

【0004】工具軸部140は、コントローラ120に
よって出力が制御された超音波発信器101と、超音波
発信器101の下端部に一体に設けられた軸体102と
軸体102の下端部に固定されたホーン103とを備え
ており、ホーン103の下端部には、鋼球からなる球状
工具104が取り付けられている。
The tool shaft 140 is fixed to the ultrasonic transmitter 101 whose output is controlled by the controller 120, the shaft 102 integrally provided at the lower end of the ultrasonic transmitter 101, and the lower end of the shaft 102. The spherical tool 104 made of steel balls is attached to the lower end of the horn 103.

【0005】図11は、前記ホーン103における球状
工具104の取り付け部を拡大して示すものであり、ホ
ーン103の下端部には球状工具104と同じ形状及び
曲率となっている窪み状の保持部103aが形成されて
おり、この保持部103a内に球状工具104が挿入さ
れることにより、球状工具104は転動可能な状態で保
持される。
FIG. 11 is an enlarged view showing a mounting portion of the spherical tool 104 in the horn 103, and a dent-shaped holding portion having the same shape and curvature as the spherical tool 104 is provided at a lower end portion of the horn 103. 103a is formed, and the spherical tool 104 is held in a rollable state by inserting the spherical tool 104 into the holding portion 103a.

【0006】前記ホーン103は、被加工物であるレン
ズ105に向かって先細りとなるテーパ状の外形に成形
されている。従って、超音波発信器101から超音波を
増幅して球状工具104に伝達することができる。ま
た、保持部103aが球状工具104と同じ形状及び曲
率のため、球状工具104の曲率中心とホーン103の
軸心とが一致し、精度のよい加工が可能となる。
The horn 103 is formed in a tapered outer shape that tapers toward the lens 105 which is the workpiece. Therefore, the ultrasonic wave can be amplified from the ultrasonic wave transmitter 101 and transmitted to the spherical tool 104. Further, since the holding portion 103a has the same shape and curvature as the spherical tool 104, the center of curvature of the spherical tool 104 and the axial center of the horn 103 coincide with each other, which enables accurate machining.

【0007】ワーク軸部141は、被加工物であるレン
ズ105が接着により固定される載置台106と、この
載置台106を上下動可能に支持するシリンダ107と
を有している。シリンダ107は、球状工具104とレ
ンズ105が当接した状態の載置台106を上方に押圧
して、工具軸部140方向へ荷重をかける加圧手段とし
て作用するものである。
The work shaft portion 141 has a mounting table 106 to which a lens 105, which is a workpiece, is fixed by adhesion, and a cylinder 107 which supports the mounting table 106 so as to be vertically movable. The cylinder 107 functions as a pressurizing unit that presses the mounting table 106 in a state where the spherical tool 104 and the lens 105 are in contact with each other and applies a load toward the tool shaft portion 140.

【0008】載置台106の上面には、ダイヤルゲージ
108が当接しており、レンズ105への球面の創成に
伴う載置台106の上下方向の変位量を測定するように
なっている。このダイヤルゲージ108は、レンズ10
5の凹球面105bの創成に伴って載置台106が変位
する変位量を測定する測定手段として機能している。こ
の場合、載置台106の変位を測定することに替えて、
載置台106側を定位置に固定し、球状工具104にお
ける上下方向の変位量を測定してもよい。
A dial gauge 108 is in contact with the upper surface of the mounting table 106 to measure the amount of vertical displacement of the mounting table 106 due to the creation of a spherical surface on the lens 105. This dial gauge 108 has a lens 10
5 functions as a measuring unit that measures the amount of displacement of the mounting table 106 that accompanies the creation of the concave spherical surface 105b. In this case, instead of measuring the displacement of the mounting table 106,
The mounting table 106 side may be fixed at a fixed position, and the amount of vertical displacement of the spherical tool 104 may be measured.

【0009】以上の構成に加えて、球状工具104とレ
ンズ105との当接部に、砥粒111としてのダイヤモ
ンドパウダーを水に分散させた加工液109を滴下して
供給するデイスペンサー110が設けられている。この
デイスペンサー110は加工液109を供給する供給手
段として作用する。
In addition to the above structure, a dispenser 110 is provided at the abutting portion between the spherical tool 104 and the lens 105 to supply the machining liquid 109 in which diamond powder as the abrasive grains 111 is dispersed in water. Has been. The dispenser 110 acts as a supply means for supplying the processing liquid 109.

【0010】[0010]

【発明が解決しようとする課題】上述した従来の球面創
成加工装置を採用した場合、以下のような問題点が生じ
る。即ち図12を参照して詳しく説明すると、凹球面1
05bが上面105aから深くなれば深くなるほど、加
工液109の給排出が困難になってくる。特に、劣化し
た砥粒111を含む古い加工液109が凹球面105b
の底部に溜まっていると、新しい加工液109を供給し
ても古い加工液109が排出しにくいため、新しい加工
液109が凹球面105bの底部に到達しない。
When the above-described conventional spherical surface forming / processing apparatus is adopted, the following problems occur. That is, to describe in detail with reference to FIG. 12, the concave spherical surface 1
As the depth of 05b increases from the upper surface 105a, it becomes more difficult to supply and discharge the working fluid 109. In particular, the old machining liquid 109 containing the deteriorated abrasive grains 111 may be the concave spherical surface 105b.
When the new working fluid 109 is collected, it is difficult for the old working fluid 109 to be discharged even if the new working fluid 109 is supplied, so that the new working fluid 109 does not reach the bottom of the concave spherical surface 105b.

【0011】劣化した加工液109を使用し続けること
に起因して、加工能率の低下や加工形状精度の劣化等の
不具合が生じてくる。
Due to the continued use of the deteriorated machining fluid 109, problems such as a decrease in machining efficiency and a deterioration in machining shape accuracy occur.

【0012】また、加工中に球状工具104は超音波に
より転動するが、その転動量は極僅かであり、場合によ
っては偏った転動をすることがある。この結果、球状工
具104の偏摩耗が発生し、結果的に凹球面105bの
形状精度の劣化や偏心の発生を促すことになってしま
う。
Further, the spherical tool 104 rolls by ultrasonic waves during machining, but the rolling amount thereof is extremely small, and in some cases, it may be biased. As a result, uneven wear of the spherical tool 104 occurs, resulting in deterioration of the shape accuracy of the concave spherical surface 105b and occurrence of eccentricity.

【0013】本発明は、上記事情に鑑みてなされたもの
であり、球欠の深い凹レンズを高精度に球面加工する
際、球状工具の偏摩耗や凹球面の偏心を抑えるととと
も、加工液の供給、排出を円滑に行うことができ、加工
品質及び加工能率を向上させることが可能な凹球面加工
装置及び凹球面加工方法を提供することをを目的とす
る。
The present invention has been made in view of the above circumstances, and suppresses uneven wear of a spherical tool and eccentricity of a concave spherical surface when machining a spherical concave deep concave lens with high accuracy, and a machining liquid. It is an object of the present invention to provide a concave spherical surface processing device and a concave spherical surface processing method capable of smoothly supplying and discharging, and improving processing quality and processing efficiency.

【0014】[0014]

【課題を解決するための手段】請求項1に係る凹球面加
工装置は、被加工物の凹球面加工用の磁性体からなる球
状工具と、前記球状工具を転動可能に保持しつつ、超音
波発生装置から発せられた超音波振動を前記球状工具に
伝搬させる超音波伝搬手段と、前記球状工具と被加工物
とを当接させる加圧手段と、前記球状工具と被加工物と
の当接位置に砥粒を分散させた加工液を供給する加工液
供給手段と、前記球状工具の外周に放射状配列で臨ませ
た複数個の電磁石と、前記複数個の電磁石への通電制御
による磁極切り替えにより球状工具に対して回転変位す
る磁気吸引力を作用させ、前記球状工具を前記被加工物
との当接位置で複数個の電磁石の配列面方向に回転させ
る制御手段とを有することを特徴とするものである。
According to a first aspect of the present invention, there is provided a concave spherical surface machining apparatus which comprises a spherical tool made of a magnetic material for machining a concave spherical surface of a workpiece, and a spherical tool which holds the spherical tool in a rollable manner. Ultrasonic wave propagating means for propagating ultrasonic vibrations generated from the sound wave generator to the spherical tool, pressing means for bringing the spherical tool and the workpiece into contact with each other, and contact between the spherical tool and the workpiece. Machining liquid supply means for supplying a machining liquid in which abrasive grains are dispersed to the contact position, a plurality of electromagnets facing the outer circumference of the spherical tool in a radial arrangement, and magnetic pole switching by energization control to the plurality of electromagnets. A magnetic attraction force for rotationally displacing the spherical tool by means of which the spherical tool is rotated in the arrangement surface direction of the plurality of electromagnets at the contact position with the workpiece. To do.

【0015】請求項2記載の発明は、請求項1記載の超
音波による凹球面加工装置において、前記球状工具が磁
極を有するように着磁されていることを特徴とする。
According to a second aspect of the present invention, in the concave spherical surface machining apparatus using ultrasonic waves according to the first aspect, the spherical tool is magnetized so as to have magnetic poles.

【0016】請求項3記載の発明は、請求項1又は2記
載の超音波による凹球面加工装置において、前記電磁石
が、球状工具の水平方向外周に放射状配列で複数個配置
されていることを特徴とする。
According to a third aspect of the present invention, in the concave spherical surface machining apparatus using ultrasonic waves according to the first or second aspect, a plurality of the electromagnets are arranged in a radial arrangement on the outer circumference in the horizontal direction of the spherical tool. And

【0017】請求項4記載の発明は、請求項1又は2記
載の超音波による凹球面加工装置において、前記電磁石
が、前記球状工具の水平方向外周に放射状配列で複数個
配置されているとともに、前記超音波伝搬手段内部に球
状工具に対して垂直方向配置でかつ放射状に複数個内蔵
されていることを特徴とする。
According to a fourth aspect of the present invention, in the concave spherical surface machining apparatus using ultrasonic waves according to the first or second aspect, a plurality of the electromagnets are arranged in a radial arrangement on the outer circumference in the horizontal direction of the spherical tool, It is characterized in that a plurality of ultrasonic wave propagating means are vertically arranged with respect to the spherical tool and are radially installed.

【0018】本発明の超音波による凹球面加工装置によ
れば、超音波を使用しレンズの凹球面を加工する際に、
複数の電磁石による回転変位する磁気吸引力を利用して
球状工具を加工中に前記複数個の電磁石の配列面方向に
非接触で回転させることができる。
According to the concave spherical surface processing apparatus using ultrasonic waves of the present invention, when the concave spherical surface of the lens is processed using ultrasonic waves,
It is possible to rotate the spherical tool in a non-contact manner in the arrangement surface direction of the plurality of electromagnets during processing by utilizing the magnetic attraction force of rotational displacement caused by the plurality of electromagnets.

【0019】これにより、加工液の供給、排出を円滑に
でき、加工能率が向上する。さらに、球状工具が加工中
に回転運動を行うことにより、球状工具の偏摩耗を防止
でき、かつ球面加工されたレンズ凹球面の偏心も抑えら
れる。
As a result, the supply and discharge of the working liquid can be made smooth and the working efficiency is improved. Further, since the spherical tool makes a rotary motion during machining, it is possible to prevent uneven wear of the spherical tool and also to suppress eccentricity of the spherical concave lens surface.

【0020】また、前記球状工具を予め着磁しておくこ
とにより、球状工具を着磁する必要がなくなり、複数の
電磁石の配列個数を削減し得るとともに、複数の電磁石
による回転変位する磁気吸引力に対する球状工具の追従
性を高め、安定して回転する加工工具により効率のよい
加工を実現できる。
Further, by pre-magnetizing the spherical tool, there is no need to magnetize the spherical tool, the number of arranged electromagnets can be reduced, and the magnetic attraction force of rotational displacement caused by the electromagnets can be reduced. The ability of the spherical tool to follow is improved, and efficient machining can be realized with a machining tool that rotates stably.

【0021】さらに、本発明によれば、球状工具を水平
方向又は垂直方向に回転させて凹球面加工を行うことが
でき、加工液の供給、排出の円滑化が図れ、特に深い凹
球面部を加工する場合でも、加工液の供給、排出を円滑
に行い、球状工具の偏摩耗、球面加工された被加工物の
凹球面の偏心を抑えて、加工品質及び加工能率をより向
上することができる。
Further, according to the present invention, the spherical tool can be rotated in the horizontal direction or the vertical direction to perform the concave spherical surface processing, the smoothing of the supply and discharge of the machining liquid can be achieved, and particularly the deep concave spherical surface portion can be formed. Even when machining, the machining fluid can be supplied and discharged smoothly, uneven wear of the spherical tool and eccentricity of the concave spherical surface of the spherically machined workpiece can be suppressed, and machining quality and machining efficiency can be further improved. .

【0022】請求項5の発明は、球状工具と被加工物と
の当接位置に、砥粒を分散させた加工液を供給しつつ、
超音波発生装置にて前記球状工具を超音波振動させつつ
前記球状工具若しくは被加工物を加圧し、被加工物の加
工を行う超音波による凹球面加工方法において、電磁石
の磁力を利用した非接触の回転駆動手段を用いて前記球
状工具の被加工物に対する加工中にこの球状工具を電磁
石の配列面方向に回転させることを特徴とする。
According to a fifth aspect of the present invention, while supplying a machining liquid in which abrasive grains are dispersed to the contact position between the spherical tool and the workpiece,
In a concave spherical surface processing method using ultrasonic waves in which the spherical tool or the workpiece is pressed while ultrasonically vibrating the spherical tool with an ultrasonic generator to process the workpiece, non-contact using the magnetic force of an electromagnet The spherical driving tool is used to rotate the spherical tool in the direction of the arrangement surface of the electromagnets during machining of the workpiece with respect to the workpiece.

【0023】請求項6記載の発明は、請求項5記載の超
音波による凹球面加工方法において、球状工具を転動可
能に保持した状態で、球状工具の水平方向外周に放射状
配列に配置した複数個の電磁石の磁極を切り替え制御
し、複数個の電磁石による磁気吸引力により前記球状工
具を加工中に水平方向に回転させることを特徴とする。
According to a sixth aspect of the present invention, in the concave spherical surface machining method according to the fifth aspect of the present invention, a plurality of spherical tools are arranged in a radial arrangement on the outer circumference in the horizontal direction while the spherical tool is held in a rollable manner. It is characterized in that the magnetic poles of the individual electromagnets are switched and controlled, and the spherical tool is rotated in the horizontal direction during machining by a magnetic attraction force of the plurality of electromagnets.

【0024】請求項7記載の発明は、請求項5記載の超
音波による凹球面加工方法において、球状工具を転動可
能に保持した状態で、球状工具の水平方向外周に放射状
配列に配置した電磁石及び球状工具の垂直方向外周に放
射状配列に配置した電磁石の磁極を切り替え制御し、前
記各電磁石による磁気吸引力により球状工具を加工中に
垂直方向に回転させることを特徴とする。
According to a seventh aspect of the present invention, in the method of machining a concave spherical surface by ultrasonic waves according to the fifth aspect, electromagnets arranged in a radial arrangement on the outer periphery in the horizontal direction of the spherical tool while the spherical tool is held in a rollable manner. And the magnetic poles of electromagnets arranged in a radial arrangement on the outer periphery in the vertical direction of the spherical tool are switched and controlled, and the spherical tool is rotated in the vertical direction during machining by the magnetic attraction force of each of the electromagnets.

【0025】本発明の超音波による凹球面加工方法によ
れば、電磁石の磁力を利用した非接触の回転駆動手段を
用いて前記球状工具の加工中にこの球状工具を任意の方
向に回転させるものであるから、回転する球状工具によ
り、この球状工具による加工に必要な加工液の供給、排
出を円滑に行うことができ、加工能率が向上する。
According to the method of machining a concave spherical surface by ultrasonic waves of the present invention, the spherical tool is rotated in an arbitrary direction during machining of the spherical tool by using a non-contact rotation driving means utilizing the magnetic force of an electromagnet. Therefore, the rotating spherical tool can smoothly supply and discharge the working liquid necessary for working with the spherical tool, and the working efficiency is improved.

【0026】さらに、球状工具が被加工物の加工中に回
転運動を行うことにより、球状工具の偏摩耗を防止で
き、かつ球面加工された被加工物の凹球面の偏心も抑え
て品質の良い被加工物を得ることができる。
Further, since the spherical tool makes a rotational movement during the machining of the workpiece, it is possible to prevent uneven wear of the spherical tool, and to suppress the eccentricity of the concave spherical surface of the spherically machined workpiece, which is of good quality. A work piece can be obtained.

【0027】また、本発明によれば、球状工具を水平方
向又は垂直方向に回転させて凹球面加工を行うものであ
るから、加工液の供給、排出の円滑化が図れ、特に深い
凹球面部を加工する場合でも、加工液の供給、排出を円
滑に行い、球状工具の偏摩耗、球面加工された被加工物
の凹球面の偏心を抑えて、加工品質及び加工能率をより
向上し得る超音波による凹球面加工方法を提供できる。
Further, according to the present invention, since the spherical tool is rotated in the horizontal direction or the vertical direction to perform the concave spherical surface processing, it is possible to smoothly supply and discharge the machining liquid, and particularly the deep concave spherical surface portion. Even when machining, machining fluid can be supplied and discharged smoothly, uneven wear of spherical tools and eccentricity of the concave spherical surface of the spherically machined workpiece can be suppressed to improve machining quality and machining efficiency. It is possible to provide a concave spherical surface processing method using a sound wave.

【0028】[0028]

【発明の実施の形態】(実施の形態1) (構成)本発明の実施の形態1を図1乃至図4を参照し
て説明する。図1は本実施の形態1の凹球面加工装置の
全体を示す概略構成図、図2は球状工具による加工状態
の部分拡大断面図であり、図3は球状工具及び電磁石の
配置を示す説明図、図4は回転状態の球状工具及び電磁
石の配置を示す説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) (Structure) Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram showing the entire concave spherical surface processing apparatus of the first embodiment, FIG. 2 is a partially enlarged sectional view of a processing state by a spherical tool, and FIG. 3 is an explanatory view showing arrangement of a spherical tool and an electromagnet. FIG. 4 is an explanatory view showing the arrangement of the spherical tool and the electromagnet in the rotating state.

【0029】図1に示す凹球面加工装置において、凹球
面を有する被加工物であるレンズ1をレンズ保持台10
にて保持、固定している。レンズ保持台10は加圧シリ
ンダ11上に連結されており、球状工具2とレンズ1が
当接した状態からレンズ1を球状工具2側に加圧するこ
とが可能である。
In the concave spherical surface processing apparatus shown in FIG. 1, the lens 1 which is the workpiece having the concave spherical surface is mounted on the lens holding base 10.
It is held and fixed at. The lens holding table 10 is connected to the pressure cylinder 11, and it is possible to press the lens 1 toward the spherical tool 2 side from the state where the spherical tool 2 and the lens 1 are in contact with each other.

【0030】また、レンズ1の上方に配置される超音波
発生装置4と一体にホーン3が設けられ、レンズ1の加
工中にはこの超音波発生装置4から発生した超音波振動
が超音波伝搬手段である筒状のホーン3内を伝搬する。
Further, the horn 3 is provided integrally with the ultrasonic wave generator 4 arranged above the lens 1, and the ultrasonic vibration generated by the ultrasonic wave generator 4 is propagated during the processing of the lens 1. It propagates in the cylindrical horn 3 which is a means.

【0031】ホーン3の先端には、球状工具2が転動自
在に配置されており、ホーン3を伝搬してきた超音波は
球状工具2へと伝搬する。球状工具2の材質は、鋼、鉄
等の磁気を帯びる磁性体としている。
The spherical tool 2 is rotatably arranged at the tip of the horn 3, and the ultrasonic wave propagating through the horn 3 propagates to the spherical tool 2. The spherical tool 2 is made of a magnetic material such as steel or iron.

【0032】また、超音波発生装置4には超音波制御装
置13が接続されており、超音波発生装置4から発生す
る超音波の出力を制御することができる。
An ultrasonic wave controller 13 is connected to the ultrasonic wave generator 4 so that the output of the ultrasonic wave generated from the ultrasonic wave generator 4 can be controlled.

【0033】前記球状工具2の周囲には、水平方向にか
つ放射状に8個の電磁石7が配置されており、各電磁石
7は制御手段である電磁石制御装置8に接続されて、電
磁石制御装置8により個々の電磁石7への通電のオン、
オフ及び磁力調整を行うようになっている。 また、凹
球面加工装置は、前記レンズ1及び球状工具2の当接位
置に加工液5を供給するノズル9を備え、加工液5を収
容した加工液供給装置6からノズル9へ加工液5を供給
するようになっている。
Around the spherical tool 2, eight electromagnets 7 are arranged horizontally and radially. Each electromagnet 7 is connected to an electromagnet control device 8 which is a control means, and the electromagnet control device 8 is connected. By turning on the electricity to each electromagnet 7,
It is designed to turn off and adjust the magnetic force. Further, the concave spherical surface processing device is provided with a nozzle 9 for supplying the processing liquid 5 to the contact position of the lens 1 and the spherical tool 2, and the processing liquid 5 is supplied from the processing liquid supply device 6 containing the processing liquid 5 to the nozzle 9. It is supposed to be supplied.

【0034】(作用)上記の構成の凹球面加工装置によ
りレンズ1に対する球面加工を行う場合、レンズ1と球
状工具2が当接した段階で、加工液5を供給する加工液
供給装置6からノズル9を介して加工液5がその当接位
置に供給される。さらに、超音波制御装置13にて制御
される超音波発生装置4によりホーン3を経てその先端
に保持されている球状工具2に超音波振動を発生させ
る。
(Operation) When the spherical surface processing is performed on the lens 1 by the concave spherical surface processing device having the above-described configuration, the processing liquid supply device 6 for supplying the processing liquid 5 supplies the processing liquid 5 to the nozzle when the lens 1 and the spherical tool 2 come into contact with each other. The machining fluid 5 is supplied to the contact position via 9. Further, the ultrasonic wave generation device 4 controlled by the ultrasonic wave control device 13 causes the spherical tool 2 held at the tip of the spherical tool 2 via the horn 3 to generate ultrasonic vibrations.

【0035】球面加工を行う際に、加圧シリンダが動作
し、レンズ保持台10とともにレンズ1が球状工具2に
押し付けられる。これにより、球状工具2とレンズ1の
当接位置に加工液5が介在した状態で球状工具2が超音
波振動し、押圧状態のレンズ1に対する加工が進行す
る。図2にこのときのレンズ1及び球状工具2の当接状
態を拡大して示す。また、球状工具2と各電磁石7との
位置関係を図3、図4に示す。
When performing spherical surface processing, the pressure cylinder operates and the lens 1 together with the lens holder 10 is pressed against the spherical tool 2. As a result, the spherical tool 2 vibrates ultrasonically in a state where the machining liquid 5 is present at the contact position between the spherical tool 2 and the lens 1, and the processing of the lens 1 in the pressed state proceeds. FIG. 2 shows an enlarged view of the contact state of the lens 1 and the spherical tool 2 at this time. The positional relationship between the spherical tool 2 and each electromagnet 7 is shown in FIGS. 3 and 4.

【0036】本実施の形態1では電磁石7は、球状工具
2の水平外周方向に放射状に合計8個配置されている。
電磁石7の個数は2ケ以上の任意の個数とすることがで
きるが、個数が多くなるほど磁性を帯びる球状工具2の
追従性が向上する。
In the first embodiment, a total of eight electromagnets 7 are radially arranged in the horizontal outer peripheral direction of the spherical tool 2.
The number of electromagnets 7 can be set to any number of 2 or more, but the greater the number, the better the followability of the spherical tool 2 having magnetism.

【0037】それぞれの電磁石7は電流のオン、オフ及
び電流の流れる方向、即ち、磁極の配置を変えることが
できるように、電磁石制御装置8により制御される。
Each electromagnet 7 is controlled by an electromagnet controller 8 so that the current can be turned on and off and the direction of the current flow, that is, the arrangement of the magnetic poles can be changed.

【0038】レンズ1の加工が開始された後、電磁石制
御装置8により、球状工具2を挟んで180度配置に対
向する2個の電磁石7に対して一方(図3左側)の電磁
石7の球状工具2側がS極、他方(図3右側)の電磁石
7の球状工具2側がN極となるように電流を流す。これ
により、磁性体である球状工具2に内部的に図3に示す
ような前記S極、N極に対向するN極、S極が生じる。
After the processing of the lens 1 is started, the electromagnet control device 8 controls the spherical shape of the electromagnet 7 on one side (left side in FIG. 3) with respect to the two electromagnets 7 facing each other with the spherical tool 2 interposed therebetween in a 180 degree arrangement. An electric current is supplied so that the tool 2 side has an S pole and the other (right side in FIG. 3) electromagnet 7 has a spherical tool 2 side with an N pole. As a result, the N-pole and the S-pole facing the S-pole and the N-pole as shown in FIG. 3 are internally generated in the spherical tool 2 which is a magnetic body.

【0039】次に、電磁石制御装置8により、各電磁石
7の磁極回転をおこなう。即ち、図4に示すように、図
3に示す磁極を有していた両電磁石7に対する電流を停
止し、両電磁石7の反時計方向に45度の角度間隔で隣
り合う両電磁石7に電流を流し、これら両電磁石7が図
4に示す磁極を有する状態とする
Next, the electromagnet control device 8 rotates the magnetic poles of the electromagnets 7. That is, as shown in FIG. 4, the current to both electromagnets 7 having the magnetic poles shown in FIG. 3 is stopped, and the current is applied to both electromagnets 7 adjacent to each other at an angle interval of 45 degrees in the counterclockwise direction of both electromagnets 7. And let both electromagnets 7 have the magnetic poles shown in FIG.

【0040】このようにして各電磁石7の磁極を次々と
制御することにより、電磁式のモーターの原理と同様、
磁性体からなる球状工具2は内部的に回転する磁極が発
生し、各電磁石7の磁力に引き寄せられ回転運動をす
る。
In this way, by controlling the magnetic poles of the electromagnets 7 one after another, the same principle as that of the electromagnetic motor can be obtained.
The spherical tool 2 made of a magnetic material has a magnetic pole that rotates internally, and is attracted by the magnetic force of each electromagnet 7 to rotate.

【0041】上述したことを電磁石制御装置8による各
電磁石7に対する加工が終了するまで連続的に続けるこ
とにより、球状工具2がレンズ1の加工中常に回転運動
を継続することになる。加工中はレンズ1の凹球面部と
球状工具2との間に砥粒を含む加工液5が介在している
ため、球状工具2が回転運動をすることにより、レンズ
1の凹球面部と球状工具2との間に介在する加工液5も
球状工具2の動きに連れて偏在することなく流動する。
By continuing the above operation until the machining of each electromagnet 7 by the electromagnet control device 8 is completed, the spherical tool 2 always continues the rotary motion during the machining of the lens 1. Since the machining liquid 5 containing abrasive grains is interposed between the concave spherical surface portion of the lens 1 and the spherical tool 2 during processing, the spherical spherical surface of the lens 1 and the spherical surface of the lens 1 are rotated by the spherical tool 2 rotating. The machining fluid 5 interposed between the tool 2 and the tool 2 flows without uneven distribution as the spherical tool 2 moves.

【0042】(効果)本実施の形態1によれば、どのよ
うな深い凹球面を有するレンズ1でも、球状工具2を常
に回転しつつ加工を実行でき、加工に伴って劣化した加
工液5の排出及び新しい加工液5の供給が円滑に行わ
れ、球状工具2の偏摩耗や凹球面の偏心を抑える得ると
ともに、レンズ1に対する加工品質及び加工能率を向上
させることが可能となる。
(Effects) According to the first embodiment, the lens 1 having any deep concave spherical surface can be machined while the spherical tool 2 is constantly rotated, and the machining liquid 5 deteriorated due to the machining. The discharge and the supply of the new machining liquid 5 can be performed smoothly, the uneven wear of the spherical tool 2 and the eccentricity of the concave spherical surface can be suppressed, and the machining quality and the machining efficiency of the lens 1 can be improved.

【0043】尚、各電磁石7に流す電流のオン、オフす
る順番は、反時計回り、時計回りのいずれをも選択で
き、従って球状工具2の回転方向も反時計回り、時計回
りのいずれでもよく、いずれの場合も同様な効果を発揮
させることができる。
The order of turning on and off the electric current flowing through each electromagnet 7 can be either counterclockwise or clockwise. Therefore, the rotating direction of the spherical tool 2 may be either counterclockwise or clockwise. In any case, the same effect can be exhibited.

【0044】(実施の形態2) (構成)本発明の実施の形態2を図5乃至図7を参照し
て説明する。図5は本実施の形態2の球状工具22の正
面図、図5は本実施の形態2の球状工具22と電磁石7
との位置関係を示す説明図である。図6は本実施の形態
2の回転状態の球状工具22と電磁石7との位置関係を
示す説明図である。尚、この他の構成は実施の形態1の
場合と同様である。
(Second Embodiment) (Structure) A second embodiment of the present invention will be described with reference to FIGS. 5 is a front view of the spherical tool 22 of the second embodiment, and FIG. 5 is a spherical tool 22 and electromagnet 7 of the second embodiment.
It is explanatory drawing which shows the positional relationship with. FIG. 6 is an explanatory diagram showing the positional relationship between the spherical tool 22 and the electromagnet 7 in the rotating state according to the second embodiment. Note that the other configurations are the same as those in the first embodiment.

【0045】本実施の形態2が実施の形態1と異なる点
は、予め球状工具22として着磁した鋼球を使用してい
ること、電磁石7の配置及び個数を図6に示すように球
状工具22の回りに90度間隔を持って配置した4個構
成としたことである。
The difference between the second embodiment and the first embodiment is that a pre-magnetized steel ball is used as the spherical tool 22, and the arrangement and number of electromagnets 7 are as shown in FIG. That is, four pieces are arranged around 22 at intervals of 90 degrees.

【0046】本実施の形態2において、電磁石制御装置
8により、4個の電磁石7に対してまず図6に示すよう
に球状工具22の左側の電磁石7をS極、右側の電磁石
7をN極の磁極を有するように制御した後、図7に示す
ように球状工具22の下側の電磁石7をS極、上側の電
磁石7をN極の磁極を有するように制御すると、球状工
具22は予め図5に示す状態に着磁されているので、球
状工具22は各電磁石7の各磁極の変化に速やかに反応
して回転状態となり、実施の形態1の場合と同様レンズ
1の加工を行う状態となる。
In the second embodiment, the electromagnet control device 8 causes the left electromagnet 7 of the spherical tool 22 to be the S pole and the right electromagnet 7 to be the N pole of the four electromagnets 7 as shown in FIG. 7, the lower electromagnet 7 of the spherical tool 22 is controlled to have the S pole and the upper electromagnet 7 is controlled to have the magnetic pole of the N pole, as shown in FIG. Since the spherical tool 22 is magnetized in the state shown in FIG. 5, the spherical tool 22 quickly reacts to the change of each magnetic pole of each electromagnet 7 to be in a rotating state, and the lens 1 is processed similarly to the case of the first embodiment. Becomes

【0047】(作用)上記の構成により球状工具22を
使用して球面加工を行う場合、実施の形態1と同様にレ
ンズ1と球状工具2が当接した段階で、加工液供給装置
6からノズル9を介して加工液5がその当接位置に供給
される。
(Operation) When the spherical tool 22 having the above-mentioned configuration is used to perform spherical surface processing, when the lens 1 and the spherical tool 2 are in contact with each other, the machining liquid supply device 6 causes the nozzle to come out. The machining fluid 5 is supplied to the contact position via 9.

【0048】さらに、超音波発生装置4からホーン3を
経て超音波を発生させるとともに、加圧シリンダ11が
上昇し、レンズ1が球状工具22に押し付けられる。こ
れにより、球状工具22とレンズ1の当接位置に加工液
5が介在した状態で、球状工具22が超音波振動し、さ
らにレンズ1に押圧されることにより加工が進行する。
Further, the ultrasonic wave is generated from the ultrasonic wave generator 4 through the horn 3, the pressure cylinder 11 is raised, and the lens 1 is pressed against the spherical tool 22. As a result, the spherical tool 22 vibrates ultrasonically while the machining liquid 5 is present at the contact position between the spherical tool 22 and the lens 1, and is further pressed by the lens 1 to proceed with the machining.

【0049】この際に、電磁石制御装置8により各電磁
石7に対する磁極制御を図6、図7に示す反時計回りの
順で繰り返すと、予めN極、S極に着磁されている球状
工具22は電磁石7の磁力に反応し反時計方向に回転す
At this time, when the magnetic pole control for each electromagnet 7 by the electromagnet control device 8 is repeated in the counterclockwise order shown in FIGS. 6 and 7, the spherical tool 22 magnetized in advance to the N pole and the S pole. Reacts to the magnetic force of electromagnet 7 and rotates counterclockwise

【0050】このよう各電磁石7に対する磁極制御をレ
ンズ1の加工が終了するまで連続的に行うことにより、
球状工具22が加工中常に横方向(レンズ1の加工面に
対して水平方向)の回転運動をすることになる。また、
球状工具22自体が予めN極、S極に着磁されているこ
とから、実施の形態1に比べより少ない個数の電磁石7
を使用する構成でも、加工中に球状工具2自体が磁極の
変化に対して追従性良く回転運動をする。
By continuously controlling the magnetic poles for the electromagnets 7 until the processing of the lens 1 is completed,
The spherical tool 22 always makes a rotational motion in the lateral direction (horizontal direction with respect to the processing surface of the lens 1) during processing. Also,
Since the spherical tool 22 itself is magnetized in advance to the N pole and the S pole, a smaller number of electromagnets 7 than in the first embodiment.
Even in the configuration using, the spherical tool 2 itself makes a rotational movement with good followability to the change of the magnetic pole during the machining.

【0051】(効果)本実施の形態2によれば、実施の
形態1と同様に、どのような深い球面を有するレンズ1
でも、球状工具22が常に回転することにより、劣化し
た加工液の排出及び新しい加工液の供給が円滑に行わ
れ、球状工具22の偏摩耗や凹球面の偏心を抑える得る
とともに、レンズ1の加工品質及び加工能率を向上させ
ることが可能となる。
(Effect) According to the second embodiment, as in the first embodiment, the lens 1 having any deep spherical surface.
However, since the spherical tool 22 constantly rotates, the deteriorated machining fluid can be smoothly discharged and a new machining fluid can be supplied smoothly, which can suppress the uneven wear of the spherical tool 22 and the eccentricity of the concave spherical surface, and the machining of the lens 1. It is possible to improve quality and processing efficiency.

【0052】加えて、実施の形態1においては、各電磁
石7の磁極の切り替えタイミングガ迅速すぎると、球状
工具2が追従して回らなくなってしまう惧れも生じる
が、本実施の形態2においては球状工具22自体が予め
着磁されているため、各電磁石7の磁極を早く切り替え
ても追従性が高く、さらに電磁石7の数が少なくともそ
の追従性が劣ることがなく、レンズ1に対する安定した
加工を実現することができる。
In addition, in the first embodiment, if the switching timing of the magnetic poles of the electromagnets 7 is too fast, the spherical tool 2 may not follow and rotate, but in the second embodiment. Since the spherical tool 22 itself is magnetized in advance, the followability is high even if the magnetic poles of the electromagnets 7 are switched quickly, and the number of the electromagnets 7 is not at least inferior to the followability, and stable processing is performed on the lens 1. Can be realized.

【0053】(実施の形態3) (構成)本発明の実施の形態3を図8、図9を参照して
説明する。図8は本実施の形態3の超音波による凹球面
加工装置の全体を示す概略構成図、図9は同装置の球状
工具の回転加工状態を示す概略構成図である。尚、本実
施の形態3において、既述した実施の形態1、2と同一
の要素には同一の符号を付し、その詳細説明は省略す
る。
(Third Embodiment) (Structure) A third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a schematic configuration diagram showing an entire concave spherical surface machining device using ultrasonic waves according to the third embodiment, and FIG. 9 is a schematic configuration diagram showing a rotary machining state of a spherical tool of the device. In the third embodiment, the same elements as those in the first and second embodiments described above are designated by the same reference numerals, and detailed description thereof will be omitted.

【0054】本実施の形態3が実施の形態2と異なる部
分は、ホーン3の内部に内蔵型の3個の電磁石12を前
記球状工具22に対して垂直配置に、かつ、球状工具2
2に対して放射状配列に付加配設した点であり、この内
蔵型の電磁石12は、実施の形態1、2の場合の電磁石
7と同様に図示省略した電磁石制御装置8と電気的に接
続され、通電制御される。また、球状工具22は、実施
の形態2と同様にN、S極に着磁された状態で、かつ、
同様な配置でレンズ1の加工に用いられる。この他の構
成は実施の形態1、2の場合と同様である。
The third embodiment is different from the second embodiment in that the three built-in electromagnets 12 inside the horn 3 are vertically arranged with respect to the spherical tool 22 and the spherical tool 2 is used.
This is a point that is additionally arranged in a radial arrangement with respect to No. 2, and this built-in electromagnet 12 is electrically connected to an electromagnet control device 8 (not shown) like the electromagnet 7 in the first and second embodiments. , Energization is controlled. The spherical tool 22 is magnetized to the N and S poles as in the second embodiment, and
The same arrangement is used for processing the lens 1. Other configurations are the same as those in the first and second embodiments.

【0055】(作用)上記の構成により、レンズ1の球
面加工を行う場合、実施の形態1、2と同様にレンズ1
と球状工具22が当接した段階で、加工液供給装置6か
らノズル9を介して加工液5がその当接位置に供給され
る。さらに、超音波発生装置4によりホーン3に超音波
を発生させるとともに、加圧シリンダ11が上昇し、レ
ンズ1が球状工具2に押し付けられる。これにより、球
状工具2とレンズ1の当接位置に加工液5が介在した状
態で、球状工具22が超音波振動し、さらにレンズ1に
押圧されることにより加工が進行する。
(Operation) When the spherical surface of the lens 1 is processed by the above structure, the lens 1 is processed in the same manner as in the first and second embodiments.
When the spherical tool 22 comes into contact with the machining tool 5, the machining fluid 5 is supplied from the machining fluid supply device 6 to the contact position via the nozzle 9. Further, the ultrasonic generator 4 generates ultrasonic waves in the horn 3, and the pressurizing cylinder 11 rises to press the lens 1 against the spherical tool 2. As a result, the spherical tool 22 is ultrasonically vibrated while the machining liquid 5 is present at the contact position between the spherical tool 2 and the lens 1, and is further pressed by the lens 1 to proceed with the machining.

【0056】電磁石7は球状工具22の水平外周方向に
位置している。また、ホーン3の内部には内蔵型の電磁
石12が放射状に配置されており、各電磁石7への電流
のオン、オフ通電制御、および電流の流れる方向を変え
ることができる電磁石制御装置8により制御される。
The electromagnet 7 is located in the horizontal outer peripheral direction of the spherical tool 22. Further, built-in electromagnets 12 are radially arranged inside the horn 3, and control is performed by an electromagnet control device 8 capable of controlling ON / OFF energization of current to each electromagnet 7 and changing a current flowing direction. To be done.

【0057】まず、図8に示すように球状工具22の両
側の電磁石7の一方にN極を、他方にS極を生じさせ
る。これにより、予めS極、N極に着磁されている球状
工具2は前記電磁石7の磁力に引かれ、位置が図8に示
すように規制される。
First, as shown in FIG. 8, an N pole is generated in one of the electromagnets 7 on both sides of the spherical tool 22, and an S pole is generated in the other. As a result, the spherical tool 2 magnetized in advance to the S pole and the N pole is attracted by the magnetic force of the electromagnet 7, and the position is regulated as shown in FIG.

【0058】次に、図9に示すように、今まで磁極を有
していた両電磁石7への通電を停止し、図9において球
状工具22の右斜め上側に位置する内蔵型の電磁石12
へ電流を流し、球状工具2側にS極を生じさせる。これ
により、S極、N極を有する球状工具22は内蔵型の電
磁石12の磁力に引かれ垂直方向で反時計方向(図9に
示す矢印方向)に回転する。
Next, as shown in FIG. 9, the energization of both electromagnets 7 having magnetic poles until now is stopped, and the built-in electromagnet 12 positioned diagonally to the upper right of the spherical tool 22 in FIG.
An electric current is applied to generate a south pole on the side of the spherical tool 2. As a result, the spherical tool 22 having the S pole and the N pole is attracted by the magnetic force of the built-in electromagnet 12 and is rotated counterclockwise (in the direction of the arrow shown in FIG. 9) in the vertical direction.

【0059】次に、磁極を有していた右斜め上側の内蔵
型の電磁石12への通電を停止し、同時に球状工具22
の上側の内蔵型の電磁石12に通電し、球状工具22側
にS極を生じさせる。これにより、球状工具22はさら
に反時計方向に回転する。
Next, the energization of the built-in electromagnet 12 on the diagonally upper right side having the magnetic pole is stopped, and at the same time, the spherical tool 22 is stopped.
The built-in electromagnet 12 on the upper side of is energized to generate an S pole on the spherical tool 22 side. As a result, the spherical tool 22 further rotates counterclockwise.

【0060】次に、磁極を有していた上側の内蔵型の電
磁石12への通電を停止し、同時に球状工具22の左斜
め上側の内蔵型の電磁石12に通電し、球状工具22側
にS極を生じさせる。これにより、球状工具22はさら
に反時計方向に回転する。
Next, the energization of the upper built-in electromagnet 12 having the magnetic poles is stopped, and at the same time, the built-in electromagnet 12 diagonally to the left of the spherical tool 22 is energized, and the spherical tool 22 is moved to the S side. Give rise to poles. As a result, the spherical tool 22 further rotates counterclockwise.

【0061】このような動作をレンズ1の加工が終了す
るまで連続的に繰り返すことにより、球状工具22が縦
方向(レンズ1の上面に対して垂直な方向)の回転運動
を行いつつレンズ1に対する加工が行われる。
By continuously repeating such an operation until the processing of the lens 1 is completed, the spherical tool 22 makes a rotational movement in the vertical direction (a direction perpendicular to the upper surface of the lens 1) with respect to the lens 1. Processing is performed.

【0062】レンズ1の加工中、球状工具22が縦方向
に回転することにより、加工液5がその動きに追随する
ように流動し、レンズ1の凹球面部の最も深い位置に至
るまで加工液5の流動が及ぶ。また、実施の形態2の場
合と同様に球状工具22が磁極を有していることから、
各電磁石7、各内蔵型の電磁石12の磁極切り替えに対
して追従性よく球状工具2自体を回転させつつレンズ1
に対する加工を実行できる。この他の作用は、実施の形
態1、2の場合と同様である。
During the processing of the lens 1, the spherical tool 22 rotates in the vertical direction, so that the processing liquid 5 flows so as to follow its movement, and reaches the deepest position of the concave spherical surface of the lens 1. A flow of 5 extends. Further, since the spherical tool 22 has magnetic poles as in the case of the second embodiment,
The lens 1 while rotating the spherical tool 2 itself with good followability to the switching of the magnetic poles of the electromagnets 7 and the built-in electromagnets 12
Can be processed. The other actions are similar to those of the first and second embodiments.

【0063】(効果)本実施の形態3によれば、実施の
形態1、2の場合と同様に、どのような深い凹球面部を
有するレンズ1でも、球状工具22が常に回転しつつ加
工が進行して行くので、加工によりゆ劣化した加工液5
の排出及び新しい加工液5の供給が円滑に行われ、球状
工具22の偏摩耗や凹球面の偏心を抑えることができる
ともに、加工品質及び加工能率を向上させることが可能
となる。
(Effect) According to the third embodiment, similarly to the first and second embodiments, the lens 1 having any deep concave spherical surface can be processed while the spherical tool 22 is constantly rotating. As it progresses, the processing liquid that has deteriorated due to processing 5
Is smoothly discharged and a new machining liquid 5 is smoothly supplied, uneven wear of the spherical tool 22 and eccentricity of the concave spherical surface can be suppressed, and machining quality and machining efficiency can be improved.

【0064】加えて、加工液5の動きとしてはレンズ1
の凹球面部において浅い位置にある加工液5は深い位置
へと誘導され、レンズ1の凹球面部において深い位置に
ある加工液5は浅い位置へと誘導される。
In addition, the movement of the working liquid 5 is the lens 1
The machining fluid 5 at a shallow position on the concave spherical surface of the lens 1 is guided to a deep position, and the machining fluid 5 at a deep position on the concave spherical surface of the lens 1 is guided to a shallow position.

【0065】これにより、レンズ1の凹球面部の浅い位
置にある新しい加工液が深い位置へ到達し易くなり、ま
た、凹球面部の深い位置にある古い加工液5が凹球面部
と球状工具22との界面から排出され易くなるため、実
施の形態1、2の場合以上にレンズ1の加工品質及び加
工能率の向上を図ることができる。
As a result, the new machining liquid at the shallow position of the concave spherical surface of the lens 1 can easily reach the deep position, and the old machining fluid 5 at the deep position of the concave spherical surface can be replaced with the concave spherical surface and the spherical tool. Since it is easily discharged from the interface with the lens 22, the processing quality and the processing efficiency of the lens 1 can be improved more than in the first and second embodiments.

【0066】[0066]

【発明の効果】本発明によれば、電磁石を利用して球状
工具を電磁石の配列に対応する方向に回転させつつ超音
波の作用下で被加工物の凹球面の加工を行うものである
から、加工液の供給、排出を円滑に行い、球状工具の偏
摩耗防止、凹球面の偏心防止を図ることができ、被加工
物に対する加工品質及び加工能率の向上を図ることがで
きる超音波による凹球面加工装置を提供することができ
る。
According to the present invention, the spherical surface of the workpiece is machined under the action of ultrasonic waves while rotating the spherical tool in the direction corresponding to the arrangement of the electromagnets using the electromagnets. In addition, the supply and discharge of machining fluid can be performed smoothly to prevent uneven wear of the spherical tool and eccentricity of the concave spherical surface, and it is possible to improve the machining quality and machining efficiency of the workpiece by using the ultrasonic concave A spherical surface processing device can be provided.

【0067】本発明によれば、電磁石を利用して球状工
具を電磁石の配列に対応する方向に回転させつつ被加工
物の凹球面の加工を行うものであるから、加工能率に優
れ、加工品質が良い被加工物を得ることかできる超音波
による凹球面加工方法を提供することができる。
According to the present invention, the concave spherical surface of the workpiece is machined while the spherical tool is rotated in the direction corresponding to the arrangement of the electromagnets by using the electromagnet, so that the machining efficiency is excellent and the machining quality is high. It is possible to provide a method for processing a concave spherical surface by ultrasonic waves that can obtain a good workpiece.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の凹球面加工装置の全体
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an entire concave spherical surface processing device according to a first embodiment of the present invention.

【図2】本実施の形態1の球状工具による加工状態の部
分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a working state with the spherical tool according to the first embodiment.

【図3】本実施の形態1の球状工具及び電磁石の配置を
示す説明図である。
FIG. 3 is an explanatory diagram showing an arrangement of a spherical tool and an electromagnet according to the first embodiment.

【図4】本実施の形態1の回転する状態の球状工具及び
電磁石の配置を示す説明図である。
FIG. 4 is an explanatory diagram showing the arrangement of a spherical tool and an electromagnet in a rotating state according to the first embodiment.

【図5】本発明の実施の形態2の球状工具の正面図であ
る。
FIG. 5 is a front view of a spherical tool according to a second embodiment of the present invention.

【図6】本実施の形態2の球状工具と電磁石との位置関
係を示す説明図である。
FIG. 6 is an explanatory diagram showing a positional relationship between a spherical tool and an electromagnet according to the second embodiment.

【図7】本実施の形態2の回転する状態の球状工具と電
磁石との位置関係を示す説明図である。
FIG. 7 is an explanatory diagram showing a positional relationship between a spherical tool and an electromagnet in a rotating state according to the second embodiment.

【図8】本発明の実施の形態3の超音波による凹球面加
工装置の全体を示す概略構成図である。
FIG. 8 is a schematic configuration diagram showing an entire concave spherical surface processing device using ultrasonic waves according to a third embodiment of the present invention.

【図9】本発明の実施の形態3の超音波による凹球面加
工装置の球状工具の回転加工状態を示す概略構成図であ
る。
FIG. 9 is a schematic configuration diagram showing a rotary processing state of a spherical tool of a concave spherical surface processing device using ultrasonic waves according to a third embodiment of the present invention.

【図10】従来例である球面創成加工装置の概略構成図
である。
FIG. 10 is a schematic configuration diagram of a spherical surface creation processing apparatus that is a conventional example.

【図11】従来例のホーンにおける工具の取り付け部を
拡大して示す部分断面図である。
FIG. 11 is a partial cross-sectional view showing a tool mounting portion of a horn of a conventional example in an enlarged manner.

【図12】従来例の球面創成加工装置における凹球面の
加工状態を示す拡大して示す部分断面図である。
FIG. 12 is an enlarged partial sectional view showing a processing state of a concave spherical surface in a conventional spherical surface generating / processing apparatus.

【符号の説明】[Explanation of symbols]

1 レンズ 2 球状工具 3 ホーン 4 超音波発生装置 5 加工液 6 加工液供給装置 7 電磁石 8 電磁石制御装置 9 ノズル 10 レンズ保持台 11 加圧シリンダ 12 電磁石 13 超音波制御装置 22 球状工具 1 lens 2 spherical tool 3 horns 4 Ultrasonic generator 5 working fluid 6 Working fluid supply device 7 Electromagnet 8 Electromagnet control device 9 nozzles 10 Lens holder 11 Pressure cylinder 12 Electromagnet 13 Ultrasonic controller 22 Spherical tool

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 慎弥 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 3C049 AA07 AA11 AA16 AA17 BC02 CA01 CB01 CB03 3C058 AA07 AA11 AA16 AC04 BC02 CA02 CB01 CB03 CB06 DA10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinya Iida             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. F-term (reference) 3C049 AA07 AA11 AA16 AA17 BC02                       CA01 CB01 CB03                 3C058 AA07 AA11 AA16 AC04 BC02                       CA02 CB01 CB03 CB06 DA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被加工物の凹球面加工用の磁性体からな
る球状工具と、 前記球状工具を転動可能に保持しつつ、超音波発生装置
から発せられた超音波振動を前記球状工具に伝搬させる
超音波伝搬手段と、 前記球状工具と被加工物とを当接させる加圧手段と、 前記球状工具と被加工物との当接位置に砥粒を分散させ
た加工液を供給する加工液供給手段と、 前記球状工具の外周に放射状配列で臨ませた複数個の電
磁石と、 前記複数個の電磁石への通電制御による磁極切り替えに
より球状工具に対して回転変位する磁気吸引力を作用さ
せ、前記球状工具を前記被加工物との当接位置で複数個
の電磁石の配列面方向に回転させる制御手段と、 を有することを特徴とする超音波による凹球面加工装
置。
1. A spherical tool made of a magnetic material for processing a concave spherical surface of a workpiece, and ultrasonically emitted from an ultrasonic generator to the spherical tool while holding the spherical tool rollably. Ultrasonic wave propagating means for propagating, pressurizing means for abutting the spherical tool and the workpiece, and processing for supplying a machining liquid in which abrasive grains are dispersed at the contact position between the spherical tool and the workpiece. Liquid supply means, a plurality of electromagnets that are arranged radially around the spherical tool, and a magnetic attraction force that causes rotational displacement of the spherical tool by switching magnetic poles by controlling energization of the plurality of electromagnets. A control means for rotating the spherical tool in a direction in which a plurality of electromagnets are arranged at a contact position with the workpiece, and a concave spherical surface machining apparatus using ultrasonic waves.
【請求項2】 前記球状工具が磁極を有するように着磁
されていることを特徴とする請求項1記載の超音波によ
る凹球面加工装置。
2. The concave spherical surface machining apparatus according to claim 1, wherein the spherical tool is magnetized so as to have magnetic poles.
【請求項3】 前記電磁石が、球状工具の水平方向外周
に放射状配列で複数個配置されていることを特徴とする
請求項1又は2記載の超音波による凹球面加工装置。
3. An ultrasonic concave spherical surface machining apparatus according to claim 1, wherein a plurality of the electromagnets are arranged in a radial arrangement on the outer periphery in the horizontal direction of the spherical tool.
【請求項4】 前記電磁石が、前記球状工具の水平方向
外周に放射状配列で複数個配置されているとともに、前
記超音波伝搬手段内部に球状工具に対して垂直方向配置
でかつ放射状に複数個内蔵されていることを特徴とする
請求項1又は2記載の超音波による凹球面加工装置。
4. A plurality of the electromagnets are arranged in a radial arrangement on the outer circumference in the horizontal direction of the spherical tool, and a plurality of electromagnets are arranged inside the ultrasonic wave propagating means in a direction perpendicular to the spherical tool and are radially installed. The concave spherical surface processing device using ultrasonic waves according to claim 1 or 2, characterized in that:
【請求項5】 球状工具と被加工物との当接位置に、砥
粒を分散させた加工液を供給しつつ、超音波発生装置に
て前記球状工具を超音波振動させつつ前記球状工具若し
くは被加工物を加圧し、被加工物の加工を行う超音波に
よる凹球面加工方法において、 電磁石の磁力を利用した非接触の回転駆動手段を用いて
前記球状工具の被加工物に対する加工中にこの球状工具
を電磁石の配列面方向に回転させることを特徴とする超
音波による凹球面加工方法。
5. The spherical tool or the spherical tool while ultrasonically vibrating the spherical tool by an ultrasonic generator while supplying a machining liquid in which abrasive grains are dispersed to the contact position between the spherical tool and the workpiece. In a concave spherical surface processing method using ultrasonic waves for processing a work piece by pressurizing the work piece, a non-contact rotation driving means utilizing the magnetic force of an electromagnet is used to form the spherical tool during the work on the work piece. A method for processing a concave spherical surface by ultrasonic waves, which comprises rotating a spherical tool in the direction of the arrangement surface of electromagnets.
【請求項6】 球状工具を転動可能に保持した状態で、
球状工具の水平方向外周に放射状配列に配置した複数個
の電磁石の磁極を切り替え制御し、複数個の電磁石によ
る磁気吸引力により前記球状工具を加工中に水平方向に
回転させることを特徴とする請求項5記載の超音波によ
る凹球面加工方法。
6. In a state in which the spherical tool is rollably held,
The magnetic poles of a plurality of electromagnets arranged in a radial arrangement on the outer periphery in the horizontal direction of the spherical tool are controlled to be switched, and the spherical tool is rotated in the horizontal direction during machining by a magnetic attraction force of the plurality of electromagnets. Item 6. A method for processing a concave spherical surface by ultrasonic waves according to Item 5.
【請求項7】 球状工具を転動可能に保持した状態で、
球状工具の水平方向外周に放射状配列に配置した電磁石
及び球状工具の垂直方向外周に放射状配列に配置した電
磁石の磁極を切り替え制御し、前記各電磁石による磁気
吸引力により球状工具を加工中に垂直方向に回転させる
ことを特徴とする請求項5記載の超音波による凹球面加
工方法。
7. A spherical tool rollably held,
The magnetic poles of the electromagnets arranged in a radial array on the outer circumference in the horizontal direction of the spherical tool and the magnetic poles of the electromagnets arranged in a radial arrangement on the outer circumference in the vertical direction of the spherical tool are controlled to be switched, and the magnetic tool is attracted by each of the electromagnets in the vertical direction during machining. 6. The method for processing a concave spherical surface by ultrasonic waves according to claim 5, wherein
JP2001240216A 2001-08-08 2001-08-08 Recessed spherical face machining device by ultrasonic wave and method therefor Pending JP2003048152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001240216A JP2003048152A (en) 2001-08-08 2001-08-08 Recessed spherical face machining device by ultrasonic wave and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001240216A JP2003048152A (en) 2001-08-08 2001-08-08 Recessed spherical face machining device by ultrasonic wave and method therefor

Publications (1)

Publication Number Publication Date
JP2003048152A true JP2003048152A (en) 2003-02-18

Family

ID=19070866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001240216A Pending JP2003048152A (en) 2001-08-08 2001-08-08 Recessed spherical face machining device by ultrasonic wave and method therefor

Country Status (1)

Country Link
JP (1) JP2003048152A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253593A (en) * 2009-04-23 2010-11-11 Institute Of Physical & Chemical Research Recessed spherical surface grinding device and method
CN104708502A (en) * 2015-03-11 2015-06-17 浙江工业大学 Method for machining tiny grooves through ultrasonic grinding
CN104858724A (en) * 2015-05-26 2015-08-26 浙江师范大学 Ultrasonic vibration magneto-rheological brush polishing machine for non-magnetic screws
CN105364640A (en) * 2015-11-19 2016-03-02 浙江工业大学 Chemical-mechanical grading compound manufacturing method for micro-semi-ring concave die array
CN105458904A (en) * 2015-11-20 2016-04-06 超达阀门集团股份有限公司 Ball grinding machine with abradant adding mechanism
CN105598785A (en) * 2015-10-14 2016-05-25 中国人民解放军国防科学技术大学 Combined random vibration small-bore polishing device
CN109465680A (en) * 2018-12-17 2019-03-15 中国航发动力股份有限公司 A method of it is ultrasound-enhanced for integral blade disk or blade profile
CN109623504A (en) * 2018-11-22 2019-04-16 中国人民解放***箭军工程大学 A kind of Machining System and method of supersonic vibration assistant grinding and magnetic force polishing
CN110370099A (en) * 2019-05-30 2019-10-25 浙江工业大学 The method of the micro- hemisphere cavity plate array of rotary ultrasonic machining combination magnetic abrasive finishing
CN111283482A (en) * 2020-04-07 2020-06-16 台州学院 Multi-head self-adaptive magnetorheological polishing device
CN111300169A (en) * 2020-03-04 2020-06-19 广东工业大学 Pressure-maintaining type ultrasonic-assisted finishing device and processing method thereof
CN112518569A (en) * 2020-12-02 2021-03-19 临清市海滨轴承制造有限公司 Spherical surface roller spherical base surface lapping machine and using method
CN110421413B (en) * 2019-05-30 2021-05-14 浙江工业大学 Method and device for preparing micro-hemispherical concave die array by Fenton multi-domain ultrasonic processing
CN115157021A (en) * 2022-07-05 2022-10-11 中国航发贵阳发动机设计研究所 Magnetic ultrasonic composite grinding device for large-size variable-section complex cylindrical part
CN115401530A (en) * 2022-08-30 2022-11-29 大连理工大学 Shape-controlled flexible polishing method for microarray mold
CN117207054A (en) * 2023-11-09 2023-12-12 靖江市长源液压机械有限公司 Ball grinder for multiway valve with piece self-cleaning function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113952U (en) * 1986-01-10 1987-07-20
JPH04336954A (en) * 1991-05-09 1992-11-25 Matsushita Electric Ind Co Ltd Minute grinding method and minute grinding tool
JP2000006007A (en) * 1998-06-22 2000-01-11 Koyo Seiko Co Ltd Processing device
JP2002239879A (en) * 2001-02-09 2002-08-28 Ooita Ken Ultrasonic vibration machining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113952U (en) * 1986-01-10 1987-07-20
JPH04336954A (en) * 1991-05-09 1992-11-25 Matsushita Electric Ind Co Ltd Minute grinding method and minute grinding tool
JP2000006007A (en) * 1998-06-22 2000-01-11 Koyo Seiko Co Ltd Processing device
JP2002239879A (en) * 2001-02-09 2002-08-28 Ooita Ken Ultrasonic vibration machining method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253593A (en) * 2009-04-23 2010-11-11 Institute Of Physical & Chemical Research Recessed spherical surface grinding device and method
CN104708502A (en) * 2015-03-11 2015-06-17 浙江工业大学 Method for machining tiny grooves through ultrasonic grinding
CN104858724A (en) * 2015-05-26 2015-08-26 浙江师范大学 Ultrasonic vibration magneto-rheological brush polishing machine for non-magnetic screws
CN105598785A (en) * 2015-10-14 2016-05-25 中国人民解放军国防科学技术大学 Combined random vibration small-bore polishing device
CN105364640A (en) * 2015-11-19 2016-03-02 浙江工业大学 Chemical-mechanical grading compound manufacturing method for micro-semi-ring concave die array
CN105458904A (en) * 2015-11-20 2016-04-06 超达阀门集团股份有限公司 Ball grinding machine with abradant adding mechanism
CN109623504A (en) * 2018-11-22 2019-04-16 中国人民解放***箭军工程大学 A kind of Machining System and method of supersonic vibration assistant grinding and magnetic force polishing
CN109465680A (en) * 2018-12-17 2019-03-15 中国航发动力股份有限公司 A method of it is ultrasound-enhanced for integral blade disk or blade profile
CN110370099B (en) * 2019-05-30 2021-01-29 浙江工业大学 Method for processing micro-hemispherical concave die array by combining rotary ultrasonic processing with magnetic grinding
CN110370099A (en) * 2019-05-30 2019-10-25 浙江工业大学 The method of the micro- hemisphere cavity plate array of rotary ultrasonic machining combination magnetic abrasive finishing
CN110421413B (en) * 2019-05-30 2021-05-14 浙江工业大学 Method and device for preparing micro-hemispherical concave die array by Fenton multi-domain ultrasonic processing
CN111300169A (en) * 2020-03-04 2020-06-19 广东工业大学 Pressure-maintaining type ultrasonic-assisted finishing device and processing method thereof
CN111283482B (en) * 2020-04-07 2020-12-01 台州学院 Multi-head self-adaptive magnetorheological polishing device
CN111283482A (en) * 2020-04-07 2020-06-16 台州学院 Multi-head self-adaptive magnetorheological polishing device
CN112518569A (en) * 2020-12-02 2021-03-19 临清市海滨轴承制造有限公司 Spherical surface roller spherical base surface lapping machine and using method
CN115157021A (en) * 2022-07-05 2022-10-11 中国航发贵阳发动机设计研究所 Magnetic ultrasonic composite grinding device for large-size variable-section complex cylindrical part
CN115157021B (en) * 2022-07-05 2024-04-09 中国航发贵阳发动机设计研究所 Magnetic force ultrasonic composite grinding device for large-size variable-section complex cylindrical part
CN115401530A (en) * 2022-08-30 2022-11-29 大连理工大学 Shape-controlled flexible polishing method for microarray mold
CN117207054A (en) * 2023-11-09 2023-12-12 靖江市长源液压机械有限公司 Ball grinder for multiway valve with piece self-cleaning function
CN117207054B (en) * 2023-11-09 2024-03-12 靖江市长源液压机械有限公司 Ball grinder for multiway valve with piece self-cleaning function

Similar Documents

Publication Publication Date Title
JP2003048152A (en) Recessed spherical face machining device by ultrasonic wave and method therefor
JP5935089B2 (en) High frequency vibration assisted electrolytic grinding method and apparatus
JP2010207971A (en) Contact detection method, spindle device system, spindle device, and machine tool system
CN102441820B (en) Non-contact type ultrasonic surface shape correcting and polishing method and device
US5071525A (en) Method of grinding lenses and apparatus therefor
JP2008068327A (en) Wafer edge polisher and wafer edge polishing method
JPH04336954A (en) Minute grinding method and minute grinding tool
JP2009034812A (en) Both-plane-face polishing method and both-plane-face polishing device
JP2002283225A (en) Machining device and machining method of concave spherical surface
JP4155872B2 (en) Lapping machine manufacturing method
CN102873592B (en) Based on the surface finishing device of transducing head
JP2007276081A (en) Polishing device and polishing method
US20040137830A1 (en) Lapping method and lapping machine
JP2002283216A (en) Magnetic polishing method utilizing ellipse vibration, device therefor and magnetic abrasive grain
CN202825443U (en) Surface finishing treatment energy conversion processing device
JPH06297303A (en) Ultrasonic machining head
JP4705971B2 (en) Lapping machine manufacturing equipment
JP2001062700A (en) Wire saw
JP2006082163A (en) Dimple forming method and dimple forming device
JPS61252056A (en) Method of vibration polishing
JP2000153434A (en) Ultrasonic spherical surface generating device and ultrasonic spherical surface generating method
JPH11333702A (en) Device and method for generating spherical surface
JP2011212834A (en) Discharging and machining method and device using discharging pulse
JPH05162064A (en) Microterritory polishing device
JP2011194546A (en) Ultrasonic machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628