JP2007307682A - Modified material working method and modified material working device - Google Patents

Modified material working method and modified material working device Download PDF

Info

Publication number
JP2007307682A
JP2007307682A JP2006141704A JP2006141704A JP2007307682A JP 2007307682 A JP2007307682 A JP 2007307682A JP 2006141704 A JP2006141704 A JP 2006141704A JP 2006141704 A JP2006141704 A JP 2006141704A JP 2007307682 A JP2007307682 A JP 2007307682A
Authority
JP
Japan
Prior art keywords
reformed
processing
liquid lubricant
lubricating oil
bearing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006141704A
Other languages
Japanese (ja)
Inventor
Takashi Ogawara
孝 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2006141704A priority Critical patent/JP2007307682A/en
Publication of JP2007307682A publication Critical patent/JP2007307682A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a modified material working method capable of impregnating a liquid lubricant in an eroded pit by forming the eroded pit on a modified material surface without using a solid peening material and a modified material working device. <P>SOLUTION: A lubricating oil 24 is impregnated in the eroded pit by applying high frequency vibration in the vertical direction and high frequency vibration in the horizontal direction on a top 23 in an oil tank 25 filled with the lubricating oil 24, arranging a bearing metal 26 at a position opposed to the top 23, forming cavitation bubbles 31 in a clearance between the top 23 and a constructing surface 28 of the bearing metal 26 in the lubricating oil 24 and drilling the eroded pit 35 on the constructing surface 28 of the bearing metal 26 by formation and collapse of the bubbles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、キャビテーション泡の崩壊時に発生する衝撃波を利用して軸受けなどの被改質材表面を効果的にピーニングする被改質材加工方法および被改質材加工装置に関する。   The present invention relates to a method for processing a material to be reformed and an apparatus for processing a material to be reformed that effectively peen the surface of the material to be reformed such as a bearing by using a shock wave generated when the cavitation bubbles collapse.

軸受け面に潤滑油を良好に供給するために各種の方法が知られている。例えば、軸受け表面に微細な溝を加工し、加工された溝に潤滑油を溜めるようにして軸受け表面の油膜切れを防止する方法が実用化されている。しかしながら、この方法では微細な溝を湾曲面に精度よく加工するには多大な時間を必要としていた。   Various methods are known in order to satisfactorily supply lubricating oil to the bearing surface. For example, a method has been put to practical use in which fine grooves are processed on the bearing surface and lubricating oil is accumulated in the processed grooves to prevent oil film breakage on the bearing surface. However, this method requires a great deal of time to process a fine groove into a curved surface with high accuracy.

また、ころ案内用の鍔部が設けられている円錐ころ軸受けや円筒ころ軸受けのころ案内面に微小凹部を設け、この微小凹部に潤滑油が溜まるようにしたころ軸受けも知られている(特許文献1参照)。すなわち、この微小凹部はショットブラストあるいはショットピーニングによって形成される。例えば、ショットピーニングにはビッカース硬度650以上で粒径が1mm以下の鋼球が使用され、ころ案内面にこの鋼球を噴射することによって微小凹部が形成される。   There are also known roller bearings in which a minute concave portion is provided on a roller guide surface of a tapered roller bearing or a cylindrical roller bearing provided with a roller guide flange, and lubricating oil is accumulated in the minute concave portion (patent). Reference 1). That is, this minute recess is formed by shot blasting or shot peening. For example, a steel ball having a Vickers hardness of 650 or more and a particle size of 1 mm or less is used for shot peening, and a fine recess is formed by spraying the steel ball on a roller guide surface.

しかしながら、この特許文献1の方法によるとショット材として鋼球を利用することから、鋼球の案内面への打撃に伴って鋼球が案内面にめり込むおそれがあり、めり込んだ鋼球の除去に手間がかかる。さらに、案内面にショット材を打撃する結果、粉塵あるいは金属破片が発生することとなり、これらを除去清掃する手間がかかる。また、形成された凹部に溜まる潤滑油量は少量であって、無給油メタルの特性を併せ持つ軸受けメタルの形成は困難である。   However, according to the method of Patent Document 1, since a steel ball is used as a shot material, there is a possibility that the steel ball may sink into the guide surface as the steel ball hits the guide surface. It takes time and effort. Further, as a result of hitting the shot material on the guide surface, dust or metal fragments are generated, and it takes time to remove and clean these. In addition, the amount of lubricating oil that accumulates in the formed recess is small, and it is difficult to form a bearing metal that has the characteristics of an oil-free metal.

また、金属などの材料表面を改質する方法に、キャビテーション気泡の崩壊時に発生する衝撃波を被改質材表面に付与してピーニングを行う技術も知られている(特許文献2参照)。この方法によると固形のピーニング材を不要となり、大幅なコスト低下を図ることが可能である。しかしながら、清浄な清水中で動作させ被改質材表面に残留応力を生成する点に関して知られるところであって、他の利用についての開示は認められない。また、軸受け表面の焼き付け防止には、長時間の低速回転でも油膜切れが起きないようにする必要があり、無給油メタルの特性を併せ持つ軸受けメタルが求められていた。
特開平6−241235号公報 特開2003−220523号公報
Further, as a method for modifying the surface of a material such as metal, a technique is also known in which peening is performed by applying a shock wave generated when cavitation bubbles collapse to the surface of the material to be modified (see Patent Document 2). According to this method, a solid peening material is not required, and a significant cost reduction can be achieved. However, it is known with respect to the point that it operates in clean fresh water and generates residual stress on the surface of the material to be modified, and disclosure of other uses is not allowed. Further, in order to prevent seizure of the bearing surface, it is necessary to prevent the oil film from being cut even at a low speed rotation for a long time, and a bearing metal having characteristics of an oil-free metal has been demanded.
JP-A-6-241235 JP 2003-220523 A

本発明は、上述した背景技術の課題を解決するために、固形のピーニング材を用いることなく軸受け表面に壊食ピットを形成し、この壊食ピットに潤滑油を含浸させることを可能とした被改質材加工方法および被改質材加工装置を提供することを目的とする。   In order to solve the above-described problems of the background art, the present invention forms erosion pits on the bearing surface without using a solid peening material, and allows the erosion pits to be impregnated with lubricating oil. It is an object of the present invention to provide a modified material processing method and a modified material processing apparatus.

本発明に係る被改質材加工方法は、被改質材を液状潤滑剤中に浸漬し、前記被改質材表面を前記液状潤滑剤中にて、前記被改質材表面形状に倣った表面形状を有するコマを用い、前記液状潤滑剤中にキャビテーション泡を生成せしめ、このキャビテーション泡の生成・崩壊によってなされるキャビテーションピーニング処理を施すことにより、前記被改質材表面に壊食ピットを穿孔し、前記壊食ピット中に前記液状潤滑剤を含浸することを要旨とする。 In the method for processing a material to be modified according to the present invention, the material to be modified is immersed in a liquid lubricant, and the surface of the material to be modified follows the surface shape of the material to be modified in the liquid lubricant. By using a coma having a surface shape, cavitation bubbles are generated in the liquid lubricant, and erosion pits are perforated on the surface of the material to be reformed by performing a cavitation peening process performed by the generation / disintegration of the cavitation bubbles. The gist of the present invention is to impregnate the erosion pit with the liquid lubricant.

また、本発明に係る被改質材加工装置は、液状潤滑剤を満たす潤滑剤槽と、この潤滑剤槽中に設置されたコマと、このコマに接続された高周波振動発生装置とを具備し、前記コマに対して対向間隙に配置される被改質材表面に前記潤滑剤槽に満たされる前記液状潤滑剤中にて前記潤滑剤を含浸する壊食ピットを形成することを要旨とする。   Further, the material processing apparatus according to the present invention includes a lubricant tank filled with a liquid lubricant, a top installed in the lubricant tank, and a high-frequency vibration generator connected to the top. The gist is to form erosion pits impregnated with the lubricant in the liquid lubricant filled in the lubricant tank on the surface of the material to be modified which is disposed in the facing gap with respect to the top.

無給油メタルの特性を併せ持つ軸受けメタルを形成すべく、固形のピーニング材を用いることなく軸受け表面に壊食ピットを形成し、この壊食ピットに潤滑油を含浸させることを可能とした。これにより無給油メタルの特性を併せ持つ被改質材の提供を可能とした。   In order to form a bearing metal having the characteristics of an oil-free metal, erosion pits were formed on the bearing surface without using a solid peening material, and this erosion pit could be impregnated with lubricating oil. This makes it possible to provide a material to be reformed that has the characteristics of oil-free metal.

以下に図を参照して本発明に係る実施形態を説明する。図1は本発明に係る軸受けピーニング装置の構成を示す図である。すなわち、ピーニング装置11は、第1高周波振動発生装置12ならびにこの第1高周波振動発生装置12に接続されている第1高周波電源装置13、第2高周波振動発生装置14ならびにこの第2高周波振動発生装置14に接続されている第2高周波電源装置15を有している。   Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a bearing peening apparatus according to the present invention. That is, the peening apparatus 11 includes a first high-frequency vibration generator 12, a first high-frequency power generator 13 connected to the first high-frequency vibration generator 12, a second high-frequency vibration generator 14, and the second high-frequency vibration generator. 14 has a second high frequency power supply device 15 connected thereto.

第1高周波振動発生装置12には第1高周波コイル16が設けられており、第1高周波電源装置13から電源が供給される。同様に第2高周波振動発生装置14には第2高周波コイル17が設けられており、第2高周波電源装置15から電源が供給される。そして、第1高周波コイル16には第1振動子18が接続されていて、第2高周波コイル17には第2振動子19が接続されている。   The first high frequency vibration generating device 12 is provided with a first high frequency coil 16, and power is supplied from the first high frequency power supply device 13. Similarly, the second high frequency vibration generating device 14 is provided with a second high frequency coil 17, and power is supplied from the second high frequency power supply device 15. A first vibrator 18 is connected to the first high-frequency coil 16, and a second vibrator 19 is connected to the second high-frequency coil 17.

ここで、第1高周波振動発生装置12の第1振動子18は垂直方向への高周波振動を生成するように配置されており、第2高周波振動発生装置14の第2振動子19は水平方向への高周波振動を生成するように配置されている。第1振動子18ならびに第2振動子19はそれぞれ第1高周波電源装置13、第2高周波電源装置15から高周波電流が供給される。そして、第1高周波コイル16ならびに第2高周波コイル17に供給された高周波電流はそれぞれのコイルにて高周波の交番磁界に変換され、第1振動子18、第2振動子19に交番磁界が印加されて高周波にて伸縮運動を生成せしめる。   Here, the first vibrator 18 of the first high-frequency vibration generator 12 is arranged to generate high-frequency vibration in the vertical direction, and the second vibrator 19 of the second high-frequency vibration generator 14 is in the horizontal direction. Is arranged to generate high-frequency vibrations. The first vibrator 18 and the second vibrator 19 are supplied with a high-frequency current from the first high-frequency power supply device 13 and the second high-frequency power supply device 15, respectively. The high-frequency current supplied to the first high-frequency coil 16 and the second high-frequency coil 17 is converted into a high-frequency alternating magnetic field by each coil, and the alternating magnetic field is applied to the first vibrator 18 and the second vibrator 19. The telescopic motion is generated at high frequency.

第1振動子18には垂直駆動軸20が接続されており、第2振動子19には水平駆動軸21が接続されている。水平駆動軸21は水平駆動軸の中間に連結ピン22によって連結されている。このようにして垂直駆動軸20は第1振動子18によって上下方向に振動し、水平駆動軸21は第2振動子19によって水平方向に振動するが、水平駆動軸21が垂直駆動軸20に連結されているため、垂直駆動軸20は垂直方向ならびに水平方向の両振動が印加され上下振動ならびに水平振動がなされる。第1進胴子18ならびに第2振動子19のそれぞれは500Hz以上の高周波領域で振動させることにより好結果が得られる。   A vertical drive shaft 20 is connected to the first vibrator 18, and a horizontal drive shaft 21 is connected to the second vibrator 19. The horizontal drive shaft 21 is connected to the middle of the horizontal drive shaft by a connecting pin 22. In this way, the vertical drive shaft 20 vibrates in the vertical direction by the first vibrator 18 and the horizontal drive shaft 21 vibrates in the horizontal direction by the second vibrator 19, but the horizontal drive shaft 21 is connected to the vertical drive shaft 20. Therefore, the vertical drive shaft 20 is applied with both vertical and horizontal vibrations to cause vertical and horizontal vibrations. Good results can be obtained by oscillating each of the first advancer 18 and the second vibrator 19 in a high frequency region of 500 Hz or more.

垂直駆動軸20の先端にはコマ23が強固に接続されている。コマ23は潤滑油24が満たされている油槽25に浸漬されている。油槽25中であって、コマ23に対向する位置には半円筒形状の軸受けメタル26が架台27上に固定されている。コマ23の先端は軸受けメタル26の内面、すなわちコマ23と対向する施工面28と同一形状に形成されている。この結果、コマ23と軸受けメタル26の施工面28との間隔は対向位置のいずれにおいても同一間隔となっている。コマ23と軸受けメタル26の施工面28との間隔は10mm以下が好適である。   A top 23 is firmly connected to the tip of the vertical drive shaft 20. The top 23 is immersed in an oil tank 25 filled with a lubricating oil 24. A semi-cylindrical bearing metal 26 is fixed on a mount 27 in the oil tank 25 at a position facing the top 23. The top of the top 23 is formed in the same shape as the inner surface of the bearing metal 26, that is, the construction surface 28 facing the top 23. As a result, the interval between the top 23 and the construction surface 28 of the bearing metal 26 is the same at any of the opposing positions. The distance between the top 23 and the construction surface 28 of the bearing metal 26 is preferably 10 mm or less.

油槽25の内部にはヒータ29ならびに撹拌装置30が挿入されている。ヒータ29は油槽25中の潤滑油24の粘度を最適に保つための加温手段として用い、撹拌装置30は油槽25中の潤滑油24の粘度ならびに温度を均一化するたに用いられる。   A heater 29 and a stirring device 30 are inserted into the oil tank 25. The heater 29 is used as a heating means for keeping the viscosity of the lubricating oil 24 in the oil tank 25 optimal, and the stirring device 30 is used to make the viscosity and temperature of the lubricating oil 24 in the oil tank 25 uniform.

このような構成において、コマ23に上下振動と水平振動を付与すると、所定の間隔を介して設置されている軸受けメタル26に対向位置で上下振動と水平振動を行う。このときに、軸受けメタル26の施工面28とコマ23との空間部にキャビテーション泡31が発生・崩壊を繰り返しして行われ、キャビテーション泡31の崩壊時に大きな衝撃波を発生する。   In such a configuration, when vertical vibration and horizontal vibration are applied to the top 23, the vertical vibration and horizontal vibration are performed at a position opposed to the bearing metal 26 installed at a predetermined interval. At this time, cavitation bubbles 31 are repeatedly generated and collapsed in the space between the construction surface 28 of the bearing metal 26 and the top 23, and a large shock wave is generated when the cavitation bubbles 31 collapse.

キャビテーション泡31は、コマ23と軸受けメタル26の施工面28の間に設けられた狭隘な空間部に発生する。上下方向の振動の振幅と水平方向の振幅との位相を適当な値に調整することにより、コマ23のキャビテーション発生部32は軸受けメタル26に対して垂直に高周波にて振動させることができる。軸受けメタル26に対してキャビテーション発生部32を垂直に振動せしめることにより、微細なキャビテーション泡31を狭隘な空間部に多量に発生することが可能である。   The cavitation bubbles 31 are generated in a narrow space provided between the top 23 and the construction surface 28 of the bearing metal 26. By adjusting the phase of the amplitude of the vibration in the vertical direction and the amplitude in the horizontal direction to an appropriate value, the cavitation generating unit 32 of the frame 23 can be vibrated perpendicularly to the bearing metal 26 at a high frequency. By causing the cavitation generating portion 32 to vibrate vertically with respect to the bearing metal 26, it is possible to generate a large amount of fine cavitation bubbles 31 in a narrow space portion.

キャビテーション泡31の崩壊時の衝撃波の圧力は、数百MPaにも達する。このため、軸受けメタル26以外でキャビテーション泡31による壊食を防止するために、コマ外周部36にはキャビテーション泡31が発生しにくい弾力性のあるゴムなどにて被覆しておく。また、軸受けメタル26においても非施工面である箇所には大きな空間部を設け、キャビテーション泡31が発生しにくい非キャビテーション発生部を設けるようにするとよい。   The pressure of the shock wave when the cavitation bubbles 31 collapse reaches several hundred MPa. For this reason, in order to prevent erosion by the cavitation bubbles 31 other than the bearing metal 26, the outer peripheral portion 36 is covered with elastic rubber or the like in which the cavitation bubbles 31 are not easily generated. Also, in the bearing metal 26, it is preferable to provide a large space portion at a position that is a non-working surface and to provide a non-cavitation generating portion in which the cavitation bubbles 31 are not easily generated.

次に図2を参照してキャビテーション泡31とその衝撃波の作用原理を説明する。図2において、コマ23のキャビテーション発生部32と軸受けメタル26の施工面28は、潤滑油24で満たされ、ギャップaの距離を保った状態でキャビテーション発生部32が紙面の上方に瞬時に移動するとキャビテーション発生部32の表面は瞬間的に負圧となり、潤滑油の飽和蒸気圧以下の圧力場が形成されて、キャビテーション泡31と呼ばれる微細な泡が発生する。   Next, the principle of action of the cavitation bubble 31 and its shock wave will be described with reference to FIG. In FIG. 2, when the cavitation generating portion 32 of the top 23 and the construction surface 28 of the bearing metal 26 are filled with the lubricating oil 24 and the gap a is maintained, the cavitation generating portion 32 instantaneously moves above the paper surface. The surface of the cavitation generating unit 32 instantaneously becomes negative pressure, a pressure field equal to or lower than the saturated vapor pressure of the lubricating oil is formed, and fine bubbles called cavitation bubbles 31 are generated.

次にキャビテーション発生部32が紙面の下方に瞬時に移動すると、発生していたキャビテーション泡31が圧力により崩壊する。このとき、数百MPaに達する衝撃波が発生する。このとき発生する衝撃波33は距離が大きくなるに従って拡散・減衰されるため、数十mm離れた施工面28に対してはほとんど衝撃波33としての作用を及ぼさないが、ギャップaを十mmから数百μの値にすると、キャビテーション泡31の崩壊によって生じた衝撃波33は他のキャビテーション泡31と相互に作用しながら衝撃波を発生し、その一部はキャビテーション発生部32と施工面28の間において反射波34となり反射を繰り返す。   Next, when the cavitation generating unit 32 instantaneously moves below the plane of the paper, the generated cavitation bubble 31 collapses due to pressure. At this time, a shock wave reaching several hundred MPa is generated. Since the shock wave 33 generated at this time is diffused and attenuated as the distance increases, the construction surface 28 separated by several tens of mm hardly acts as the shock wave 33, but the gap a is changed from 10 mm to several hundreds. When the value is μ, the shock wave 33 generated by the collapse of the cavitation bubble 31 interacts with the other cavitation bubbles 31 to generate a shock wave, and a part of the reflected wave is reflected between the cavitation generating part 32 and the construction surface 28. It becomes 34 and repeats reflection.

キャビテーション泡31が高密度に狭い空間に発生するとこの傾向は顕著に現れる。これにより潤滑油中のキャビテーション泡31によって生じた衝撃波33を施工面28の表面に作用させることにより、施工面28の表面を衝撃波33により壊食することができる。軸受けメタル26の材質や硬さと所要の壊食深さにより、第1高周波振動発生装置12と第2高周波振動発生装置14の振動数とストロークと位相を適度に調整することによって、狭隘な空間にキャビテーション泡31を高密度に発生させることができ、所要の壊食加工を行うことが可能である。   This tendency is prominent when the cavitation bubbles 31 are generated in a narrow space with high density. Thereby, the surface of the construction surface 28 can be eroded by the shock wave 33 by causing the shock wave 33 generated by the cavitation bubbles 31 in the lubricating oil to act on the surface of the construction surface 28. By adjusting the frequency, stroke, and phase of the first high-frequency vibration generator 12 and the second high-frequency vibration generator 14 according to the material and hardness of the bearing metal 26 and the required erosion depth, a narrow space can be obtained. The cavitation bubbles 31 can be generated at high density, and the required erosion processing can be performed.

このように本発明によれば施工面が複雑に変化する軸受けメタルにおいても、軸受けメタルの施工面に沿って振動子のコマを倣い加工と同じように一定のギャップを保って振動させることが可能となり、複雑な曲面に対しても、潤滑油中のキャビテーション泡を面状に高密度に発生させることが可能となり、高いピーニング効果を得ることができる。   As described above, according to the present invention, even in a bearing metal whose construction surface changes in a complicated manner, it is possible to vibrate while maintaining a constant gap along the bearing metal construction surface in the same manner as in copying. Thus, even for complicated curved surfaces, cavitation bubbles in the lubricating oil can be generated in a high density in a planar shape, and a high peening effect can be obtained.

キャビテーション泡を高密度に発生した場合の加工深さは、ショットピーニングの数倍に達することが実験にて確かめられており、ウォータジェットによるピーニングのように高圧水による反力が発生せず、かつ平面を高密度に一度でピーニングすることができるため、ウォータジェットのように細いジェット流を施工面にトラバースして施工するトラバース装置も不要となる利点もある。   The processing depth when cavitation bubbles are generated at a high density has been confirmed by experiments to reach several times that of shot peening, and there is no reaction force caused by high-pressure water like water jet peening, and Since the plane can be peened at a high density at a time, there is also an advantage that a traverse device for traversing a thin jet stream on the construction surface like a water jet is unnecessary.

次に図3を参照して本発明の作用ならびに動作をさらに説明する。軸受けメタル26は潤滑油24中にてキャビテーション泡の衝撃波に長時間曝され、図3に示すような壊食により軸受けメタル26の表面である施工面28には微細な壊食ピット35が穿孔される。潤滑油24が加熱されて常温より粘度が低い状態になると、潤滑油24は壊食ピット35の隙間に含浸する。   Next, the operation and operation of the present invention will be further described with reference to FIG. The bearing metal 26 is exposed to a shock wave of cavitation bubbles in the lubricating oil 24 for a long time, and fine erosion pits 35 are perforated on the construction surface 28 which is the surface of the bearing metal 26 by erosion as shown in FIG. The When the lubricating oil 24 is heated to a state where the viscosity is lower than normal temperature, the lubricating oil 24 impregnates the gaps of the erosion pits 35.

このとき、壊食ピット35の平均径は数μm程度あって、内部まで潤滑油24が含浸する。壊食ピット35は上述もしたように小孔状である。平均口径Lは数μm程度で、深さδは数μm〜数十μmとなるが、これらの数値は軸受けメタルの材質や加工条件によって異なることになる。キャビテーションの発生強度と作用時間などを適当な値に制御することにより、壊食ピット35の口径Lと穿孔の深さδとを所要の値に加工し目的とする潤滑面を確保する。   At this time, the average diameter of the erosion pits 35 is about several μm, and the lubricating oil 24 is impregnated to the inside. The erosion pit 35 has a small hole shape as described above. The average diameter L is about several μm, and the depth δ is several μm to several tens of μm. By controlling the cavitation generation strength and working time to appropriate values, the diameter L of the erosion pit 35 and the depth δ of the piercing holes are processed to the required values to ensure the intended lubricating surface.

加熱された潤滑油24中では軸受けメタル26の施工面28が熱によって膨張するため、軸受け表面の壊食ピット35も広がる。この状態で潤滑油24が壊食ピット35に含浸された状態で軸受けメタル26が常温に冷却されると、壊食ピット35の奥に含浸された潤滑油24はピットの奥に閉じ込められた状態となり簡単に外部に染み出さなくなる。これにより常温状態では軸受け表面に潤滑油が含浸された状態を維持することが可能となる。   Since the construction surface 28 of the bearing metal 26 expands due to heat in the heated lubricating oil 24, the erosion pits 35 on the bearing surface also spread. In this state, when the bearing metal 26 is cooled to room temperature in a state where the lubricating oil 24 is impregnated in the erosion pit 35, the lubricating oil 24 impregnated in the inner part of the erosion pit 35 is confined in the inner part of the pit. It will not easily exude to the outside. This makes it possible to maintain a state in which the bearing surface is impregnated with the lubricating oil in the normal temperature state.

次に本発明の施工工程のフローを図4を参照して説明する。キャビテーション作用による施工対象である軸受けメタル材をキャビテーション加工機に固定する(Step1)。軸受けメタル材が取り付けられ、潤滑油中に浸漬されているキャビテーション加工機の油槽の温度を所定温度までヒータにて昇温する(Step2)。次いで潤滑油中に浸漬されているコマを高周波で振動させ、コマの端面にキャビテーション泡の発生と崩壊を繰り返す(Step3)。   Next, the construction process flow of the present invention will be described with reference to FIG. The bearing metal material which is the construction object by the cavitation action is fixed to the cavitation machine (Step 1). The temperature of the oil tank of the cavitation processing machine to which the bearing metal material is attached and is immersed in the lubricating oil is raised to a predetermined temperature by the heater (Step 2). Next, the top immersed in the lubricating oil is vibrated at a high frequency, and generation and collapse of cavitation bubbles are repeated on the end face of the top (Step 3).

潤滑油中のコマの端面に発生するキャビテーション泡の崩壊時に発生する衝撃波によって軸受けメタルの表面を所定の粗さと深さが生成されるようにキャビテーション発生条件と印加時間を調整し、壊食作用を軸受けメタル表面に作用させる(Step4)。次に壊食作用が施された軸受けメタル表面の壊食ピットの内部の奥まで油槽中の潤滑油を含浸させる(Step5)。次に油槽の潤滑油を含浸させた軸受けメタルを油槽から取り出して所定の温度まで冷却する(Step6)。冷却された軸受けメタルの摺動面、表面を清掃して機器などに組み込み使用に供する(Step7)。   The cavitation generation conditions and application time are adjusted so that a predetermined roughness and depth are generated on the surface of the bearing metal by the shock wave generated when the cavitation bubbles generated on the end face of the top in the lubricating oil collapse. It is made to act on the bearing metal surface (Step 4). Next, the lubricating oil in the oil tank is impregnated into the interior of the erosion pit on the surface of the bearing metal subjected to the erosion action (Step 5). Next, the bearing metal impregnated with the lubricating oil in the oil tank is taken out from the oil tank and cooled to a predetermined temperature (Step 6). The sliding surface and the surface of the cooled bearing metal are cleaned and incorporated into equipment for use (Step 7).

なお、上述した本発明に係る実施形態では対象として軸受けメタルを例に説明したが、本発明はこれのみに限定されるものではなく、軸受けメタル以外であっても動作中に表面に潤滑剤を必要とする被改質材に適用できるものである。また、実施形態の説明では液状潤滑剤として潤滑油を例にしたが、他に油のみならずいわゆる液状潤滑剤に対して適用可能である。   In the embodiment according to the present invention described above, the bearing metal has been described as an example. However, the present invention is not limited to this, and a lubricant other than the bearing metal can be applied to the surface during operation. It can be applied to the required material to be modified. In the description of the embodiment, the lubricating oil is taken as an example of the liquid lubricant, but the present invention can be applied not only to the oil but also to a so-called liquid lubricant.

本発明の実施形態を説明するための構成図。The block diagram for demonstrating embodiment of this invention. 本発明の動作原理を説明するための模式図。The schematic diagram for demonstrating the operation | movement principle of this invention. 本発明の作用を説明するための要部拡大断面図。The principal part expanded sectional view for demonstrating the effect | action of this invention. 本発明の実施形態の工程を説明するためのフロー図。The flowchart for demonstrating the process of embodiment of this invention.

符号の説明Explanation of symbols

11…ピーニング装置、12…第1高周波振動発生装置、13…第1高周波電源装置、14…第2高周波振動発生装置、15…第2高周波電源装置、16…第1高周波コイル、17…第2高周波コイル、18…第1振動子、19…第2振動子、20…垂直駆動軸、21…水平駆動軸、22…連結ピン、23…コマ、24…潤滑油、25…油槽、26…軸受けメタル、27…架台、28…施工面、29…ヒータ、30…撹拌装置、31…キャビテーション泡、32…キャビテーション発生部、33…衝撃波、34…反射波、35…壊食ピット、36…コマ外周部、a…ギャップ、L…平均口径、δ…深さ。   DESCRIPTION OF SYMBOLS 11 ... Peening apparatus, 12 ... 1st high frequency vibration generator, 13 ... 1st high frequency power supply device, 14 ... 2nd high frequency vibration generator, 15 ... 2nd high frequency power supply device, 16 ... 1st high frequency coil, 17 ... 2nd High frequency coil, 18 ... first vibrator, 19 ... second vibrator, 20 ... vertical drive shaft, 21 ... horizontal drive shaft, 22 ... connecting pin, 23 ... top, 24 ... lubricating oil, 25 ... oil tank, 26 ... bearing Metal, 27: Mounting base, 28: Construction surface, 29 ... Heater, 30 ... Stirring device, 31 ... Cavitation foam, 32 ... Cavitation generating part, 33 ... Shock wave, 34 ... Reflected wave, 35 ... Erosion pit, 36 ... Outer periphery Part, a ... gap, L ... average diameter, delta ... depth.

Claims (10)

被改質材を液状潤滑剤中に浸漬し、前記被改質材表面を前記液状潤滑剤中にて、前記被改質材表面形状に倣った表面形状を有するコマを用い、前記液状潤滑剤中にキャビテーション泡を生成せしめ、このキャビテーション泡の生成・崩壊によってなされるキャビテーションピーニング処理を施すことにより、前記被改質材表面に壊食ピットを穿孔し、前記壊食ピット中に前記液状潤滑剤を含浸することを特徴とする被改質材加工方法。   The liquid lubricant is soaked in a liquid lubricant, and the surface of the material to be modified is immersed in the liquid lubricant, and a top having a surface shape following the surface shape of the material to be reformed is used. Cavitation bubbles are generated inside, and erosion pits are drilled in the surface of the material to be reformed by performing cavitation peening treatment that is performed by generation / disintegration of the cavitation bubbles, and the liquid lubricant is formed in the erosion pits. A method for processing a material to be reformed, characterized by impregnating the material. 前記コマは上下方法ならびに水平方向に振動させることを特徴とする請求項1記載の被改質材加工方法。   The method for processing a material to be modified according to claim 1, wherein the top is vibrated in a vertical direction and in a horizontal direction. 前記コマの振動は500Hz以上の高周波領域の振動であることを特徴とする請求項2記載の被改質材加工方法。   The method for processing a material to be modified according to claim 2, wherein the vibration of the top is a vibration in a high frequency region of 500 Hz or more. 前記被改質材表面と前記コマとの間隔は10mm以下であることを特徴とする請求項2または3記載の被改質材加工方法。   The method for processing a material to be modified according to claim 2 or 3, wherein a distance between the surface of the material to be modified and the top is 10 mm or less. 前記被改質材は軸受けメタルであって、前記液状潤滑剤は潤滑油であることを特徴とする請求項1乃至4のいずれか1項記載の被改質材加工方法。   The method for processing a material to be reformed according to any one of claims 1 to 4, wherein the material to be reformed is a bearing metal, and the liquid lubricant is a lubricating oil. 液状潤滑剤を満たす潤滑剤槽と、この潤滑剤槽中に設置されたコマと、このコマに接続された高周波振動発生装置とを具備し、前記コマに対して対向間隙に配置される被改質材表面に前記潤滑剤槽に満たされる前記液状潤滑剤中にて前記潤滑剤を含浸する壊食ピットを形成することを特徴とする被改質材加工装置。   A lubricant tank that fills the liquid lubricant, a frame installed in the lubricant tank, and a high-frequency vibration generator connected to the frame, and is disposed in a facing gap with respect to the frame. An apparatus for processing a material to be reformed, wherein erosion pits for impregnating the lubricant in the liquid lubricant filled in the lubricant tank are formed on the surface of the material. 前記高周波振動発生装置は、前記コマに接続された垂直駆動軸と、この垂直駆動軸を駆動する第1高周波振動発生装置と、前記垂直駆動軸に連結された水平駆動軸と、この水平駆動軸を駆動する第2高周波振動発生装置から構成されており、前記コマは前記第1高周波振動発生装置からの上下振動ならびに前記第2高周波振動発生装置からの水平振動が印加されることを特徴とする請求項6記載の被改質材加工装置。   The high-frequency vibration generator includes a vertical drive shaft connected to the top, a first high-frequency vibration generator that drives the vertical drive shaft, a horizontal drive shaft connected to the vertical drive shaft, and the horizontal drive shaft. And a top vibration from the first high-frequency vibration generator and a horizontal vibration from the second high-frequency vibration generator are applied to the top. The to-be-reformed material processing apparatus of Claim 6. 前記コマ表面は前記被改質材表面形状に倣った形状に形成されていることを特徴とする請求項6または7記載の被改質材加工装置。   8. The to-be-reformed material processing apparatus according to claim 6, wherein the top surface is formed in a shape that follows the to-be-modified material surface shape. 前記液状潤滑剤槽中にはヒータならびに撹拌装置が設置されていることを特徴とする請求項6乃至8のいずれか1項記載の被改質材加工装置。   The apparatus for processing a material to be reformed according to any one of claims 6 to 8, wherein a heater and a stirring device are installed in the liquid lubricant tank. 前記液状潤滑剤は潤滑油であり、前記被改質材は軸受けメタルであることを特徴とする請求項6乃至9のいずれか1項記載の被改質材加工装置。   The apparatus for processing a material to be reformed according to any one of claims 6 to 9, wherein the liquid lubricant is lubricating oil, and the material to be reformed is a bearing metal.
JP2006141704A 2006-05-22 2006-05-22 Modified material working method and modified material working device Pending JP2007307682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141704A JP2007307682A (en) 2006-05-22 2006-05-22 Modified material working method and modified material working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141704A JP2007307682A (en) 2006-05-22 2006-05-22 Modified material working method and modified material working device

Publications (1)

Publication Number Publication Date
JP2007307682A true JP2007307682A (en) 2007-11-29

Family

ID=38840983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141704A Pending JP2007307682A (en) 2006-05-22 2006-05-22 Modified material working method and modified material working device

Country Status (1)

Country Link
JP (1) JP2007307682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522802A (en) * 2012-05-21 2015-08-06 アイシス イノベーション リミテッドIsis Innovation Limited Localized concentration of energy
JP2015222256A (en) * 2010-05-07 2015-12-10 アイシス イノベーション リミテッドIsis Innovation Limited Localized energy concentration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328860A (en) * 1994-06-10 1995-12-19 Babcock Hitachi Kk Water jet peening device and water jet peening method
JP2004299048A (en) * 2003-03-31 2004-10-28 Robert Bosch Gmbh Manufacturing method for structured and/or stochastically microstructured surface
JP2006082163A (en) * 2004-09-15 2006-03-30 Toshiba Plant Systems & Services Corp Dimple forming method and dimple forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328860A (en) * 1994-06-10 1995-12-19 Babcock Hitachi Kk Water jet peening device and water jet peening method
JP2004299048A (en) * 2003-03-31 2004-10-28 Robert Bosch Gmbh Manufacturing method for structured and/or stochastically microstructured surface
JP2006082163A (en) * 2004-09-15 2006-03-30 Toshiba Plant Systems & Services Corp Dimple forming method and dimple forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222256A (en) * 2010-05-07 2015-12-10 アイシス イノベーション リミテッドIsis Innovation Limited Localized energy concentration
JP2015522802A (en) * 2012-05-21 2015-08-06 アイシス イノベーション リミテッドIsis Innovation Limited Localized concentration of energy

Similar Documents

Publication Publication Date Title
US6467321B2 (en) Device for ultrasonic peening of metals
Sundaram et al. A study on process parameters of ultrasonic assisted micro EDM based on Taguchi method
Bhattacharyya et al. Influence of tool vibration on machining performance in electrochemical micro-machining of copper
CN106112150B (en) Electro-discharge machining
Rusli et al. Performance of micro-hole drilling by ultrasonic-assisted electro-chemical discharge machining
CN110869163B (en) Ultrasonic roller polishing system and method for machining a part
US2736144A (en) thatcher
JP2007307682A (en) Modified material working method and modified material working device
KR101941226B1 (en) Quenching apparatus with vibration structure for anti-decarbonization and Quenching method using that
JP2749532B2 (en) Drilling machine with radially displaceable drilling spindle
JP4460981B2 (en) Dimple processing method and dimple processing apparatus
JP2006082162A (en) Surface modification method and surface modification device
JP5122739B2 (en) Vibration tumbling device
JP2003220523A (en) Surface modifying method and device
WO2014031088A1 (en) Ultrasonic instrument for the impact treatment of surfaces of components
RU2133282C1 (en) Method for stabilizing residual stress in part surface layer
JP2006102871A (en) Residual stress part reduction method and residual stress part reduction device
RU2317868C1 (en) Apparatus for descaling rod
JP2009078305A (en) Surface-treatment equipment and method
JP2004298856A (en) Method for generating cavitation and generating apparatus therefor
Ningmetzyanov et al. Dynamics of surface properties of steel Kh12MF during cavitation-erosion treatment
JP7311098B2 (en) Vibration cutting device, vibration device and cutting method
RU2449874C1 (en) Device for surface flat vibrogrinding
RU2252859C1 (en) Ultrasonic tool for releasing residual stresses and strengthening surfaces of metals
RU2333822C1 (en) Method of combined magnetic-pulse processing of impeller machines parts and device for its implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221